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Abstract

The aim of this paper is to present new sparsity results about the
so-called Lieb functional, which is a key quantity in Density Func-
tional Theory for electronic structure calculations for molecules. The
Lieb functional was actually shown by Lieb to be a convexification
of the so-called Lévy-Lieb functional. Given an electronic density for
a system of N electrons, which may be seen as a probability density
on R3, the value of the Lieb functional for this density is defined as
the solution of a quantum multi-marginal optimal transport problem,
which reads as a minimization problem defined on the set of trace-
class operators acting on the space of electronic wavefunctions that
are antisymmetric L? functions of R3Y, with partial trace equal to the
prescribed electronic density. We introduce a relaxation of this quan-
tum optimal transport problem where the full partial trace constraint
is replaced by a finite number of moment constraints on the partial
trace of the set of operators. We show that, under mild assumptions on
the electronic density, there exist sparse minimizers to the resulting
moment constrained approximation of the Lieb (MCAL) functional
that read as operators with rank at most equal to the number of mo-
ment constraints. We also prove under appropriate assumptions on
the set of moment functions that the value of the MCAL functional

*CERMICS, Ecole Nationale des Ponts et Chaussées & INRIA, vir-
ginie.ehrlacher@enpc.fr

tUniversité Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay,
France. luca.nenna@universite-paris-saclay.fr



converges to the value of the exact Lieb functional as the number of
moments go to infinity. We also prove some rates of convergence on
the associated approximation of the ground state energy. We finally
study the mathematical properties of the associated dual problem.
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1 Introduction

The so-called Hohenberg-Kohn or Lévy-Lieb functional plays a fundamental
role in Density Functional Theory for electronic structure calculations. For
the sake of simplicity, we use here atomic units and neglect the effect of spin
in this work. For a given electronic density p € L'(R?), which we assume
here to be of integral equal to 1 for the sake of simplicity, and a given number
of electrons N € N*, the Lévy-Lieb functional Fp1(p) reads as the solution



of the following a minimization problem of the form:

1
Frolp] := inf —/ !V‘I’!2+/ VI,
werN 2 Jran R3N
pu=p

where

(i) HN = AN, H'(R®) is the set of admissible electronic wavefunctions
for a system of N electrons with finite kinetic energy, that is the set of
antisymmetric functions of H!(R3Y);

(i) for any ¥ € HY and x € R3, py is the electronic density associated to
the wavefunction ;

(iii) the function V : (R*)N — R, U{+o0} is the electron-electron Coulomb
interaction potential.

There is a wide zoology of electronic structure calculation models which
rely on various types of approximations of this Lévy-Lieb functional. Re-
cently, Strictly Correlated Electrons (SCE) based approximation of this func-
tional have drawn an increasing interest from mathematicians because it
gives rise to a symmetric multi-marginal optimal transport problem with
Coulomb cost, with the number of marginal constraints being equal to the
number of electrons in the system. The literature about the SCE approx-
imation (namely the multi-marginal optimal transport with Coulomb cost)
is growing considerably. Recent developments include results on the ex-
istence and non-existence of Monge-type solutions (e.g., [CD15, CDDI15,
CFK13, Fril9, BDGG12, CS16, DMGN™, BDPK20]), structural properties of
Kantorovich potentials (e.g., [CDMS19, DGN17, GKR19, BCD17]), grand-
canonical optimal transport [DMLN22], efficient computational algorithms
(e.g., [BCN17, FSV22, CEL'19, MG19, KLLY19]) and the design of new
density functionals (e.g., [GGGG19, CF15, MUMIGG14, LDMGT16]).

Moreover, recent works indicate that the solution of this symmetric Coulomb
cost multi-marginal problem, which is a probability measure on RV, is ac-
tually a sparse object at least in discrete settings. Two types of discrete
settings have been considered so far where such sparsity results have been
obtained. On the one hand, the most classical discrete approximation con-
sists in introducing a discrete grid X of R®. The discrete optimal transport
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plan is then defined as a discrete probability measure defined on the carte-
sian product grid XV. Actually, it was proved in [FV18, V6g21] that the
discrete optimal transport plan does not charge all the points of the discrete
cartesian product grid (of cardinality |X|") but only a number of points
in this grid which scales at most linearly with M. Finding the few points
of XV which are actually charged by the discrete optimal transport plan is
not a trivial task though, and the GenCol algorithm is a numerical procedure
which aims at achieving this task. It has been first proposed in [FSV22], then
extended in [FP22] and its convergence has been analyzed for two-marginal
problems in [FP23]. On the other hand, an alternative approach which was
first considered in [ACEL21] consists in introducing an approximation of the
exact multi-marginal transport problems where the marginal constraints are
replaced by a finite number of moment constraints associated to a finite num-
ber M of "moment functions” which are real-valued functions defined on R3.
Under some natural assumptions, this approximate problem is then equiva-
lent to approximating the solution of the dual problem associated to the exact
optimal transport problem, namely the so-called Kantorovich potential, as a
linear combination of these moment functions. The solution of this moment-
contrained optimal transport problem is still a probability measure defined
on R3*" but is also a sparse object in the sense that it can be written as a dis-
crete measure charging a number of points belonging to R*Y which scales at
most linearly with the number of moment constraints. Finding the location
of these points then reads as a non-convex optimization problem defined on
a continuous (and not a discrete set) set, and stochastic gradient algorithms
have been proposed in [ACE22] in order to find such optimal points, and nu-
merically tested on three-dimensional settings involving N = 100 electrons.
We also refer the reader to the works [CFM14, BCN17, NP22, Lel22, HCL23]
where alternative numerical methods have been proposed for the computa-
tion of the SCE limit of the Lévy-Lieb functional, which do not rely on
sparsity arguments.

