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Abstract. We derive four reduced two-dimensional models that describe, at different spatial scales,

the micromagnetics of ultrathin ferromagnetic materials of finite spatial extent featuring perpen-

dicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction. Starting with a mi-

croscopic model that regularizes the stray field near the material’s lateral edges, we carry out an

asymptotic analysis of the energy by means of Γ-convergence. Depending on the scaling assumptions

on the size of the material domain vs. the strength of dipolar interaction, we obtain a hierarchy of

the limit energies that exhibit progressively stronger stray field effects of the material edges. These

limit energies feature, respectively, a renormalization of the out-of-plane anisotropy, an additional

local boundary penalty term forcing out-of-plane alignment of the magnetization at the edge, a

pinned magnetization at the edge, and, finally, a pinned magnetization and an additional field-like

term that blows up at the edge, as the sample’s lateral size is increased. The pinning of the mag-

netization at the edge restores the topological protection and enables the existence of magnetic

skyrmions in bounded samples.
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1. Introduction and motivation

With an ever-increasing control and sophistication of nanofabrication techniques, there is a growing
need for a better understanding of the physical phenomena at the nanoscale that are determined
by the material geometry. In today’s nano-magnetic systems, one typically encounters materials
consisting of one or several quasi-two-dimensional magnetic layers interspersed with non-magnetic
layers. The presence of magnetic/non-magnetic interfaces gives rise to new physical effects that have
the potential to enable the next generation of nanoelectronic devices that harness both the electric
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charge and the spin degrees of freedom of electron for information technologies [62]. In the context
of such spintronics applications [2,6,34], one is particularly interested in creating and manipulating
spin configurations that are endowed with non-trivial topological characteristics, which make them
robust against external influences and noise [66].

The basic information unit in a topological spintronic device is the magnetic skyrmion —a particle-
like continuous spin texture with topological degree +1 (under a natural sign convention) [13,29,30,
54]. For this reason, there has been considerable interest in the behavior of skyrmions in confining
geometries, both theoretically, computationally, and experimentally (see, e.g., [1,12,18,19,23,48,55–
58]; this list is certainly not meant to be exhaustive).

However, under confinement, the topological protection of non-collinear spin textures is a priori
lost since the topological degree of the spin configuration on a bounded domain is generally not
well-defined. In this case, a skyrmion-like spin texture may be continuously deformed into a uniform
magnetization state by pushing the skyrmion out of the domain through the boundary. A natural
solution is to settle the problem in the framework of curvilinear magnetism. Indeed, magnetic thin
films with the shape of closed surfaces provide a concrete alternative for degree-preserving confine-
ments and, thus, toward the realization of chiral magnetic textures. The literature on this topic has
grown very large. We refer the reader to [21,22,25,26,31,61,63], see also the recent monograph [44],
for further reading on the analysis of magnetic skyrmions in curved geometries that are close in spirit
to our interests here. But as soon as one is interested in planar thin films, further stabilization
mechanisms for the magnetic skyrmions in spintronic nanodevices would be required that provide a
repulsive interaction between the skyrmion and the device edge.

In this paper, we explore the additional energetic effects appearing at the edges of two-dimensional
ferromagnetic materials of finite spatial extent. Due to the significant role played by the stray field
in ferromagnetic materials, these effects are often difficult to predict and cause the emergence of new
physical phenomena driven by the material edges. For example, in soft ferromagnets in the form
of thin films, the additional contribution of the stray field may penalize the normal component of
the magnetization at the film edge [16, 38], causing the appearance of boundary vortices [40, 50],
edge-curling domain walls [42, 43] or transverse head-to-head walls [49]. In the current materials
for spintronics applications, additional physical mechanisms contribute at the film edge [52, 53, 57],
further complicating the situation. Therefore, to better understand the energetics of the material edge,
we carry out an asymptotic analysis of the micromagnetic model of a two-dimensional ferromagnet
exhibiting perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction [57],
using the techniques of Γ-convergence. The singularity of the stray field near the film edge in two-
dimensional micromagnetics requires a regularization of the magnetostatic problem near the edge
and gives rise to a hierarchy of reduced models appearing in the limit of the vanishing stray field
interaction strength. This regularization, however, does not affect in any way the obtained limits,
demonstrating the universality of the asymptotic behavior of two-dimensional ferromagnets.

We demonstrate that depending on the scaling of the lateral size of a simply connected ferromag-
netic domain with the strength of the effective stray field interaction and for suitable renormalizations
of the other parameters, there are four distinct asymptotic regimes in which the stray field acts dif-
ferently at the domain edge and in the ferromagnet’s interior. In the first regime reminiscent of the
thin film limit studied by Gioia and James [33] (see also [16, 21, 24]), the edge does not exert any
influence on the magnetization, resulting in a free boundary condition and a renormalization of the
magnetocrystalline anisotropy constant (Theorem 1). In the second regime reminiscent of the one
studied by Kohn and Slastikov for soft ferromagnets [38] and characterized by a larger lateral film
extent, the edge begins to exert an additional penalization of the deviation of the magnetization
from either one of the out-of-plane directions (Theorem 2). In the third regime at yet larger film’s
lateral extent, the magnetization becomes rigidly pinned to a single out-of-plane direction at the film
edge, while the stray field still contributes locally in the film’s interior (Theorem 3). Finally, in the
fourth regime at yet larger film’s extent, the magnetization is also rigidly pinned at the film’s edge,
but a nonlocal interaction term appears in the interior, as well as an additional geometry-induced
external field-like term (Theorem 4). We note that the third regime corresponds precisely to the one
studied in [48], where the topological protection of single Néel skyrmions was shown to be restored
in a minimal micromagnetic setting.
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The proofs of the main results are rather technical and require a careful asymptotic analysis of the
stray field close to the film edge. For this purpose, we find it convenient to reformulate the leading
order expansion for the dipolar interaction energy [37] in terms of the gradients of the magnetization.
This is then used to compare the contributions of the mollified material edge with that of the trace
of the magnetization at a fixed material boundary of the limit domain. The proofs proceed by a
divide-and-conquer strategy, in which the different parts of the dipolar interaction are progressively
isolated and ultimately estimated by the limiting energy up to error terms that are bounded by
a small fraction of the exchange energy. The Γ-limits are, in turn, proved by suitably combining
the different terms in the energy and passing to the limit directly. We note that considerably finer
estimates are required here to establish our results compared to those needed in [16,21,24,33,38].

1.1. Outline. The paper is organized as follows. In section 2, we introduce the micromagnetic model
of a two-dimensional ferromagnetic film exhibiting perpendicular magnetocrystalline anisotropy and
an interfacial DMI. Here we also introduce the edge regularization, which is further derived from first
principles in section 2.1, and state our results informally, so that they can be easily related to the
original physical model. Then, in section 3, we state the precise assumptions and definitions, and
proceed to present the statements of the main results of the paper. The rest of the paper is devoted
to the proofs of the theorems. In section 4, we prove some preliminary technical results. In section
5, we carry out the necessary asymptotic expansions of the magnetostatic energy. Finally, in section
6, we complete the proofs of Γ-convergence.

1.2. Acknowledgments. G.DiF. acknowledges support from the Austrian Science Fund (FWF)
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2. The micromagnetic model

We start by considering a reduced two-dimensional micromagnetic energy for an extended ferro-
magnetic thin film of effective thickness δ > 0, with the lengths measured in the units of the exchange
length ℓ =

√
A/Kd, where Kd = 1

2µ0M
2
s , µ0 is the vacuum permeability, Ms is the saturation mag-

netization and A is the exchange stiffness. The magnetization is characterized by a non-dimensional
vector m(x) ∈ R3 at each point x ∈ R2 of the film. We assume that the film exhibits perpendicular
magnetic anisotropy, interfacial Dzyaloshinskii-Moriya interaction (DMI) and in the presence of an
applied field perpendicular to the film plane, so that the energy functional E(m) has the form

E(m) = Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m). (2.1)

Here, in order of appearance, the terms are the exchange, anisotropy, Zeeman, the DMI and the stray
field energies measured in the units of Aℓδ. As was discussed in [4,37,52], in an extended film where

m : R2 → S2, (2.2)

is sufficiently smooth and goes to, say, m0 = (0, 0,−1) sufficiently fast at infinity, with the notations

m = (m⊥,m∥), m⊥ : R2 → R2, m∥ : R2 → R, (2.3)

where m⊥ is the in-plane component and m∥ is the out-of-plane component of m, respectively, these
terms take the following form [3,4]:

Eex(m) :=
∫
R2

|∇m|2dx, Ea(m) := Q

∫
R2

|m⊥|2dx, EZ(m) := −2h
∫
R2

(1 +m∥)dx, (2.4)

EDMI(m) := κ

∫
R2

(m∥div m⊥ − m⊥ · ∇m∥) dx, (2.5)
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and

Es(m) := −
∫
R2

|m⊥|2dx+ δ

4π

∫
R2

∫
R2

div m⊥ (x) · div m⊥(y)
|x− y|

dxdy,

− δ

8π

∫
R2

∫
R2

(m∥(x) −m∥(y))2

|x− y|3
dxdy, (2.6)

where
Q = Ku

Kd
, κ = D√

AKd
, h = H

Ms
, (2.7)

with Q, κ and h being the dimensionless quality factor of the out-of-plane anisotropy, the dimen-
sionless DMI strength and the dimensionless applied field strength, corresponding to the dimensional
magnetocrystalline anisotropy constant Ku, DMI strength D normalized per unit volume, and the
out-of-plane field H, respectively. Note that κ and h may change sign, while for a perpendicular
magnetic anisotropy material we have Q > 1. Under suitable conditions, the above energy ex-
hibits local minimizers in the form of the topologically non-trivial magnetization configurations –
magnetic skyrmions [3–5,7–11, 19,36,45,48].

Observe that the stray field energy in (2.6) admits the following representation with the help of
the Fourier transform

m̂(k) =
∫
R2
e−ik·x(m(x) − m0)dx (2.8)

of m − m0 ∈ C∞
c (R2;R3):

Es(m) = −
∫
R2

|m̂⊥(k)|2 dk
(2π)2 + δ

2

∫
R2

|k · m̂⊥(k)|2

|k|
dk

(2π)2 − δ

2

∫
R2

|k||m̂∥(k)|2 dk
(2π)2 . (2.9)

In particular, the first term in the right-hand side of (2.9), also referred to as the shape anisotropy
term, may be combined with Ea(m) to define an effective out-of-plane anisotropy with strength Q−1
(going back to [65]); the second term in the right-hand-side of (2.9) represents the effect of the bulk
charges and can be seen to be non-negative; and the third term represents the effect of the surface
charges and is non-positive. The Fourier representation in (2.9) also arises as a relaxation of the
energy in (2.6) in the natural class of configurations in which m − m0 ∈ H1(R2;R3). Notice that by
(2.9) and simple interpolation inequalities the energy E(m) is always well defined in this class (for
further details, see [5]).

The expression for the stray field energy in (2.6) or (2.9) may be rigorously obtained as the leading
order terms in the asymptotic expansion of the full micromagnetic energy of a three-dimensional
ferromagnetic film of thickness δ ≪ 1, with the errors controlled by the exchange energy at the next
order [37]. It represents a suitably renormalized dipolar interaction between different spins in an
infinitesimally thin ferromagnetic layer. Care, however, is needed when extending this definition to
samples of finite spatial extent. Indeed, as the stray field energy involves nonlocal terms, one cannot
simply restrict the integration in (2.6) to a bounded spatial domain Ωδ ⊂ R2 (whose size may depend
on δ), as this would disregard the dipolar interactions that contribute to the first term in (2.6). A
more systematic approach would instead consist of extending the magnetization m : Ωδ → S2 to
the whole plane by zero outside Ωδ. However, such an approach also presents difficulties, as a jump
discontinuity in m across ∂Ωδ would then generally make the nonlocal terms in (2.6) infinite. Thus,
a regularization at the scale of the film thickness is necessary close to the film edge to make sense
of the energy in (2.6). Such a regularization was first introduced in [17] (see also [51], for further
discussion see [42, 43]) in the context of reduced thin film energies for soft ferromagnetic materials,
in which the magnetization tends to lie in the film plane.

We note that several regularizations are, in fact, possible that can lead to slightly different reduced
thin film energies. The precise model would inevitably depend on the specific physics at the film edge,
which may be governed by a number of physical effects such as a different material composition in an
as-grown film near the edge, changes in the crystalline structure near the edge, edge roughness, etc.
We point out, however, that the magnetization, which in the physical space rotates on the scale of
the exchange length that exceeds by an order of magnitude the atomic scale [35], should experience
the effect of the edge via some sort of effective boundary terms. This is indeed confirmed by rigorous
studies of the thin film limit of soft-three dimensional ferromagnetic layers [38]. The present paper
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aims to derive these boundary terms via Γ-convergence for ferromagnetic films with perpendicular
magnetocrystalline anisotropy that are relevant to the studies of magnetic skyrmions.

Our starting point will be the regularization in which for, say, a given m ∈ C∞(R2;S2) we define
the physically observable magnetization mδ in the film:

mδ(x) := ηδ(x)m(x) ∀x ∈ R2, (2.10)
where for a bounded open, simply connected set Ωδ with boundary of class C2 representing the film
of finite extent we defined a cutoff function

ηδ(x) := η

(
d∂Ωδ (x)

δ

)
, (2.11)

in which d∂Ωδ is the signed distance from the boundary (cf. (3.4)) and η is a non-increasing, suffi-
ciently regular function that goes from η(−∞) = 1 to η(+∞) = 0 (see section 3 for details). For a
microscopic derivation of this condition, see section 2.1. Notice that mδ thus defined automatically
lies in H1(R2;R3) if m ∈ H1

loc(R2;S2). We then replace all the instances of m in (2.1) with mδ to
define the reduced thin film energy Eδ(m) := E(mδ).

We next specify the asymptotic regime in which the obtained energy Eδ becomes local, with the
edge effects appearing as a boundary term, which generalizes the regime for soft ferromagnetic films
identified by Kohn and Slastikov [38]. Furthermore, we will also identify the scalings of the parameters
for which the resulting limit energy still exhibits the terms that are needed to produce skyrmion-type
solutions. To this end, we introduce a small parameter ε > 0 and make all the model parameters, as
well as the domain, depend on ε as follows:

Qε = 1 + ε| ln ε|
2πγ α, hε = ε| ln ε|

2πγ β, κε =
(
ε| ln ε|
2πγ

)1/2
λ, δε =

(
2πεγ
| ln ε|

)1/2
, (2.12)

together with
Ωδ

ε := ε−1δεΩ, (2.13)
for some fixed λ > 0, α, β ∈ R and Ω ⊂ R2.

