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Abstract. Motivated by a MFG model where the trajectories of the agents are piecewise constants and
agents pay for the number of jumps, we study a variational problem for curves of measures where the cost
includes the length of the curve measures with the L1 distance, as well as other, non-autonomous, cost
terms arising from congestion effects. We prove several regularity results (first in time, then in space) on
the solution, based on suitable approximation and maximum principle techniques. We then use modern
algorithms in non-smooth convex optimization in order to obtain a numerical method to simulate such
solutions.

1. Introduction

This work studies a class of variational problems which arises in a variant of one of the most classical
Mean Field Game models. This variant could be used as a brick for describing the evolution of the real estate
market but the mathematical questions which appear are of independent interest and the present paper only
concentrates on the variational problem without addressing the full model.

The theory of Mean Field Games was introduced around 2006 at the same time by Lasry and Lions,
[9, 10, 11, 12], and by Caines, Huang and Malhamé, [8], in order to describe the evolution of a population
of rational agents, each one choosing (or controlling) a path in a state space, according to some preferences
which are affected by the presence of other agents nearby in a way physicists call mean-field effect. The
evolution is described through a Nash equilibrium in a game with a continuum of players.

In the simplest MFG models we look at a population of agents moving inside a domain Ω and we suppose
that every agent chooses his own trajectory solving a minimization problem of the form

min

ˆ T

0

(
|x′(t)|2

2
+ h(t, ρt, x(t))

)
dt+Ψ(x(T )),

with given initial point x(0). The mean-field effect will be modeled through the fact that the running cost h
explicitly depends on the density ρt of the agents at time t.

The initial density of the players ρ0 is given. The goal in MFG is to find an evolution t 7→ ρt such that,
when agents consider the above optimization problem for such a given ρ, the trajectories they choose globally
reconstruct the same density ρ. This is a non-trivial fixed point condition which can be described via a system
of PDEs (we refer to [7], for instance). In some cases, and in particular when h(t, ρ, x) = V (t, x)+g(ρ(x)) for
an increasing function g : R+ → R (where, by abuse of notation, ρ also denotes the density of the measure ρ,
which has to be found absolutely continuous), fixed point can be found by an overall minimization problem.
The function g models in this case the cost for congestion (i.e. agents have a higher cost when passing
through congested regions, where the density is larger).

The corresponding variational formulation is the following: we consider all the possible population evolu-
tions, i.e. curves t 7→ ρt ∈ P(Ω) and we minimize the following energyˆ T

0

(
1

2
|ρ̇|2W2

(t) + FVt
(ρt)

)
dt+

ˆ
Ω

ΨdρT ,

where FV (ρ) :=
´
V (x)ρ(x)+ f(ρ(x))dx, where f is the anti-derivative of g, i.e. f ′(s) = g(s) for s ∈ R+ with

f(0) = 0. We fix by convention f(s) = +∞ for ρ < 0. The functional FV is set to +∞ if ρ is not absolutely
continuous. Here, at each instant of time, we use the functional associated with the time-dependent potential
Vt := V (t, ·). The minimization problem above is a variant of the well-known dynamic formulation of optimal
transport (see [4]) which includes congestion effects (as in [6]). Note in particular that f is convex, as its
derivative is the increasing function g, and so is FV . The notation |ρ̇|W2(t) stands for the metric derivative
(see [1]) of the curve t 7→ ρt in the space of probability measures, endowed with the Wasserstein distance W2

(a distance induced by optimal transport, see [17, 19]). The reason for this distance to appear is related to
the presence of the quadratic term |x′(t)|2 in the minimization problem solved by each agent. If this term
was replaced by |x′(t)|p we would have |ρ̇|pWp

(t) instead of |ρ̇|2W2
(t).

1
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We are now interested in a different individual cost, and more precisely we replace the term
´ T

0
|x′(t)|2

2 dt,
defined on curves x ∈ H1([0, T ]) with the cost S(x), defined for x ∈ BV ([0, T ]) in the following way: if x is
piecewise constant S(x) equals the number of its jumps, while S(x) = +∞ if x is not piecewise constant. We
then face discontinuous trajectories, and the individual optimization problem can be considered as an impulse
control problem (for which we refer, for instance, to the classical book [5]). The variational formulation of
such a new Mean Field Game is based on the observation (see, for instance, [19]) that the Wasserstein distance
associated with a transport cost

c(x, y) =

{
1 if x ̸= y

0 if x = y

is equal to the total variation distance between the two measures times a factor 1/2. Indeed, when transporting
with this cost a measure µ onto a measure ν with the same mass, the mass which needs to move is equal to
the part of the mass of µ which is not in common with ν, which means half of the mass ||µ− ν||. When µ, ν
are absolutely continuous, this gives 1

2 ||µ− ν||L1 .
This motivates to study a problem where the term

´ T

0
1
2 |ρ̇|

2
W2

(t)dt is replaced by the length of the curve
t 7→ ρt computed according to the L1 distance (we can restrict to absolutely continuous measures ρt because
of the functional GV ). Hence, formally, we obtain

min

ˆ T

0

(
1

2
||ρ̇||L1 + FVt

(ρt)

)
dt+

ˆ
Ω

ΨdρT .

The term
´ T

0
||ρ̇||L1dt should be intended as the length of the curve ρ (its total variation) w.r.t. the L1

distance.
Because of the BV behavior of the curves, the Dirichlet condition ρ(0) = ρ0, as well as the final penalization

on ρT , have to be suitably interpreted. Indeed, it is always possible to jump exactly at time t = 0 or t = T ,
so that the Dirichlet condition at t = 0 can be replaced by a penalization 1

2 ||ρ(0
+)− ρ0||L1 and for the final

penalization, we can replace
´
Ω
ΨdρT with infµ∈P(Ω) ||µ− ρT ||+

´
Ψdµ. This last quantity can be computed

and equals
´
Ψ̃dρT , where Ψ̃ = min{Ψ, inf Ψ+1}. This is perfectly coherent with the individual optimization

problem: if agents are allowed to jump at a cost 1, the final cost Ψ is automatically replaced by Ψ̃ as there
is no point in paying Ψ(x) whenever Ψ(x) > Ψ(x′) + 1 for some point x′. Up to subtracting a constant to
the final penalization, we can thus suppose that we have |Ψ| ≤ 1/2.

More generally, we will study in this note the variational problem

min

ˆ T

0

ˆ
Ω

(λ|ρ̇|+ f(ρt) + Vtρt) dt+

ˆ
Ω

ΨdρT

with a final cost Ψ satisfying |Ψ| ≤ λ and an initial condition ρ(0) = ρ0 which can also be replaced by a
penalization λ||ρ(0+) − ρ0||L1 . A variant will be the infinite-horizon case with a discount factor r > 0, i.e.
the variational problem

min

ˆ ∞

0

ˆ
Ω

e−rt (λ|ρ̇|+ f(ρt) + Vtρt) dt

under the same initial condition.
For simplicity, we will only consider the case where the function f is uniformly convex (think at f(ρ) :=

1
2ρ

2). We still establish regularity results in both time and space for the optimal solution (which is unique
because of strict convexity), a result which, besides its mathematical interest, has also at least two applica-
tions in the MFG which motivates the problem. First, it proves that, despite individual trajectories being
discontinuous, the global behavior of the density of agents ρ(t, x) is smooth, coherently with the experience
about the evolution of residential areas, and second it provides the necessary mathematical properties on the
individual running cost g(ρ) + V so as to rigorously prove that minimizers of the variational problem are
indeed equilibria of the game (see [18]).