The objective of this work is to prove similar type of sparsity results for
the so-called Lieb functional, which is a convex relaxation of the Lévy-Lieb
functional, the expression of which is given under the following form:

Rl T [( - %A + V)rﬂ | (1)

resyf (Y




N
where H} = /\ L*(R?), & (HY) denotes the set of non-negative trace-class
i=1

self-adjoint operators on H} and where pr is the electronic density associ-
ated to I' € &7 (H)'), the precise definition of which will be given below.
Actually, problem (1) is a particular instance of quantum optimal transport
problems. We refer the reader to [GMP16, GP17] for references on ear-
lier works on closely related types of quantum optimal transport problems.
Our aim here is to prove that solutions of approximations of problems (1)
where the partial trace constraint is relaxed by a finite number of moment
constraints enjoy similar sparsity properties than solutions of moment con-
strained multi-marginal symmetric classical optimal transport problems, such
as those which were established in [ACEL21]. More precisely, we prove, using
the so-called Tchakaloff’s theorem, that the solutions of moment constrained
approximations of (1) can be written under the form I' = Y71 | ay|U) (W],
where K € N* scales at most linearly with the number of moment con-
straints, and where for all 1 < k < K, ag € [0,1], U3, € HY and [¥},) (¥,
is the orthogonal projector of H) onto the vectorial space spanned by ¥
(using bra-ket notation). This sparsity structure leads us to propose some
numerical scheme in order to approximate the solution of (1), the numerical
behaviour of which we illustrate here on small-dimensional examples. This
numerical scheme reads as an iterative scheme which shares some common
features with the GenCol algorithm, in the sense that, at each iteration, the
”support” of the minimizer is adapted using the solution of an associated dual
problem. Let us finally mention here that particular moment-constrained ap-
proximations of the Lieb functional have already been considered in [Gar22]
for the construction of Kohn-Sham potentials. The novel results brought by
the present contribution in comparison to the latter work is (i) the exten-
sion of existence and convergence results to more general moment constraints
that the one considered in [Gar22]; (ii) the results on the sparsity structure
of associated minimizers (iii) convergence rate of the approximate ground
state energy and (iv) the iterative numerical scheme and some preliminary
results on its mathematical analysis which are the object of a forthcoming
companion paper.

The outline of the article is the following. In Section 2, we recall some fun-
damental results about the exact Lieb functional. The moment-constrained
approximation we consider here and the associated sparsity result on their
minimizers is presented in Section 3. Convergence results of the moment-



constrained approximation towards the exact Lieb functional are presented
in Section 4. In the same section, we also prove some rates of convergence
of the associated approximation of the ground state energy to the exact one.
We finally present some results about the dual formulation of the moment-
constrained problem in Section 5 in the case of electronic density with support
included in bounded domains.

2 The exact Lieb functional

Let us first introduce some notation together with the problem we consider
in this work. We use here atomic units and neglect the influence of spin for
the sake of simplicity.

Let N € N* denote the number of electrons in the molecule of interest. Let
us assume that there are NV, € N* nuclei in the molecule, the positions and
electric charges of which are denoted by Ry, ..., Ry, € R¥®and Zy,..., Zy,, €
N*. For all z € R3, let us denote by

Zn
vun(®) = =) R

the Coulomb electric potential generated at 2 € R3 by the N, nuclei.

Let 3 := H'(R?) and HV := AY, H'(R®). For any ¥ € H", we denote
by ||[¥] its L?(R3*") norm and by py the electronic density associated to the
wavefunction ¥, namely the real-valued function defined over R? as follows:

Ve €R®, py(z) =N U (2, 29, ..., 2oN5)|* dzs . .. dzy.
(R3)N-1
For a given set of nuclei positions R := (R, ..., Ry,,) and charges Z :=
(Z1,...,Zn,,), one can compute the ground state energy as a minimization

over a density p, that is

E[R,Z] = inf {FLL[p] + /R 3 Unup}, (2)

peIN

where IV := {p € L*(R®), p >0, \/p € H'(R®), [os p = N} and

) 1
Fuld = it {5 [ wwe [ vioe] )

pu=p



is called the Levy-Lieb functional. In ((3)), the function V : (R*)Y¥ — R, U
{+0c0} is defined as follows: for all (zy,...,zx) € (R})V,

Vi, on= 3 (4)

1<i<j<N |2: — ;|

The Levy-Lieb functional is the central object in Density Functional Theory
and its knowledge would allow the computation the electronic ground state
energy of any molecule. However, it turns out that Fp; is not convex, it
is therefore convenient to look at a convexification proposed by Lieb [Lie83]
where the minimization is performed over the set of mixed states instead of
the set of pure ones as in (3). More precisely, we consider here the alternative
minimization problem

Frlpl .= inf Tr(HNT), (5)
resy (%)
pr=p
where Hy := —3A + V is a self-adjoint operator on H}" with domain

D(Hy) = 7Y = AX, H*(R?), &1 (H}) denotes the set of trace-class self-
adjoint non-negative operators on H'. For all T € & (H]'), there exists an
orthonormal basis (¥;);en+ of HZ and a non-increasing sequence (a;);en+ of
non-negative numbers such that

F=Zail%><%!, (6)

using so-called bra-ket notation. Then, the associated electronic density pr
is defined as follows: for all z € R3,

+o00 400
pr(x) = NZO%/ Uiz, 29,...,2n) P dry. .. doy = Zaipq,i(x).
i=1 (R3)N=1 i=1

We know that there exist positive constants €, D > 0 such that Hy+D >
e(—A +1Id) (in the sense of self- adjoint operators on H7'). We also denote
by &11(H)') the set of self-adjoint operators I' on H}" with finite kinetic
energy, i.e. such that Tr (|Hy + D|"/?T'|Hy + D|"/?) < +cc.

