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Abstract

We give an interpretation of a class of discrete-to-continuum results for Ising sys-
tems using the theory of zonoids. We define rational zonotopes and rational zonoids,
as the families of Wulff shapes of perimeters obtained as discrete-to-continuum limits
of finite-range homogeneous Ising systems and of general homogeneous Ising systems,
respectively. Thanks to the characterization of zonoids in terms of measures on the
sphere, rational zonotopes, identified as finite sums of Dirac masses, are dense in the
class of all zonoids. Moreover, we show that a rational zonoid can be obtained from a
coercive Ising system if and only if the corresponding measure satisfies some ‘connect-
edness’ properties, while it is always a continuum limit of ‘discrete Wulff shapes’ under
the only condition that the support of the measure spans the whole space. Finally,
we highlight the connection with the homogenization of periodic Ising systems and
propose a generalized definition of rational zonotope of order N , which coincides with
the definition of rational zonotope if N “ 1.
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1 Introduction

We consider Ising systems; that is, energies depending on a spin parameter, formally written
as

´
ÿ

i‰j

αi´juiuj . (1.1)

In this notation the spin functions u : Ω X Zd Ñ t´1, 1u is defined on the portion of the
standard cubic lattice contained in the (bounded) open set Ω, and we write ui in the place
of upiq. The systems are supposed to be ferromagnetic; that is, αk ě 0 for all k P Zd.
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This condition implies that the interactions between nodes at distance k such that αk ą 0
are minimal if ui “ uj . This condition in turn implies that the only ground states are the
constant states, provided that the network of interaction is connected, in the sense that
for every j P Zdzt0u there exist K P N and k1, . . . , kK such that k “ k1 ` ¨ ¨ ¨ ` kK and
αk` ą 0 for all ` P t1, . . . ,Ku, and also Ω is likewise connected. While the form (1.1) is
quite descriptive, it is convenient for our purposes to consider an equivalent energy of the
form

ÿ

i‰j

αi´jpui ´ ujq
2. (1.2)

Indeed, since u2
j “ u2

i “ 1 developing the square, the terms in (1.2) can be rewritten as

ÿ

i‰j

αi´jpui ´ ujq
2 “ 2

ÿ

i‰j

αi´j ´ 2
ÿ

i‰j

αi´juiuj ,

and 2
ř

i‰j αi´j is a constant depending only on Ω. In the form (1.2), ground states have
always zero energy and we can also consider Ω unbounded since we thus avoid annoying
`8 ´ 8 indeterminate forms. In this paper Ω plays no role, and we take Ω “ Rd for
simplicity. Furthermore, the lattice Zd can be substituted with a Bravais lattice, at the
expense only of a heavier notation in some proofs.

The overall behaviour of systems (1.2) can be described by introducing an effective
surface tension, which takes the form

ϕpνq “ 4
ÿ

kPZd
αk|xk, νy|, (1.3)

which describes the energy density of a minimal interface macroscopically oriented as an
hypersurface with normal ν. This effective surface tension can be obtained in various
ways, which describe different ways of looking at the problem. One way is to compute the
average limit behaviour of minimum problems on large cubes with two faces orthogonal
to ν and boundary conditions jumping in correspondence of the mid-plane of the cube;
a more complete analysis is obtained by looking at minimizers of problems in the whole
space with the volume constraint #tui “ 1u “ N , and prove that, upon suitably scaling
and translating them, they converge (after suitable interpolation) to minimizers of the
perimeter energy related to ϕ. A relatively recent way to explain this convergence is by a
discrete-to-continuum approach, as a result of a limit analysis for the scaled energies

Eεpuq “
ÿ

i‰j

εd´1αi´jpui ´ ujq
2, (1.4)

where the scaled spin parameter u : ΩXεZd Ñ t´1, 1u is now defined on the scaled standard
cubic lattice, and we write ui in the place of upεiq. Each function u is extended as a
piecewise-constant function, so that the domain of each Eε can be identified as a subset of
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L1
locpΩ; t´1, 1uq, and, if the lattice Zd is connected with respect to tαku in the sense above,

the family Eε is equicoercive with respect to the strong convergence in L1
locpΩ; t´1, 1uq, so

that a family uε with equibounded energy converges, up to subsequences, to a continuum
parameter u with upxq P t´1, 1u almost everywhere. If we write u “ 2χA ´ 1, this defines
a discrete-to-continuum convergence of spin functions uε to sets A, which are indeed sets
of finite perimeter. With respect to this convergence, the Γ-limit of the functionals Eε is
the (anisotropic) perimeter functional

F pAq “

ż

ΩXB˚A
ϕpνqdHd´1, (1.5)

where B˚A and νA are the reduced boundary and the measure-theoretical internal normal
to B˚A, respectively, and ϕ is defined by (1.3). In this form, the result has been proved
in various versions, first in the context of free-discontinuity problems by Chambolle [9]
and by Braides and Gelli [5], whose proof is then reset in terms of Ising systems in [1,
Section 3.1] (for a simplified exposition in a two-dimensional context see also Section 3.2.4
in the book by Braides and Solci [8]). This analysis can be seen as a homogenization
problem with a 1-periodic system of interactions [7] and as such ϕ can be defined via an
asymptotic homogenization formula, reducing to the limit analysis of minimum problems
on cubes as described above. Conversely, the convergence of minimum problems with
volume constraints to a Wulff problem for the perimeter F is a consequence of the property
of convergence of minima of Γ-convergence.