Then, we will also provide a numerical method to approximate the solutions using convex optimization
tools, able to deal with the non-smooth penalization given by the L1 term.

Since proving regularity in a problem set on BV curves could be challenging, in order to develop the
relevant techniques (which will be based on a suitable use of the maximum principle) we will first start from
a simpler, yet not-so-standard, case, where curves, instead of being valued in the functional space L1, will
be simply valued in the euclidean space Rd. This will be object of Section 2, where we will prove Lipschitz
behavior in the open interval (0, T ). Some explicit examples will also be analyzed, in particular for d = 1, in
order to have some cases which could be used as a test for the numerical methods of Section 6.
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The analysis of the infinite-dimensional case, valued in L1, will be the object of Section 3, and will be
performed by means of many approximations. Some of them are common with the Euclidean case, but
there is an extra approximation which comes from discretization: the infinite-dimensional problem is indeed
approximated by a sequence of finite-dimensional ones, where the domain Ω is divided into small cells and
only piecewise constant densities are considered. Note that in this Eulerian discretization (different from a
Lagrangian one where one should follow the jumping trajectories of the particles) the problem becomes very
similar to the one studied in Section 2 with the only exception that the norm used on the finite-dimensional
space is not the Euclidean one (i.e. ℓ2) but the ℓ1 norm. This makes things slightly more involved, but,
surprisingly, the final Lipschitz regularity result will be expressed anyway in the L2 norm.

Section 4 contains the modifications of the strategy proof which are needed to handle the infinite-horizon
case, both in the finite and infinite dimensional case. Then, Section 5 addresses the problem of space
regularity. We will prove that the solution ρ(t, x) shares the same modulus of continuity in x (uniformly
in t) of the Dirichlet data and of the time-dependent potential V (t, x), and in this proof, differently from
what done in sections 2, 3 and 4, the Dirichlet data will be attacked by approximation but without replacing
them with penalizations (the L1 cost will be approximated by other superlinear costs on the velocity, as
it was already done in the other sections as well). Indeed, for the previous results, it was crucial to use
the transversality conditions coming from a suitable approximation of these penalizations, while here, on
the contrary, the transversality conditions are harder to consider. This is why the first regularity result is
presented in the case where the problem is endowed with Dirichlet conditions at both t = 0 and t = T , which
is not the natural framework we will be interested in. In order to consider some instances of the problem
which are more interesting for applications, we will consider the infinite time horizon with Dirichlet data at
t = 0 (in this case we do not have penalization at the end), where the whole analysis can be performed, as
well as the finite-horizon case when the final penalization ψ is piecewise constant: in this last case we can
prove continuity of ρ on each piece where ψ is constant, which is enough, for instance, to obtain ρ ∈ L∞.

Finally, Section 6 uses proximal methods from non-smooth convex optimization to attack in a numerical
way all these problems, and some examples will be considered. A periodic and explicit case presented at the
end of Section 2 will be solved numerically as an example in order to validate the method.

2. Lipschitz regularity in the Euclidean setting

As a starting point for our analysis, we consider here the following easier problem

(1) min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ BV ([0, 1];Rd)

}
.

Here TV (γ; [0, 1]) denotes the total variation of γ on [0, 1], i.e.

TV (γ; [0, 1]) := sup{
N−1∑
k=0

|γ(tk)− γ(tk+1)| : 0 = t0 < t1 < · · · < tN = 1},

a value which also coincides with the total mass of the vector measure γ′.
The functions ψ0, ψ1 : Rd → [0,+∞] are just supposed to be l.s.c. and bounded from below, and among

possible choices we mention those which impose Dirichlet boundary conditions, i.e.

t = 0, 1 ψt(x) =

{
0 if x = xt,

+∞ if not.

We stress the fact that functions in BV spaces are not continuous and can have jumps ; even if we consider
that BV functions of one variable are defined pointwisely, it is possible to change very easily their value at a
point. In particular, Dirichlet boundary conditions have a very particular meaning: a curve which takes the
value x0 at t = 0 but immediately jumps at another point at t = 0+ is considered to satisfy the condition
γ(0) = x0. In particular, it is possible to freely choose a curve γ on (0, 1) and then add a jump to x0 or x1
at the boundary in order to satisfy the corresponding Dirichlet boundary condition, of course adding a price
|γ(0+) − x0| or |γ(1−) − x1| to the total variation. In this way, we could decide to identify the values of γ
at t = 0 or t = 1 with their right or left limits at these points, respectively, and replace Dirichlet boundary
conditions with a boundary penalization. This could also be done for more general penalizations ψ0, ψ1, for
which it is useful to define the relaxed functions

ψ̃t(x) := inf
y
|y − x|+ ψt(y).
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It is important to observe that the functions ψ̃i are automatically 1-Lipschitz continuous, as an inf of Lip1
functions of the variable x, indexed with the parameter y.

In this way the problem (1) becomes

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ̃0(γ(0
+)) + ψ̃1(γ(1

−)) : γ ∈ BV ([0, 1];Rd)

}
or, equivalently, we can replace ψ̃0(γ(0

+)) + ψ̃1(γ(1
−)) with ψ̃0(γ(0)) + ψ̃1(γ(1)) and impose continuity of γ

at t = 0, 1.

Lemma 2.1. Let L : Rd → R be a smooth and uniformly convex function which is supposed to be radial:
L(v) := ℓ(|v|) for a convex and increasing function ℓ : R+ → R. Let F : [0, 1] × Rd → R be a C2 time-
dependent potential satisfying D2

xxF (t, x) ≥ c0I for a certain constant c0 > 0 and |∂t∇xF (t, x)| ≤ C0, and
ψ0, ψ1 : Rd → R two Lipschitz continuous functions. Consider a solution γ of

min

{ˆ 1

0

(L(γ′(t)) + F (t, γ(t)))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ H1([0, 1])

}
.

Then γ is Lipschitz continuous and satisfies |γ′| ≤ C where C is defined by

C := max{C0

c0
, (ℓ′)−1(Lipψ0), (ℓ

′)−1(Lipψ1)}.

Proof. Let us start from the Euler-Lagrange system of the above optimization problem. We have
(∇L(γ′))′ = ∇xF (t, γ(t))

∇L(γ′(0)) = ∇ψ0(γ(0))

∇L(γ′(1)) = −∇ψ1(γ(1)).

First we observe that γ ∈ C0 and F ∈ C1 imply that the right-hand side in the first equation is a continuous
function, so that we have ∇L(γ′) ∈ C1. Inverting the injective function ∇L we obtain γ ∈ C2 and, since
F ∈ C2, we obtain γ ∈ C3.

Then, the transversality conditions show |∇L(γ′(t)| ≤ Lipψt for t = 0, 1. Using |∇L(v)| = ℓ′(|v|) we see
|γ′(t)| ≤ C for t = 0, 1.

Let us now consider the maximal value of |γ′(t)|. This maximum exists on [0, 1] since γ ∈ C1 and if it is
attained on the boundary t = 0, 1 the desired Lipschitz bound |γ′| ≤ C is satisfied. We can now suppose that
it is attained in (0, 1). Since ℓ′ is increasing and non-negative, the maximal points of |γ′| and of |∇L(γ′)|2
are the same. We can then write the optimality condition differentiating once and twice in t: we do have

∇L(γ′) · (∇L(γ′))′ = 0; ∇L(γ′) · (∇L(γ′))′′ + |(∇L(γ′))′|2 ≤ 0.