Remark 1. It can then be easily checked that, T' € &y 1(HY) if and only if
[ € &(HY) and Tr(HNT) < +o00. Then, if T admits an eigendecomposition
of the form (6), necessarily ¥; € HY as soon as a; > 0.
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It is well-known then that the infimum in (3) and (5) is attained.

Remark 2 (Convexification). It is worth highlighting that Fy, is indeed the
convexification of Frp in the sense that

+0o0
Filp] = inf > i Frlpi]
viz1, a;>0, pietN =
Zj:‘f a;=1
S aipi=p

It is useful noticing that F;, admits a dual problem.

Theorem 3 ([Lie83]). Duality holds in the sense that

Fild=  sup { / v(m)p(x)dx}, 7)
veL? (R¥)4Loor3) L/R?
HY>0

where
N

Hy =Hy — Zv(mz)

i=1

The constraint in (7) has to be understood in the sense of self-adjoint
operators, namely for all U € HY, (U|H¥|V) > 0.

Remark 4. [t is important to notice, for the following, that it can be easily
proved that the infimum in (3) and (5) is attained. However, it happens that
the supremum in (7) is not attained for most densities p (we refer the reader
to [LLS19]).

3 Moment-constrained approximation and spar-
sity result

We focus now on a first approximation of (5) by using the moment constraint
approach which has previously been studied in the framework of classical
optimal transport [ACEL21, ACE22]. We also refer to [Gar22] where a par-
ticular instance of moment-constrained approximation of the Lieb functional
has been considered for the computation of Kohn-Sham potentials.



We begin by introducing here some notation. From now on, we fix an
electronic density p € Jy. Let us recall that we have F := L3%2(R%) +
L>(R?) € L,(R?). For any f € F, we denote by

1|5 == inf 1372l L2y + | fooll Lo re)-
f3/2 € L3/2<R3)7 foo € LOO(RB)a
Jsp+ fo = f

Let M € N*, given a collection of M functions ® := (p1,..., o) € FM,
the main idea of the moment-constrained approximation consists in replacing
the density constraint in (5) with the M scalar moment constraints associated
to the functions ¢, ..., @y, that is

(/iwmpr=i/‘¢mp7 Vm=1,---, M. (8)
R3 R3

Notice that (8) is equivalent to

/ opr = / op. Ve € Span{®}. (9)
R3 R3

We denote by &7 (HY, ®, p) the set of I' € &F (HY) satisfying constraints
(8) (or equivalently (9)).

In the following, we show that there exists at least one solution to the cor-
responding moment-constrained Lieb optimization problem admits a sparse
solution I'® such that there exists an integer K < M 42, weights wy, - - - wg >

opt»
0 and wavefunctions Wy, -+, Uy € HY such that
K K
dwp=1 and TO, = wy W) (Wy. (10)
k=1 k=1

In other words, we will show that there exists a finite-rank minimizer I‘g’pt
the rank of which is at most K < M + 2.

3.1 Tchakaloff’s theorem on Hilbert spaces

Let us first recall the following proposition which is an immediate conse-
quence of Tchakaloff’s theorem, see [BT06]. For any Hilbert space H, we
denote by B(H) the Borel o-algebra of 3.



Proposition 5. Let p be a Borelian measure on a Hilbert space H concen-
trated on a Borel set A € B(H). Let Jo € N* and A : H — R’ a Borel
measurable map. Assume that the first moments of Mgy exists, that is

/RJO =l dAsp(z) = /5{ IA(P)[|dp(¥) < +o0,

where || - || denotes the Euclidean norm of R™. Then there exists an integer
1 < K < Jy, elements Vq,--- Wi € A and weights wy,--- ,wg > 0 such
that

V=1 o, /j{ A () () = 3w (W) = /M A(T) dpa(D),

K
where A; is the j—th component of A, and g = Zwk&pk.
k=1
The main idea of the proof of the sparsity result announced above is to

define a measure associated to an operator I' € & (H}'). Assume that the
operator I' can be written as

F:Zai|\I’i)(\Di| (11)

for some sequence (¥;);en+ of normalized functions of HY' and non-negative
real numbers (q;);en- such that ) .. a; = N. Then we can define a Borelian
measure pp : B(HY) — R, associated to the decomposition (11) of the

operator I' as
+oo
M = Z Oéz(s\pZ
i=1

Naturally, there is no unique such measure ur associated with an operator I'
since it heavily depends on the decomposition (11). However, we will see in
the following that this is not a problem for our purpose here.

3.2 Existence of sparse minimizers for Moment Con-
strained Approximation of Lieb (MCAL) functional

In the following, we denote by 1 the function defined over R® which is iden-
tically equal to 1.
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Theorem 6. Let p € Iy, M € N* and ® := (¢1,...,0m) € FM such that
1 € Span{®}. Let us assume in addition that

(A0) there exists a non-negative non-decreasing contz’nuous function§ : Ry —
R, such that 0(r) ot and C, = [os 0(|2|)p(x) do < +o0.
7— 100

For all C' > 0, let us introduce the Moment-Constrained Approximation
of the Lieb functional (MCAL)

Frylpl:==  inf  Tr(HyT), (12)
resy (1}, @.p)
Tr (O <C

where O(z1,...,xN) = ]%2511 O(|z;|) for all x1,...,xxy € R3. Then, for
all C > C, Fq)c[p] is finite and a minimum. Moreover, for all C' > C,,,

there exists a minimizer Ff tC¢9 to (12) such that Ffptce = SN W W) (W,

for some 1 < K < M +1, wzthwkZOcmd\I/kEfHNforalllngK.