With the above choices and after some algebra, we have Eδε
(m(ε−1δε·)) = Eε(m) + Cε, where

Eε(m) :=
∫
R2

(
η2

ε |∇m|2 + αη2
ε |m⊥|2 − 2βηεm∥

)
dx

+λ
∫
R2
η2

ε (m∥div m⊥ − m⊥ · ∇m∥) dx

+ γ

2| ln ε|

∫
R2

∫
R2

div (ηεm⊥)(x)div (ηεm⊥)(y)
|x− y|

dxdy

− γ

4| ln ε|

∫
R2

∫
R2

(ηε(x)m∥(x) − ηε(y)m∥(y))2

|x− y|3
dxdy, (2.14)

and the additive constant Cε is independent of m and, therefore, is inconsequential for the variational
problem associated with Eδε

. We note that for λ = 0, only a slightly different version of this type of
energy with ε ∼ 1 can be shown to arise from the full micromagnetic energy of a three-dimensional
thin ferromagnetic film with variable thickness equal to ηε(x), which tapers off at the film edge [60].
The limit functional will be shown to be

F (m) :=
∫

Ω

(
|∇m|2 + α|m⊥|2 − 2βm∥

)
dx

+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx+ γ

∫
∂Ω

(
(m⊥ · n)2 −m2

∥

)
dH1(σ), (2.15)

where n is the outward unit normal to ∂Ω. The energy in (2.15) is defined for m ∈ H1(Ω; S2).
We will also consider two other scaling regimes, which lead to different limit behaviors. First, we

define
E0

ε (m) := Eε(m) + γεH1(∂Ω), (2.16)
where γ is replaced with γε in (2.14), and we will be interested in the limit in which γε → +∞ as
ε → 0 with α, β and λ, as well as the domain Ω, fixed (note that the limit γε → 0 is much simpler
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and is obtained by just setting γ = 0 in (2.15)). When γε → +∞, we show that for γε = o(| ln ε|) the
limit energy for E0

ε is given by

F0(m) :=
∫

Ω

(
|∇m|2 + α |m⊥|2 − 2βm∥

)
dx+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx, (2.17)

specified for all m ∈ H1(Ω;S2) such that m = e3 or m = −e3 on ∂Ω in the sense of trace.
Finally, we consider the regime in which for ν > 0 and α, β, λ real we have

Qε = 1 + ε

2πν α, hε = ε

2πν β, κε =
( ε

2πν

)1/2
λ, δε = (2πεν)1/2

, (2.18)

once again together with (2.13), which corresponds to the choice of γε = ν| ln ε| in (2.16). Here we
find the following limit energy for E0

ε , up to an additive constant:

Fν(m) :=
∫

Ω

(
|∇m|2 + α |m⊥|2 − 2βm∥

)
dx

+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx+ ν

∫
Ω

b · ∇m∥dx (2.19)

+ ν

2

∫
Ω

∫
Ω

div m⊥(x)div m⊥(y)
|x− y|

dxdy − ν

2

∫
Ω

∫
Ω

∇m∥(x) · ∇m∥(y)
|x− y|

dxdy,

where we defined the vector field

b(x) :=
∫

∂Ω

m∥(y)n(y)
|x− y|

dy x ∈ Ω, (2.20)

in which n is the outward unit normal to ∂Ω. This vector field encodes the stray field effect of the film
edge. The energy Fν is defined for all m ∈ H1(Ω;S2) such that m = e3 or m = −e3 on ∂Ω in the
sense of trace. Note that for m = ±e3 on ∂Ω we have b ∈ C∞(Ω) and b(x) diverges logarithmically
with distance as x ∈ Ω approaches ∂Ω. In particular, the term in the energy involving b is under
control by the gradient squared term.

All of the aforementioned statements are made precise within the framework of Γ-convergence in
section 3.

2.1. A microscopic derivation of the reduced two-dimensional model. As was already men-
tioned, the precise behavior of the magnetization near the film edge depends on the detailed physics
at the edge of the film. Here we use a particular model that illustrates how an energy of the form
given in (2.14) may be obtained from a more microscopic description.

To avoid dealing with truly discrete models of ferromagnetism at the atomic scale, we pick a
model that still allows to describe the film as a continuum, but retains the thermodynamic essence
of the ferromagnetic phase and allows to evaluate the additional effects of the film edge. Namely, we
consider a mean-field model of a Heisenberg ferromagnet with a long-range Kac attractive interaction.
Such models have been rigorously derived in the context of theories of phase transitions, going back
to Lebowitz and Penrose for the liquid-gas phase transition [41] and Thompson and Silver for the
classical Heisenberg magnet [64]. Moreover, in the considered limit the metastable spatially varying
states may be understood via minimization of a free energy functional [32], which in the case of the
Heisenberg model with the interaction kernel Jδ(|x|) takes the form

F(ρ) = −1
2

∫
S2

∫
S2

∫
Ω

∫
Ω
Jδ (|x− y|) (m · m′) ρ (x,m) ρ (y,m′) dxdy dH2 (m) dH2(m′)

+ β−1
∫
S2

∫
Ω
ρ(x,m) ln ρ(x,m) dxdH2 (m) . (2.21)

Here ρ ∈ L1(R2 × S2; [0,∞]) is the probability density to observe a spin at point x ∈ R2 in the
direction m ∈ S2, Jδ ∈ C∞

c (R) is a positive, even interaction potential such that

supp(Jδ) ⊂ Bδ(0) and
∫ ∞

0
2πrJδ(r)dr = J0 > 0 (2.22)



Reduced energies for thin ferromagnetic films 7

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

0.0 0.2 0.4 0.6 0.8

-2.6

2.4

2.2

2.0

1.8

1.6

1.0

-

-

-

-

-
=2

=3

=4

Figure 1. (a) Plot of f(s). (b) Plots of βUβ(s) for the indicated values of β and J0 = 1.

for a J0 > 0 fixed independently of δ, and β > 0 is the inverse temperature. The function ρ satisfies
the following normalization conditions:∫

S2
ρ(x,m) dH2(m) = 1 if x ∈ Ω, ρ (x,m) = 0 if x ∈ R2 \ Ω, (2.23)

expressing the fact that the ferromagnet occupies the spatial domain Ω ⊂ R2. For our purposes, all
other terms in the energy, which are all small perturbations to the Heisenberg exchange, have been
neglected. Notice that the parameter δ measures the finite range of the ferromagnetic coupling and
physically corresponds to the extent of the exchange interaction of several lattice spacings.

The free energy in (2.21) admits a moments closure, allowing to reduce the minimization problem
to that of a functional of the average magnetization (see also [27])

m(x) :=
∫
S2

mρ(x,m) dH2(m). (2.24)

For a fixed value of m the entropic term in the free energy is easily seen to be minimized pointwise
by

ρ̄(x,m) = exp (β (µ(x) + λ(x) · m)) , (2.25)
where the functions µ and λ are obtained by enforcing (2.23) and (2.24) with ρ = ρ̄ in Ω:

1 = 4πeβµ sinh(β|λ|)
β|λ|

, (2.26)

m = 4πeβµ β|λ| cosh(β|λ|) − sinh(β|λ|)
β2|λ|3

λ. (2.27)

This yields λ = β−1mf(|m|)/|m|, where the function f(s) ⩾ 0 is the unique positive solution of the
equation

s = coth f(s) − 1
f(s) , 0 < s < 1, (2.28)

vanishing at s = 0 and diverging as s → 1−. The plot of f(s) is presented in Fig. 1(a). Note that
f ∈ C∞([0, 1)) and is strictly monotone increasing. Substituting this back to the entropy term results
in ∫

S2
ρ̄(x,m) ln ρ̄(x,m) dH2(m) = ln

(
f(|m(x)|)

4π sinh f(|m(x)|)

)
+ m(x)f(|m(x)|). (2.29)

Thus, for m(x) fixed the free energy satisfies F(ρ) ⩾ F̄(m), where
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F̄(m) := −1
2

∫
R2

∫
R2
Jδ (|x− y|) m(x) · m(y)dxdy + J0

2

∫
R2

|m|2dx+
∫
R2
Uβ(|m|)dx, (2.30)

with equality holding if and only if ρ(x,m) = ρ̄(x,m). Here the effective potential Uβ is given by

Uβ(s) := β−1 ln
(

f(s)
4π sinh f(s)

)
+ β−1sf(s) − 1

2J0 s
2, (2.31)

with the convention that Uβ(0) := −β−1 ln 4π. The plots of Uβ(s) for several values of β are illustrated
in Fig. 1(b).

Notice that the reduced energy in (2.30) may be rewritten in a more convenient form as

F̄(m) = 1
4

∫
R2

∫
R2
Jδ (|x− y|) |m(x) − m(y)|2 dxdy +

∫
R2
Uβ(|m|)dx, (2.32)

which is a vectorial, nonlocal analog of the classical Cahn-Hilliard functional, since Uβ has a form
of a Mexican hat potential for β > βc := 3J0. It is also easy to see that in a periodic setting the
energy functional F̄ admits a unique minimizer m = 0 whenever β ⩽ βc, and a family of minimizers
|m| = s0(β) with 0 < s0(β) < 1 for β > βc (see also [27]). To simplify matters further, we employ
the usual gradient approximation to the nonlocal term in (2.32) to obtain F̄(m) ≃ F̄0(m), where
(see also [28] for a closely related problem)

F̄0(m) :=
∫

Ω

(
gδ|∇m|2 + Uβ(|m|)

)
dx, (2.33)

and gδ := π
4
∫∞

0 r3Jδ(r)dr = O(δ2). The expression in (2.33) is specified for m ∈ H1
0 (Ω;R3),

inheriting the zero boundary condition from the assumption that m = 0 in R2 \ Ω.
Near the edge of the sample the curvature of the edge is negligible to the leading order in δ. Hence,

the problem of minimizing the energy in (2.33) reduces to a one-dimensional problem on half-line,
i.e., to minimizing the energy

F̄1d
0 (m) :=

∫ ∞

0

(
gδ|m′|2 + Uβ(|m|) − Uβ(s0(β))

)
dx (2.34)

over m ∈ H1
loc(R+;R3) ∩ C(R+;R3) such that m(0) = 0. An explicit energy-minimizing profile may

be obtained from (2.34), using the polar representation m(x) = ϕ(x)u(x), where |u| = 1, for which
we get

F̄1d
0 (m) =

∫ ∞

0

(
gδ|ϕ′|2 + Uβ(ϕ) − Uβ(s0(β))

)
dx+

∫ ∞

0
gδϕ

2|u′|2dx. (2.35)

Thus, the energy F̄1d
0 is minimized by u = const and ϕ = ϕδ, where by the Modica-Mortola trick [47]

we have

min F̄1d
0 = F̄1d

0 (ϕδu) = 2
∫ s0(β)

0

√
gδ(Uβ(ϕ) − Uβ(s0(β))) dϕ, (2.36)

∫ ϕδ(x)

0

dϕ√
gδ(Uβ(ϕ) − Uβ(s0(β)))

= x, u ∈ S2 arbitrary. (2.37)

In particular, we have |m(x)| = ϕδ(x), which is a monotone increasing function of x that vanishes
at x = 0 and approaches exponentially the “saturation magnetization” value of s0(β) for x ≫ δ.
Therefore, as a matter of modeling convenience one could replace the function ϕδ with that of s0ηδ,
where ηδ is defined in the following section.

3. Mathematical setup and statement of the main results

We now give the precise mathematical formulation of the considered problem and state our main
theorems.
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3.1. Film geometry. Let Ω ⊂ R2 be a bounded, simply connected open set with boundary of class
C2. We parametrize ∂Ω by a C2 regular curve, and we denote by

φ : s ∈ I∂Ω 7→ φ(s) ∈ ∂Ω, I∂Ω :=
[
0,H1 (∂Ω)

]
, (3.1)

its positive parameterization by the arc length (extended periodically, if necessary). We denote by
(τ (x),n(x)) ∈ S1 × S1 the respective Frenet frame at x ∈ ∂Ω. The vector fields τ : ∂Ω → S1 and
n : ∂Ω → S1 represent, respectively, the unit tangent vector field to ∂Ω given by τ (φ(s)) := φ′(s),
and the outer unit normal vector field. To avoid cumbersome notations, we write τ (s) and n(s)
to mean the compositions τ (φ(s)) and n(φ(s)) from now on. Clearly, for every s ∈ I∂Ω we have
τ (s) · n(s) = 0, and the Frenet-Serret formulas hold:

τ ′(s) = −κ(s)n(s), (3.2)
n′(s) = κ(s)τ (s), (3.3)

where κ(s) := −φ′′(s) · n(s) stands for the signed curvature of ∂Ω at the point φ(s). Note that since
we assume ∂Ω of class C2, the vector fields τ (s) and n(s) are of class C1 (I∂Ω;S1) and κ(s) is a
continuous function.

In order to define a cutoff function near the boundary of the ferromagnet, we first introduce the
signed distance function from ∂Ω which assigns positive values to points in the exterior of Ω and
negative values in the interior of Ω:

d∂Ω(x) :=
{

+ infy∈∂Ω |x− y| if x ∈ R2 \ Ω,
− infy∈∂Ω |x− y| if x ∈ Ω. (3.4)

Since Ω is a C2-domain, there exists ε̄ > 0 such that for any 0 < ε < ε̄ the set

Oε :=
{
x ∈ R2 : |d∂Ω(x)| < ε

}
(3.5)

is in the tubular neighborhood of ∂Ω of radius ε̄, namely in Oε̄ := {x ∈ R2 : |d∂Ω(x)| < ε̄}. For any
0 < ε < ε̄ we also set O+

ε := {x ∈ R2 : 0 ⩽ d∂Ω(x) < ε}. Since Ω is a simply connected C2 domain,
there exists a C1 projection map π : Oε̄ → ∂Ω such that x = π(x) + d∂Ω(x)n(π(x)) for every x ∈ Oε̄

and
∇d∂Ω(x) = n(π(x)). (3.6)

In particular, |∇d∂Ω(x)| = 1 for every x ∈ Oε̄, and the values of π may be parametrized by the
arclength of ∂Ω. In what follows, we always assume that 0 < ε < ε̄ so that the tubular neighborhood
theorem holds.

For any 0 < ε < ε̄ we set Ωε := Ω ∪ O+
ε , which represents the domain in the plane occupied by the

ferromagnetic film, and consider the family of cutoff functions

ηε(x) := η

(
d∂Ω(x)
ε

)
(3.7)

defined by a non-increasing function η ∈ C(R) such that

η(t) ≡ 1 for t ∈ (−∞, 0), η(t) ≡ 0 for t ∈ (1,+∞). (3.8)

We further assume that on (−∞, 1] the function η is continuously differentiable, but allow η′(t) to
explode as t → 1− to account for a possible cusp in the cutoff profile at the film edge. However, a
certain degree of smoothness is needed to control the decay of η(t) when t → 1. For our purposes, it
is enough that η ∈ W 1,q

loc (R) for some q > 1, which we assume from now on, allowing for an arbitrary
Hölder-continuous behavior near t = 1.