In the last condition we can ignore the positive term |(∇L(γ′))′|2 and observe that, since ∇L(γ′) and γ′ are
vectors with the same orientation (we do have ∇L(γ′) = ℓ′(|γ′|)

|γ′| γ′), we have γ′ · (∇L(γ′))′′ ≤ 0.
We now differentiate in time the Euler-Lagrange equation and take the scalar product times γ′, and obtain

0 ≥ γ′(t) · (∇L(γ′(t)))′′ = (∇xF (t, γ(t)))
′ · γ′(t) = ∂t∇xF (t, γ) · γ′(t) + γ′(t) ·D2

xxF (t, γ(t))γ
′(t).

We deduce
c0|γ′(t)|2 ≤ |γ′(t)||∂t∇xF (t, γ)|,

which implies |γ′(t)| ≤ C0

c0
≤ C and concludes the proof. □

We now use the above result on an approximation of the original problem in BV.

Proposition 2.2. Consider

(2) min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0
+)) + ψ1(γ(1

−)) : γ ∈ BV ([0, 1])

}
where F : [0, 1]×Rd → R is a C2 time-dependent potential satisfying D2

xxF (t, x) ≥ c0I for a certain constant
c0 > 0 and |∂t∇xF (t, x)| ≤ C0, and ψ0, ψ1 ∈ Lip1(R

d) are two penalization functions.
Then a minimizer γ for the above problem exists, is unique, and is actually Lipschitz continuous with

|γ′| ≤ C0

c0
.

Note that we directly state the problem using Lip1 penalizations instead of first fixing ψ0 and ψ1 and then
passing to ψ̃0 and ψ̃1, but we have already explained why we can restrict to this case. Yet, an important
remark is needed:
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Remark 2.3. The solutions with penalizations ψt and ψ̃t (t = 0, 1) coincide in (0, T ), but the solution with
the original (non-Lip1) penalizations could jump at t = 0 or t = T , and this jump is intrinsically considered
in the definition of ψ̃t.

Proof. Given ε > 0, we define ℓε : R+ → R+ via ℓε(s) :=
√
ε2 + s2 + εh(s), where h : R+ → R+ is a smooth,

convex, and increasing function, with lim infs→∞ h′′(s) > 0. We then define Lε : Rd → R via Lε(v) = ℓε(|v|),
so that Lε is smooth, uniformly convex, and radial1.

We also choose some numbers αε < 1 in such a way that limε→0 αε = 1 and limε→0
ε2

1−α2
ε
= 0 (for instance

αε =
√
1− ε).

We consider γε the solution of the variational problem

min

{ˆ 1

0

(Lε(γ
′(t)) + F (t, γ(t)))dt+ αε(ψ0(γ(0)) + ψ1(γ(1))) : γ ∈ H1([0, 1])

}
.

A solution exists by the direct method of the calculus of variations, and it is unique because of the strict
convexity of the function F .

We want to apply Lemma 2.1 to this approximated optimization problem. We first compute ℓ′ε(s) =
s√

ε2+s2
+ εh′(s) ≥ s√

ε2+s2
and observe that we have (ℓ′ε)

−1(r) ≤ rε√
1−r2

. Since Lip(αεψi) = αεLip(ψi) ≤ αε

we obtain from Lemma 2.1

|γ′ε| ≤ max

{
C0

c0
,

αεε√
1− α2

ε

}
,

and we observe that our choice of αε implies that the second term in the max above tends to 0 as ε → 0.
This means that the Lipschitz constant of γε is at most C0

c0
if ε is small enough.

By comparing γε with the constant curve γ = 0 we obtain
ˆ 1

0

F (t, γε(t))dt+ αε(ψ0(γε(0)) + ψ(γε(1))) ≤
ˆ 1

0

F (t, 0)dt+ αε(ψ0(0) + ψ1(0)) ≤ C.

This estimate includes an L2 estimate on γε and, because of the uniform Lipschitz condition on γε, it also
implies that the curves γε are equibounded. We can then apply Ascoli Arzelà’s theorem to obtain a limit
curve γε → γ0. This curve γ0 is of course C0

c0
-Lipschitz continuous, and we can prove that it solves Problem

(2).
Indeed, the optimality of γε, together with the inequality Lε(v) ≥ |v|, shows that we have

TV (γε; [0, 1]) +

ˆ 1

0

F (t, γε(t))dt+ αε(ψ0(γε(0)) + ψ1(γε(1)))

≤
ˆ 1

0

Lε(γ
′)dt+

ˆ 1

0

F (t, γ(t))dt+ αε(ψ0(γ(0)) + ψ1(γ(1)))

for every γ ∈ H1. If we send ε→ 0 and use the lower semicontinuity of TV for the uniform convergence, we
obtain

TV (γ0; [0, 1]) +

ˆ 1

0

F (t, γ0(t))dt+ ψ0(γ0(0)) + ψ1(γ0(1))

≤
ˆ 1

0

|γ′|dt+
ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)),

where we used the dominated convergence Lε(γ
′) → |γ′| as ε→ 0, and αε → 1.

This shows the optimality of γ0 compared to any H1 curve. It is now enough to approximate any BV
curve with H1 curves. We take γ ∈ BV ([0, 1]), we define it as equal to γ(0+) on [−1, 0] and to γ(1−) on [1, 2]
and we convolve it with a smooth compactly supported kernel ηδ tending to the identity so as to smooth it,
thus obtaining a sequence of curves γ ∗ ηδ such that TV (γ ∗ ηδ; [−1, 2]) =

´ 2

−1
|(γ ∗ ηδ)′(t)|dt ≤ TV (γ, (0, 1));

moreover, γ ∗ ηδ is uniformly bounded and converges to γ at all continuity points of γ, which means that the

1Note that the easiest choice for h is h(s) = 1
2
s2, but other choices are possible and reasonable, and the only role of h is to

guarantee a lower bound on the Hessian of Lε (and in particular, to provide a quadratic behavior to ℓε so that the problem is
well-posed in H1) Later one we will see the interest for other choices of h
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convergence holds a.e. and at the boundary point. This proves

lim sup
δ→0

ˆ 1

0

|(γ ∗ ηδ)′|dt+
ˆ 1

0

F (t, γ ∗ ηδ(t))dt+ ψ0(γ ∗ ηδ(0)) + ψ1(γ ∗ ηδ(1))

≤ TV (γ, (0, 1)) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1))

and concludes the proof of the optimality of γ0.
What we proved implies the existence of an optimal curve for (2), and its uniqueness comes, again, from

the strict convexity of the term with F . □

In the case where the target set is R, we can obtain a very interesting behavior.

Proposition 2.4. When d = 1, i.e. the target space of the curves in Problem (2) is one-dimensional, the
minimizer γ satisfies |γ′(t)||∇xF (t, γ(t))| = 0 a.e., i.e. at each instant of time either γ does not move or it
is already located at the optimal point for F (t, ·).