Remark 7. Let us remark that the existence of a minimizer to a moment-

constraint approzimation of the Lieb functional has been investigated in [Gar22][Theorem 3.1].
More precisely, in the latter work, the author considers moment functions

(@m)men € L¥(R3 Ry, where M is a countable subset of N*, which forms

a partition of unity of R® i.e. such that

D on=1

meM

In particular, 1 € Span{p,,, m € M}. Note that in Theorem 6, assumption
(A0) can be seen as an additional condition on p which enables to obtain
tightness of minimizing sequences. Instead, the author of [Gar22] does not
require additional conditions on p but considers a tightness condition on the
set (©m)men which reads as

s S [ o
méeM
(Supp ¢m) N B # 0

where for all R > 0, Br denotes the open ball of R® of radius R centered at 0.
Note that our existence result, up to the cost of assuming that p satisfies (Af),
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allows to treat moment constraints for which the tightness condition (13)
does not hold. For instance, one can consider a family of moment functions
(Om)1<m<m where (Om)i<m<m—1 are the characteristic functions of cells of
a mesh associated to a bounded subdomain Q C R® and ¢y = Tqe). It can
then be easily checked that such a family does not satisfy condition (13).

Proof. Step 1: (Finiteness) Since p € Jy, there exists at least one element
Uy € HY such that py, = p. Denoting by Ty := |W) (T, it can then be
easily seen that I'y € &7 (H{', ®, p) and that Tr (OT) =[5, 0(|x|)p(x) dz =
C,. Thus, we immediately obtain that for all C' > C,, Fq)’ “lp] > —oo0.

Step 2: (Existence of minimizer) Let (I',),en be a minimizing se-
quence associated to (12). Then, we know from the proof of Theorem 4.4 of
[Lie83] that, up to the extraction of a subsequence, there exists a trace-class
operator T'o, € & (H') such that ((Hy + D)?T(Hy + D)'/?) _ weakly
converges in the sense of trace-class operators to (Hy + D)Y?T o (Hy + D)"/?
as n goes to infinity. To prove that I'y, is a minimizer to (12), it is sufficient
to prove that pp_ satisfies

V1< m < M, / P om = / pom and / pr(@)0(|z]) dx = Tr (BT < C.
R3 R3 R3

For all n € N, let us denote by 7, € L%(R* x R3Y) the kernel of T',, and by
Too € L2(R3 x R3Y) the kernel of T'y,. Let us also denote for all n € N,

YTl eN) = To(T1, .o XN X1, o, TN)
and by
Yoo (X1, o, TN) = Too(T1y -, TN X1, o, TN)
for all z,..., 2y € R3. Let us prove that (7, )nen is a tight sequence. Indeed,

let R > 0 and B be the ball of radius R of R*". Then, denoting by 1z, the
characteristic function of the set B, it holds that for all n € N,

n — 15 n
/1237 /R3N il

1 0(|xi])
.. dr,...d
/RgN (N R) ) (z1,...,2zn) dxy TN

1 C
= @Tr (er,) < 0w

=




Let us denote by Mp the multiplication operator by any function P bounded
with compact support on R*". We then know from the proof of Theorem 4.4
of [Lie83] that
Tr(Mpl'*™) = lim Tr(MpI™).
n—-+0o0o
This, together with the tightness result above, yields that (pr,),en weakly
converges to pr.. in L'(R3). It then easily follows that for all m = 1,--- , M,

/ Pmpr., = lim @mPFn:/ Pmp
R3 n—-+0o R3 R3

and that
/ O(|z])pr.. (x)de = Tr (Bl'y) < C.
R3

The operator 'y, is thus a minimizer of (12). In particular, since 1 €
Span{®}, it holds that Tr (I',) = N.

Step 3: (Existence of a sparse minimizer)

Let us now introduce the function A : HY — RM*! guch that for all
m=1,---,M,

Om(2) | (2, To, ..., o) |*dzdrs...doy,
N

Anl®) = [ omlapstonas = [

R4

and
A (V) = (V| Hy|P).

It can then be easily seen that A is a continuous map on H¥.

Let I'yin be a minimizer of (12). Then, there exists a countable index set
J C N, an orthonormal family (¥});cg of H{ and a family of positive numbers
(aij)jeg such that 37, s a; = N (this comes from the fact that 1 € Span{®})

and
Thin = Y | W) (.
Jj€d
In addition, it can be easily checked that ¥; € H} for all j € J. We
then define fumin 1= ;5 @0y, which is a Borel measure on B(H{') since

Tr (HnTin) is finite and Tr 'y, = N. It can then be easily checked that

[ IAD () < 4.
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Thus, by Proposition 5, there exist 1 < K < M + 1, Uy,--- Ui € HY and
wi, -+ ,wg > 0 such that

/ AUyt (0) = S AT
i k=1

Denoting by T = S5 | wi[T:) (W], it can then be easily checked that
'k is also a minimizer to (12). Hence the desired result.
[l

Proposition 8 (Lower semi-continuity). Suppose p, € Iy such that p, —
p €Iy in L' then lim inf Fibc[pn] = FE’HC[p].