Note that for every ε > 0 we have ηε(x) ≡ 1 whenever d∂Ω(x) ⩽ 0 and ηε(x) ≡ 0 when d∂Ω(x) ⩾ ε.
In other words, ηε is a cutoff function whose support is included in the closure of Ωε (i.e., supp(ηε) ⊆
Ωε) such that ηε ≡ 1 on Ω. We observe the following identities:

∇ηε(x) = 1
ε
η′
(
d∂Ω(x)
ε

)
n(π(x)) = − |∇ηε(x)| n(π(x)). (3.9)

In particular, ∇ηε ∈ Lq(R2;R2) and supp(∇ηε) ⊆ Ωε \ Ω = O+
ε .
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3.2. The micromagnetic energy. Given a configuration mε ∈ H1
loc(Ωε;S2), we extend it by

zero outside Ωε to define the magnetization in the whole plane, so that the physically observable
magnetization is mε(x) = ηε(x)mε(x) for all x ∈ R2, after a rescaling of length from (2.13). The
rescaled cutoff length is now ε ≪ 1 and the domain Ωε has O(1) size, converging to a fixed domain
Ω from outside as ε → 0. As we will see later, the precise shape of the cutoff function η will prove
not to play any role in the limiting behavior of the energy analyzed in this paper. Further care is
needed, however, to specify a representation of the micromagnetic energy that is well-suited for the
analysis of those limits.

We first need to define a space where the different terms in our micromagnetic energy are all
bounded. To make sure this is the case, we clearly need that

∫
Ωε
η2

ε |∇mε|2dx < ∞. Therefore,
we assume that mε ∈ Hε(R2;S2) where Hε(R2;S2) stands for the weighted Sobolev (metric) space
defined by

Hε(R2;S2) :=
{

mε ∈ L2(R2;R3) : mε
|Ωε

∈ H1
loc(Ωε,S2), ηε∇mε

|Ωε
∈ L2(Ωε),mε ≡ 0 in R2 \ Ωε

}
.

(3.10)
Note that elements of Hε(R2;S2) are identically zero outside of Ωε. We view Hε(R2;S2) as a metric
subspace of Hε(R2), where

Hε(R2) :=
{

uε ∈ L2(R2;R3) ∩ L∞(R2;R3) :
uε

|Ωε
∈ H1

loc(Ωε;R3), ηε∇uε
|Ωε

∈ L2(Ωε;R6),uε ≡ 0 in R2 \ Ωε

}
. (3.11)

We can similarly introduce the “limit” space

H0(R2;S2) :=
{

m ∈ L2(R2;R3) : m|Ω ∈ H1(Ω,S2),m ≡ 0 in R2 \ Ω
}
. (3.12)

We next introduce the notation mε = (mε
⊥,m

ε
∥), where mε

⊥ ∈ R2 and mε
∥ ∈ R give the components

of mε that are perpendicular and parallel to the material easy axis ±e3, respectively. The nonlocal
contribution from the stray field energy can then be seen to be proportional to

Wε(mε) = 1
2| ln ε|V(ηεmε

⊥) − 1
2| ln ε| Ṽ(ηεm

ε
∥), (3.13)

defined for every mε ∈ Hε(R2;S2), with

V(ηεmε
⊥) :=

∫
R2

∫
R2

div (ηεmε
⊥)(x)div (ηεmε

⊥)(y)
|x− y|

dxdy, (3.14)

Ṽ(ηεm
ε
∥) :=

∫
R2

∫
R2

∇
(
ηεm

ε
∥

)
(x) · ∇

(
ηεm

ε
∥

)
(y)

|x− y|
dxdy. (3.15)

The equivalence of the above expression with the one appearing in (2.14) for smooth functions can
be seen via the Fourier representation. Note that both V and Ṽ are nonnegative, a result that can
be easily shown in the Fourier domain by Parseval–Plancherel identity.

The DMI contribution to the energy is proportional to

Dε(mε) :=
∫
R2
η2

ε

(
mε

∥div mε
⊥ − mε

⊥ · ∇mε
∥

)
dx. (3.16)

The remaining terms may be defined analogously. Note that the space Hε(R2;S2) depends on ε and,
therefore, is not well-suited for Γ-convergence arguments. Therefore, since mε ∈ L2(R2;R3), we
can use a penalization to formulate the Γ-convergence results in L2(R2;R3) with the agreement that
the energy is infinite outside Hε(R2;S2). Furthermore, the space L2(R2;R3) also provides a natural
topology for the Γ-convergence.

The simplified micromagnetic energy defined for mε ∈ L2(R2;R3) that disregards the anisotropy
and the Zeeman terms (continuous in the considered Γ-convergence topology), takes the form

Gε(mε) :=
{ ∫

R2
η2

ε |∇mε|2 dx+ λDε(mε) + γεWε(mε) if mε ∈ Hε(R2;S2),

+∞ otherwise,
(3.17)
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where the precise dependence of γε on ε will be specified in the sequel for various Γ-limits. As is
common in the studies of Γ-convergence, we will simply write mε → m as ε → 0, always tacitly
implying that for any sequence of εn → 0 we have mεn → m as n → ∞.

3.3. Main results. In this section, we formulate the main results of the paper. We split our results
into four theorems corresponding to different magnetic regimes previously studied for ferromagnets
with strong in-plane anisotropy.

The first regime we consider is the analogue of the Gioia and James regime [33]. We have the
following theorem.

Theorem 1 (Free boundary). Let Gε(mε) be defined on L2(R2;R3) by (3.17) and let γε → 0. We

define G0(m) on L2(R2;R3) by

G0 (m) :=
{ ∫

Ω
|∇m|2 dx+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx if m ∈ H0(R2;S2),

+∞ otherwise.
(3.18)

Then the following statements hold:

i. (Compactness) If lim supε→0 Gε(mε) < +∞ then mε → m strongly in L2(R2;R3) and mε ⇀ m
weakly in H1(Ω; S2) for some m ∈ H0(R2;S2) as ε → 0 (possibly up to a subsequence).

ii. (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m for some m ∈ H0(R2;S2)
strongly in L2(R2;R3) as ε → 0. Then

lim inf
ε→0

Gε(mε) ⩾ G0 (m) . (3.19)

iii. (Γ-limsup inequality) Let m ∈ H0(R2;S2). Then there exists mε ∈ Hε(R2;S2) such that mε →
m strongly in L2(R2;R3) as ε → 0 and

lim sup
ε→0

Gε(mε) ⩽ G0 (m) . (3.20)

The second regime we study corresponds to the result of Kohn and Slastikov [38], where in the
limit of small thickness, the magnetization prefers to stay in-plane, and a local boundary contribution
corresponding to shape anisotropy replaces the nonlocal magnetostatic energy. The limiting behavior
we obtain for materials with perpendicular anisotropy is contained in the following theorem. Here
and everywhere below, the values of m ∈ H0(R2;S2) on ∂Ω are understood in the sense of trace of
the Sobolev function m|Ω ∈ H1(Ω;S2).

Theorem 2 (Boundary penalty). Let Gε(mε) be defined on L2(R2;R3) by (3.17) and γε → γ for

some γ > 0 as ε → 0. We define Gγ
0 (m) on L2(R2;R3) by

Gγ
0 (m) :=



∫
Ω

|∇m|2 dx+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx

+γ
∫

∂Ω

(
(m⊥ · n)2 −m2

∥

)
dH1(x)

if m ∈ H0(R2;S2),

+∞ otherwise.
(3.21)

Then the following statements hold:

i. (Compactness) If lim supε→0 Gε(mε) < +∞, then mε → m strongly in L2(R2;R3) and mε ⇀ m
weakly in H1(Ω;S2) for some m ∈ H0(R2;S2) as ε → 0 (possibly up to a subsequence).

ii. (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m strongly in L2(R2;R3) for some

m ∈ H0(R2;S2) as ε → 0. Then

lim inf
ε→0

Gε(mε) ⩾ Gγ
0 (m) . (3.22)

iii. (Γ-limsup inequality) Let m ∈ H0(R2;S2). Then there exists mε ∈ Hε(R2;S2) such that mε →
m strongly in L2(R2;R3) as ε → 0 and

lim sup
ε→0

Gε(mε) ⩽ Gγ
0 (m) . (3.23)
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The following two results are fundamentally different from what exists in the micromagnetic lit-
erature for in-plane materials. This is due to the fact that they correspond to magnetic regimes
where the shape anisotropy of the micromagnetic energy is penalized in the limit and, as a result,
the magnetization acquires Dirichlet conditions at the boundary. For in-plane materials this regime
is impossible as it leads to a singular behavior of the micromagnetic energy due to a topological
obstruction. For materials with perpendicular anisotropy, however, these regimes provide the micro-
magnetic energy describing the behavior of magnetic skyrmions (see [48]) and therefore are of utter
importance.

We formulate our results in the following theorems corresponding to local and nonlocal versions of
the micromagnetic energies. Our first theorem yields a local limiting micromagnetic energy with the
Dirichlet boundary condition.

Theorem 3 (Clamped boundary, local energy). Let Gε(mε) be defined on L2 (R2;R3) by (3.17) with

γε → ∞ and γε| ln ε|−1 → 0 as ε → 0. We define G̃0 (m) on L2 (R2;R3) by

G̃0 (m) :=


∫

Ω
|∇m|2 dx+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx
if m ∈ H0 (R2;S2)
and m∥ = ±1 on ∂Ω,

+∞ otherwise.

(3.24)

Then the following statements hold:

i. (Compactness) If lim supε→0 (Gε (mε) + γεH1 (∂Ω)) < +∞ then mε → m strongly in L2(R2;R3)
and mε ⇀ m weakly in H1 (Ω;S2) for some m ∈ H0(R2;S2) with m∥ = ±1 on ∂Ω as ε → 0
(possibly up to a subsequence).

ii. (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) be such that mε → m strongly in L2 (R2;R3) for some

m ∈ H0(R2;S2) with m∥ = ±1 on ∂Ω as ε → 0. Then

lim inf
ε→0

(
Gε (mε) + γεH1(∂Ω)

)
⩾ G̃0 (m) . (3.25)

iii. (Γ-limsup inequality) Let m ∈ H0 (R2;S2) with m∥ = ±1 on ∂Ω. Then there exists mε ∈
Hε(R2;S2) such that mε → m strongly in L2 (R2;R3) as ε → 0 and

lim sup
ε→0

(
Gε (mε) + γεH1(∂Ω)

)
⩽ G̃0 (m) . (3.26)

The next theorem provides a new type of a reduced nonlocal micromagnetic energy for yet stronger
dipolar interaction. To state the theorem, we need to introduce some additional notation. This is
due to the fact that in the considered regime the stray field of the film edge continues to contribute
to the limit energy and, therefore, needs to be properly accounted for. We define the quantity

Dε :=
∫
R2

∫
R2

∇ηε(x) · ∇ηε(y)
|x− y|

dxdy, (3.27)

which will be shown to give, up to the factor of 1
2ν, the leading order behavior of the energy Gε. In

fact, this constant can be seen to be the energy of the ferromagnetic state m = ±e3χΩ and to the
leading order satisfies Dε = 2| ln ε| H1(∂Ω) +O(1) when ε → 0, as can be seen from Lemma 4.

Theorem 4 (Clamped boundary, nonlocal energy). Let Gε(mε) be defined on L2 (R2;R3) by (3.17)
with γε = ν| ln ε| for some ν > 0. We define G̃ν

0 (m) on L2 (R2;R3) by

G̃ν
0 (m) :=



∫
Ω

|∇m|2 dx+ ν

∫
Ω

b · ∇m∥ dx

+λ
∫

Ω
(m∥div m⊥ − m⊥ · ∇m∥) dx

+ν

2

∫
Ω

∫
Ω

div m⊥(x)div m⊥(y)
|x− y|

dxdy

−ν

2

∫
Ω

∫
Ω

∇m∥(x) · ∇m∥(y)
|x− y|

dxdy

if m ∈ H0 (R2;S2)
and m∥ = ±1 on ∂Ω,

+∞ otherwise,

(3.28)

where b is defined in (2.20). Then the following statements hold:
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i. (Compactness) If lim supε→0
(
Gε (mε) + ν

2Dε

)
< +∞ then mε → m strongly in L2 (R2;R3) and

mε ⇀ m weakly in H1 (Ω; S2) for some m ∈ H0(R2;S2) with m∥ = ±1 on ∂Ω as ε → 0 (possibly

up to a subsequence), where Dε is defined in (3.27).
ii. (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) satisfy mε → m strongly in L2 (R2;R3) for some

m ∈ H0(R2;S2) with m∥ = ±1 on ∂Ω as ε → 0, then

lim inf
ε→0

(
Gε (mε) + ν

2Dε

)
⩾ G̃ν

0 (m) . (3.29)

iii. (Γ-limsup inequality) Let m ∈ H0 (Ω;S2) with m∥ = ±1 on ∂Ω. Then there exists mε ∈
Hε(R2;S2) that satisfies mε → m strongly in L2 (R2;R3) as ε → 0 and

lim sup
ε→0

(
Gε (mε) + ν

2Dε

)
⩽ G̃ν

0 (m) . (3.30)

The above results provide us with four comprehensive two-dimensional micromagnetic models to
study the magnetization behavior in ultrathin films with perpendicular magnetic anisotropy and
Dzyaloshinskii-Moriya interaction. It is also clear that the above results can be supplemented with
anisotropy and Zeeman energies as those are just continuous perturbations. In particular, this pro-
vides a rigorous justification to the formal limit statements in section 2.

4. Auxiliary lemmas

Throughout the rest of the paper, unless stated otherwise all the constants in the statements and
the proofs depend only on Ω, q and ∥η′∥Lq(R).

We begin by providing several important technical lemmas. The first two lemmas concern pointwise
estimates for the singular integral

fε(x) :=
∫

O+
ε

|∇ηε(y)|
|y − x|

dy. (4.1)

We start with an estimate which for every 0 < ε < ε̄ gives a precise control on fε(x) when x ∈ Oε.