Proof. We consider the same approximation as in Proposition 2.2, using the function h(s) = (s −M)2+ for
a very large M . The uniform Lipschitz bound proven in Lemma 2.1 and Proposition 2.2 makes it irrelevant
the choice of ℓε(s) for large values of s, so that we can write the Euler-Lagrange equation for the minimizer
γε in the form

ε2

(ε2 + |γ′ε|2)3/2
γ′′ε = (L′

ε(γ
′
ε))

′
= ∇xF (t, γε),

where we explicitly computed2 the second derivative of Lε ignoring the term in h.
We write this as ε2γ′′ε = (ε2+|γ′ε|2)3/2∇xF (t, γε). First, note that this implies a uniform bound ε2|γ′′ε | ≤ C.

Then, we differentiate it in time, thus obtaining

ε2γ′′′ε = 3(ε2 + |γ′ε|2)1/2γ′ε · γ′′ε∇xF (t, γε) + (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′
.

Re-using the Euler-Lagrange equation we have

ε2γ′′′ε = 3ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )γ′′ε + (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′
.

We observe that the last term (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′ is bounded thanks to the Lipschitz bound on γε

and the regularity of F . We multiply times γ′ε and obtain

(3) |ε2γ′′′ε · γ′ε − 3ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )2| ≤ C.

We then compute

ε2
ˆ 1

0

|γ′′ε |2 = −ε2
ˆ 1

0

γ′′′ε · γ′ε +
[
ε2γ′ε · γ′′ε

]1
0
≤ C.

the last inequality is justified by (3), by the sign of the term ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )2, and by the bound on
the boundary term, which is the product of two bounded quantities: γ′ε and ε2γ′′ε .

Coming back to the equality ε2γ′′ε = (ε2 + |γ′ε|2)3/2∇xF (t, γε) we take the L2 norms of both sides, thus
obtaining ˆ 1

0

|γ′ε|6|∇xF (t, γε)|2 ≤
ˆ 1

0

(ε2 + |γ′ε|2)3|∇xF (t, γε)|2 =

ˆ 1

0

ε4|γ′′ε |2 ≤ Cε2.

We deduce
´ 1

0
|γ′ε|6|∇xF (t, γε)|2dt→ 0 and, at the limit, by lower semicontinuity, we have the claim. □

We will now analyze in details a simple example, both for future use and for better understanding the
properties of the minimizers.

We consider the periodic problem

(4) min

{
J(γ) := λTV (γ;S1) +

ˆ
S1

1

2
|γ(t)− ω(t)|2dt : γ ∈ BV (S1;R)

}
,

2Note that this computation is based on a 1D cancellation effect, since in higher dimension we have

D2Lε(v) =
(ε2 + |v|2)I − v ⊗ v

(ε2 + |v|2)3/2

and the matrices |v|2I and v ⊗ v do not cancel out.
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where ω : S1 → R is a fixed curve. We suppose that ω is a Lipschitz continuous function such that there
exists a finite decomposition of S1 into essentially disjoint intervals Ik = [ak, bk] (k = 1, . . . , 4N for N ≥ 1)
such that ak+1 = bk and b4N = a1 and satisfying for each n = 0, . . . , N − 1, the following conditions

• ω is non-decreasing on I4n+1;
• ω(a4n+2) = ω(b4n+2) := c4n+2 and ω ≥ c4n+2 on I4n+2;
• ω is non-increasing on I4n+3;
• ω(a4n+4) = ω(b4n+4) := c4n+4 and ω ≤ c4n+4 on I4n+4;
•
´
I4n+2

ω − c4n+2 =
´
4n+4

c4n+4 − ω = 2λ.
We then define a curve γ and a function z via

on I4n+1 γ = ω and z = λ,

on I4n+2 γ = c4n+2 and z(t) = λ−
´ t

a4n+2
(ω − c4n+2),

on I4n+3 γ = ω and z = −λ,
on I4n+4 γ = c4n+4 and z(t) = −λ−

´ t

a4n+2
(ω − c4n+2).

We can check that γ and z are Lipschitz continuous functions, that we have |z| ≤ λ, z′ = ω − γ and
z(t) ∈ ∂(λ| · |)(γ′(t)). This means that we have, for any curve γ̃, the inequality

(5) λTV (γ̃;S1) ≥ λTV (γ;S1) +

ˆ
S1

(γ̃′ − γ′) · z.

We claim that γ is a solution of Problem (4). Indeed, for any other competitor γ̃, we have

J(γ̃) = λTV (γ̃;S1) +

ˆ
S1

1

2
|γ̃(t))− ω(t)|2dt ≥ J(γ) +

ˆ
S1

(γ̃′ − γ′) · z + (γ̃ − γ) · (γ − ω) = J(γ),

where the last equality is obtained by integrating by parts and using z′ = ω − γ. The previous inequality
comes from the use of (5) and from expanding the square.

This explicit example confirms the behavior predicted in Proposition 2.4: the optimizer in the scalar case
either coincides with the minimal point of F (t, ·) (here such a point is equal to ω(t)) or it does not move. We
will see in Section 6 a numerical confirmation of this solution, which also validates the numerical method.

3. Lipschitz regularity in the L1 setting

In this section, we prove the regularity in time of the density ρ which solves the following problem:

(6) min
ρ∈E
ρ≥0

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )) := F (ρ),

where E := BV([0, T ], L1(Ω)) ∩ L2([0, T ]×Ω) (for one-variable BV functions valued in a Banach space such
as L1 we refer, for instance, to [13, 14]). The function f will be supposed to be uniformly convex (i.e.
f ′′ ≥ c0 > 0), and the time-dependent potential V will be supposed to belong to Lip([0, T ];L2(Ω)). The
domain Ω is a finite measure set in Rd, and we assume for simplicity that it has unit volume.

A few words on the penalizations ψ0 and ψT :
We aim to apply the results when ψT is of the following form

ψT : L1(Ω) → R

ρ 7→
ˆ
Ω

φT (x)ρ(x)dx,

where φT : Ω → R is L∞ and ∥φT ∥∞ ≤ 1. In this case, ψT is 1-Lipschitz for the norm ∥ · ∥L1(Ω), and it is
also weakly continuous in L1(Ω) (and hence in L2(Ω)).

When it comes to ψ0, we aim to consider the following case:

ψ0 : L
1(Ω) → R

ρ 7→ ∥ρ−m0∥L1(Ω),

where m0 ∈ L1(Ω). In this case as well, ψ0 is 1-Lipschitz for the norm ∥ · ∥L1(Ω). It is also weakly lower-
semicontinuous in L1(Ω) and L2(Ω).

More generally, our results apply when the penalizations ψ0 and ψ1 are of the following form:

ψt(ρ) :=

ˆ
Ω

at(x, ρ(x))dx,
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for two functions at which are 1-Lipschitz continuous and convex in the second variable. In this way the
functionals ψt are both continuous for the strong L1 convergence (actually, Lip1) and lower semicontinuous
for the weak L1 convergence. This general framework includes the two examples above.

Finally, if ψ0 and ψT are defined as previously, we will define ψ0,α := αψ0 and ψT,α := αψT .
Approximations:
As in the previous section, the absolute value |ρ̇| will be approximated by a smoother function Lϵ which

will be specified later. The mass constraint
´
ρt = 1 will be imposed via a penalization method, adding

(
´
ρ−1)2

2δ . The penalizations on the boundary on [0, T ], ψ0 and ψT , will also be approximated by multiplying
them times α < 1. Finally, the positivity constraint will be handled by approximating f with a sequence
fn : R → R obtained via fn(ρ) := f(ρ) + n(ρ−)

2 so that negative values are penalized but the uniform
convexity of f is preserved since we have f ′′n ≥ c0 for the same c0 > 0.