Proof. The proof is a straightforward adaptation of the proof of Theorem
6. Assume that a, = F }3 ’Gc[pn] — a exists then up to the extraction of a
subsequence, there exists a trace-class operator 'y, € &7 (H})') such that

1/2 1/2
((Hy + D)"°T'(Hy + D)'?), < an+1/n

weakly converges in the sense of trace-class operators to (Hy+ D)2 o (Hy+
D)'/? as n goes to infinity. Moreover, we have that

liminf Tr (Hy[,,) > Tr (HyT'»)-

In particular I',, satisfies the right moment constraints associated to p, as
well as Tr (OI',,) < C. Then by using the same arguments as in step 2 of
the proof above we deduce that I'y, is admissible for F ;ﬁ “[p]. Tt follows then

Fibc[p] < Tr(HyTs) < liminf Fi’gc[pn].
[

Remark 9. We see from the proof of Theorem 6 that assumption (Af) is
needed in order to obtain tightness of the sequence of kernel functions (Y, )nen-
This is needed because we are considering operators defined on the space
HY = A\Y, L*(R?). Notice that such a technical assumption is not needed in
the case when one considers operators acting on functions acting on a finite
domain with Dirichlet boundary conditions. We state such a result below
without giving its proof since it follows exactly the same lines as the proof of
Theorem 6.
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Let  C R? be a bounded subdomain of R3. We then denote by HY (Q2) :=
AXL L2(Q), 30Y(Q) = A HU®) and 3() = AY,(HP @) 0 HLQ))
The operator Hy g := —%A + V is then a self-adjoint bounded from below
operator acting on ) (2) with domain D(Hy.q) := HY (). We also denote
by &1 (HY () the set of non-negative self-adjoint trace-class operators on
HY(Q). We also define Jn(€) the set of function p € Iy with support
included in 2. For any M € N* and any ® := (¢m)1<m<m C L>®(2) and
p € In(Q), we introduce & (HY(Q), @, p) the set of T' € & (HY(Q2)) such
that

/pwmz/psom, Vi<m< M.
Q Q

Then, the following theorem holds:

Theorem 10. Let p € In(Q), M € N* and @ := (p1,...,0n) € (L®(Q))M
such that 1|q € Span{®}. Let us introduce

FEolpl = inf Tr (Hyol). (14)
’ resy (1§ (2),2,p) ’

Then, FPqlp] is finite and there exists a minimizer Uy o to (14) such that
re o = Z,i(:lwk|\11k><\lfk|, for some 1 < K < M + 1, with wy > 0 and

opt,2
U, € HN(Q) for all 1 < k < K. Moreover, suppose p, € Jy such that

pn = p € Iy in L then liminf Fo[pn] = Fo[p].

In view of the sparsity results we have just proved, it is natural to consider
an approximate MCAL problem, where the set of minimizers is restricted to
the set of finite-rank operators satisfying moment constraints. More precisely,

for a given K € N*, we consider the following set
(w, ) € RE x (HY)E, U= (Ty,...¥k) € (HV)K,
QOPK w = (w,...,wg) € RE,

o pi= Siciwwpu, e P@)0(12]) dr < C
Vli<m <M, fRs PmpP = fRs Pmp

The approximate MCAL functional then reads as follows

FPOK[pl .= inf  J(¥,w), (15)
Lo (Ww)e0y "™
where
K
J(W,w) =) wi(Wy|Hy|Wy).
k=1



Remark 11. Notice that as soon as K > M+1 then we have that FE’QC’K p] =
o0
FL,e [p].

Remark 12. Since p € Iy then the set OGC’(D’K 18 no empty. Moreover it can
be shown, by standard arguments, that there exists a minimizer to (15).

As in the case of moment constrained optimal transport [ACE22] we can
state some interesting mathematical properties on the set of minimizers of

the approximate problem (15). First, consider two elements of Og’QK, then

there exists a continuous path in Og’q)’K connecting these two elements and
such that J varies monotonically along it.

Theorem 13. Let us assume that K > 2M + 2. Let (¥y,wy), (¥, w;) €
Og’q)‘K. Then, there exists a continuous application n : [0, 1] — Og’@’K made
of polygonal chain such that n(0) = (Yo, wy), n(1) = (¥1,w;) and such that

the application t — J(n(t)) is monotone.

Since the proof is a straightforward adaptation of the one for [ACE22][Theorem
1], we refer the reader to it. We only highlight that, as we did in the pre-
vious sections, given a couple (¥,w) one can always associate a measure
W= ZZK w;0y,, then by Thchakaloff’s theorem the result follows. An inter-
esting consequence of theorem 13 concerns the minimizers of MCAL: first,
as soon as K > 2M + 2 any local minimizer of MCAL (or of problem (15))
is a global minimizer. Secondly, the set of minimizers forms a polygonally

connected set.

Corollary 14. Assume that K > 2M + 2. Then, any local minimizer of

(15) is a global minimizer. Moreover, the set of minimizers of (15) is a
C,d K
polygonally connected subset of O, .

4 Some convergence results

4.1 Convergence of the MCAL functional to the exact
Lieb functional

The aim of this section is to prove that, under some appropriate assumptions,

the MCAL functional converges to the exact Lieb functional as the number

of moment constraints go to infinity. Let us denote here by D(R?) the set of
C> real-valued functions defined on R?® with compact support.
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More precisely, let p € Jy such that there exists a function 6 : R, — Ry
satisfying assumption (Af). Let C, := [, 0(|z|)p(z) dz and let C' > C,,.

For all n € N*, let M,, € N* and ¢" := ((,Om)lngMn C J be a sequence
of functions belonging to F and which satisfies 1 € Span{®"} for all n € N*
together with the following density conditions:

(A®) for all f € D(R?),
Hf gnH’f

gn ESpan{<I>”

Then, we have the following useful lemma that we will use in the sequel.

Lemma 15. Let (p,)nen+ C Iy such that sup,ey- [/ pnllaigsy < 400 and

such that for all n € N*,

Vg, € Span{@"}, / Bt = / pn.
R3 R3
Then, (pn)nen= converges in the sense of distributions to p as n goes to in-
finity.