Scope of this paper is to connect these variational descriptions of Ising systems with the
concept of zonoid from Convex Geometry. A zonoid is defined as a limit in the Hausdorff
metric of zonotopes, which are simply defined to be vector sums of a finite number of line
segments. As such, their support functions can be written in the form

fpzq “
N
ÿ

j“1

mj |xνj , zy|, (1.6)

where νi P S
d´1 and mj ą 0. Comparing (1.6) with (1.3) we note that the latter requires

some restrictions on νj . With this observation in mind, we then define the subclass of

rational zonotopes as those for which all νj in (1.6) are rational directions; i.e., νj “
kj
}kj}

for some kj P Zdzt0u. Hence, an effective surface tension ϕ in (1.3) for a system tαku with
α ą 0 only for a finite set of k P Zd can be interpreted as the support function of a rational
zonotope. Note that the family of rational zonotopes is still a dense class in the family of
zonoids.

The fundamental property for the analysis of zonoids is that they can be identified with
(symmetric) positive bounded measures µ on Sd´1 such that the support function f of the
zonoid can be written as

fpzq “

ż

Sd´1

|xν, zy| dµpνq. (1.7)
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In the case of zonotopes this measure is a finite sum of Dirac deltas, which, in case of
rational zonotopes, are concentrated on a set of rational directions. We then define the
class of rational zonoids as that of the zonoids corresponding to possibly infinite sums of
Dirac deltas concentrated on rational directions. This is the class corresponding to general
ϕ in (1.3).

We then have the following characterizations.
Exact reachability. The functionals F obtained as limits of Ising systems are all func-

tionals whose Wulff shapes are rational zonoids.
Approximate reachability. For each zonoid there exists a family Fn of functionals ob-

tained as limits of Ising systems such that the corresponding Wulff shapes converge to the
zonoid.

Convergence of discrete Wulff shapes. If a rational zonoid has positive Lebesgue mea-
sure then there exists an Ising system with constrained minimizers, suitably identified with
sets, that approximate the zonoid. For lower-dimensional rational zonoids the same holds
in a lower-dimensional subspace.

Coercive Ising systems. A necessary and sufficient condition for the existence of a coer-
cive Ising system generating a given rational zonoid is a suitable “connectedness property”
of the generating measure µ; namely, that the span of the set tk P Zd : µ

`

k
}k}

˘

ą 0u in Z is

the whole Zd.
We further note that we do not have uniqueness of generating Ising systems, in the sense

that the same rational zonoid corresponds to infinitely many equivalent Ising systems, for
some of which we may not have the property of convergence of discrete minimizers.

The concept of zonoid has been generalized in various ways (see [13, Chapter 9]). The
variational interpretation of rational zonoids allows to view them as a particular case of
homogenization of periodic Ising systems when the period is 1. With this observation
in mind, we finally propose a generalization of rational zonotopes and zonoids as those
obtained by homogenization of periodic Ising systems. If such a system of period N is
of finite range, the Wulff shape of the corresponding perimeter is a polytope, due to the
results by Chambolle and Kreutz [10], which allows to define rational zonotopes of order
N . The closure of all zonotopes of order N with varying N is proved to be the set of all
convex centered sets using the results of Braides and Kreutz [6].

2 Zonotopes, zonoids and their support functions

In the following two sections we recall some definitions and properties from the theory of
zonoids, for which we refer to the monograph by Schneider [13]. In Section 3.1 we introduce
the subclass of rational zonoids.
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2.1 Zonoids

A (centered) zonotope in Rd is a polytope that is obtained as a Minkowski sum of a finite
number of centered segments r´wi, wis with wi P Rd, i P t1, . . . , Nu, and N P N; that is, a
set of the form

W “

!

w P Rd : there exist si P r´1, 1s such that w “
N
ÿ

i“1

siwi

)

. (2.1)

The usual definition of zonotope (see [13]) does not require that the segments be centered.
However, any (general) zonotope is the translation of a centered zonotope. Since we will
mainly deal with symmetric sets in Rd we directly use centered zonotopes in order to
simplify the notation and terminology.

We say that W is non-degenerate if the vectors w1, . . . , wN span the whole Rd so that
W is a convex set symmetric with respect to the origin and of non zero Lebesgue measure.
If otherwise, a degenerate zonotope can be identified as a non-degenerate zonotope in a
lower-dimensional space.

It is worth noting that zonotopes are particular centered symmetric polytopes character-
ized by the fact that their faces are themselves (congruent to d´1-dimensional) zonotopes.
This property rules out a number of polytopes in dimension d ě 3; e.g. octahedrons.

Using (2.1), the support function of a zonotope is then given by

fW pzq “ suptxz, wy : w PW u “
N
ÿ

i“1

|xz, wiy|.

Conversely, given f of this form, the set W in (2.1) coincides with the Wulff shape of f ,
given by

Wf “

!

w P Rd : xz, wy ď 1 for all z P Rd such that fpzq ď 1
)

. (2.2)

The family of (centered) zonoids in Rd is the family of all convex symmetric sets that
can be obtained as limits of zonotopes in the Hausdorff metric. We say that a zonoid is
non-degenerate if it has a non empty interior, in which case it is the limit of non-degenerate
zonotopes. Note that in dimension d “ 2 all convex symmetric sets are zonoids, while the
symmetry restrictions on the faces of zonotopes imply that zonoids are nowhere dense in
the family of all convex symmetric sets if d ě 3.
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2.2 Generating measures and support functions of zonoids

For a zonotope W as in (2.1), after setting νi “
wi
}wi}

, we can write

fW pzq “

N
ÿ

i“1

|xz, wiy|

“

N
ÿ

i“1

|xz, νiy| }wi} “

ż

Sd´1

|xz, νy| }wi} d
´δνi ` δ´νi

2

¯

pνq

“

ż

Sd´1

|xz, νy|dµW pνq,

where

µW “

N
ÿ

i“1

}wi}

2

`

δνi ` δ´νi
˘

.