Taking together these approximations, we obtain the following problem:

min
ρ∈E

ˆ T

0

(ˆ
Ω

Lϵ(ρ̇(t, x) + fn(ρ(t, x)) + V (t, x)ρ(t, x))dx+

(´
ρ(t, y)dy − 1

)2
2δ

)
dt

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )) := Fn(ρ).

Note that the approximated functional is written as Fn, meaning that we have fixed a suitable sequence of
valued (ϵ, δ, α) such that ϵn → 0, δn → 0 and αn → 1.

In order not to have difficulties with the infinite-dimensional space L1(Ω), we will also use a finite-
dimensional discretization. This consists in imposing that the functions ρ(t) belong to a finite-dimensional
subspace. More precisely, we divide the space Ω into n small areas of volume 1

n called An
i (we need their

diameter to tend to 0) and we take ρn(t) : Ω → R such that it is constant on each area. This means that
ρn(t) takes at most n different values and its mass is constant equal to ρi(t) on each region An

i (and its
density equals nρi(t)). The problem can be considered as a restriction of the previous one to the subset of E
composed of densities which are piecewise constant functions (constant on each An

i ) for every t, or it can be
rewritten as follows:

min
ρ∈BV ([0,T ];Rn)

ˆ T

0

(

(
n∑

i=1

1

n
(Lϵ(nρ̇i(t)) + fn(nρi(t))) + ρi(t)

 
An

i

V (t, x)dx

)
+

(∑
j ρj(t)− 1

)2
2δ

)dt

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )),

where the functionals ψ0,α and ψT,α can also be written in terms of values ρi(0) and ρi(T ): they are of the
form

ψ0,α(ρ(0)) := α
∑
i

ani,0(ρi(0)) and ψT,α(ρ(0)) := α
∑
i

ani,T (ρi(T ))

for some Lip1 functions ani,t, which are precisely given by

ani,t(u) :=
1

n

 
An

i

at(x, nu)dx.

In the set E, we say that ρn converges to ρ in E in the sense of (7), if

(7) ∃C s.t. ||ρn(t)||L2(Ω) ≤ C for every n and every t and ρn(t)⇀ ρ(t) uniformly in t

where the uniform L2 bound allows to metrize the weak L2 convergence and the uniform convergence is
defined accordingly.

We observe that the convergence in the sense of (7) implies the weak convergence ρn ⇀ ρ weakly in
L2([0, T ]× Ω).

Lemma 3.1. Let (ρn)n be a sequence converging to ρ ∈ E in the sense of (7) such that Fn(ρn) is bounded.
Then, we have ρ ≥ 0, for a.e. t ∈ [0, T ] we have

´
Ω
ρ(t, x)dx = 1, and moreover

(8) F (ρ) ≤ lim inf
n

Fn(ρn).

Proof. First, we have ˆ T

0

ˆ
Ω

|ρ̇n(t, x)|dxdt ≤
ˆ T

0

ˆ
Ω

Lϵ(ρ̇n(t, x))dxdt ≤ Fn(ρn) ≤ C,
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so that ∥ρ̇n∥L1([0,T ]×Ω) is bounded. By embedding L1([0, T ] × Ω) into M([0, T ] × Ω), the space of Radon
measures, there exists a subsequence of (ρ̇n)n which converges weakly in M([0, T ] × Ω) towards a measure
which can only be ρ̇. The semicontinuity of the mass for the weak convergence providesˆ T

0

ˆ
Ω

|ρ̇| ≤ lim inf
n→∞

∥ρ̇n∥L1([0,T ]×Ω) ≤
ˆ T

0

ˆ
Ω

Lϵ(ρ̇n(t, x))dxdt

(where, actually, the first integral is to be intended as a mass in the sense of measures, or as the total variation

of the curve t 7→ ρ(t) in L1(Ω)). Then, using again ρn
L2

⇀ ρ, we obtain
ˆ T

0

ˆ
Ω

V (t, x)ρ(t, x)dxdt = lim
n→∞

ˆ T

0

ˆ
Ω

V (t, x)ρn(t, x)dxdt.

Using f ≤ fn and the convexity of f , which implies the weak lower semicontinuity of ρ 7→
´ ´

f(ρ(t, x))dxdt,
we have ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt ≤ lim inf
n→∞

ˆ T

0

ˆ
Ω

fn(ρn(t, x))dxdt.

Moreover, by the definition of fn, we also obtainˆ T

0

ˆ
Ω

(ρ−)
2dxdt ≤ lim inf

n

ˆ T

0

ˆ
Ω

((ρn)−)
2dxdt = 0

since
´ T

0

´
Ω
((ρn)−)

2dxdt ≤ C
n . This shows ρ ≥ 0.

Since for all t ∈ [0, T ], ρn(t)⇀ ρ(t) weakly in L2(Ω), we have in particular ρn(0)⇀ ρ(0) and ρn(T )⇀ ρ(T )
weakly in L2(Ω) and consequently weakly in L1(Ω), so by the lower semi-continuity of ψ0 and ψT , we have

ψ0(ρ(0)) ≤ lim inf
n

ψ0(ρn(0)) and ψT (ρ(T )) ≤ lim inf
n

ψT (ρn(T )).

Since (∥ρn(0)∥L2(Ω))n and (∥ρn(T )∥L2(Ω))n are bounded we also have L1 bounds and hence

lim
n
αnψ0(ρn(0)) = lim

n
ψ0(ρn(0)) and lim

n
αnψT (ρn(T )) = lim

n
ψT (ρn(T ))

Finally, we use the positivity of the term
ˆ T

0

(´
ρn(t, y)dy − 1

)2
2δ

dt

to obtain
F (ρ) ≤ lim inf

n
Fn(ρn),

and its boundedness to obtain
´
ρ(t) = lim

´
ρn(t) = 1 for a.e. t. □

Lemma 3.2. Suppose that m0 is such that
´
f(m0) < +∞ (in particular m0 ∈ L2(Ω)). For all ρ ∈ E there

exists a sequence (ρn)n ⊂ D = H1([0, T ];L2(Ω)) which converges to ρ strongly in L2
t,x and which satisfies

ρn(0) =m0;(9)

∥ρ̇n∥L1([0,T ]×Ω) ≤∥ρ̇∥L1([0,T ]×Ω) + ∥ρ(0+)−m0∥L1(Ω)(10)

= ∥ρ̇∥L1([0,T ]×Ω) + ψ0(ρ(0
+))

lim sup
n

ˆ T

0

ˆ
Ω

f(ρn(t, x))dxdt ≤
ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt(11)

lim
n→∞

ˆ T

0

ˆ
Ω

ρn(t, x)V (t, x)dxdt =

ˆ T

0

ˆ
Ω

ρ(t, x)V (t, x)dxdt(12)

lim
n
ψT (ρn(T )) =ψT (ρ(T

−))(13)

In addition, if for all t ∈ [0, T ],
´
Ω
ρ(t, x)dx = 1, then for all n ∈ N,

´
Ω
ρn(t, x)dx = 1.