Proof. The proof uses the same lines as the proof of [Gar22][Theorem 3.2].
We rewrite it here for the sake of completeness. Let f € D(R?) and let
(fn)nen+ be a sequence of functions such that f, € Span{®"} for all n € N*
and || f — angnij. Then, it holds that

/Raf(ﬁ”_p)’:

< € (Il + 510 IV Fullgen ) 17 = ol

— 0.

n—-+o0o

7= 1= 0)

Hence the desired result. O

Remark 16. One example of sequence (®,,)nen+ satisfying (A®) is the fol-
lowing: for all n € N*, let Q, = (-n,n)® and let T, = {17,...,Tn,}
(with N, = #7T,,) be a regular conforming triangular mesh of ), the el-
ements of which have a maximal diameter size h,, such that h, < % Let

17



M, = #7T, +1 = N, + 1. Denoting by oy, := L|gn for 1 <m < M, —1
and by ¢y, = 1lge and by ®" = (¢}, )1<m<nr, for all n € N*, one can easily
check that the sequence (®"),en+ satisfies (AP ).

We then have the following convergence result, which may be seen as an
extension of [Gar22][Theorem 3.2] to more general set of moment functions,
up to the additional tightness assumption (A#).

Theorem 17. Let p € Iy such that there exists a function 0 : Ry — Ry
satisfying assumption (Af). Let C, = [o0(|z])p(x)dz and C > C,. For
all n € N*, let M,, € N* and ®" := (gpm)lngMn C St such that assumption
(A®) holds. We assume in addition that there exists ng € N* such that
1 € Span{®"} for all n > ng. Then, for all n > ny, there exists at least one
sparse minimizer to (12) with ® = ®" in the sense of Theorem 6. Besides,
it holds that

lim F5 o] = Fylp. (16)

n—-+00
Moreover, from any sequence (I',)n>n, such that Ty, is a minimizer for (12)
with ® = @™, one can extract a subsequence which strongly converges in
S11(HY) to T, where T, is a minimizer of (5).

Proof. The first assertion of the theorem is a direct consequence of The-
orem 6. Using the same arguments as in the proof of Theorem 6, one can
easily obtain that the sequence ((Hy + D)Y*T,(Hy + D)1/2)n>nO is compact
in & (HY). Thus, up to the extraction of a subsequence there exists Iy, €
S (H)) such that Tr (HyI's) < +oo and such that ((Hy + D)*T,,(Hy + D)"/?)
weakly converges to ((Hy + D)'*T(Hy + D)1/2)71>nO in the sense of trace-
class operators of &1 (H}). B

Moreover, following again the same lines of proof, we obtain that the se-
quence (pr, )n>n, Weakly converges in L'(R?) to pr._. As a consequence,
it holds that [o,0(|z|)pr. (#)de < C. Moreover, since for all n € N*,
Jos Olpr, = fgs ©lp, using Lemma 15, we then obtain that, necessarily,
pr.. = p- This makes I'y, admissible for (5) so that we have that Tr (Hy['w) >
Fi[p]. Notice now that for all n > ny, —oo < FE;’C[p] < Fpr[p]. Thus for

any converging subsequence of (F(I’ 0] nzn, to some limit F7°, it holds that

—00 < Fp° < Fplp]. For this subsequence, still denoted by (Fg;’c[p])nzno for
the sake of simplicity, it holds that lim,, ., Tr (HyT',) = Ff°, and we then
have that

n>ng

Filp) > F* > Tr (HyTw).
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Thus, necessarily, 'y, is a minimizer of (5). Moreover, F7° = Fp[p] for any
extracted subsequence so that liril Tr(HyT,) = Tr(Hylw). Using the
n—-—+0oo

compactness of the Fock space of bounded particle number for the geometric
convergence [Lewll][Lemma 2.2, Lemma 2.3], we thus obtain the desired
result. O]

Like in Section 3.2, we can state a similar result with less technical as-
sumptions in the case when we consider operators acting on functions defined
on a bounded subdomain Q C R? with Dirichlet boundary conditions. We
state such a result here, using the same notation as in Section 3.2, since it
follows exactly the same lines of proof as Theorem 17. To this aim, for all
p € In(R2), we introduce the exact Lieb functional defined on the domain €2

as

FL@[p] = inf Tr (HN@F) (17)
FEG%E%N(Q))

Let us point out here that there exists also €, Do > 0 such that
Hyo+ Do > co(—Aq +1)

where —Aq refers here to the self-adjoint bounded from below operator on
HY(2) with domain H3 () (Laplacian with Dirichlet boundary conditions
in ). We also denote by &1 (3} (2)) the set of operators I' € &7 (H]'(2))
such that Tr(—Agql") < +o0.

Theorem 18. Let p € In(Q2). For all n € N*, let M,, € N* and d" :=
(O )1<mens, C L>(2) such that for all f € D(),

Jm Gk 1 = anllz=)
We assume in addition that there exists ng € N* such that 1 € Span{®"} for

all n > ng. Then, for all n > ngy, there exists at least one sparse minimizer
to (12) with ® = ®™ in the sense of Theorem 6. Besides, it holds that

lim Ffals] = Fualpl (18)

n—-+oo

Moreover, from any sequence (I'y)n>n, such that I'y, is a minimizer for (12)
with ® = O™, one can extract a subsequence which strongly converges in
S11(HY(Q)) to Ty, where T, is a minimizer of (5).
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4.2 Convergence rate of the ground state energy in the
bounded domain case

In this section, we restrict ourselves to the case of a bounded subdomain
Q C R Let M € N, @ := (om)i<cmenr C L®(Q) be a set of moment
functions. For all v € L>(), let us introduce the ground state energy
associated to the potential v:

E]:= inf (V|H} o|¥) = inf  Tr(H{ D),
vertN () ’ resf (3 (Q) ’

where
N

HX/,Q = HN@ — ZU($1)

i=1
Rewriting the minimization over I" as an external minimization over p €
In(€2) and then as an internal one over all I" such that Tr I' = p, it can easily

be checked that
Elv] = inf F — dp » . 19
o= it {rpl - [ odo) (19)

Let us also define by

E*[v] := inf {Ff[p]—/ﬂvdp}. (20)

PEIN(Q)

Similarly, let us point out that, if v € Span{®}, rewriting the minimiza-
tion over I' as an external minimization over p € Jn(€2) and then as an
internal one over all T' € & (H)(Q), @, p), it holds that

E[v] = E*[v], Yov € Span{®}.
We then prove the following approximation result.