Conversely, given a positive measure of the form µ “
řN
i“1 λipδνi ` δ´νiq, with νi P S

d´1,
setting

fµpzq “

ż

Sd´1

|xz, νy| dµpνq “
N
ÿ

i“1

2λi|xz, νiy|,

we have that fµ “ fW , where W is given by (2.1) with wi “ 2λiνi. Hence, zonotopes corre-
spond to (symmetric) linear combinations of Dirac deltas on Sd´1 with positive coefficients.
Note that the Hausdorff convergence of zonoids corresponds to the weak˚ convergence of
the related measures. By the weak˚ density of sums of Dirac deltas this shows that positive
symmetric measures on Sd´1 are in bijection with zonoids.

The support functions of (centered) zonoids in Rd are characterized by elements of the
cone of positive symmetric measures on Sd´1 as in the following proposition.

Proposition 2.1. For every (centered) zonoid W in Rd there exists a unique symmetric
positive measure µW on Sd´1 such that the support function fW can be written as

fW pzq “

ż

Sd´1

|xz, νy| dµW pνq. (2.3)

Such a measure is called the generating measure of W .

3 Ising systems and a variational interpretation of rational
zonotopes and zonoids

We consider homogeneous systems of discrete interactions governed by energies of the form

Eεpuq “
ÿ

i,jPZd
εd´1 αi´jpui ´ ujq

2, (3.1)
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defined on functions u : εZd Ñ t´1, 1u, where we use the notation ui “ upεiq. Note that
we can assume, and we will, that α´k “ αk since otherwise we can replace both coefficients
by

αk`α´k
2 , and this change does not influence the value of the energy. We assume that

the system is ferromagnetic; that is, αk ě 0 for any k P Zd. We further assume the decay
condition

ÿ

kPZd
αk}k} ă `8. (3.2)

This condition is necessary to have non-trivial energies, in the sense that if this condition
fails then the limit of Eε as defined below is finite only if u is identically 1 or ´1. The
convex function ϕ : Rd Ñ r0,`8q

ϕpzq “ 4
ÿ

kPZd
αk|xz, ky|, (3.3)

is well defined and finite thanks to (3.2).

3.1 Rational zonoids

The particular form of the functions ϕ in (3.3) suggests a definition of a class of zonoids,
of which such types of functions are support functions.

Definition 3.1. We say that ν P Sd´1 is a rational direction if there exist w P Zdzt0u
such that

ν “
w

}w}
.

A set W is a (centered) rational zonotope if its generating measure is of the form

µW “

N
ÿ

i“1

λipδνi ` δ´νiq, (3.4)

where N P N, νi are rational directions and λi ą 0. A set is a (centered) rational zonoid if
there exists a sequence tνiu of rational directions and a summable sequence tλiu of positive
numbers such that

µW “

`8
ÿ

i“1

λipδνi ` δ´νiq. (3.5)

Remark 3.2. By the density of rational directions in Sd´1, rational zonotopes (and hence
also rational zonoids) are dense in the class of zonoids.
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3.2 Sets of finite perimeter and their energies

To each Ising system we will associate a perimeter energy. To that end we recall that a
subset A in Rd is a set of finite perimeter if the distributional gradient of its characteristic
function χA is a bounded measure. We refer to [2, 4, 12] for an introduction to the topic.
Here we only recall that if A is set of finite perimeter there exists a Borel set B˚A, the
reduced boundary of A, and a function ν “ νA : B˚AÑ Sd´1, the inner normal to A, such
that DχA “ νHd´1 B˚A. Furthermore if ϕ : Rd Ñ r0,`8q is a convex function positively
homogeneous of degree one, then the perimeter energy F “ Fϕ defined by

FϕpAq “

ż

B˚A
ϕpνpxqqdHd´1pxq (3.6)

is weakly lower semicontinuous with respect to the convergence of χAε to χA in L1
locpRdq

on families such that the total variations }DχAε} are equibounded.
We finally recall that families of sets of finite perimeter such that }DχAε} are equi-

bounded are precompact with respect to the convergence χAε Ñ χA in L1
locpRdq, and that

if A is a set of finite perimeter then there exists a family of polyhedral sets Aε converging
in the sense above to A as ε Ñ 0, and such that FϕpAεq tends to FϕpAq. Note that for
polyhedral sets we have B˚A “ BA, up to an Hd´1-negligible set.

3.3 Convergence of the scaled energies of an Ising system

We say that a sequence uε : εZd Ñ t´1, 1u converges to a set of finite perimeter A if the
piecewise-constant interpolations uε of uε on εZd, defined by uεpxq “ uεi p“ uεpεiqq if
x P εi` r0, εqd, locally converge in L1pRdq to the function u “ 2χA ´ 1 and there exists C
such that }Duε} “ }Duε}pRdq ď C, where }Duε} denotes the total variation of the measure
Duε. In other words, the sequence uε converges weakly in BVlocpRdq.

The condition that }Duε}pRdq ď C is a consequence of the boundedness of the energies
Eεpu

εq if there holds a condition of the type

αk ě c ą 0 if }k} “ 1 (coerciveness of nearest-neighbour interactions). (3.7)

In this case, we have that there exists A such that uε Ñ A up to subsequences. A thorough
description of the limit of Ising systems in terms of perimeter functionals when condition
(3.7) is satisfied is given in [1, Section 3.1].

A general necessary and sufficient condition for coerciveness will be given below. Note
however that we do not make any such assumption in our definition of convergence of Eε,
in order to include also degenerate cases in our treatment.

Theorem 3.3 (limits of homogeneous Ising systems as rational zonoids). A functional of
the form (3.6) is a Γ-limit with respect to the convergence uε Ñ A of energies Eε of the
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form (3.1) for some Ising system tαku with αk ě 0 satisfying (3.2) if and only if the Wulff
shape of ϕ is a rational zonoid. Furthermore, if the range of tαku is finite the Wulff shape
of ϕ is a rational zonotope.

Proof. Given tαku non-negative coefficients satisfying (3.2) with respect to the convergence
uε Ñ A , the Γ-limit of the sequence of energies Eε defined by is given by an energy (3.6)
with ϕ given by (3.3). We briefly give a proof. This can also be achieved with a perturbation
argument from the analog result for coercive functionals, for which we refer e.g. to Section
3.1 in [1], where the interested reader can find further common details with the proof
presented below.

