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ON THE MONOTONICITY OF WEIGHTED PERIMETERS
OF CONVEX BODIES

GIORGIO SARACCO AND GIORGIO STEFANI

Abstract. We prove that, among weighted isotropic perimeters, only constant mul-
tiples of the Euclidean perimeter satisfy the monotonicity property on nested convex
bodies. Although the analogous result fails for general weighted anisotropic perimeters,
a similar characterization holds for radially-weighted anisotropic densities.

1. Introduction

1.1. Monotonicity property. Let N ≥ 2. If A, B ⊂ RN are two nested convex bodies,
that is compact convex sets with non-empty interior such that A ⊂ B, then

P (A) ≤ P (B), (1.1)
where P (E) = H N−1(∂E) denotes the Euclidean perimeter of the convex body E ⊂ RN .
The monotonicity property (1.1) is well known and dates back to the ancient Greeks
(Archimedes took it as a postulate in his work on the sphere and the cylinder [1, p. 36]).

Inequality (1.1) can be proved in several ways: by the Cauchy formula for the area
surface of convex bodies [5, §7]; by the monotonicity property of mixed volumes [5, §8];
by the Lipschitz property of the projection on a convex closed set [6, Lem. 2.4]; by the
fact that the perimeter is decreased under intersection with half-spaces [25, Ex. 15.13].

Inequality (1.1) extends to the anisotropic (Wulff ) Φ-perimeter

PΦ(E) =
∫

∂E
Φ

(
νE(x)

)
dH N−1(x),

where νE : ∂E → SN−1 is the inner unit normal of the convex body E ⊂ RN (defined
H N−1-a.e. on ∂E) and Φ: RN → [0, +∞] is a fixed lower-semicontinuous, positively 1-
homogeneous and convex function. Clearly, if Φ = | · |, then PΦ(E) = P (E). Similarly
to (1.1), the monotonicity of the Φ-perimeter is a consequence of one of the following: the
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Cauchy formula for the anisotropic perimeter [5, §7]; the monotonicity property of mixed
volumes [5, §8]; the fact that the anisotropic perimeter is decreased under intersection
with half-spaces [25, Rem. 20.3].

In passing, we mention that the monotonicity property holds even for perimeter func-
tionals of the non-local type, as the fractional perimeter [16, Lem. B.1] and, more gener-
ally, non-local perimeters induced by a suitable interaction kernel [3, Cor. 2.30].

The monotonicity property of perimeters has gained increasing attention in recent years.
We refer to [7,8,24,31] and to the survey [20] for quantitative versions of the monotonicity
inequality (see also [22] for the quantitative monotonicity in the non-local setting), and
to [4, 9, 12,15,21,23,26] for some applications and related results.

1.2. Main result. In this note, we are interested in studying the monotonicity property
on nested convex bodies for the class of weighted perimeters. Given a Borel function
f : RN → [0, +∞], we let

Pf (E) =
∫

∂E
f(x) dH N−1(x) (1.2)

be the weighted (isotropic) perimeter of the convex body E ⊂ RN . Clearly, if f ≡ c
for some c ∈ [0, +∞), then Pf = c P , a constant multiple of the Euclidean perimeter.
Weighted perimeters have been largely investigated in relation to isoperimetric, cluster
and Cheeger problems, see [2, 10, 11, 13, 17–19, 28–30] and the survey [27] for an account
on the existing literature.

Our main result is the following rigidity property, namely, the only weighted perimeter
satisfying the monotonicity property is (a constant multiple of) the Euclidean perimeter.

Theorem 1.1. Let f : RN → [0, +∞] be a Borel function such that f ∈ L1
loc(RN). If the

weighted perimeter Pf in (1.2) satisfies the monotonicity property, i.e.,

Pf (A) ≤ Pf (B) for any two nested convex bodies A ⊂ B in RN , (1.3)

then f ≡ c a.e. for some c ≥ 0.

Theorem 1.1 is quite intuitive. In fact, one clearly expects that, if f is not constant in
some direction, then the monotonicity property should be violated on any suitable family
of convex bodies with some side (continuously) deforming along that direction. However,
one should carefully keep into account the values of f on the entire boundary of each
convex body of the family, which forces one to consider deformations in that direction
given by graphs of concave functions fixing the boundary of the chosen side.