Lemma 1. There exists ε̄, C > 0 such that for any 0 < ε < ε̄ and x ∈ Oε there holds

2| ln ε| − C ⩽ fε(x) ⩽ 2| ln ε| + C. (4.2)

Proof. Recalling the notations of section 3.1, for any |t| < ε̄, the curve

φt : s ∈ I∂Ω 7→ φ(s) + tn(s), (4.3)

is a parameterization of the set ∂Ωt := {σ ∈ Oε̄ : d∂Ω(σ) = t}. Since Ω is of class C2, there exists
δ̄ > 0 sufficiently small such that for any 0 < δ < δ̄ there exists a curvature-dependent constant
0 < α(δ) < δ for which there holds

H1(π(Oε̄ ∩Bα(δ)(x))) < δ ∀x ∈ Oε̄. (4.4)

In particular, there holds that H1(π(∂Ωt ∩Bα(δ)(x))) < δ for any |t| < ε̄, and we can always assume
that ε̄ and δ̄ are tuned sufficiently small, so that for any |t| < ε̄ and any 0 < δ < δ̄, the set
π(∂Ωt ∩Bα(δ)(x)) is connected. In this way, the arc π(∂Ωt ∩Bα(δ)(x)) can be parameterized through
the restriction of φ to a suitable subinterval of I∂Ω. In other words, we assume that δ is sufficiently
small so that for any |t| < ε̄ and any x = φt(s0) ∈ Oε̄ one has

∂Ωt ∩Bα(δ)(x) ⊆ φt (Iδ(x)) , Iδ(x) := [s0 − δ/2, s0 + δ/2]. (4.5)

Now, let ε < ε̄. For what follows, it is convenient to set

κ∂Ω := sup {|κ(σ)| : σ ∈ ∂Ω} , (4.6)

where κ(σ) stands for the curvature of ∂Ω at the point σ ∈ ∂Ω (cf. (3.2)). Clearly, for any x ∈ Oε

and any y ∈ O+
ε \ Bα(δ) (x) one has |y − x| ⩾ α(δ). We denote by Sα(ε)(x) the small sector around

x ∈ Oε defined by

Sα(δ)(x) := {φt (Iδ(x))}|t|<ε . (4.7)
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Clearly, Sα(δ)(x) ⊇ Bα(δ)(x) ∩ O+
ε , therefore we can decompose fε(x) as

fε(x) = ψε(x) + gε
∂Ω(x), (4.8)

where
ψε(x) := 1

ε

∫
O+

ε ∩Sα(δ)(x)

|η′(d∂Ω(y)/ε)|
|y − x|

dy (4.9)

and by the coarea formula the remainder term gε
∂Ω(x) satisfies the uniform bound

|gε
∂Ω(x)| ⩽ 1

α(δ)

∫ 1

0

∫
∂Ω

|η′(t)| · |1 + εtκ(σ)| dσdt ⩽ cδ, cδ := (1 + ε̄κ∂Ω) H1 (∂Ω)
α(δ) . (4.10)

It remains to estimate ψε(x). For that we observe that with x = σ + εtn(σ), |t| < 1, and by the
coarea formula we have

ψε(x) =
∫ 1

0

∫
φ(Iδ(x))

|η′(r)| 1 + εrκ(ω)
|σ + εtn(σ) − ω − εrn(ω)|dH1(ω)dr. (4.11)

We estimate the denominator of the integrand as
ω − σ + ε(rn(ω) − tn(σ)) = φ(s) − φ(s0) + ε(rn(s) − tn(s0))

= (s− s0)τ (s0) + ε(r − t)n(s0)
+ εr(n(s) − n(s0)) +O(|s− s0|2), (4.12)

where |O(|s − s0|2)| ⩽ κ∂Ω(s − s0)2. On the other hand, since 0 < r < 1 and |t| < 1, and n(s) is
Lipschitz continuous with constant κ∂Ω, we also have

|εr(n(s) − n(s0)) +O(|s− s0|2)| ⩽ κ∂Ω(ε+ |s− s0|)|s− s0|
⩽ κ∂Ω(ε+ |s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|. (4.13)

Hence, combining (4.12) and (4.13) we obtain that for ε̄, δ < 1
2κ

−1
∂Ω and |s− s0| < δ we have

|ω − σ + ε(rn(ω) − tn(σ))| ⩽ (1 + κ∂Ωε+ κ∂Ω|s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|, (4.14)
|ω − σ + ε(rn(ω) − tn(σ))| ⩾ (1 − κ∂Ωε− κ∂Ω|s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|. (4.15)

Overall, we get that for any x = σ + εtn(σ), |t| < 1, there holds

1 − εκ∂Ω

1 + εκ∂Ω

∫ 1

0
|η′(r)|ϱ+

ε

(
ε2

δ2 (r − t)2
)

dr ⩽ ψε(x) ⩽ 1 + εκ∂Ω

1 − εκ∂Ω

∫ 1

0
|η′(r)|ϱ−

ε

(
ε2

δ2 (r − t)2
)

dr, (4.16)

with

ϱ±
ε

(
ε2

δ2 (r − t)2
)

:=
∫

Iδ(x)

1
(1 ± a±

ε |s− s0|)|(s− s0)τ (s0) + ε(r − t)n(s0)|
ds (4.17)

=
∫ s0+δ/2

s0−δ/2

1
(1 ± a±

ε |s− s0|)
√

(s− s0)2 + ε2(r − t)2
ds (4.18)

= 2
∫ 1

2

0

1(
1 ± a±

ε δs
)√

s2 + ε2

δ2 (r − t)2
ds, (4.19)

where a±
ε = κ∂Ω

1±εκ∂Ω
> 0.

A direct integration yields

ϱ±
ε (β) = ρ(β) ∓

∫ 1
2

0

2a±
ε δs

(1 ± a±
ε δs)

√
s2 + β

ds, (4.20)

where
ϱ(β) := ln

(
1 + 2β +

√
1 + 4β

2β

)
. (4.21)

By inspection, for all β < 1 we have
− ln β − C ⩽ ϱ±

ε (β) ⩽ − ln β + C, (4.22)



Reduced energies for thin ferromagnetic films 15

for some C > 0 universal. Also, note that by Hölder’s inequality we have∫ 1

0
|η′(r)| · | ln(r − t)2|dr < +∞, (4.23)

whenever η ∈ W 1,q
loc (R) with q > 1. Therefore, given (4.22) and (4.23), from the relation (4.16) we

infer the estimate
2| ln ε| − C ⩽ ψε(x) ⩽ 2| ln ε| + C, (4.24)

for some C > 0, assuming that ε < δ and that δ < δ̄ is chosen sufficiently small. The conclusion of
the lemma then follows from the previous estimate, (4.8), and (4.10). □

We next prove a pointwise bound on the function fε(x) outside Oε.

Lemma 2. There exist ε̄, C > 0 depending only on Ω, such that for any 0 < ε < ε̄ and x ∈ Ω\Oε

there holds

0 ⩽ fε(x) ⩽ C
(
1 + | ln(dist(x, ∂Ω))|

)
. (4.25)

Proof. As in the proof of Lemma 1, using the coarea formula we infer that for any x ∈ Ω\Oε and
sufficiently small ε there holds

fε(x) =
∫

∂Ω

∫ 1

0
|η′(t)| 1 + εtκ(σ)

|x− σ − εtn(σ)| dt dH1(σ), (4.26)

where κ(σ) is a curvature at point σ ∈ ∂Ω. Furthermore, we claim that |x− σ − εtn(σ)| ≥ 1
2 |x− σ|

for every x ∈ Ω\Oε, σ ∈ ∂Ω and t ∈ [0, 1], provided that ε is sufficiently small. To see this, notice
that the estimate trivially holds when |x− σ| ≥ 2ε or when (x− σ) · n(σ) < 0. At the same time, in
the opposite case we can estimate |x− σ| ≤ 2|(x− σ) · τ (σ)| ≤ 2|x− σ − εtn(σ)| for all ε sufficiently
small in view of the regularity of ∂Ω. Thus, we have

0 ⩽ fε(x) ⩽ 4
∫

∂Ω

1
|x− σ|

dH1(σ) ⩽ C
(
1 + | ln(dist(x, ∂Ω))|

)
, (4.27)

for some C > 0 and all ε small enough. □

As an immediate consequence of Lemma 1 and Lemma 2 we have the following result.

Lemma 3. There exist ε̄, C > 0 such that for every 0 < ε < ε̄ and every x ∈ Ωε there holds

|fε(x)| ⩽ C
(
1 + | ln(ε+ dist(x, ∂Ω))|

)
. (4.28)

In particular, for every p ≥ 1 there is Cp > 0 such that ∥fε∥Lp(Ωε) ⩽ Cp.

We will also need a sharp estimate for the quantity Dε introduced in (3.27).

Lemma 4. There exist ε̄, C > 0 such that for every 0 < ε < ε̄ there holds

2| ln ε| H1(∂Ω) − C ⩽ Dε ⩽ 2| ln ε| H1(∂Ω) + C. (4.29)

Proof. Observe that for all ε̄ sufficiently small we have

Dε =
∫

O+
ε

∫
O+

ε

|∇ηε(x)| |∇ηε(y)|
|x− y|

dxdy − 1
2

∫
O+

ε

∫
O+

ε

|∇ηε(x)| |∇ηε(y)| |n(x) − n(y)|2

|x− y|
dxdy, (4.30)

with an abuse of notation n(x) := n(π(x)) for x ∈ O+
ε . Notice that by the C2 regularity of ∂Ω the

second integral in (4.30) is uniformly bounded when ε → 0, as n(x) is Lipschitz continuous. At the
same time, by the coarea formula and Lemma 1 the first integral in (4.30) is∫

O+
ε

∫
O+

ε

|∇ηε(x)| |∇ηε(y)|
|x− y|

dxdy =
∫

O+
ε

|∇ηε(x)|fε(x) dx

=
∫ 1

0

∫
∂Ω

|η′(t)| fε(σ + εtn(σ))(1 + εtκ(σ)) dH1(σ) dt = 2| ln ε| H1(∂Ω) +O(1), (4.31)

as ε → 0, which implies the statement of the lemma. □
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The next key technical lemma provides a comparison of an integral involving ∇ηε tested against
a bounded Sobolev function with that of the same integral evaluated on the trace of that Sobolev
function on ∂Ω.

Lemma 5. There exist constants ε̄, c > 0 such that for every 0 < µ < 1 there holds

1
c

∫
O+

ε

|∇ηε(x)| |u(x) − u(π(x))| dx ⩽ µ∥u∥L∞(O+
ε ) + | lnµ|∥ηε∇u∥L1(O+

ε ), (4.32)

for any u ∈ L∞(O+
ε ) ∩W 1,1

loc (Ωε).

Proof. Again, with the usual abuse of notation n(x) := n(π(x)), we have x = π(x) + d∂Ω(x)n(x) for
every x ∈ O+

ε . Moreover, as noted in (3.9), we have that

|∇ηε(x)| = 1
ε

|η′(d∂Ω(x)/ε)| . (4.33)

Therefore, taking the precise representative of u, by its differentiability on the lines π(x) = y for
H1-a.e. y ∈ ∂Ω and monotonicity of η(t) we have

|(u(x) − u(π(x))) ∇ηε(x)| = |u(π(x) + d∂Ω(x)n(x)) − u(π(x))| |∇ηε(x)|

⩽ |∇ηε(x)| ·
∫ d∂Ω(x)

0
|∂t [u (π(x) + tn(x))]| dt

⩽
|η′ (d∂Ω(x)/ε)|
εη (d∂Ω(x)/ε)

∫ d∂Ω(x)

0
η(t/ε) |∇u (π(x) + tn(x))| dt. (4.34)

For 0 < λ < 1 we decompose O+
ε as O+

ε = O+
λε ∪

(
O+

ε \O+
λε

)
and focus separately on O+

λε and
O+

ε \O+
λε. Starting with O+

λε, we observe that both π(x) and n(x) are constant along the normal
direction, so by (4.33), (4.34) and the coarea formula we infer that∫

O+
λε

|∇ηε(x)| |u(x) − u(π(x))| dx ⩽
∫

O+
λε

|η′ (d∂Ω(x)/ε)|
εη (d∂Ω(x)/ε)

(∫ λε

0
η(t/ε)

∣∣∣∇u (π(x) + tn(x)
)∣∣∣dt)dx

=
∫ λ

0

∫
∂Ω

|η′(h)|
η(h)

(∫ λε

0
η(t/ε)

∣∣∣∇u (σ + tn(σ)
)∣∣∣dt) |1 + εhκ(σ)|dH1(σ)dh

⩽ 3| ln η(λ)|
∫ λε

0

∫
∂Ω
η(t/ε)

∣∣∣∇u(π(x) + tn (x)
)∣∣∣ |1 + tκ(σ)|dH1(σ)dt, (4.35)

provided ε̄ < 1
2κ

−1
∂Ω. Thus∫

O+
λε

|∇ηε(x)| |u(x) − u(π(x))| dx

⩽ 3| ln η(λ)|
∫ λε

0

∫
∂Ω
ηε(t)

∣∣∣∇u (π(x) + tn(x)
)∣∣∣ |1 + tκ(σ)|dH1(σ)dt

= 3| ln η(λ)| · ∥ηε∇u∥L1(O+
λε

). (4.36)

On the other hand, for the part on O+
ε \O+

λε, we have, again by (4.33) and coarea formula, that∫
O+

ε \O+
λε

|∇ηε(x)| |u(x) − u(π(x))| dx = 1
ε

∫
O+

ε \O+
λε

|η′ (d∂Ω(x)/ε)| |u(x) − u(π(x))| dx

⩽ 4|∂Ω|
(∫ 1

λ

|η′(t)|dt
)

∥u∥L∞(O+
ε )

= 4|∂Ω|η(λ)∥u∥L∞(O+
ε ). (4.37)

Overall, combining the estimates (4.36) and (4.37), we get that
1
c

∫
O+

ε

|∇ηε(x)| |u(x) − u(π(x))| dx ⩽ η(λ)∥u∥L∞(O+
ε ) + | ln η(λ)| ∥ηε∇u∥L1(O+

ε ), (4.38)



Reduced energies for thin ferromagnetic films 17

for some c > 0. The previous estimate holds for every 0 < λ < 1. Since η(λ) maps [0, 1] surjectively
onto [0, 1], setting λ := η−1(µ) we get that for every µ ∈ (0, 1) there holds:

1
c

∫
O+

ε

|∇ηε(x)| |u(x) − u(π(x))| dx ⩽ µ∥u∥L∞(O+
ε ) + | lnµ|∥ηε∇u∥L1(O+

ε ), (4.39)

which proves the L1-estimate (4.32). □

Our next lemma gives a bound that will be useful to estimate the interior contribution of the bulk
charges to the micromagnetic energy. Note that for u ∈ H1(Ω;R2) a straightforward interpolation
estimate between the H̊−1/2 norm of div u and the L2 norms of u and ∇u would have held true if
u vanished at the boundary of Ω. However, the presence of a non-zero trace on ∂Ω requires some
additional care due to a logarithmic failure of this interpolation. A counterexample to the latter is
provided by u, which is equal to the outward unit normal at the projection point to the boundary of
Ω multiplied by a cutoff function making u zero at distances greater than δ from ∂Ω (for a related
phenomenon, see [20]).