In order to provide a lower bound, we examine separately energies with only the con-
tribution for a fixed k P Zdzt0u. We can suppose that the last component kd be strictly
positive, and define the lattice L “ Lk as the Bravais lattice generated by te1, . . . , ed´1, ku,
which is a sub-lattice of Zd. We consider the functionals

Ekε puq “
ÿ

iPL
εd´1pui`k ´ uiq

2.

These can be seen as a system of nearest-neighbour interactions on the lattice L with
αej “ 0 for j P t1, . . . , d´ 1u.

Let uε Ñ A with supε }Duε} ă `8. For every uε we can define its interpolation uLε
on the lattice εL defined by uLε pxq “ uεi if x P εi ` εU , where U is the d-dimensional
parallelogram with sides e1, . . . , ed´1, k and i P L. Note that supε }Du

L
ε } ă `8, so that

we can suppose that uLε Ñ 2χAL ´ 1 in L1
locpRdq, for some set of finite perimeter AL.

Since uεpxq “ uLε pxq on εL ` εpU X r0, 1qdq we then deduce that AL “ A. If we define
AL
ε “ tx P Rd : uLε pxq “ 1u then we have

Ekε pu
εq “

}k}

kd
4

ż

BAL
ε

ˇ

ˇ

ˇ

A

ν,
k

}k}

E
ˇ

ˇ

ˇ
dHd´1 “

1

kd
4

ż

BAL
ε

|xν, ky|dHd´1,

where we have taken into account that the parts of the boundary of AL
ε with normal

ν P te1, . . . , ed´1u do not contribute to the energy, and the projection of U on the hyperplane
orthogonal to k has d ´ 1-measure equal to kd

}k} . Note that in this case Ekε pu
εq equals the

total variation }Dku
L
ε }, where Dk denotes the distributional directional derivative in the

direction k.
Taking into account the lower semicontinuity of this perimeter functional, we then have

lim inf
εÑ0

Ekε pu
εq ě

1

kd
4

ż

B˚A
|xν, ky|dHd´1.

Since |U | “ kd the number of equivalence classes of Zd modulo L is kd, from which (pro-
ceeding as above in each of these equivalence classes) we have

lim inf
εÑ0

ÿ

iPZd
εd´1pui`k ´ uiq

2 ě kd lim inf
εÑ0

Ekε pu
εq ě 4

ż

B˚A
|xν, ky|dHd´1.
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From these inequalities, valid for all k P Zd, the inequality lim inf
εÑ0

Eεpu
εq ě F pAq follows.

To prove the upper bound it suffices to note that if A is a polyhedron then the restriction
of uε “ 2χA ´ 1 to εZd is a recovery sequence satisfying }Duε} ď C ă `8. The proof of
the Γ-convergence is then completed by an approximation argument.

Since the function ϕ is the (locally uniform) limit of the functions

ϕnpzq “ 4
ÿ

kPZd, }k}ďn

αk|xk, zy|,

whose Wulff shapes are rational zonotopes corresponding to the measures on Sd´1

µn “
ÿ

kPZd, }k}ďn

4αk}k}δ k
}k}
,

ϕ is the support function of a rational zonoid corresponding to

µ “
ÿ

kPZd
4αk}k}δ k

}k}
.

All these measures are symmetric since we assume αk “ α´k. Note that if tαku is of finite
range then ϕ is the support function of a rational zonotope.

Conversely, if we have a rational zonoid W corresponding to a finite symmetric positive
measure

µW “
ÿ

i

βi
`

δνi ` δ´νi
˘

,

with νi P S
d´1 rational directions. Note that

ż

Sd´1

|xz, νy|dpδνi ` δ´νi
˘

pνq “ 2|xz, νiy|,

so that

fW pzq “

ż

Sd´1

|xz, νy|dµW pνq “ 2
ÿ

i

βi|xz, νiy|.

Then for all i we can fix ki P Zd such that νi “
ki
}ki}

and define

αk “

#

βi
4}ki}

if k “ ki or k “ ´ki for some i

0 otherwise,

so that we have

ϕpzq “ 4
ÿ

kPZd
αk|xk, zy| “ 2

ÿ

i

βi

ˇ

ˇ

ˇ

A

z,
ki
}ki}

Eˇ

ˇ

ˇ
,

and
ř

k αk}k} “
1
2

ř

i βi ă `8, so that (3.2) is satisfied.
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Definition 3.4. We say that an Ising system tαku generates a rational zonoid W , or
equivalently it generates a measure µW (the generating measure of W ), or equivalently it
generates an energy density fW , the support function of W , if we have that Eε Γ-converges
to F in the sense of Theorem 3.3 with ϕ “ fW . We say that two Ising systems as above
are equivalent if they generate the same zonoid.

Remark 3.5 (equivalent Ising systems). For every rational direction ν P Sd´1 let Ipνq “
 

k P Zdzt0u : k
}k} “ ν

(

. We can rewrite formula (3.3) as

ϕpzq “ 4
ÿ

ν

ÿ

kPIpνq
αk|xz, ky| “ 4

ÿ

ν

´

ÿ

kPIpνq
αk}k}

¯

|xz, νy|. (3.8)

From (3.8) and taking the symmetry of αk into account we note that two Ising systems
satisfying (3.2) generate the same rational zonoid if and only if for every rational direction
ν P Sd´1 we have

ÿ

kPIpνq
αk}k} “

ÿ

kPIpνq
α1k}k}. (3.9)

As an example, we may take the systems (parameterized on sequences tλnu)

αk “

#

λ|n| if k “ ne`, n P Z, ` P t1 . . . , du
0 otherwise,

(3.10)

with
ř8
n“1 nλn “ λ. Then ϕpzq “ 4λ

řd
n“1 |zn| “: 4}z}1, and the corresponding W is the

same coordinate square depending only on λ and not on the particular sequence.
Let µ be a measure generated by the system tαku. Note that if ν P Sd´1 is such that

µptνuq ą 0 then the set of indices k P Ipνq such that αk ą 0 may be infinite even though
tαku generates a rational zonotope. Conversely, for all rational zonoid W there exists an
Ising system tαku generating W such that for all αk ą 0 k ‰ 0 such that µW

`

k
}k}

˘

ą 0.