One may wonder whether the analog of Theorem 1.1 holds for weighted anisotropic
perimeters. More precisely, given a non-negative Finslerian weight f : RN × SN−1 →
[0, +∞] (i.e., possibly depending also on the inner unit normal νE : ∂E → SN−1 of the
convex body E ⊂ RN) and assuming the monotonicity of the weighted anisotropic perime-
ter Pf , is it true that f = f(x, ν) does not depend on x? This is in general false.
As a counterexample, consider any bounded vector field F ∈ C1(RN ;RN) with con-
stant divergence, div F ≡ α for some α ∈ [0, +∞), and define the anisotropic weight
f : RN × SN−1 → [0, +∞) as

f(x, ν) = F (x) · ν + β for x ∈ RN and ν ∈ SN−1, (1.4)
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where β ∈ [∥F∥∞, +∞) ensures the non-negativity of the weight f . By the Divergence
Theorem, the anisotropic weighted perimeter

Pf (E) =
∫

∂E
f(x, νE(x)) dH N−1(x) (1.5)

on the convex body E ⊂ RN satisfies

Pf (E) =
∫

∂E
f(x, νE(x)) dH N−1(x)

=
∫

∂E
F (x) · νE(x) dH N−1(x) + β P (E)

=
∫

E
div F dx + β P (E)

= α |E| + β P (E),
readily yielding the desired monotonicity property in virtue of that of the Euclidean
perimeter (1.1) and that of the Lebesgue measure with respect to nestedness.

Despite the counterexample in (1.4), from Theorem 1.1 we can deduce the following
result, which provides a partial analog of the rigidity property in the anisotropic regime
under some additional structural assumptions on the weight function.

Corollary 1.2. Let f : RN ×RN → [0, +∞] be a Borel function such that f ∈ L1
loc(R2N).

Assume that there exist a radial Borel function g : RN → [0, +∞] and a lower semicon-
tinuous, 1-homogeneous and convex function Φ: RN → (0, +∞] such that

f(x, v) = g(x) Φ(v) for x ∈ RN and v ∈ RN . (1.6)
If the anisotropic weighted perimeter Pf in (1.5) satisfies the monotonicity property (1.3),
then g ≡ c a.e. for some c ≥ 0.

The proof of Corollary 1.2 combines the invariance of the monotonicity property with
respect to rotations with Theorem 1.1.

2. Proofs of the statements

2.1. Proof of Theorem 1.1. We begin by observing that it is not restrictive to assume
that f ∈ C∞(RN). Indeed, given A ⊂ B two nested convex bodies in RN , the translated
sets A+y ⊂ B +y are still two nested convex bodies for any y ∈ RN . Therefore, in virtue
of (1.3) and changing variables, we get∫

∂A
f(x − y) dH N−1(x) ≤

∫
∂B

f(x − y) dH N−1(x). (2.1)

Let now (ϱε)ε>0 ⊂ C∞
c (RN) be any family of non-negative convolution kernels (for in-

stance, ϱε = ε−Nϱ(·/ε) for some ϱ ∈ C∞(RN) such that supp ϱ ⊂ B1, ϱ ≥ 0, and∫
RN ϱ dx = 1). Multiplying (2.1) by ϱε(y), integrating on RN with respect to y, and

owing to the Fubini–Tonelli Theorem, we infer that∫
∂A

fε(x) dH N−1(x) =
∫

∂A

∫
RN

f(x − y) ϱε(y) dy dH N−1(x)

≤
∫

∂B

∫
RN

f(x − y) ϱε(y) dy dH N−1(x) =
∫

∂B
fε(x) dH N−1(x),
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E(λ)

Γh(λ)

Figure 1. The set E(λ) and its deformation Fh(λ) for λ > 0 and a given
concave function h : [−δ, δ]2 → R vanishing on the boundary of its domain.

where fε = f ∗ ϱε ∈ C∞(RN) is the standard convolution. By the arbitrariness of the
nested convex bodies A and B, the weight fε still verifies (1.3) for each ε > 0. If we show
that ∇fε ≡ 0 for each ε > 0, then also ∇f ≡ 0 in the sense of distributions, and thus f
is equivalent to a constant function.

Consequently, from now on, we assume that f ∈ C∞(RN). We now claim that
∂xN

f(x) = 0 for each x ∈ RN . By the translation invariance in (2.1), we just need
to show that ∂xN

f(0) = 0.
Let δ > 0 to be chosen later on. For λ ∈ R, we define

E(λ) =

[−δ, δ]N−1 × [−δ, 0] for λ ≥ 0,

[−δ, δ]N−1 × [0, δ] for λ < 0.

Moreover, given h : [−δ, δ]N−1 → R any concave function vanishing on the boundary of
[−δ, δ]N−1 ⊂ RN−1, we set

Γh(λ) =


{
x = (x′, xN) ∈ RN : x′ ∈ [−δ, δ]N−1 and 0 ≤ xN ≤ λh(x′)

}
for λ ≥ 0,{

x = (x′, xN) ∈ RN : x′ ∈ [−δ, δ]N−1 and λh(x′) ≤ xN ≤ 0
}

for λ < 0,

and we refer to Figure 1 for a visual aid in the 3-dimensional case. Note that E(λ) and
F (λ) = E(λ) ∪ Γh(λ) are convex bodies in RN with E(λ) ⊂ F (λ) for all λ ∈ R. Hence, in
virtue of (1.3), we get that

Pf (F (λ)) ≥ Pf (E(λ)) for all λ ∈ R.