Proof. Let ρ ∈ E. We denote by ηn a sequence of mollifiers in the t variable (i.e. ηn is a sequence of smooth
probability measures on R such that ηn ⇀ δ0), and we suppose sptηn ⊂ [0, 1

n ].
The function ρ is only defined on the time interval [0, T ], but we can extend ρ to a function ρ̃ : [−1, T ]×Ω →

R setting ρ̃(t) = m0 for all t < 0. The total variation in L1 of this extension is equal to the sum of that of ρ
and the L1 distance between m0 and ρ(0+).
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We then define ρn as the convolution of ρ̃ with the mollifiers ηn in time:

ρn(t, x) :=

ˆ
ηn(t− s)ρ̃(s, x)ds

With the assumption on the support of ηn this convolution is well-defined on [0, T ] even if ρ̃ has not been
extended on ]T,+∞[. Moreover, we have ρn(0) = m0.

Note that we have

|ρ̇n(t, x)| =
∣∣∣∣ˆ η′n(t− s)ρ̃(s, x)ds

∣∣∣∣ ≤ C(n)

ˆ t

t−1/n

ρ̃(s, x)ds

so that we have

∥ρ̇n(t)∥L2(Ω) ≤ C(n)

ˆ t

t−1/n

||ρ̃(s)||L2(Ω)ds ≤ C(n)

(we use here the assumption m0 ∈ L2(Ω)). This proves ρn ∈ H1([0, T ];L2(Ω)).
The convexity of the total variation easily implies (10). Again by convexity, for any convex function g we

have ˆ T

0

ˆ
Ω

g(ρn)dxdt ≤
ˆ T

−1/n

ˆ
Ω

g(ρ̃) →
ˆ T

0

ˆ
Ω

g(ρ),

where the last limit is valid whenever
´
Ω
g(m0) < +∞. Applying this to g(ρ) = ρ2 proves that ρn strongly

convergence in L2
t,x to ρ (it provides an L2 bound, hence a weak limit up to subsequences; this weak limit

can be identified as ρ by testing against continuous functions; the limit is actually strong because the L2

norm converges to that of the limit). This implies, in particular, (12). As for (11), it is enough to use g = f .
To prove (13), we use the property of bounded variation functions: ρ admits a left limit at T in L1, i.e

for every ε > 0 there exists δ > 0 such that ∥ρ(t)− ρ(T−)∥L1 ≤ ε for every t ∈ [T − δ, T [. By convexity this
implies, as soon as 1

n < δ, ∥ρn(T )−ρ(T−)∥ ≤ ε and shows ρn(T ) → ρ(T−) strongly in L1. This implies (13).
If we suppose in addition that for all t ∈ [0, T ],

´
Ω
ρ(t, x)dx = 1 the same will be true for ρn by convexity,

which concludes the proof of the statement. □

Theorem 3.3. Suppose that ψ0 : L
1(Ω) → R and ψT : L1(Ω) → R are 1-Lipschitz and weakly lower semicon-

tinuous on L1(Ω) and that V : [0, T ] × Ω → R belongs to Lip([0, T ];L2(Ω)). Suppose also that f : R → R is
c0-convex, i.e f ′′ ≥ c0 on R.

Then, there exists a unique minimizer ρ to the problem

(14) min
ρ∈E

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

F (ρ).

This solution belongs to Lip([0, T ];L2(Ω)) and it satisfies

(15) sup
t∈[0,T ]

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C.

where C only depends on V and on c0.

Proof. To obtain the regularity (15), we will approximate the problem (14) as already described at the
beginning of this section; i.e. solving

min
ρ∈En

ˆ T

0

( n∑
i=1

1

n
(Lϵ(nρ̇i(t)) + fn(nρi(t))) + nρi(t)

ˆ
An

i

V (t, x)dx

)
+

(∑
j ρj(t)− 1

)2
2δ

 dt(16)

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )),

where we denote by En the set of piecewise constant (in space) functions ρ ∈ E such that

∀t ∈ [0, T ],∀x ∈ Ω, ρ(t, x) =

n∑
i=1

nρi(t)1An
i
(x),

where ρi : [0, T ] → R is a real-valued function. With the definition, the mass of ρ on each An
i equals ρi(t).
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In particular, if we consider the curves ρi(t), for each i the curve ρi solves

min
ρi∈H1([0,T ];R)

ˆ T

0

Lϵ(nρ̇i(t)) + fn(nρi(t)) + nρi(t)V
n
i (t) +

(∑
j ρj(t)− 1

)2
2δ

 dt(17)

+ αani,0(ρi(0)) + αai,T (ρi(T ))

where V n
i (t) := 1

|An
i |
´
An

i
V (t, x)dx = n

´
An

i
V (t, x)dx. The function V n(t) defined to be equal to V n

i (t) in An
i

satisfies

∥V n(t)∥L2(Ω) ≤ ∥V (t)∥L2(Ω), ∥V n∥L2([0,T ]×Ω) ≤ ∥V ∥L2([0,T ]×Ω), ∥∂tV n(t)∥L2(Ω) ≤ ∥∂tV (t)∥L2(Ω),

all these inequalities being a consequence of Jensen’s inequality.
The proof is divided in several steps.
STEP 1 The minimizers of (16), which is a finite-dimensional variational problem in H1, exist by the

direct method.
STEP 2 Let ρn be a minimizer of Fn for all n. In this step, we bound ∥ρ̇n(t)∥L2(Ω) independently of

n so that we will be able to pass to the limit n → ∞. We remind that ρn is piecewise constant in space:
ρn(t, x) :=

∑n
i=1 nρn,i(t)1An

i
(x). In the following, we fix n and write ρi(t) instead of ρn,i(t) to enlighten the

notation.
The Euler-Lagrange equation of (17) is

(18) (L′
ϵ(nρ̇i(t)))

′
= V n

i (t) + f ′n(nρi(t)) +

(∑
j ρj(t)− 1

)
nδ

.

Differentiating the equation (18) yields

(L′
ϵ(nρ̇i(t)))

′′
= (V n

i )′(t) + nρ̇i(t)f
′′
n (nρi(t)) +

∑
j ρ̇j(t)

nδ
.

Multiplying by ρ̇i(t) and summing over i gives

n∑
i=1

ρ̇i(t)(L
′
ϵ(nρ̇i(t)))

′′ =

n∑
i=1

(V n
i )′(t)ρ̇i(t) + n(ρ̇i(t))

2f ′′n (nρi(t)) +

(∑
j ρ̇j(t)

)2
nδ

.

Since the term
(∑

j ρ̇j(t)
)2

is positive, using f ′′n ≥ c0 as well, we obtain the inequality

(19)
n∑

i=1

ρ̇i(t) (L
′
ϵ(nρ̇i(t)))

′′ ≥
n∑

i=1

(V n
i )′(t)ρ̇i(t) + c0n(ρ̇i(t))

2.

Now, we need to estimate the left-hand side of (19). By expanding the second derivative, we have
n∑

i=1

ρ̇i(t) (L
′
ϵ(nρ̇i(t)))

′′
=

n∑
i=1

ρ̇i(t) (nρ̈i(t)L
′′
ϵ (nρ̇i(t)))

′(20)

=

n∑
i=1

ρ̇i(t)
(
(nρ̈i(t))

2L′′′
ϵ (nρ̇i(t)) + n

...
ρ i(t)L

′′
ϵ (nρ̇i(t))

)
.

Let us define the function h : R → R such that h(s) = sL′
ϵ(s)− Lϵ(s). Then, h verifies

h′(s) = sL′′
ϵ (s) and h′′(s) = L′′

ϵ (s) + sL′′′
ϵ (s).