Proposition 19. Let us assume that v € L>(Q) and that ® = (¢ )1<m<m C
L>(Q). Then, it holds that

Elv] — E®[v]| < 2N i - . 21
Bl - Bl <2V min o = wli=0) (21)

Proof. Let v* = argmin [[v — wl|g=(q). Let € > 0 arbitrarily small. Let p,

weSpan{®}
p%, p® and p® be e-minimizers of E[v], E[v?], E*[v] and E®[v?] respectively.
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It then holds that

E[®] < Fylp®) - / o dp?
S E[Uq)] +¢€

< Filpl - [ o dpt-e
Q
= Frlp] —/vdp—ir/(vq’—v)dp—ire
Q Q
< E[v] + /(U(D —v)dp + 2.
Q
Using similar calculations, we obtain that

E[v] < Ev®] + /Q(v —v®) dp® + 2.

As a consequence, we obtain that

|E[v]—E[v®]| < max (/Q lv —v®| dp, /Q v — 02| d,oq)) +2e < Njv—v®|| oo @) +2e.
Since € can be chosen arbitrarily small, it actually holds that
IE[t] — B[] < Nljo = v%]|1<(ay. (22)
Using similar arguments, we also obtain that
B [v] = E*[v®]]| < Njv = v?||1=(0)- (23)

Collecting (22) and (23) and using the fact that E[v®] = E®[v?] yields the
desired result. O

Proposition 19 then enables to quantify the rate of convergence of |E[v] —
E®"[v]| as n goes to infinity for some particular sequences of moment func-
tions (®"),en provided that v is regular enough. As an illustration, we
analyze here the rate of convergence of a numerical method inspired from
the external dual charge approach recently proposed in [Lel22].
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Corollary 20. Let [ > 0 and Q be a bounded reqular subdomain of R3. Let
p € H™L(Q) be an external density of charge and define v € HL(Q)NH™3(Q)
as the unique solution to

—Av=p in §2,
v=20 on 0f).

Let (Ty)nso be a sequence of triangular reqular meshes of Q such that

h := max diam(K).

KeTy

Let k € N and P} C L*>(Q) be the subspace of continuous Py finite ele-
ment functions associated to the mesh Ty,. We denote by Vi, the subspace of
H} () N H2(Q) containing all functions vy, € HJ () N H?(Q) solution to

—Avpp = ppp  in
Up =0 on 052,

for some pp i € P}’f. Let @y 1 be a basis of Vi, . Then, asuming that | < k,
there exists a constant C' > 0 such that for all h > 0,

B[] — E®#[o]] < CNK* o] srssca.

Proof. Corollary 20 easily follows for the compact embedding H?(2) <
L>(Q) and standard interpolation error results associated with finite ele-
ment approximations. ]

Remark 21. Denoting by My, the dimension of Vi, it holds that My, =
Q) (%) As a consequence, the above result implies that the rate of convergence

of E®nr[v] to Elv] decays like O W where My, is the number of
h.k
moment constraints in the MCAL approzimation.

5 Duality results for the MCAL functional

Let us begin by recalling some classical results about semi-definite program-
ming problems and introduce some notation.
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5.1 Semi-definite positive programming problems

Let n € N*. We denote by 8" the set of symmetric matrices of R". For any
M € 8", the notation M = 0 (respectively M > 0) is used to mean that
M is a semi-definite non-negative (respectively definite positive) matrix. We
also denote by 8" := {M € 8", M = 0} and by 8" , ;= {M € 8", M >~ 0}.
For all M, N € 8", we denote by (M, N) = Tr(M*N) the Frobenius scalar
product between M and N.

Let m € N*, C € 8", A : 8 — R™ a linear application and b € R™.
We consider here the following (primal) semi-definite positive programming
problem:

P = inf (C, X). (24)
Xes”
AX)=1b

X =0

The dual problem associated to (24) then reads as follows:

D = sup (b, y) (25)
(y,S) € R™ x 8™
A (y)+S=C
S=0

where A* : R™ — 8" is the adjoint of A.
We introduce the following sets:
Ap:={X 8" AX) =0, X =0},
Ap ={X 8", A(X)=0b, X >0},
Ap ={(y,S) e R" x 8", A*(y)+S=C, S =0},
Ap ={(y,S) e R" x 8", A*(y)+S=C, S > 0}.

We also denote by Solp and Solp the set of solutions to (24) and (25).
Then, we recall the following classical result [AL11, WSV12]:

Theorem 22. (i) If Ap x A}, # 0, Solp is non-empty and bounded and
P=D:;

(i1) If A5 x Ap # 0 and A surjective, then Solp is non-empty and bounded
and P = D;
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(111) If If A5 x A% # 0 and A surjective, then Solp and Solp are non-empty
and bounded and P = D.