Indeed, it suffices to note that, if αpνq “
ř

kPIpνq αk}k}, then an equivalent Ising system

is tα1ku given by α1k “ 2´n αpνq
n}k0pνq}

if k P Ipνq and k “ nk0pνq, where k0 is the element of

least norm in Ipνq.

The following definition generalizes condition (3.7).

Definition 3.6. We say that an Ising system tαku is a coercive system if there exists a
constant M ą 0 such that

}Du} ďMEpuq , where Epuq “
ÿ

i,jPZd
αi´jpui ´ ujq

2, (3.11)

where in the left-hand side we have identified u : Zd Ñ t´1, 1u with its piecewise-constant
extension from Zd.
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Remark 3.7. Note that in (3.11)

}Du} “ 4Hd´1pBtx : upxq “ 1uq “ 2#tpi, jq : ui ‰ uju, (3.12)

the factor 4 coming from the fact that pui ´ ujq
2 “ 4 if ui ‰ uj , and the factor 2 coming

from counting both pi, jq and pj, iq if ui ‰ uj . From the last equality we have that (3.7)
implies that tαku is coercive.

From the definition of Eε we obtain that (3.11) is equivalent to }Duε} ďMEεpu
εq with

M independent of ε, so that if supεEεpu
εq ă `8 then also supε }Duε} ă `8 and then,

up to subsequences, uε Ñ A for some set of finite perimeter A.

Remark 3.8 (equivalent coercive and non-coercive systems). In the assumptions of The-
orem 3.3, in general the sequence Eε is not coercive; that is, we cannot deduce that there
exists A such that uε Ñ A up to subsequences from the boundedness of the energies Eεpu

εq.
In the case that (3.7) holds we have a subclass of ϕ, for which αk ą 0 if k P te1 . . . , edu,
and the construction in the proof of the theorem gives coercive approximating Eε. Note
however that from the form of ϕ we cannot deduce the equicoerciveness of Eε. Indeed, let
ϕpzq “ 4}z}1, for which we may take (see (3.10) in Remark 3.5)

αk “

#

1
2 if k “ 2e`, ` P t1 . . . , du

0 otherwise;
(3.13)

that is, the only non-zero interactions are those at distance 2. The corresponding ener-
gies are not coercive. Indeed, they have additional ground states, e.g., those given by
the checkerboard functions v and ´v, where vi “ p´1q}i}1 . The interpolations vε of the
corresponding scaled functions vε do not converge strongly locally in L1pRdq.

Example 3.9 (non-exact reachability of rational zonotopes by coercive systems). Let
d “ 2 and let ϕpzq “ 8p|xe1 ` e2, zy| ` |xe1 ´ e2, zy|q, corresponding to αk “ 1 for k P
te1 ` e2, e1 ´ e2,´e1 ` e2,´e1 ´ e2u, and αk “ 0 elsewhere, which is not coercive, again
with ground states v and ´v as in Remark 3.8.

We give a definition of connectedness related to an Ising system tαku.

Definition 3.10. We say that i and j P Zd are connected with respect to tαku, or that i
and j are tαku-connected, if there exist N P N and tk1, . . . , kNu such that

řN
`“1 k` “ j ´ i,

and αk` ą 0 for all ` P t1, . . . , Nu. We say that the system tαku is connected if all i and
j P Zd are connected with respect to tαku.

Remark 3.11. Note that the following statements are equivalent
(i) tαku is connected;
(ii) 0 and j are connected for all j P Zd;
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(iii) 0 and en are connected for all n P t1, . . . , du.
The only non-trivial implication is that (iii) implies (ii). This is proved e.g. by induction

on n “ }j}1. If n “ 1 the two statements are the same. If }j}1 “ n ą 1 then we can write
j “ j1` em for some j1 with }j1}1 “ n´ 1 and some m . By the inductive hypothesis there
exist N P N and tk1, . . . , kNu such that

řN
`“1 k` “ j1, and αk` ą 0 for all ` P t1, . . . , Nu,

and there exist Nm P N and tkm1 , . . . , k
m
Nm
u such that

řNm
`“1 k

m
` “ em, and αkm` ą 0. Then

the claim is proven by writing j “
řN
`“1 k` `

řNm
`“1 k

m
` .

We now give a necessary and sufficient condition for a rational zonoid to be obtained
from a coercive Ising system.

Theorem 3.12. Let µ be a symmetric positive measure on Sd´1 generating a rational
zonoid. Then there exists a coercive Ising system tαku generating µ if and only if the set
tk P Zd : µ

`

k
}k}

˘

ą 0u spans the whole Zd on Z.

Proof. Let tαku be an Ising system generating µ. Note that we may assume that αk ą 0
for all points in k P Zd such that µ

`

k
}k}

˘

ą 0 since this assumption does not influence µ

and increases the connectedness of tαku. We then have

!

k P Zd : µ
´ k

}k}

¯

ą 0
)

“ tk P Zd : αk ą 0u,

and note that the span of this set is just the set of all finite sums of points k` with αk` ą 0;
that is, the set of all points tαku-connected with 0.

If this set is not the whole Zd, then we consider the function defined by

ui “

#

1 if i is tαku-connected with 0

´1 otherwise.

Note that we have Epuq “ 0, but u is not a constant, so that }Du} ą 0 and hence the Ising
system generating µ is not coercive.