We now consider

(21) max
t∈[0,T ]

n∑
i=1

h(nρ̇i(t)).

Two cases will be distinguished:
• the maximum is reached on (0, T ),
• the maximum is reached on {0, T}.

(i) Suppose there exists t0 ∈]0, T [ such that
∑n

i=1 h(nρ̇i(t0)) = maxt∈[0,T ]

∑n
i=1 h(nρ̇i(t)).
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In particular, we have
n∑

i=1

nρ̈i(t0)h
′(nρ̇i(t0)) =

n∑
i=1

n2ρ̈i(t0)ρ̇i(t0)L
′′
ϵ (nρ̇i(t0)) = 0

and
n∑

i=1

n
...
ρ i(t0)h

′(nρ̇i(t0)) + (nρ̈i(t0))
2h′′(nρ̇i(t0)) ≤ 0,

i.e
n∑

i=1

n2
...
ρ i(t0)ρ̇i(t0)L

′′
ϵ (nρ̇i(t0)) + (nρ̈i(t0))

2 (L′′
ϵ (nρ̇i(t0)) + nρ̇i(t0)L

′′′
ϵ (nρ̇i(t0))) ≤ 0.

Inserting (19) and (20) in t0, the last inequality becomes

(22)
n∑

i=1

(
(V n

i )′(t0)ρ̇i(t0) + c0nρ̇i(t0)
2
)
≤ −

n∑
i=1

(nρ̈i(t0))
2L′′

ϵ (nρ̇i(t0)) ≤ 0.

Let us precise the expression of h:

h(s) = sL′
ϵ(s)− Lϵ(s)

=
s2√
s2 + ϵ2

+ 2ϵs2 −
√
s2 + ϵ2 − ϵs2 =

s2 − s2 − ϵ2√
s2 + ϵ2

+ ϵs2

= − ϵ2√
s2 + ϵ2

+ ϵs2 < ϵs2.

Since t0 is a maximizer of
∑n

i=1 h(nρ̇i), for all t ∈ [0, T ], we obtain
n∑

i=1

h(nρ̇i(t)) =

n∑
i=1

− ϵ2√
(nρ̇i(t))2 + ϵ2

+ ϵ(nρ̇i(t))
2(23)

≤
n∑

i=1

h(nρ̇i(t0)) < ϵ

n∑
i=1

(nρ̇i(t0))
2.

In particular, we have
n∑

i=1

− ϵ√
(nρ̇i(t))2 + ϵ2

+ (nρ̇i(t))
2 <

n∑
i=1

(nρ̇i(t0))
2.

Since ϵ√
nρ̇i(t)2+ϵ2

≤ 1, for all t ∈ [0, T ],

(24)
n∑

i=1

nρ̇i(t)
2 < 1 +

n∑
i=1

nρ̇i(t0)
2.

Besides, thanks to Cauchy-Schwarz inequality, the inequality (22) becomes

c0

n∑
i=1

nρ̇i(t0)
2 ≤ −

n∑
i=1

(V n
i )′(t0)ρ̇i(t0)(25)

≤

√√√√ n∑
i=1

1

n
(V n

i )′(t0)2

√√√√ n∑
i=1

nρ̇i(t0)2

≤

√√√√ sup
t∈[0,T ]

n∑
i=1

ˆ
An

i

(V n)′(t)2dx

√√√√ n∑
i=1

nρ̇i(t0)2

≤ sup
t∈[0,T ]

∥(V n)′(t, ·)∥L2(Ω)

√√√√ n∑
i=1

nρ̇i(t0)2

≤ sup
t∈[0,T ]

∥V ′(t, ·)∥L2(Ω)

√√√√ n∑
i=1

nρ̇i(t0)2.
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Finally, (25) gives

(26) c20

n∑
i=1

nρ̇i(t0)
2 ≤ sup

t∈[0,T ]

∥V ′(t, ·)∥2L2(Ω).

By gathering the inequalities (24) and (26), there exists a constant C2
0 := supt∈[0,T ] ∥V ′(t, ·)∥2L2(Ω) ≥ 0

independent from n such that for all t ∈ [0, T ],

(27)
n∑

i=1

nρ̇i(t)
2 ≤ 1 +

n∑
i=1

nρ̇i(t0)
2 ≤ 1 +

C2
0

c20
.

Yet, for all t ∈ [0, T ], the L2-norm of ρ̇n(t) is

(28) ∥ρ̇n(t)∥2L2(Ω) =

n∑
i=1

ˆ
An

i

(nρ̇i(t))
2 =

n∑
i=1

nρ̇i(t)
2,

so, for all n ∈ N, a minimizer of (17) verifies

(29) sup
t∈[0,T ]

∥ρ̇n(t)∥2L2(Ω) ≤ 1 +
C2

0

c20
.

(ii) Suppose that the maximum of (21) is reached at 0, i.e
∑n

i=1 h(nρ̇i(0)) = maxt∈[0,T ]

∑n
i=1 h(nρ̇i(t)).

The transversality condition yields
L′
ϵ(nρ̇i(0)) = αani,0

′(ρi(0)),

and we know that αani,0 is Lipα. Using L′
ϵ(s) =

s√
s2+ϵ2

+ 2ϵs, we get∣∣∣∣∣ nρ̇i(0)√
(nρ̇i(0))2 + ϵ2

+ 2ϵnρ̇i(0)

∣∣∣∣∣ ≤ α.

The same computations as in Section 2 lead to

|nρ̇i(0)| ≤
αε

1− α
.

Thanks to this inequality, we can conclude similarly to (27) that
n∑

i=1

nρ̇i(t)
2 < 1 +

n∑
i=1

nρ̇i(0)
2,

≤ 1 +
n2α2ϵ2

n2(1− α2)
= 1 +

α2ϵ2

1− α2
,

so, if α→ 1 and ϵ→ 0 in a way that α2ϵ2

1−α2 remains below 1, we have

(30) sup
t∈[0,T ]

∥ρ̇n(t)∥2L2(Ω) = sup
t∈[0,T ]

n∑
i=1

nρ̇i(t)
2 ≤ 2.

Remark 3.4. The upper bounds in (29) and (30) can be improved to quantities which are abritrarily close
to C2

0/c
2
0 and 0, respectively.

For the first one, it suffices to define a slightly different approximation of | · |. If one take Lϵ,A(s) =√
s2 + ϵ2 +Aϵs2 instead of Lϵ, the calculus remains the same, except for (23), which becomes

n∑
i=1

h(nρ̇i(t)) =

n∑
i=1

− ϵ2√
(nρ̇i(t))2 + ϵ2

+Aϵ(nρ̇i(t))
2

≤
n∑

i=1

h(nρ̇i(t0)) < Aϵ

n∑
i=1

(nρ̇i(t0))
2.

and yields the inequality

A

n∑
i=1

nρ̇i(t)
2 < 1 +A

n∑
i=1

nρ̇i(t0)
2,

i.e
n∑

i=1

nρ̇i(t)
2 <

1

A
+

n∑
i=1

nρ̇i(t0)
2.
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Since the constant A can be chosen as large as we want, the bound can be C2
0/c

2
0.

For the second estimate, it is enough to choose α → 1 such that α2ϵ2

1−α2 → 0 which allows to replace the
second term in (30) by almost 0 (and the first one can be taken small as well, as we have just explained).