Lemma 6. There exists a constant C > 0 depending only on Ω such that for any δ ∈ (0, 1
2 ) and any

u ∈ H1(Ω;R2) there holds∫
Ω

∫
Ω

div u(x)div u(y)
|x− y|

dxdy ⩽ δ∥∇u∥2
L2(Ω) + Cδ−1∥u∥2

L2(Ω) + C| ln δ| ∥u∥2
L2(∂Ω). (4.40)

Proof. For a nonnegative cutoff function ω ∈ C∞(R) satisfying ω(t) = 1 for all t ≤ 1 and ω(t) = 0
for all t ≥ 2, we write

1
|x− y|

= Gδ(x− y) +Hδ(x− y), (4.41)

where Hδ(x) := |x|−1ω(c|x|/δ) with c > 0 to be fixed shortly and Gδ(x) := |x|−1(1 − ω(c|x|/δ)). For
the contribution of Hδ, by Young’s inequality for convolutions we have∣∣∣∣∫

Ω

∫
Ω
Hδ(x− y)div u(x)div u(y)dxdy

∣∣∣∣ ⩽ 2∥Hδ∥L1(R2)∥∇u∥2
L2(Ω) ⩽ δ∥∇u∥2

L2(Ω), (4.42)

for a suitable choice of c > 0 depending only on ω. For the contribution of the even function Gδ, we
integrate by parts and apply the Cauchy-Schwarz inequality to obtain∫

Ω

∫
Ω
Gδ(x− y)div u(x)div u(y)dxdy =

∫
Ω

∫
Ω

u(x) · ∇2
xyGδ(x− y)u(y)dxdy

− 2
∫

Ω

∫
∂Ω

(u(y) · n(y)) u(x) · ∇xGδ(x− y) dH1(y)dx

+
∫

∂Ω

∫
∂Ω

(u(x) · n(x)) (u(y) · n(y))Gδ(x− y) dH1(x) dH1(y)

⩽ max
y∈Ω

∥∇2Gδ(· − y)∥L1(Ω)∥u∥2
L2(Ω) + max

y∈∂Ω
∥Gδ(· − y)∥L1(∂Ω)∥u∥2

L2(∂Ω)

+ 2 max
y∈∂Ω

∥∇Gδ(· − y)∥1/2
L1(Ω) max

y∈Ω
∥∇Gδ(· − y)∥1/2

L1(∂Ω)∥u∥L2(Ω)∥u∥L2(∂Ω)

⩽ Cδ−1∥u∥2
L2(Ω) + C| ln δ| ∥u∥2

L2(∂Ω) + Cδ−1/2| ln δ|1/2∥u∥L2(Ω) ∥u∥L2(∂Ω), (4.43)

for some C > 0 depending only on Ω. The conclusion follows by combining (4.42) and (4.43), after
an application of Young’s inequality. □

As a corollary to this lemma, we have the following result for vector fields that are uniformly
bounded.

Lemma 7. Let δ > 0, and for ε > 0 let uε ∈ H1(Ω;R2) with |uε| ⩽ 1 in Ω. Then there exists a

constant C > 0 depending only on Ω such that∫
Ω

∫
Ω

div uε(x)div uε(y)
|x− y|

dxdy ⩽ δ ∥∇uε∥2
L2(Ω) + C

δ
. (4.44)
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Moreover, if uε ⇀ u weakly in H1 (Ω) as ε → 0 then∫
Ω

∫
Ω

div uε(x)div uε(y)
|x− y|

dxdy ε→0−−−→
∫

Ω

∫
Ω

div u(x)div u(y)
|x− y|

dxdy (4.45)

and∫
∂Ω

∫
Ω

div uε(x)(uε(y) · n(y))
|x− y|

dx dH1(y) ε→0−−−→
∫

∂Ω

∫
Ω

div u(x)(u(y) · n(y))
|x− y|

dxdH1(y) (4.46)

Proof. The estimate in (4.44) is an immediate corollary to Lemma 6. To prove (4.45), we first note
that since |x|−1 ∗ div u belongs to L2(Ω) by Young’s inequality for convolutions, it is enough to prove
that the left-hand side of (4.45) goes to zero when uε ⇀ 0 weakly in H1(Ω) as ε → 0. However,
the latter is true by (4.40) in view of boundedness of ∥∇u∥L2(Ω), strong convergence of u to zero in
L2(Ω) and L2(∂Ω) by compact Sobolev and trace embeddings, and arbitrariness of δ > 0. Similarly,
since the integral over ∂Ω in the right-hand side of (4.46) defines a function of x that belongs to
L2(Ω) by the last inequality in (4.27), it is enough to show (4.46) when uε ⇀ 0 weakly in H1(Ω) as
ε → 0. The latter follows via an application of the Cauchy-Schwarz inequality:∣∣∣∣∫

∂Ω

∫
Ω

div uε(x)(uε(y) · n(y))
|x− y|

dxdH1(y)
∣∣∣∣ ⩽

(∫
∂Ω

∫
Ω

(uε(y) · n(y))2

|x− y|3/2 dxdH1(y)
)1/2

×

(∫
∂Ω

∫
Ω

|div uε(x)|2

|x− y|1/2 dx dH1(y)
)1/2

⩽ C∥∇uε∥L2(Ω)∥uε · n∥L2(∂Ω) → 0, (4.47)

as ε → 0, by the compact trace embedding, where C > 0 depends only on Ω. □

5. Analysis of the magnetostatic energy

In this section we carry out an analysis of the magnetostatic energy which contains two propositions
describing the behavior of the nonlocal terms in the stray field energy Wε (cf. (3.13)), corresponding
to the in-plane and out-of-plane magnetization components. We will then use these results to prove
our main theorems formulated in section 3.

We start by proving the following proposition for the nonlocal term due to the in-plane component
of the magnetization. Note that here we need a stronger result than that of the type proved for the
three-dimensional micromagnetic energy by Kohn and Slastikov in [38] in order to go beyond the
regime studied there (see Theorems 3 and 4).

Proposition 1. There exist ε̄, C > 0 such that if 0 < ε < ε̄ and mε ∈ Hε(R2;S2), then the

magnetostatic energy for the in-plane component (cf. (3.14))

V(ηεmε
⊥) =

∫
R2

∫
R2

div (ηεmε
⊥)(x) div (ηεmε

⊥)(y)
|x− y|

dxdy (5.1)

satisfies∣∣∣V (ηεmε
⊥) − VΩ×Ω(mε

⊥) + 2V∂Ω×Ω(mε
⊥) − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω)

∣∣∣
⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
+ C∥mε

⊥ · n∥L2(∂Ω)
(
1 + ∥ηε∇mε

⊥∥L2(Ωε)
)
,

(5.2)

where Cε → 0 as ε → 0, and

VΩ×Ω(mε
⊥) :=

∫
Ω

∫
Ω

div mε
⊥(x) div mε

⊥(y)
|x− y|

dy dx, (5.3)

V∂Ω×Ω(mε
⊥) :=

∫
∂Ω

∫
Ω

(n · mε
⊥)(σ) div mε

⊥(y)
|σ − y|

dy dH1(σ). (5.4)

Proof. As is common in the analysis of the limiting behaviors of nonlocal energy functionals, we
decompose V into the sum of several terms and estimate each term separately.
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First, expanding the divergence and exploiting the symmetry in the x, y variables, we write
V (uε) =: I1 + 2I2 + I3, where

I1 :=
∫
R2

∫
R2

∇ηε(x) · mε
⊥(x) ∇ηε(y) · mε

⊥(y)
|x− y|

dxdy, (5.5)

I2 :=
∫
R2

∫
R2

∇ηε(y) · mε
⊥(y)ηε(x)div mε

⊥(x)
|x− y|

dxdy, (5.6)

I3 :=
∫
R2

∫
R2

ηε(x)div mε
⊥(x)ηε(y)div mε

⊥(y)
|x− y|

dxdy. (5.7)

Note that I1, I2, I3 depend on ε but we suppress this for ease of notation. We then have
left-hand side of (5.2) ⩽ | I3 − VΩ×Ω(mε

⊥) | + 2 | V∂Ω×Ω(mε
⊥) + I2 | (5.8)

+
∣∣ I1 − 2| ln ε|∥mε

⊥ · n ∥2
L2(∂Ω)

∣∣ , (5.9)
and we proceed by estimating the terms on the right-hand side of the previous relation.

Step 1. Estimate of I3 − VΩ×Ω (mε
⊥). We split this term as I3 − VΩ×Ω (mε

⊥) = 2L2 + L3, where

L2 :=
∫

Ω

∫
O+

ε

ηε(x)div mε
⊥(x)div mε

⊥(y)
|x− y|

dxdy, (5.10)

L3 :=
∫

O+
ε

∫
O+

ε

ηε(x)div mε
⊥(x)ηε(y)div mε

⊥ (y)
|x− y|

dxdy. (5.11)

To estimate L2 and L3, we use the Young’s inequality for convolutions∫
R2

|f(x)| |(g ∗K) (x)| dx ⩽ ∥f∥p∥g∥s∥K∥r (5.12)

with p = r = 4
3 and s = 2. Observing that since Ω is bounded, there exists a ball U centered at

the origin such that x − y ∈ U for every x, y ∈ Ωε and ∥| · |−1∥Lr(U) ⩽ C we obtain that L2 ⩽
C∥ηεdiv mε

⊥∥Lp(O+
ε )∥ηεdiv mε

⊥∥L2(Ωε),. But by Hölder’s inequality there holds ∥ηε∇mε
⊥∥Lp(O+

ε ) ⩽

∥ηε∇mε
⊥∥L2(Ωε)|O+

ε |1/4 ⩽ Cε1/4∥ηε∇mε
⊥∥L2(Ωε), for some constant C > 0, provided ε is small

enough. Hence
L2 ⩽ Cε1/4∥ηε∇mε

⊥∥2
L2(Ωε). (5.13)

The very same estimate is true for |L3| and, therefore, we conclude that for every ε sufficiently small
there holds

|I3 − VΩ×Ω(mε
⊥)| ⩽ 2|L2| + |L3| ⩽ Cε1/4 ∥ηε∇mε

⊥∥2
L2(Ωε) , (5.14)

for some positive constant C > 0 and all ε small enough.

Step 2. Estimate of V∂Ω×Ω(mε
⊥) + I2. Our aim here is to show that

|V∂Ω×Ω(mε
⊥) + I2| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.15)

for some Cε > 0 such that Cε → 0 as ε → 0. To estimate V∂Ω×Ω(mε
⊥) + I2, we use the fact that

suppR2 ∇ηε ⊆ O+
ε and |mε

⊥| ⩽ 1 in Ωε to obtain (cf. (3.9))

−I2 =
∫

O+
ε

∫
Ωε

|∇ηε(y)| (n (y) · mε
⊥(y)) ηε(x)div mε

⊥(x)
|x− y|

dxdy (5.16)

=: M1 +M2, (5.17)
with

M1 :=
∫

O+
ε

∫
Ωε

|∇ηε(y)| (n · mε
⊥) (π(y))ηε(x)div mε

⊥(x)
|x− y|

dxdy (5.18)

M2 :=
∫

O+
ε

∫
Ωε

|∇ηε(y)| [(n · mε
⊥) (y) − (n · mε

⊥) (π(y))] ηε(x)div mε
⊥(x)

|x− y|
dxdy. (5.19)

Clearly, we have
|V∂Ω×Ω(mε

⊥) + I2| ⩽ |V∂Ω×Ω (mε
⊥) −M1| + |M2|, (5.20)
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and we want to show that

|M2| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
and |V∂Ω×Ω(mε

⊥) −M1| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.21)

with Cε → 0 as ε → 0. To estimate M2, we use the Young’s inequality for convolutions (5.12) to
obtain

M2 ⩽ ∥| · |−1∥Ls(U) ∥|∇ηε| [(n · mε
⊥) (·) − (n · mε

⊥) (π(·))]∥Lp(O+
ε ) ∥ηεdiv mε

⊥∥L2(Ωε) , (5.22)

for some p, s ≥ 1 such that 1
p + 1

s = 3
2 . We take p := 1 + α and s := 2 1+α

1+3α with α > 0 sufficiently
small so that 1 < s < 2. Then

M2 ⩽ C ∥|∇ηε| [(n · mε
⊥)(·) − (n · mε

⊥)(π(·))]∥L1+α(O+
ε ) ∥ηε∇mε

⊥∥L2(Ωε), (5.23)

with some C > 0 depending only on Ω and s such that ∥| · |−1∥Ls(U) ⩽ C.
We conclude by showing that

Aε := ∥|∇ηε| [(n · mε
⊥) (·) − (n · mε

⊥) (π(·))]∥L1+α(O+
ε ) (5.24)

is small, which guarantees that the limit relation in (5.21) holds. Indeed, using interpolation inequality
∥f∥L1+α ⩽ ∥f∥θ

L1∥f∥1−θ
L1+2α with α > 0, θ = 1

2(1+α) and 1 − θ = 1+2α
2(1+α) , we immediately obtain

Aε ⩽ ∥|∇ηε| [(n · mε
⊥) (·) − (n · mε

⊥) (π(·))]∥θ
L1(O+

ε ) ∥2∇ηε∥1−θ

L1+2α(O+
ε ). (5.25)

Now, recalling that η′ ∈ L1+2α(0, 1) for some α small enough depending on q, we get that

∥∇ηε∥1−θ

L1+2α(O+
ε )⩽ Cε2θ−1. (5.26)

Also, using Lemma 5 with µ = ε and Cauchy-Schwarz inequality we obtain

∥|∇ηε| [(n · mε
⊥) (·) − (n · mε

⊥) (π(·))]∥L1(O+
ε ) ⩽ C

(
ε+ | ln ε| |O+

ε |1/2∥ηε∇mε
⊥∥L2(Ωε)

)
⩽ C ′ε1/2| ln ε|

(
1 + ∥ηε∇mε

⊥∥L2(Ωε)
)
, (5.27)

for some C,C ′ > 0 and all ε small enough. Now, combining the two previous estimates we obtain
that

Aε ⩽ Cε
5θ
2 −1| ln ε|θ

(
1 + ∥ηε∇mε

⊥∥L2(Ωε)
)θ

⩽ C ′ε1/8 (1 + ∥ηε∇mε
⊥∥L2(Ωε)

)
, (5.28)

for α sufficiently small, recalling that θ → 1
2 as α → 0. Thus by Young’s inequality we have

M2 ⩽ Cε1/8 (1 + ∥ηε∇mε
⊥∥2

L2(Ωε)
)
, (5.29)

which implies the first estimate in (5.21).
It remains to estimate the quantity |V∂Ω×Ω(mε