Conversely, if the set is the whole Zd, in particular it contains te1, . . . , edu. Then if
i, j P Zd are such that }i ´ j} “ 1 and ui ‰ uj , using the αk-connectedness there exist

tk`u with
řN
`“1 k` “ j ´ i and αk` ą 0. Writing in “

řn
`“1 k` and i0 “ i, we have

řN
n“1puin ´ uin´1q “ uj ´ ui ‰ 0, and there exist n P t1, . . . , Nu such that uin ´ uin´1 ‰ 0.

Since kin “ kin´in´1 is such that αkin ą 0 and the family of all such tk`u is finite we deduce
that there exists a constant C ą 0 such that αkin puin ´ uin´1q

2 ě C. These indices in
and in´1 may be shared by a number of pairs pi, jq bounded by p

ř

` }k`}q
d, so that we can

bound #tpi, jq : ui ‰ uju by the energy, and the coerciveness of tαku follows.

We now examine non-degenerate non-coercive Ising systems and show that they can be
seen as a superposition of a finite number of coercive Ising systems.
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Remark 3.13 (discrete-to-continuum convergence to multiple parameters). Let tαku be an
Ising system with symmetric αk ě 0 satisfying (3.2). If the system tαku is non-degenerate,
the set

L “ ti P Zd : i is tαku-connected to 0u (3.14)

is a d-dimensional Bravais sublattice of Zd. If the system is not coercive, we can consider the
equivalence classes Zd{L, which are a finite numberM , that we can represent as L` “ m``L
for ` P t1, . . . ,Mu. If vε : εL` Ñ t´1, 1u then we can define the convergence vε Ñ A` on the
(translated) lattice εL` as the convergence of the piecewise-constant interpolations v`ε on
εL` to 2χA`´1 in L1

locpRdq. Thanks to the tαku-connectedness of L` the functionals Eε are
coercive with respect to this convergence, so that if uε is a sequence with supεEεpu

εq ă `8,
up to subsequences, we can suppose that, denoting by uε,` the restrictions of uε to εL`,
the corresponding piecewise-constant interpolations u`ε on εL` converge to 2χA` ´ 1. This
defines a convergence uε Ñ pA1, . . . , AM q with respect to which the functionals Eε are
coercive.

Note that at the same time the piecewise-constant interpolations uε of uε on εZd con-
verge weakly in L1

locpRdq to u “ 1
M

řM
`“1p2χA` ´ 1q, while the stronger convergence in

Theorem 3.3 implies that A1 “ ¨ ¨ ¨ “ AM .

The convergence in the previous remark allows to generalize the Γ-convergence result
as follows.

Theorem 3.14 (Γ-convergence to multiple parameters). Let tαku be an Ising system with
symmetric αk ě 0 satisfying (3.2), and such that the lattice L defined in (3.14) be a d-
dimensional Bravais sublattice of Zd. Then the family Eε is equicoercive with respect to
the convergence uε Ñ pA1, . . . , AM q in Remark 3.13 and the Γ-limit with respect to that
convergence is

FLpA1, . . . , AM q “
1

M

M
ÿ

`“1

F pA`q,

where F “ Fϕ is given by (3.6) with ϕ as in (3.3).

Proof. The functional Eε can be written as a sum of functionals E`ε defined on v : εL` Ñ
t´1, 1u by

E`εpvq “
ÿ

i,jPL`

εd´1αj´ipvj ´ viq
2, (3.15)

with the usual notation vi “ vpεiq. Since Eε converge in the sense of Theorem 3.3 to the
functional F therein, we note that each of these functionals E`ε Γ-converges to 1

MF with
respect to the corresponding convergence. Hence, the claim of the theorem follows.

The next theorem is an immediate consequence of the characterization of support func-
tions of zonoids through their generating measures. Note however that optimal approxi-
mation of zonoids is a delicate problem (see e.g. [3]).
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Theorem 3.15 (approximate reachability of zonoids). Let ϕ be a support function of a
zonoid. Then for every η ą 0 there exists a coercive Ising system with a limit energy density
ϕη and Wulff shape a rational zonotope such that

maxt|ϕηpνq ´ ϕpνq| : ν P Sd´1u ă η. (3.16)

Proof. Let tαηku be an Ising system parameterized by η, and ϕη the corresponding energy
function. Note that we can write

ϕpzq “

ż

Sd´1

|xz, νy|dµη,

where
µη “ 2

ÿ

kPZd
αηk}k}δ k

}k}
.

The convergence
lim
ηÑ0

maxt|ϕηpνq ´ ϕpνq| : ν P Sd´1u “ 0

is then implied by the weak˚ convergence of µη Ñ µ, where µ is a generating measure for
ϕ. The existence of such µη is then ensured by the weak˚ density of finite sums of Dirac
deltas. We may also suppose that αk ě η for k P te1, . . . , edu, up to adding a term

ř

n ηδen
whose weak˚ limit is the null measure. The claim then follows after reparameterizing the
measures µη.

3.4 Convergence of Wulff shapes to rational zonoids

If ϕpνq ą 0 for all ν P Sd´1 the Wulff shape Wϕ of ϕ as defined in (3.24) admits a variational
characterization, as the minimizer symmetric with respect to 0 of

mintF pAq : |A| “ |Wϕ|u, (3.17)

where the functional F is as in (3.6). The condition ϕ ą 0 is necessary and sufficient in
order that |Wϕ| ą 0. If this condition is not satisfied on the whole Sd´1 by the convexity
of ϕ, either ϕ is identically 0 or ϕ ą 0 on a d1-dimensional space with d1 ă d, and we
can consider it as defined on Rd1 . We will then restrict to the case that ϕpνq ą 0 for all
ν P Sd´1.

With this variational characterization in mind, given a homogeneous Ising system tαku
generating a function ϕ we can define a discrete Wulff shape for tαku as any uε solution of
the minimum problem

min
!