5.2 Dual MCAL problem

In this section we study the dual problem and, since it will be useful for
the numerical method we develop in the following sections, we consider here
only the bounded domain case. We know that the dual variables to the
density p € Iy with support included in €2 are one-body interaction potential
of the form V(zy,..,xy) = Yo, v(z;) for a given v € L¥%(Q) + L®(Q).
Moreover, the moment constraints implies that v € Span{®}. This leads to
the following dual problem

Dy qlp) = sup / vdp, (26)
v € Span{®},
VU e HY, (V[HY o|®) >0

where
N

Hy g = Hyao — Zv(wz)

i=1
If we take any v := Z%zl Qmpm € Span{®} satisfying the above constraints
and any [' € &7 (HY (), ®, p) then we have
M
Tr (Hyol) > Tr (VD) = / vdpr = / (Z am¢m> dpr
Q Q m=1

Zé(iamwm))dpz/ﬂvdp

which proves that F7q[p] > Df,’g [p]. We would like to prove that this in-
equality is actually an equality. Let us introduce the ground state energy
associated to the potential v:

E] = inf (V|HJ|V) = inf Tr (HXT).
)

TeHN(Q rest (3 ()

We rewrite now the minimization over I' as an external minimization over
p € Jy and then as an internal one over all T in & (HY (), ®, p) (we are
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considering the ground state for a potential v € Span{®}):

Bl = int {Flali - [ v}

Notice that E is nothing but the Legendre-Fenchel transform of F{’o[p]. On
the other hand, we rewrite (26) in the form

Dralel = veSpant®} {/ vde - EM} ‘ (&1)

Thus, D7 q[p] is the Legendre transform of E. From Proposition 8 and
Fenchel duality theorem for convex lower semi-continuous functions we con-
clude the following

Theorem 23. Under the assumptions of Theorem 10, we have F{'q[p] =
D7 olpl.

We now have the following result which, taking into account the sparsity
result of Theorem 10, gives a more convenient formulation of DY ¢ [p].

Theorem 24. Under the assumptions of Theorem 10, ther exists at least one
mazimizer to (26), and it holds that

DY glp] = max [ oo
v € Span{®}, Q

VO e HY(Q), (U[Hygl) >0

= max /vp,
v € Span{®}, Q
VWU € Span{¥y,..., Uk}, (V[Hyqol¥) >0

where

K
Toia= > wklWe) (W
k=1

for some 1 < K < M + 1, with w,, >0 andﬁ/kéﬁ{{vforalllgkgl(isa
minimizer of (14).
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Proof. Step 1: Let us first prove that there exists a maximizer to the opti-
mization problem

sup / vp. (28)
v € Span{®}, @
VU € Span{¥y,..., g}, (V[Hyo[¥) >0
We denote here by 8% the set of symmetric matrices of RE*¥. For any
¢ € Span{®}, let us consider the linear form [, : 8% — R defined as follows:

VS = (Sw)i<ki<k € 8%, 1,(S) = /QSO<37> Z SuWy(x);(x) dr = Tr(¢ls),

k=1
where
K
FS = Z Skll\lfk><\lfl|
k=1
Let us now consider the vectorial space

L :={l,, ¢ € Span{®}}.

The space L is a finite-dimensional subspace of the set of linear forms on
8K, and its dimension J is lower or equal to the dimension of Span{®}.
Let (I1,...,1;) be a basis of L. By construction, there exists @1, ...,5, €
Span{®} such that z; = Iz, for all 1 < j < J. Let us then denote by

® = {¢1,...,ps}. It can then be easily checked that any element ¢ of
Span{®} can be rewritten as

90:&+§007

where & € Span{®} and ¢, € Span{®} such that l,, = 0. In particular, this
implies that [, wop = 0 since for all ¢ € Span{®},

/Qgpp = /ng(a:) Zwk|\11k(:r)|2 dr = l,(diag(wy, ..., wk)).

Thus, proving that there exists a maximizer to (28) is equivalent to proving
that there exists a maximizer to

sup /vp. (29)
v € Span{®}, @
VU € Span{¥y,..., Vg}, (V[HFo[P) >0
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Now, by definition of @y,..., &, it holds that the application A : & — R/
defined so that for all 1 < j < J and all S = (Sk)1<ki<k,

K
A(S)] = /Q&] Z Sk:llll_kqjl

kl=1

is surjective. Indeed, this comes from the fact that dim Rank(A) = dim L =
J. It can then be easily checked that (29) is then equivalent to the dual
semi-definite programming problem:

sup (,9), (30)
(y,9) € RY x 8&
A(y)+S=C

S =0

where b = (bj)lngJ is such that bj = f

qwip forall 1 < j < Jand C =
(Chi)1<ki<x € 8% with

Okl = <\Ich|HN,Q|\IIl> V1 S k,l S K.

Indeed, if (y, S) € R/ x8% is a maximizer to (30), it holds that v = Z}]=1 ey
is a maximizer to (29), and thus to (28).
The primal problem associated to (30) reads as

inf  (C, X), (31)
X € 8K
AX) =b
X =0

Let us also remark that [, pp = [, prye for all ¢ € Span{®} if and only
if A(S) = b. Thus, this implies that there exists at least one minimizer X to
(31) which is given by X = diag(wy,...,wk) and is positive definite. Using
Theorem 22, we then obtain the existence of at least one maximizer to (30),
and hence to (28) and (29).

Step 2: To conclude the proof of the desired result, it only remains to
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show that

D7 alp] = sup / vp
v € Span{®}, @
VeI (), (WIHY o) >0

= sup / vp.
v € Span{®}, Q@

VWU € Span{¥y,..., ¥}, (V[HFo[P) >0

On the one hand, it holds from Theorem 23, that D7 o[p] = F{’g[p]. On the
other hand, using similar arguments as in the proof of Theorem 23, it holds
that

sSup /U,O = inf TI'(HN7QF)7
v € Span{®}, Q PeG] (W,2,p)
VU eW, (V[HYol¥) >0

where W := Span{W;, ..., Ux}. Since, by definition of Wy, ..., Wk, it holds

that F'[p] = inf  Tr(Hngol'), we obtain the desired result. O
’ resf (w,e,p)
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