⊥) −M1|. For that we split it further as M1 =:
N1 +N2, where

N1 :=
∫

O+
ε

∫
Ωε

|∇ηε(y)| (n · mε
⊥) (π(y))div mε

⊥(x)
|x− y|

dxdy, (5.30)

N2 :=
∫

O+
ε

∫
O+

ε

|∇ηε(y)| (n · mε
⊥) (π(y))ηε(x)div mε

⊥(x)
|x− y|

dxdy, (5.31)

and given that |V∂Ω×Ω (mε
⊥) −M1| ⩽ |V∂Ω×Ω(mε

⊥) −N1| + |N2| we aim at showing that

|V∂Ω×Ω(mε
⊥) −N1| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
and |N2| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.32)

with some Cε → 0 as ε → 0. The bound (5.32) will prove the second estimate in (5.21).
We can estimate N2 as

|N2| ⩽
∫

O+
ε

fε(x) ηε(x) |div mε
⊥(x)| dx, (5.33)
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where fε is defined in (4.1). Now we apply Lemma 1, the Cauchy-Schwarz and Young’s inequalities
to obtain that for ε sufficiently small we have

|N2| ⩽ (2| ln ε| + C)
∫

O+
ε

ηε(x) |div mε
⊥(x)|dx

⩽ C ′| ln ε| |O+
ε |1/2∥ηε∇mε

⊥∥L2(Ωε)

⩽ C ′′ε1/2| ln ε|
(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.34)

for some C,C ′, C ′′ > 0, yielding the second relation in (5.32).
To estimate |V∂Ω×Ω(mε

⊥) −N1|, we observe that

|V∂Ω×Ω(mε
⊥) −N1| =

∣∣∣∣∫
Ω

div mε
⊥(x)ρε(x)dx

∣∣∣∣ (5.35)

with

ρε(x) :=
∫

O+
ε

|∇ηε(y)| (n · mε
⊥) (π(y))

|x− y|
dy −

∫
∂Ω

(n · mε
⊥) (σ)

|x− σ|
dH1(σ). (5.36)

Using the coarea formula, we infer that for any x ∈ Ω there holds

ρε(x) =
∫

∂Ω

∫ 1

0
(n · mε

⊥) (σ)|η′(t)|
(

1 + εtκ(σ)
|x− σ − εtn(σ)| − 1

|x− σ|

)
dt dH1(σ), (5.37)

and by Lebesgue’s dominated convergence theorem we have ρε(x) → 0 as ε → 0 for every x ∈ Ω,
Furthermore, by |mε

⊥| ⩽ 1 and Lemma 3 we have

|ρε(x)| ⩽ fε(x) +
∫

∂Ω

1
|x− σ|

dH1(σ) ⩽ C
(
1 + | ln(dist(x, ∂Ω))|

)
, (5.38)

for some C > 0 and all ε small enough.
From (5.38) and the pointwise convergence of ρε to zero as ε → 0, one can conclude by the

Lebesgue’s dominated convergence theorem that ∥ρε∥L2(Ω) → 0 when ε → 0. Therefore, by the
Cauchy-Schwarz and Young’s inequalities we obtain

|V∂Ω×Ω(mε
⊥) −N1| ⩽ Cε

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε),

)
(5.39)

for some Cε > 0 such that Cε → 0 when ε → 0. This concludes the proof of (5.32) and, therefore, of
(5.15).

Step 3. Estimate of
∣∣∣I1 − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω)

∣∣∣. By adding and subtracting mε
⊥(π(x)) to

mε
⊥(x), we rewrite I1 as I1 = J1 + 2J2 − J3, where

J1 :=
∫

O+
ε

∫
O+

ε

∇ηε(x) · mε
⊥(π(x)) ∇ηε(y) · mε

⊥(π(y))
|x− y|

dxdy, (5.40)

J2 :=
∫

O+
ε

∫
O+

ε

∇ηε(x) · [mε
⊥(x) − mε

⊥(π(x))]∇ηε(y) · mε
⊥(y)

|x− y|
dxdy, (5.41)

J3 :=
∫

O+
ε

∫
O+

ε

∇ηε(x) · [mε
⊥(x) − mε

⊥(π(x))]∇ηε(y) · [mε
⊥(y) − mε

⊥(π(y))]
|x− y|

dxdy. (5.42)

In writing the previous relations, we exploited that supp∇ηε ⊆ O+
ε . Also, to avoid cumbersome

notations we use the same symbol to denote both mε
⊥ and its trace mε

⊥|∂Ω on ∂Ω. When we write
mε

⊥(π(x)) we mean mε
⊥|∂Ω(π(x)).

Observe that∣∣I1 − 2| ln ε| ∥mε
⊥ · n∥2

L2(∂Ω)
∣∣ ⩽ ∣∣J1 − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω)

∣∣+ |J2| + |J3|, (5.43)



Reduced energies for thin ferromagnetic films 22

and we first want to estimate J2 and J3. Using the estimate in Lemma 1, we obtain that as soon as
ε is small enough, there holds

|J2| ⩽
∫

O+
ε

∫
O+

ε

|∇ηε(x)| |∇ηε(y)| |mε
⊥(x) − mε

⊥(π(x))|
|x− y|

dxdy

=
∫

O+
ε

fε(x) |∇ηε(x)| |mε
⊥(x) − mε

⊥(π(x))| dx

⩽ 3| ln ε|
(∫

O+
ε

|∇ηε(x)| |mε
⊥(x) − mε

⊥(π(x))| dx
)
. (5.44)

Applying the L1-type estimate in Lemma 5 with µ = ε, we infer that

|J2| ⩽ C| ln ε|
(
ε+ | ln ε| ∥ηε∇mε

⊥∥L1(O+
ε )
)
, (5.45)

for some C > 0. Using the Cauchy-Schwarz and Young’s inequalities, we then obtain

|J2| ⩽ C| ln ε|
(
ε+ | ln ε| |O+

ε |1/2∥ηε∇mε
⊥∥L2(Ωε),

)
⩽ C ′ε1/2| ln ε|2

(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.46)

for some C ′ > 0 and all ε small enough. In the same way, we obtain

|J3| ⩽ 2C ′ε1/2| ln ε|2
(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.47)

for all ε small enough. Hence, from (5.43), (5.46) and (5.47) we get that∣∣I1 − 2| ln ε|∥mε
⊥ · n∥2

L2(∂Ω)
∣∣

⩽
∣∣J1 − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω)

∣∣+ Cε1/2| ln ε|2
(
1 + ∥ηε∇mε

⊥∥2
L2(Ωε)

)
, (5.48)

for all ε small enough.
It remains to estimate | J1 − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω) |. We proceed by decomposing J1 as J1 :=

K1 +K2 with

K1 :=
∫

O+
ε

∫
O+

ε

|n(π(x)) · mε
⊥(π(x))|2

|x− y|
|∇ηε(x)| |∇ηε(y)| dxdy, (5.49)

K2 :=
∫

O+
ε

|∇ηε(x)| n(π(x)) · mε
⊥(π(x))

×
∫

O+
ε

|∇ηε(y)| n (π(y)) · mε
⊥(π(y)) − n(π(x)) · mε

⊥(π(x))
|x− y|

dydx, (5.50)

and we show that∣∣∣J1 − 2| ln ε| ∥mε
⊥ · n∥2

L2(∂Ω)

∣∣∣ ⩽
∣∣∣K1 − 2| ln ε| ∥mε

⊥ · n∥2
L2(∂Ω)

∣∣∣+ |K2|

⩽ C
(
1 + ∥ηε∇mε

⊥∥L2(Ω)
)

∥mε
⊥ · n∥L2(∂Ω) , (5.51)

for some C > 0 and all ε small enough.
We estimate K2 to obtain

|K2| ⩽
∫

O+
ε

∫
O+

ε

|mε
⊥(π(y)) · n (π(y)) − mε

⊥(π(x)) · n(π(x))|
|π(x) − π(y)|

× |n(π(x)) · mε
⊥(π(x))| |π(x) − π(y)|

|x− y|
|∇ηε(x)| |∇ηε(y)| dxdy. (5.52)

Since ∂Ω is of class C2 and compact, the projection map π : Oε̄ → ∂Ω is uniformly Lipschitz for
sufficiently small ε̄. Thus, there exists a constant Cπ > 0 such that

|π(x) − π(y)| ⩽ Cπ|x− y| ∀x, y ∈ Oε̄, (5.53)
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and passing to the curvilinear coordinates we obtain

|K2| ⩽ Cπ

∫
O+

ε

∫
O+

ε

|mε
⊥(π(y)) · n (π(y)) − mε

⊥(π(x)) · n(π(x))|
|π(x) − π(y)| ·

· |n(π(x)) · mε
⊥(π(x))| |∇ηε(x)| |∇ηε(y)| dxdy (5.54)

⩽ 2Cπ

∫ 1

0

∫ 1

0
|η′(s)||η′(t)|

∫
∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ) − mε

⊥(σ) · n(σ)|
|µ− σ|

·

· |n(σ) · mε
⊥(σ)| dH1(µ)dH1(σ)dsdt, (5.55)

provided ε̄ is small enough.
Since ∥η′∥L1(0,1) = 1, using the Cauchy-Schwarz inequality we obtain

|K2| ⩽ C

∫
∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ) − mε

⊥(σ) · n(σ)|
|µ− σ|

|n(σ) · mε
⊥(σ)| dH1(µ)dH1(σ)

⩽ C ′
(∫

∂Ω
|n(σ) · mε

⊥(σ)|2 dH1(σ)
) 1

2

×
(∫

∂Ω

∫
∂Ω

|mε
⊥(µ) · n(µ) − mε

⊥(σ) · n(σ)|2

|µ− σ|2
dH1(µ)dH1(σ)

) 1
2

⩽ C ′′∥mε
⊥ · n∥H1/2(∂Ω)∥mε

⊥ · n∥L2(∂Ω), (5.56)

for some C,C ′, C ′′ > 0 and all ε small enough. Finally, using |mε
⊥| ⩽ 1 and the trace embedding

theorem, we obtain
|K2| ⩽ C

(
1 + ∥ηε∇mε

⊥∥L2(Ωε)
)

∥mε
⊥ · n∥L2(∂Ω). (5.57)

Lastly, we show that∣∣∣∣K1 − 2| ln ε|
∫

∂Ω
(mε

⊥(σ) · n(σ))2dH1(σ)
∣∣∣∣ ⩽ C∥mε

⊥ · n∥L2(∂Ω). (5.58)

Indeed, using the coarea formula and recalling the definition of fε in (4.1), we have

K1 =
∫

∂Ω
|n(σ) · mε

⊥(σ)|2
(∫ 1

0
|η′(t)|fε(σ + εtn(σ))(1 + εtκ(σ)) dt

)
dH1(σ). (5.59)

Therefore, using the asymptotics of fε(σ + εtn(σ)) given in Lemma 1 and the fact that |mε
⊥| ⩽ 1,

we infer (5.58). Combining (5.57) and (5.58), we get (5.51). Finally, combining it with (5.48), (5.9)
(5.14), and (5.15) we get the desired estimate (5.2). This concludes the proof. □

Proposition 2. There exist ε̄, C > 0 such that if 0 < ε < ε̄ and mε ∈ Hε(R2;S2), then the

magnetostatic energy for the out-of-plane component (cf. (3.15))

Ṽ(ηεm
ε
∥) =

∫
R2

∫
R2

∇
(
ηεm

ε
∥

)
(x) · ∇

(
ηεm

ε
∥

)
(y)

|x− y|
dxdy (5.60)

satisfies∣∣∣∣Ṽ(ηεm
ε
∥) − ṼΩ×Ω(mε

∥) + 2Ṽ∂Ω×Ω(mε
∥) −Dε + 2| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ)
∣∣∣∣

⩽ Cε

(
1 + ∥ηε∇mε

∥∥2
L2(Ωε)

)
+ C∥mε

∥ + 1∥1/2
L2(∂Ω)∥m

ε
∥ − 1∥1/2

L2(∂Ω)
(
1 + ∥ηε∇mε

∥∥L2(Ωε)
)
,

(5.61)

where Cε → 0 as ε → 0, Dε is defined in (3.27), and

ṼΩ×Ω(mε
∥) :=

∫
Ω

∫
Ω

∇mε
∥(x) · ∇mε

∥(y)
|y − x|

dydx, (5.62)

Ṽ∂Ω×Ω(mε
∥) :=

∫
Ω

∫
∂Ω

∇mε
∥(x) · n(σ)mε

∥(σ)
|σ − x|

dH1(σ)dx. (5.63)
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Proof. We begin by writing Ṽ in the form similar to that of the nonlocal term in Proposition 1:

Ṽ(ηεm
ε
∥) =

2∑
i=1

∫
R2

∫
R2

div
(
ηεm

ε
∥ei

)
(x)div

(
ηεm

ε
∥ei

)
(y)

|x− y|
dxdy. (5.64)

Proceeding exactly as in Steps 1–3 in the proof of Proposition 1, we obtain∣∣Ṽ(ηεm
ε
∥) − J̃1 − ṼΩ×Ω(mε

∥) + 2Ṽ∂Ω×Ω(mε
∥)
∣∣ ⩽ Cε(1 + ∥ηε∇mε

∥∥2
L2(Ωε)), (5.65)

where Cε → 0 as ε → 0 and

J̃1 :=
∫

O+
ε

∫
O+

ε

∇ηε(x) · ∇ηε(y)mε
∥(π(x))mε

∥(π(y))
|x− y|

dxdy. (5.66)

To account for the non-zero limiting boundary data for mε
∥, we represent J̃1 in the following way:

J̃1 =
∫

O+
ε

∫
O+

ε

∇ηε(x) · ∇ηε(y)
(
mε

∥(π(x)) − 1
) (
mε

∥(π(y)) + 1
)

|x− y|
dxdy +Dε (5.67)

where we recalled the definition of Dε from (3.27). We denote by J̄1 the first integral in the above
expression (i.e., J̄1 := J̃1 − Dε) and split it in a similar way to what we did for J1 in Proposition 1.
Specifically, we set J̄1 := K̃1 + K̃2, where

K̃1 :=
∫

O+
ε

∫
O+

ε

∣∣mε
∥(π(x))

∣∣2 − 1
|x− y|

|∇ηε(x)| |∇ηε(y)| dxdy, (5.68)

K̃2 :=
∫

O+
ε

|∇ηε(x)|
(
mε

∥(π(x)) − 1
)

n(π(x))

·
∫

O+
ε

|∇ηε(y)|
n (π(y))

(
mε

∥(π(y)) + 1
)

− n(π(x))
(
mε

∥(π(x)) + 1
)

|x− y|
dydx. (5.69)

By the same arguments used in the proof of Step 3 in Proposition 1 to estimate K2, we then obtain
the estimate

K̃2 ⩽ C
(
1 + ∥ηε∇mε

∥∥L2(Ωε)
)

∥mε
∥ − 1∥L2(∂Ω), (5.70)

for some C > 0 and all ε small enough.
Alternatively, writing K̃2 in the following equivalent way:

K̃2 =
∫

O+
ε

|∇ηε(x)|
(
mε

∥(π(x)) + 1
)

n(π(x))

·
∫

O+
ε

|∇ηε(y)|
n (π(y))

(
mε

∥(π(y)) − 1
)

− n(π(x))
(
mε

∥(π(x)) − 1
)

|x− y|
dydx, (5.71)

we infer
K̃2 ⩽ C

(
1 + ∥ηε∇mε

∥∥L2(Ωε)
)

∥mε
∥ + 1∥L2(∂Ω), (5.72)

and taking the geometric mean of (5.70) and (5.72), we obtain

K̃2 ⩽ C
(
1 + ∥ηε∇mε

∥∥L2(Ωε)
)

∥mε
∥ + 1∥1/2

L2(∂Ω) ∥mε
∥ − 1∥1/2

L2(∂Ω), (5.73)

for some C > 0 and all ε small enough.
Finally, the estimate for K̃1 can be obtained in the the same way we derived the esitmate for K1

in Step 3 of the proof of Proposition 1, together with a Cauchy-Schwarz inequality, to obtain∣∣∣∣K̃1 − 2| ln ε|
∫

∂Ω
(|mε

∥|2 − 1)dH1(σ)
∣∣∣∣ ⩽ C ∥mε

∥ + 1∥1/2
L2(∂Ω) ∥mε

∥ − 1∥1/2
L2(∂Ω). (5.74)

Combining all of the above estimates, we obtain the result. □
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6. Proof of Γ-convergence

In this section we provide the proof of our main Theorems. Since the proofs are rather similar,
we only give the proofs of the most interesting results requiring some extra work – Theorem 2 and
Theorem 4, the rest follows easily by the same arguments.