By the area formula, the above inequality rewrites as∫
[−δ,δ]N−1

f(x′, λh(x′))
√

1 + λ2 |∇h(x′)|2 − f(x′, 0) dx′ ≥ 0 for all λ ∈ R.

In particular, the function ℓ : R → [0, +∞), given by

ℓ(λ) =
∫

[−δ,δ]N−1
f(x′, λh(x′))

√
1 + λ2 |∇h(x′)|2 dx′ for λ ∈ R,
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achieves its minimum at λ = 0, so that ℓ′(0) = 0. Since f is a smooth function, we can
exchange the differentiation and the integration signs, obtaining∫

[−δ,δ]N−1
∂xN

f(x′, 0) h(x′) dx′ = 0 (2.2)

for any concave function h : [−δ, δ]N−1 → R vanishing on the boundary of [−δ, δ]N−1.
In particular, h(x′) > 0 for all x′ ∈ (−δ, δ)N−1 as soon as h ̸≡ 0. By contradiction, if
∂xN

f(0) ̸= 0, then, by smoothness of f , we may assume that ∂xN
f(x) has constant sign

for each x ∈ Br(0) for some r > 0. Choosing δ > 0 so small that [−δ, δ]N−1 ×{0} ⊂ Br(0),
the equality (2.2) immediately yields a contradiction.

In the previous argument, the choice of fixing the N -th component does not play any
role and can be repeated almost verbatim to show that ∂xi

f(0) = 0 for each i = 1, . . . , N .
Thus, again by the translation invariance (2.1), we get that ∇f(x) = 0 for all x ∈ RN ,
yielding the conclusion. □

Remark 2.1. In the above proof, one needs much less than the monotonicity of the
perimeter on nested convex bodies in order to conclude that the weight is constant.
Indeed, it would be enough to know that, for each direction ei ∈ SN−1, i = 1, . . . , N , and
each point x ∈ RN , the monotonicity property holds on two hypercubes (not necessarily
with the same edge size) with a face containing x and orthogonal to ei with opposite
outward normals ±ei on that face.

2.2. Proof of Corollary 1.2. Let us denote by SO(N) be the special orthogonal group,
and let µ ∈ P(SO(N)) be the (unique) Haar probability measure on SO(N) (see [14] for
a detailed exposition). Given A ⊂ B two nested convex bodies in RN , the rotated sets
R(A) ⊂ R(B) are still two nested convex bodies for any R ∈ SO(N). Therefore, in virtue
of (1.3) and changing variables, we get∫

∂A
f

(
R(x), R(νA(x))

)
dH N−1(x) ≤

∫
∂B

f
(
R(x), R(νB(x))

)
dH N−1(x), (2.3)

owing to the elementary facts that R(∂E) = ∂R(E) and that νR(E)(R(x)) = R(νE(x)) for
H N−1-a.e. x ∈ ∂E whenever E ⊂ RN is a convex body (refer to [25, §17.1] for a precise
justification). Due to (1.6) and the radial assumption on g, inequality (2.3) rewrites as∫

∂A
g(x) Φ

(
R(νA(x))

)
dH N−1(x) ≤

∫
∂B

g(x) Φ
(
R(νB(x))

)
dH N−1(x) (2.4)

for R ∈ SO(N). We now claim that the function

SN−1 ∋ ν 7→
∫

SO(N)
Φ

(
R(ν)

)
dµ(R)

is constant. Indeed, given any ν ∈ SN−1, we can find Rν ∈ SO(N) such that ν = Rν(e1).
Due to the invariance properties of the Haar measure µ, we can compute∫

SO(N)
Φ

(
R(ν)

)
dµ(R) =

∫
SO(N)

Φ
(
R(Rν(e1))

)
dµ(R)

=
∫

SO(N)
Φ

(
Q(e1)

)
dµ(QR−1

ν )

=
∫

SO(N)
Φ

(
Q(e1)

)
dµ(Q) (2.5)
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where, with a slight abuse of notation, Q 7→ µ(QR−1
ν ) stands for the push-forward of the

measure µ with respect to the right translation by R−1
ν . Hence, integrating on SO(N)

with respect to µ, using the Fubini–Tonelli Theorem, the above equality, that Φ > 0, and
simplifying, from (2.4) we get∫

∂A
g(x) dH N−1(x) ≤

∫
∂B

g(x) dH N−1(x)

for any two nested convex bodies A ⊂ B. The conclusion follows from Theorem 1.1. □

Remark 2.2. One could slightly weaken the hypotheses of Corollary 1.2 by allowing Φ
to also attain zero. In fact, it is enough to require that the integral in (2.5) is not zero.
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