Eεpuq : #ti : ui “ 1u “ Nε

)

, (3.18)

where Nε P N is such that εdNε tends to |Wϕ|; e.g., Nε “
X

1
ε |Wϕ|

1
d

\d
.

The following result shows the relation between rational zonoids and discrete Wulff
shapes.
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Theorem 3.16 (Rational zonoids as limits of discrete Wulff shapes). Let ϕ be the energy
density of the limit F of the Ising system tαku as in Theorem 3.3, and let W be the
corresponding related rational zonoid. Suppose that ϕpνq ą 0 for all ν P Sd´1; then there
exists a family uε of discrete Wulff shapes such that uε ÑW .

Proof. If the system tαku is coercive then this result is a consequence of the Γ-convergence
of Eε to F , the fact that, by a translation argument, we can suppose that discrete Wulff
shapes are bounded and with barycenter at distance at most of order ε from 0, and that
recovery sequences uε for a set A with |A| “ |Wϕ| can be taken with #ti : uεi “ 1u “ Nε.

If the system is not coercive, by the condition ϕ ą 0 it must nevertheless be non-dege-
nerate. As in the proof of Theorem 3.14 the functional Eε can be written as the sum of the
functionals E`ε in (3.15), sing the same notation as in Remark 3.13 for the sets L`. Since
each L` is disconnected from L`1 if ` ‰ `1, we can decompose the minimum problem as

min
!

Eεpuq : #ti : ui “ 1u “ Nε

)

“ min

" M
ÿ

`“1

min
!

E`εpuq : #ti P L` : ui “ 1u “ N `
ε

)

:
M
ÿ

`“1

N `
ε “ Nε

*

.

We can suppose that εdN `
ε Ñ λ` for each ` P t1, . . . ,Mu, with

řM
`“1 λ` “ |Wϕ|. Since the

unit cell of L has measure M , we have

lim
εÑ0

min
!

E`εpuq : #ti P L` : ui “ 1u “ N `
ε

)

“
1

M
F
´

M
λ`
|Wϕ|

Wϕ

¯

“ Md´1 λd´1
`

|Wϕ|
d´1

F pWϕq,

and

lim
εÑ0

min
!

Eεpuq : #ti : ui “ 1u “ Nε

)

“ min

" M
ÿ

`“1

Md´2 λd´1
`

|Wϕ|
d´1

F pWϕq :
M
ÿ

`“1

λ`
|Wϕ|

“ 1

*

“ F pWϕq.

In the last equality we have used the convexity of the pd ´ 1q-th power, which implies
that λ` “

1
M |Wϕ| for all `. This also implies that, using the arguments for coercive

systems, we can take all interpolations of minimizers uε` in each εL` converging to Wϕ.
The corresponding uε give discrete Wulff shapes converging to Wϕ.

16



3.5 Asymptotic surface tension of an Ising system

The simplest variational way to associate an energy density to an Ising system is by com-
puting the average limit surface energy; that is, the energy necessary to have a transition
from a state 1 to a state ´1 through an hyperplane oriented with a normal ν. This can be
done for more general non-homogeneous Ising systems. To that end, given non-negative
coefficiants taiju we define a localized energy on a cube TQν , where T ą 0 and Qν is a
unit cube centered in 0 with two faces orthogonal to ν, as follows:

Epu, TQνq “
1

T d´1

ÿ

i or jPZdXTQν
aijpui ´ ujq

2.

Note that, if we set ε “ 1
T , this can be interpreted as the part of the energy (3.1) ‘contained

in the cube Qν ’.
In order to impose boundary conditions, due to the non-local nature of the energies

we have to fix the values of functions outside TQν . To that end, we consider minimum
problems of the form

mT pνq “ min
!

Epu, TQνq : ui “ ˘1 if ˘ xi, νy ą 0 for all i R TQν
)

. (3.19)

This value can be considered as the minimum value of the transition from ´1 to 1 around
the hyperplane Πν “ tz P Rd : xz, νy “ 0u.

Definition 3.17 (surface tension of an Ising system). The surface tension of the Ising
system taiju is defined as

ϕpνq “ lim inf
TÑ`8

1

T d´1
mT pνq. (3.20)

We note that the definition of surface tension does not require any condition on the
coefficients aij except their non-negativity. In the case of coefficients aij “ αi´j a straight-
forward computation gives the formula for ϕ.

Proposition 3.18 (surface tension of a homogeneous Ising system). If αk ě 0 for all
k P Zd and aij “ αi´j then the surface tension ϕ of the Ising system is given by

ϕpνq “ 4
ÿ

kPZdzt0u

αk|xk, νy|. (3.21)

Furthermore, the lim inf in (3.20) is a limit.

Proof. With fixed k P Zd with xν, ky ‰ 0, we note that for any test function u and any line
Li,k “ ti ` tk : t P Ru with i P Zd and such that Li,k X TQν X Πν ‰ H, there exist and
least one index n P Z such that ui`nk ‰ ui`pn`1qk. This implies that

mT pνq ě 4T d´1
ÿ

}k}ďK

αk|xk, νy| `OpT
d´2q
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for every fixed K, and the lower bound letting K Ñ `8. An upper bound is simply given
taking ui “ 1 if xi, νy ě 0 and ui “ ´1 if xi, νy ă 0 for i P Zd. A direct computation shows
that this is a minimizing sequence and the existence of the limit in (3.20).

3.6 Directed Ising systems and non-centered rational zonoids

We conclude this section with a generalization of Ising systems, where the energies take
the form

Eεpuq “
ÿ

i,jPZd
εd´1 αi´jppui ´ ujq

`q2, (3.22)

where t` indicates the positive part of t P R. In this case the interaction between two
points i and j such that ui “ 1 and uj “ ´1 is taken into account with the coefficient
αi´j , while if uj “ 1 and ui “ ´1 with the coefficient αj´i. This is a particular case of the
inhomogeneous directed Ising systems studied in [10].