Proof of Theorem 2. Without loss of generality we may suppose that γε = γ.
(i) (Compactness) We first prove the compactness result. Let us assume that Gε(mε) ⩽ C for some
constant C > 0 independent of ε. We recall that (cf. (3.17))

Gε(mε) = ∥ηε∇mε∥2
L2(Ωε) + λDε(mε) + γ

2| ln ε|V(ηεmε
⊥) − γ

2| ln ε| Ṽ(ηεm
ε
∥). (6.1)

First, note that, up to a constant term, we can absorb the DMI energy λDε(mε) into the Dirichlet
energy. Indeed, since |m| = 1 a.e. in Ωε and |ηε| ⩽ 1, by the Cauchy-Schwarz and Young’s inequalities
for every 0 < ε < ε̄ and every δ > 0 there holds

|Dε(mε)| ⩽
∫

Ωε

∣∣mε
∥div mε

⊥ − mε
⊥ · ∇mε

∥

∣∣ |ηε|dx

⩽ C∥ηε∇mε∥L2(Ωε) ⩽
δ

2∥ηε∇mε∥2
L2(Ωε) + C2

2δ , (6.2)

for some ε̄, C > 0 that depend only on Ω. Therefore, without loss of generality, we can assume from
the very beginning that

∥ηε∇mε∥2
L2(Ωε) + γ

| ln ε|V(ηεmε
⊥) − γ

| ln ε| Ṽ(ηεm
ε
∥) ⩽ C (6.3)

for some constant C > 0 independent of ε.
By positivity of V(ηεmε

⊥), we may, furthermore, drop this term from (6.3). On the other hand,
from Proposition 2, Lemma 4 and the estimates

ṼΩ×Ω(mε
∥) ⩽

∫
Ω

∫
Ω

|∇mε
∥(x)|2

|x− y|
dy dx ⩽ C ′∥ηε∇mε∥2

L2(Ωε), (6.4)

Ṽ∂Ω×Ω(mε
∥) ⩽

∫
Ω

∫
∂Ω

|∇mε
∥(x)

|x− σ|
dH1(σ) dx ⩽ C ′′∥ηε∇mε∥L2(Ωε), (6.5)

for some C ′, C ′′ > 0 depending only on Ω that follow from the Cauchy-Schwarz inequalities, we
immediately obtain the existence of a positive constant C > 0 such that for all sufficiently small ε
there holds

(1 − γCε) ∥ηε∇mε∥2
L2(Ωε) ⩽ C, (6.6)

for some Cε > 0 such that Cε → 0 as ε → 0.
From (6.6) we conclude that for ε sufficiently small we can uniformly bound mε in H1 (Ω;S2)

and, therefore, up to a subsequence, there exists m ∈ H1 (Ω; S2) such that
mε → m strongly in L2(Ω;R3) (6.7)

∇mε ⇀ ∇m weakly in L2(Ω;R2×3), (6.8)
mε

∥ → m∥ strongly in Lp(∂Ω) for p ⩾ 1, (6.9)
mε

⊥ → m⊥ strongly in Lp
(
∂Ω;R2) for p ⩾ 1, (6.10)

as ε → 0. Moreover, since |mε| = 1 on Ωε we also have ηεmε → 0 strongly in L2(R2 \ Ω;R3). Hence,
we infer that if m is extended by zero outside Ω then

mε → m strongly in L2(R2;R3). (6.11)
In particular, we have m ∈ H0(R2;S2).

(ii) (Γ-liminf inequality) Let mε ∈ Hε(R2;S2) and m ∈ H0(R2;S2) be such that mε → m strongly
in L2(R2;R3) as ε → 0. We may further assume that lim infε→0 Gε(mε) < +∞, since otherwise the
statement is trivially true. Hence, using the compactness statement (maybe passing to a subsequence)
we have mε ⇀ m weakly in H1 (Ω;R3), and using Propositions 1 and 2, together with Lemma 4
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and the lower semicontinuity of the Dirichlet energy on Ω and the compactness of trace embedding
of functions in H1(Ω) into L2 (∂Ω) we obtain

lim inf
ε→0

Gε (mε) ⩾
∫

Ω
|∇m|2 dx+ λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx

+ γ

∫
∂Ω

(
(m⊥ · n)2 −m2

∥

)
dH1(σ) = G0 (m) . (6.12)

(iii) (Γ-limsup inequality) Let m ∈ H0 (R2;S2) be such that G0 (m) < +∞. Take ε̄ > 0 sufficiently
small and extend m to m̃ ∈ H1(Ωε̄,S2), e.g., by setting m̃(x) := m(x− 2d∂Ω(x)n(π(x))). For every
ε < ε̄ we now define mε = m̃ in Ωε and mε = 0 outside Ωε. It is clear that mε ∈ Hε(R2;S2) and
mε → m strongly in L2(R2;R3) as ε → 0. Moreover, using Propositions 1 and 2, Lemma 4 and the
strong convergence of mε to m in H1(Ω;R3), we have mε → m in L2(∂Ω;R3) and can pass to the
limit in the magnetostatic energy term. Finally, using the fact that∫

Ωε

η2
ε |∇mε|2 dx =

∫
O+

ε

η2
ε |∇m̃|2 dx+

∫
Ω

|∇m|2 dx ε→0−−−→
∫

Ω
|∇m|2 dx, (6.13)

we obtain

lim sup
ε→0

Gε (mε) = G0 (m) . (6.14)

This completes the proof. □

Proof of Theorem 4. (i) (Compactness) We first prove the compactness result. Let us assume that
Gε(mε) + ν

2Dε ⩽ C for some constant C > 0 independent of ε. We recall that now Gε reads as
(cf. (3.17) with γε = ν| ln ε|)

Gε(mε) = ∥ηε∇mε∥2
L2(Ωε) + λDε(mε) + ν

2 V(ηεmε
⊥) − ν

2 Ṽ
(
ηεm

ε
∥

)
. (6.15)

As in the proof of Theorem 2, up to a constant term, we can absorb the DMI energy λDε(mε) into
the Dirichlet energy and drop the V(ηεmε

⊥) term due to its positivity. Therefore, without loss of
generality, we can assume from the very beginning that

∥ηε∇mε∥2
L2(Ωε) − νṼ(ηεm

ε
∥) + νDε ⩽ C, (6.16)

for some constant C > 0 independent of ε.
Next, aiming to invoke Proposition 2, we write

−ν(Ṽ(ηεm
ε
∥) −Dε) = ν

(
2Ṽ∂Ω×Ω(mε

∥) − ṼΩ×Ω(mε
∥) + 2| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ)
)

− ν

(
Ṽ(ηεm

ε
∥) −Dε − ṼΩ×Ω(mε

∥) + 2Ṽ∂Ω×Ω(mε
∥) + 2| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ)
)
, (6.17)

from which by Proposition 2 it follows that

−ν(Ṽ(ηεm
ε
∥) −Dε) ⩾ − C − C ′∥ηε∇mε

∥∥L2(Ωε) − Cε∥ηε∇mε
∥∥2

L2(Ωε)

+ 2ν| ln ε|
∫

∂Ω

(
1 − |mε

∥|2
)

dσ + ν
(
2Ṽ∂Ω×Ω(mε

∥) − ṼΩ×Ω(mε
∥)
)
, (6.18)

where Cε → 0 as ε → 0 and C,C ′ > 0 are independent of ε. Now, from (6.5) and Young’s inequality
it is clear that for any δ > 0 we have

ν
∣∣Ṽ∂Ω×Ω(mε

∥)
∣∣ ⩽ δ∥ηε∇mε

∥∥2
L2(Ωε) + Cν2δ−1, (6.19)

for some C > 0 depending only on Ω. Also, applying Lemma 7 to uε = mε
∥ei, i = 1, 2, one obtains

that for any δ > 0 there holds

ν
∣∣ṼΩ×Ω

(
mε

∥

)∣∣ ⩽ δ
∥∥ηε∇mε

∥

∥∥2
L2(Ωε),

+ Cν2δ−1, (6.20)
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again, for some C > 0 depending only on Ω. Based on the above estimates and another application
of Young’s inequality in (6.18) we deduce that for any 0 < ε < ε̄ and any δ > 0 there holds

−ν(Ṽ(ηεm
ε
∥) −Dε) ⩾ −(4δ + Cε)∥ηε∇mε

∥∥2
L2(Ωε) − C

(
1 + ν2δ−1)+ 2ν| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ),

(6.21)
for some C > 0 depending only on Ω. Therefore, we can absorb the term −ν

(
Ṽ(ηεm

ε
∥) −Dε

)
into

the Dirichlet energy by choosing δ sufficiently small universal, and for any 0 < ε < ε̄ there holds
1
2∥ηε∇mε

∥∥2
L2(Ωε) + 2ν| ln ε|

∫
∂Ω

(
1 −

∣∣mε
∥

∣∣2)dH1(σ) ⩽ C, (6.22)

for some C > 0 independent of ε. This gives us (as in the proof of Theorem 2) the existence of
m ∈ H0(R2;S2) and a subsequence such that

mε → m strongly in L2(R2;R3), (6.23)
∇mε ⇀ ∇m weakly in L2(Ω;R2×3). (6.24)

|mε
∥| → 1 strongly in Lp(∂Ω) for any p ⩾ 1, (6.25)

mε
⊥ → 0 strongly in Lp(∂Ω;R2) for any p ⩾ 1, (6.26)

Hence, upon a further subsequence, we have |mε
∥| → 1 a.e. in ∂Ω. In fact, since the trace of the limit

belongs to VMO(∂Ω) and takes only values ±1, it is in fact constant a.e. on ∂Ω [14, 15].
In what follows, without loss of generality, we assume that mε

∥ → 1 strongly in Lp(∂Ω), p ⩾ 1, i.e.,
that the limit configuration m satisfies the boundary condition m = e3 a.e. on ∂Ω.

(ii) (Γ-liminf inequality) We consider the energy functional

Gε(mε) + ν

2Dε = ∥ηε∇mε∥2
L2(Ωε) + λDε(mε) + ν

2Dε + ν

2 V(ηεmε
⊥) − ν

2 Ṽ(ηεm
ε
∥). (6.27)

and will prove a lim inf inequality for this functional. Let mε ∈ Hε(R2;S2) satisfy mε → m strongly
in L2(R2;R3) as ε → 0. We may assume that lim infε→0

(
Gε (mε) + ν

2Dε

)
< +∞, otherwise the

statement is trivially true. Hence (maybe after passing to a subsequence) we may assume that

lim inf
ε→0

Gε (mε) + ν

2Dε = lim
ε→0

Gε(mε) + ν

2Dε < +∞. (6.28)

Using the compactness result and the implied convergence, by the lower semicontinuity of the norm
and the weak-strong argument we immediately obtain

lim inf
ε→0

∥ηε∇mε∥2
L2(Ωε) ⩾ ∥∇m∥2

L2(Ω), lim
ε→0

λDε(mε) = λ

∫
Ω

(m∥div m⊥ − m⊥ · ∇m∥) dx.

(6.29)
Therefore, the Γ-liminf inequality is proved once we show that

lim inf
ε→0

(ν
2Dε + ν

2 V(ηεmε
⊥) − ν

2 Ṽ(ηεm
ε
∥)
)
⩾
ν

2 VΩ×Ω (m⊥) − ν

2 ṼΩ×Ω (m∥) + νṼ∂Ω×Ω (m∥) . (6.30)

For that, we consider separately the convergence of the terms due to the in-plane and the out-of-plane
components.

The in-plane magnetostatic contribution. As a direct consequence of Proposition 1, Lemma 7,
and the convergence in (6.24), (6.26), we obtain

ν

2 V(ηεmε
⊥) − ν| ln ε|

∫
∂Ω

(mε
⊥ · n)2 dH1(σ) ε→0−−−→ ν

2 VΩ×Ω (m⊥) . (6.31)

The out-of-plane magnetostatic contribution. As a direct consequence of Proposition 2,
Lemma 7, and the convergence in (6.24), (6.9), we obtain
ν

2
(
Ṽ
(
ηεm

ε
∥

)
−Dε

)
+ ν| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ) ε→0−−−→ ν

2 ṼΩ×Ω(m∥) − νṼ∂Ω×Ω(m∥). (6.32)
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Proof of (6.30). Combining (6.31) and (6.32) we get
ν

2Dε + ν

2 V(ηεmε
⊥) − ν

2 Ṽ(ηεm
ε
∥) ⩾

ν

2 V(ηεmε
⊥) − ν| ln ε|

∫
∂Ω

(mε
⊥ · n)2dH1(σ)

−ν

2 (Ṽ(ηεm
ε
∥) −Dε) − ν| ln ε|

∫
∂Ω

(
1 − |mε

∥|2
)

dH1(σ)

ε→0−−−→ ν

2 VΩ×Ω(m⊥) − ν

2 ṼΩ×Ω(m∥) + νṼ∂Ω×Ω(m∥). (6.33)

Therefore, using the definition of the vector field b(x) (see (2.20)) we obtain

lim inf
ε→0

(
Gε (mε) + ν

2Dε

)
⩾ G̃0 (m) . (6.34)

(iii) (Γ-limsup inequality) We proceed as in the proof of Theorem 2. Let m ∈ H0(Ω; S2) be such
that G̃0 (m) < +∞ and, without loss of generality, m = e3 on ∂Ω. We take ε̄ > 0 and extend m to
m̃ ∈ H1 (Ωε̄,S2) by setting m̃ = e3 in Ωε̄\Ω. For every ε < ε̄ we now define mε = m̃ in Ωε and
mε = 0 outside Ωε. It is clear that mε ∈ Hε(R2;S2) and satisfies mε → m strongly in L2(R2;R3)
as ε → 0. Moreover, due to the fact that mε = m in H1 (Ω;S2), we have mε = e3 on ∂Ω. Noting
that in this case the inequality in (6.33) is actually an equality, and using the fact that∫

Ωε

η2
ε |∇mε|2 dx =

∫
O+

ε

η2
ε |∇m̃|2 dx+

∫
Ω

|∇m|2 dx =
∫

Ω
|∇m|2 dx, (6.35)

we obtain

lim sup
ε→0

(
Gε (mε) + ν

2Dε

)
= G̃0 (m) . (6.36)

This completes the proof. □

Remark 1. An examination of the proof of Theorem 4 shows that

| ln ε|
∫

∂Ω
(mε

⊥ · n)2 dH1(σ) → 0, | ln ε|
∫

∂Ω

(
1 − |mε

∥|2
)

dH1(σ) → 0, (6.37)

as ε → 0 for any sequence of minimizers mε of Gε.

References

[1] Aranda, A., Hierro-Rodriguez, A., Kakazei, G., Chubykalo-Fesenko, O., and Guslienko, K. Magnetic

skyrmion size and stability in ultrathin nanodots accounting Dzyaloshinskii-Moriya exchange interaction. J. Magn.

Magn. Mater. 465 (2018), 471–479.

[2] Bader, S. D., and Parkin, S. S. P. Spintronics. Ann. Rev. Cond. Mat. Phys. 1 (2010), 71–88.

[3] Barnova, A. B.-M. S., Fondet, A., Muratov, C. B., and Simon, T. M. Theory of magnetic field-stabilized

compact skyrmions in thin film ferromagnets. Preprint: arXiv:2306.01413, 2023.

[4] Bernand-Mantel, A., Muratov, C. B., and Simon, T. M. Unraveling the role of dipolar versus Dzyaloshinskii-

Moriya interactions in stabilizing compact magnetic skyrmions. Phys. Rev. B 101 (2020), 045416.

[5] Bernand-Mantel, A., Muratov, C. B., and Simon, T. M. A quantitative description of skyrmions in ultrathin

ferromagnetic films and stability of degree ±1 harmonic maps from R2 to S2. Arch. Rat. Mech. Anal. 239 (2021),

219–299.

[6] Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., and Piramanayagam, S. N. Spintronics based

random access memory: a review. Materials Today 20 (2017), 530–548.

[7] Bogdanov, A., and Hubert, A. The properties of isolated magnetic vortices. Physica Status Solidi (B) 186

(1994), 527–543.

[8] Bogdanov, A., and Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn.

Magn. Mater. 138 (1994), 255–269.

[9] Bogdanov, A., and Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn.

Mater. 195 (1999), 182–192.

[10] Bogdanov, A. N., Kudinov, M. V., and Yablonskii, D. A. Theory of magnetic vortices in easy-axis ferromagnets.

Sov. Phys. – Solid State 31 (1989), 1707–1710.

[11] Bogdanov, A. N., and Yablonskii, D. A. Thermodynamically stable “vortices” in magnetically ordered crystals.

The mixed state of magnets. Sov. Phys. – JETP 68 (1989), 101–103.

[12] Boulle, O., Vogel, J., Yang, H., Pizzini, S., de Souza Chaves, D., Locatelli, A., Menteş, T. O., Sala,

A., Buda-Prejbeanu, L. D., Klein, O., Belmeguenai, M., Roussigné, Y., Stashkevich, A., Chérif, S. M.,

Aballe, L., Foerster, M., Chshiev, M., Auffret, S., Miron, I. M., and Gaudin, G. Room-temperature chiral

magnetic skyrmions in ultrathin magnetic nanostructures. Nature Nanotechnol. 11 (2016), 449–455.



Reduced energies for thin ferromagnetic films 29

[13] Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv.

Phys. 61 (2012), 1–116.

[14] Brezis, H. How to recognize constant functions. connections with sobolev spaces. Russian Math. Surveys 57, 4

(2002), 693.

[15] Brezis, H., and Nirenberg, L. Degree theory and BMO; Part I: Compact manifolds without boundaries. Selecta

Mathematica 1 (1995), 197–263.

[16] Carbou, G. Thin layers in micromagnetism. Mathematical Models and Methods in Applied Sciences 11, 09 (dec

2001), 1529–1546.

[17] Chaves-O’Flynn, G. D., and Muratov, C. B. Micromagnetic studies of the effects of crystalline anisotropy on

the remanent magnetization of ferromagnetic nanorings. IEEE Trans. Magn. 49 (2013), 3125–3128.

[18] Cortés-Ortuño, D., Romming, N., Beg, M., von Bergmann, K., Kubetzka, A., Hovorka, O., Fangohr, H.,

and Wiesendanger, R. Nanoscale magnetic skyrmions and target states in confined geometries. Phys. Rev. B 99

(2019), 214408.

[19] Davoli, E., Di Fratta, G., Praetorius, D., and Ruggeri, M. Micromagnetics of thin films in the presence of

Dzyaloshinskii-Moriya interaction. Mathematical Models and Methods in Applied Sciences 32, 5 (2022), 911–939.

[20] DeSimone, A., Knüpfer, H., and Otto, F. 2-d stability of the Néel wall. Calc. Var. PDE 27 (2006), 233–253.

[21] Di Fratta, G. Micromagnetics of curved thin films. Zeitschrift für angewandte Mathematik und Physik 71, 4 (jun

2020).

[22] Di Fratta, G., Fiorenza, A., and Slastikov, V. On symmetry of energy minimizing harmonic-type maps on

cylindrical surfaces. Mathematics in Engineering 5, 3 (2023), 1–38.

[23] Di Fratta, G., Monteil, A., and Slastikov, V. Symmetry properties of minimizers of a perturbed dirichlet

energy with a boundary penalization. SIAM Journal on Mathematical Analysis 54, 3 (jun 2022), 3636–3653.

[24] Di Fratta, G., Muratov, C. B., Rybakov, F. N., and Slastikov, V. V. Variational principles of micromagnetics

revisited. SIAM Journal on Mathematical Analysis 52, 4 (jan 2020), 3580–3599.

[25] Di Fratta, G., and Slastikov, V. Curved thin-film limits of chiral Dirichlet energies. Nonlinear Analysis 234

(sep 2023), 113303.

[26] Di Fratta, G., Slastikov, V., and Zarnescu, A. On a Sharp Poincaré-Type Inequality on the 2-Sphere and its

Application in Micromagnetics. SIAM Journal on Mathematical Analysis 51, 4 (jan 2019), 3373–3387.

[27] Fatkullin, I., and Slastikov, V. Critical points of the onsager functional on a sphere. Nonlinearity 18 (2005),

2565–2580.

[28] Fatkullin, I., and Slastikov, V. On spatial variations of nematic ordering. Physica D 237 (2008), 2577–2586.

[29] Fert, A., Cros, V., and Sampaio, J. Skyrmions on the track. Nature Nanotechnol. 8 (2013), 152–156.

[30] Fert, A., Reyren, N., and Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat.

Rev. Mater. 2 (2017), 17031.

[31] Gaididei, Y., Kravchuk, V. P., and Sheka, D. D. Curvature Effects in Thin Magnetic Shells. Physical Review

Letters 112, 25 (jun 2014), 257203.

[32] Giacomin, G., and Lebowitz, J. L. Exact macroscopic description of phase segregation in model alloys with

long-range inetractions. Phys. Rev. Lett. 76 (1996), 1094–1097.

[33] Gioia, G., and James, R. D. Micromagnetics of very thin films. Proc. R. Soc. Lond. Ser. A 453 (1997), 213–223.

[34] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., and Hillebrands, B.

Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 509 (2020), 166711.

[35] Hubert, A., and Schäfer, R. Magnetic Domains. Springer, Berlin, 1998.

[36] Ivanov, B., Stephanovich, V., and Zhmudskii, A. Magnetic vortices: The microscopic analogs of magnetic

bubbles. J. Magn. Magn. Mater. 88 (1990), 116–120.

[37] Knüpfer, H., Muratov, C. B., and Nolte, F. Magnetic domains in thin ferromagnetic films with strong per-

pendicular anisotropy. Arch. Rat. Mech. Anal. 232 (2019), 727–761.

[38] Kohn, R. V., and Slastikov, V. V. Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178

(2005), 227–245.

[39] Kuchkin, V. M., Barton-Singer, B., Rybakov, F. N., Blügel, S., Schroers, B. J., and Kiselev, N. S.

Magnetic skyrmions, chiral kinks, and holomorphic functions. Physical Review B 102, 14 (oct 2020), 144422.

[40] Kurzke, M. Boundary vortices in thin magnetic films. Calc. Var. Partial Differential Equations 26 (2006), 1–28.

[41] Lebowitz, J. L., and Penrose, O. Rigorous treatment of van der Waals-Maxwell theory of liquid-vapor transition.

J. Math. Phys. 7 (1966), 98–113.

[42] Lund, R. G., Muratov, C. B., and Slastikov, V. V. Edge domain walls in ultrathin exchange-biased films. J.

Nonlinear Sci. 30 (2018), 1165–1205.

[43] Lund, R. G., Muratov, C. B., and Slastikov, V. V. One-dimensional in-plane edge domain walls in ultrathin

ferromagnetic films. Nonlinearity 31 (2018), 728–754.

[44] Makarov, D., and Sheka, D. D., Eds. Curvilinear Micromagnetism. Springer International Publishing, 2022.

[45] Melcher, C. Chiral skyrmions in the plane. Proc. R. Soc. Lond. Ser. A 470 (2014), 20140394.

[46] Melcher, C., and Sakellaris, Z. N. Curvature-stabilized skyrmions with angular momentum. Letters in Math-

ematical Physics 109, 10 (jun 2019), 2291–2304.

[47] Modica, L. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech.

Anal. 98 (1987), 123–142.

[48] Monteil, A., Muratov, C. B., Simon, T. M., and Slastikov, V. V. Magnetic skyrmions under confinement.

Preprint: arXiv:2208.00058, 2022.



Reduced energies for thin ferromagnetic films 30

[49] Morini, M., Muratov, C. B., Novaga, M., and Slastikov, V. V. Transverse domain walls in thin ferromagnetic

strips. Arch. Rat. Mech. Anal. 247 (2023), 59.

[50] Moser, R. Boundary vortices for thin ferromagnetic films. Arch. Ration. Mech. Anal. 174 (2004), 267–300.

[51] Muratov, C. B., Osipov, V. V., and Vanden-Eijnden, E. Persistence of magnetization configurations against

thermal noise in thin ferromagnetic nanorings with four-fold magnetocrystalline anisotropy. J. Appl. Phys. 117

(2015), 17D118.

[52] Muratov, C. B., and Slastikov, V. V. Domain structure of ultrathin ferromagnetic elements in the presence of

Dzyaloshinskii-Moriya interaction. Proc. R. Soc. Lond. Ser. A 473 (2017), 20160666.

[53] Muratov, C. B., Slastikov, V. V., Kolesnikov, A. G., and Tretiakov, O. A. Theory of Dzyaloshinskii

domain wall tilt in ferromagnetic nanostrips. Phys. Rev. B 96 (2017), 134417.

[54] Nagaosa, N., and Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnol.

8 (2013), 899–911.

[55] Ohara, K., Zhang, X., Chen, Y., Wei, Z., Ma, Y., Xia, J., Zhou, Y., and Liu, X. Confinement and protection

of skyrmions by patterns of modified magnetic properties. Nano Letters 21 (2021), 4320–4326.

[56] Riveros, A., Tejo, F., Escrig, J., Guslienko, K., and Chubykalo-Fesenko, O. Field-dependent energy

barriers of magnetic néel skyrmions in ultrathin circular nanodots. Phys. Rev. Applied 16 (2021), 014068.

[57] Rohart, S., and Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of

Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88 (2013), 184422.

[58] Sampaio, J., Cros, V., Rohart, S., Thiaville, A., and Fert, A. Nucleation, stability and current-induced

motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnol. 8 (2013), 839–844.

[59] Schroers, B. Gauged sigma models and magnetic skyrmions. SciPost Physics 7, 3 (sep 2019).

[60] Slastikov, V. V. Micromagnetics of thin shells. Math. Models Methods Appl. Sci. 15 (2005), 1469–1487.

[61] Sloika, M. I., Sheka, D. D., Kravchuk, V. P., Pylypovskyi, O. V., and Gaididei, Y. Geometry induced phase

transitions in magnetic spherical shell. Journal of Magnetism and Magnetic Materials 443 (dec 2017), 404–412.

[62] Soumyanarayanan, A., Reyren, N., Fert, A., and Panagopoulos, C. Emergent phenomena induced by spin–

orbit coupling at surfaces and interfaces. Nature 539 (2016), 509–517.

[63] Streubel, R., Fischer, P., Kronast, F., Kravchuk, V. P., Sheka, D. D., Gaididei, Y., Schmidt, O. G.,

and Makarov, D. Magnetism in curved geometries. Journal of Physics D: Applied Physics 49, 36 (aug 2016),

363001.

[64] Thompson, C. J., and Silver, H. The classical limit of n-vector spin models. Commun. Math. Phys. 33 (1973),

53–60.

[65] Winter, J. M. Bloch wall excitation. Application to nuclear resonance in a Bloch wall. Phys. Rev. 124 (1961),

452–459.

[66] Zhang, X., Zhou, Y., Song, K. M., Park, T.-E., Xia, J., Ezawa, M., Liu, X., Zhao, W., Zhao, G., and

Woo, S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic

applications. J. Phys. – Condensed Matter 32 (2020), 143001.


	1. Introduction and motivation
	1.1. Outline
	1.2. Acknowledgments

	2. The micromagnetic model
	2.1. A microscopic derivation of the reduced two-dimensional model

	3. Mathematical setup and statement of the main results
	3.1. Film geometry
	3.2. The micromagnetic energy
	3.3. Main results

	4. Auxiliary lemmas
	5. Analysis of the magnetostatic energy
	6. Proof of Gamma-convergence
	References