For energies (3.22) we do not assume that α´k “ αk in order not to lose in generality.
Nevertheless, the proof of the convergence in Theorem 3.3 works essentially unchanged,
with the limit energy density given by

ϕpzq “ 4
ÿ

kPZd
αkxk, zy

`. (3.23)

Note that in the perimeter functional (3.6) the integration is done with ν the inner normal
to the set A, which may reflect the asymmetry of the Ising system.

If the range of αk is finite, then the Wulff shape of the function ϕ is

Wϕ “

!

w P Rd : there exist sk P r0, 1s such that w “ 4
ÿ

kPZd
skαkk

)

; (3.24)

that is, Wϕ is the finite sum of the segments r0, w`s in Rd, where the set tw`u coincides with
the set of 4αkk such that αk ą 0. This is the translation of a (centered) rational zonotope
by the vector 1

2

ř

`w`. Proceeding as in Theorem 3.3 we deduce that directed Ising systems
correspond to all translations of (centered) rational zonoids, and then, using Theorem 3.15,
that all (non-centered) zonoids are reached by sequences of zonotopes generated by directed
Ising systems.

4 Connections with discrete-to-continuum homogenization

We now highlight the connection between the definitions given until now and general results
on periodic Ising systems. This will allow us to define a generalization of rational zonoids.
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The limit in Theorem 3.3 can be interpreted as a particular case of homogenization of
periodic Ising systems. We say that an Ising system taiju is periodic with period N if we
have

ai`Nen j`Nen “ aij (4.1)

for all i, j P Zd and n P t1, . . . , du, which in turn is equivalent to

ai`k j`k “ aij (4.2)

for all i, j P Zd and k P NZd. If N “ 1 then this condition is equivalent to requiring that
aij “ αi´j for some αk, so that homogeneous Ising systems coincide with Ising systems
periodic with period 1.

For periodic systems we have the following result.

Theorem 4.1 (homogenization and crystallinity of periodic Ising systems [7, 10]). Let
taiju be an N -periodic Ising system satisfying

max
iPZd

ÿ

jPZd
aij}j ´ i} ă `8. (4.3)

Then there exists the Γ-limit in the sense of Theorem 3.3. If in addition the system is with
finite range; that is, there exists a constant K such that aij “ 0 if }i ´ j} ą K then the
Wulff shape of the limit functional F is a polytope.

4.1 Zonotopes generated by homogenized Ising systems

In this section we observe that the definition of rational zonotope can be generalized in
view of Theorem 4.1, as the following definitions.

Definition 4.2. We say that W is a rational zonotope of order N if the corresponding ϕ
is the limit of an N -periodic Ising system with finite range. We say that W is a rational
zonoid of order N if the corresponding ϕ is the limit of an N -periodic Ising system satisfying
(4.3). We say that W is a zonoid of order N if it is the limit in the Hausdorff distance of
rational zonotopes of order N .

Remark 4.3. Rational zonotopes and zonoids of order 1 are rational zonotopes and zonoids
as defined above. Note that condition (4.3) corresponds to (3.2) if N “ 1.

The analysis in [10, Proposition 2.9] imply that the energy density ϕ of a rational
zonotope of order N is differentiable outside rational directions, which suggests that pd´1q-
dimensional faces of Wulff shapes should have normals in rational directions.

Proposition 4.4. If W is a rational zonoid of order N , then it is the limit in the Hausdorff
distance of rational zonotopes of order N .
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Proof. If W is a rational zonoid of order N generated by taiju it suffices to consider the
rational zonotopes Wn of order N generated by taniju, where anij “ aij if }i ´ j} ď n and
anij “ 0 if }i´ j} ą n.

We finally show that the union of all zonoids of order N is dense in the class of all
symmetric convex sets.

Theorem 4.5 (density of zonotopes of order N as N Ñ `8). For every convex bounded
open set W symmetric with respect to the origin there exist zonotopes Wk of order Nk

converging to W .

Proof. Let ϕ be the support function of W . In [6] the following result is proved: if 0 ă
α ď β are such that

α}z}1 ď ϕpzq ď β}z}1,

then there exist periodic systems takiju of period Nk with akij P tα, βu such that the related
homogenized energy densities ϕk converge to ϕ. By Theorem 4.1 the Wulff shapes Wk are
zonotopes of order Nk that converge to W .

4.2 Further possible generalizations

While homogeneous directed Ising systems as in Section 3.6 only involve a translation in
the resulting generated rational zonoid, the class of homogenized periodic directed Ising
systems could be strictly larger than that of translations of the non-directed analog. We
can therefore consider periodic Ising systems with coefficients aij satisfying (4.1), (4.2),
and (4.3), and the corresponding energies

Eεpuq “
ÿ

i,jPZd
εd´1 aijppui ´ ujq

`q2. (4.4)

Note again that we do not suppose that aij “ aji, a condition that would not be restrictive
for un-directed Ising systems. The results in [10] ensure the validity of the claims of
Theorem 4.1. We can therefore give definitions of directed rational zonotope and zonoid of
order N as in Definition 4.2. It would be interesting to know if such zonoids still possess a
center of symmetry, in which case it is likely that a result as Theorem 4.5 holds for all W
with a center of symmetry.

Finally, we note that another possible class of perimeter functionals are those generated
by perturbed periodic Ising systems of the form

Eεpuq “
ÿ

i,jPZd
εd´1αi´jpui ´ ujq

2 `
ÿ

iPZd
εduigi, (4.5)
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where g is a periodic function with zero average, and small enough so that Eεpuq remains
non-negative on bounded configurations. This corresponds to adding a volume term with
zero average. These energies still converge to a perimeter functional, whose form may
depend on the perturbation. A link with the homogenization of directed Ising systems can
be obtained following the results in [10] as done for the continuous analog in [11, Sec. 4].
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