The same computations lead to the same conclusion if the maximum were reached on T .
To conclude, by (29) and (30), we have shown that

(31) ∀n, sup
t∈[0,T ]

∥ρ̇n(t)∥2L2(Ω) ≤ max

{
C2

0

c20
+ 1, 2

}
:= C.

STEP 3 In this step, we prove that there exists a subsequence of (ρn)n which converges to a function
ρ ∈ C([0, T ], L2(Ω)).

The sequence (ρn(t))n is equi-Lipschitz in L2(Ω) but the norm L2
t,x is also bounded, which provides a

uniform bound ||ρn(t)||L2(Ω) ≤ C. Bounded sets in L2(Ω) are not compact for the strong convergence, but
they are compact, by Banach-Alaoglu’s theorem, for the weak convergence. The equicontinuity that we have
is in the strong sense, so it also holds in the weak sense, and we can then apply the Arzelà-Ascoli’s theorem
to extract a subsequence of (ρn)n which converges to ρ in the sense of (7).

Additionally, we obtain by the lower-semicontinuity property of the L2-norm that the limit curve ρ is also
Lipschitz in time for the strong L2 norm:

∀(t, s) ∈ [0, T ]2, ∥ρ(t)− ρ(s)∥L2(Ω) ≤ C|t− s|.

STEP 4 The goal of this step is to prove that the limit ρ found previously is actually a minimizer of
(14). Comparing to a suitable competitor (for instance a discretization of m0, constant in time), we can see
that there exists C > 0 such that Fn(ρn) ≤ C for all n.

First, let us notice that
´
Ω
ρ(t, x)dx = 1, for all t ∈ [0, T ].

Indeed, we have
ˆ T

0

(ˆ
Ω

ρ(t, x)dx− 1

)2

dt ≤ lim inf
n

ˆ T

0

(ˆ
Ω

ρn(t, x)dx− 1

)2

dt = 0,

Second, by Lemma 3.1, we have that F (ρ) ≤ lim infn Fn(ρn).
Third, let m ∈ D = H1([0, T ];L2(Ω)) be such that

´
Ω
m(t, y)dy = 1. In what follows, we prove that there

exists a sequence (mn)n such that lim supn Fn(mn) ≤ F (m).
We define the sequence (mn)n by choosing piecewise constant functions such that

(32) ∀t ∈ [0, T ],∀x ∈ An
i , mn(t, x) = n

ˆ
An

i

m(t, y)dy.

which verifies
´
Ω
mn(t, y)dy =

´
Ω
m(t, y)dy = 1. This lets the term penalizing the mass of mn disappear in

Fn(mn) and, using m ≥ 0 and mn ≥ 0, the penalization of the negative part disappears as well:

Fn(mn) =

ˆ T

0

ˆ
Ω

Lϵ(ṁn(t, x)) + f(mn(t, x)) +mn(t, x)V
n(t, x)dxdt+ ψ0,α(mn(0)) + ψT,α(mn(T )).

We observe that, by Jensen’s inequality, exactly as it happens for V n, the sequence mn is bounded in L2

(the norm is bounded by that of m) and clearly weakly converges to m (it is enough to test against continuous
test functions). So, it strongly converges to m in L2. This is true both in L2

t,x and in L2
x for every t. In

particular, the boundary terms and the linear term
´
mnV

n converge to the corresponding terms with m.
As for the term

´
f(mn), it can be bounded (again thanks to Jensen’s inequality) by

´
f(m). We are left to

bound the term involving the time-derivative.
Using again the Jensen inequality we have

´
Lε(ṁn) ≤

´
Lε(ṁ) and using m ∈ D (i.e. ṁ ∈ L2

t,x) this
quantity tends to ∥ṁ∥L1([0,T ]×Ω).

Summing up, we have proved that for all m ∈ D such that
´
Ω
m(t, x)dx = 1, there exists a sequence (mn)n

which converges to m strongly in L2([0, T ]× Ω) and which verifies

(33) lim sup
n

Fn(mn) ≤ F (m).

Now, we can prove that ρ minimizes F . Let m ∈ D be a competitor such that
´
Ω
m(t, x)dx = 1 and (mn)n

the sequence defined in (32). Since for all n ∈ N, ρn minimizes Fn, we have

∀n ∈ N, Fn(ρn) ≤ Fn(mn).
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By Lemma 3.1 and the property (33), we obtain

(34) ∀m ∈ D,F (ρ) ≤ F (m).

The inequality is true for all m ∈ D, there remains to show that it is true for all m ∈ E.
Let m ∈ E be such that

´
Ω
m(t, x)dx = 1. By lemma 3.2, there exists a sequence (mn)n ⊂ D which

converges to m strongly in L2
t,x and such that

´
RN mn(t, x)dx = 1 for all n ∈ N. This sequence may be

different from (32). By Inequality (34), we have

∀n ∈ N, F (ρ) ≤ F (mn).

By using the properties (10), (11) and (12) and the fact that m is supported in [0, T ]× Ω, we obtain

∀m ∈ E,F (ρ) ≤ F (m),

which shows that the limit ρ is a minimizer of F .
To conclude, the function ρ is a solution to the problem (14) and verifies the property (15).
Moreover, the solution ρ is unique by the strict convexity of F , given by f . □

4. Infinite horizons problems

Similar results can be proven in the infinite horizon case, with an exponential discount factor:

min
ρ∈E∞;

∀t∈[0,+∞[,
´
Ω
ρ(t,x)dx=1

ˆ +∞

0

e−rt

ˆ
Ω

(|ρ̇|+ V (t, x)ρ+ f(ρ)) dxdt+ ψ0(ρ(0)) := F∞(ρ)

where E∞ := BVloc([0,+∞[, L1(Ω))∩L2
loc([0,+∞[×Ω). This kind of infinite horizon problem is very classical

in economical models and we will not discuss any more its economical motivations. From the mathematical
point of view, it is interesting as we get rid of some difficulties (which will appear in the next section) related
to the transversality condition at t = T but the computations which provide the time regularity can be
re-done up to minor modifications.

The proof is similar to Theorem 3.3. We will need to use the following approximated functional

FT (ρ) :=

ˆ T

0

e−rt

ˆ
Ω

(|ρ̇|+ V (t, x)ρ+ f(ρ)) dxdt+ ψ0(ρ(0))

and its approximation

Fn
T (ρ) :=

ˆ T

0

e−rt

 n∑
i=1

1

n

Lϵ(nρ̇i(t)) + fn(nρi(t)) +

(∑
j ρj(t)− 1

)2
2δ

+ nρi(t)

ˆ
An

i

V (t, x)dx

 dt+ψ0,α(ρ(0)),

where Lϵ and the partition Ω = ∪n
i=1A

n
i are the same as in the proof of Theorem 3.3.

Theorem 4.1. Suppose that ψ0 : L
1(Ω) → R is 1-Lipschitz and weakly lower semicontinuous on L1(Ω) and

that V : [0, T ]× Ω → R belongs to Lip([0, T ];L2(Ω)). Suppose also that f : R → R is c0-convex, i.e f ′′ ≥ c0.
Then, there exists a unique solution ρ to the problem

(35) min
ρ∈E∞;

∀t∈[0,+∞[,
´
Ω
ρ(t,x)dx=1

F∞(ρ),

and it satisfies

(36) sup
t∈[0,+∞[

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C∞,

where C∞ > 0 only depends on V (through its Lipschitz constant) and on c0.

Proof. The proof will be very similar to the case discussed in Section 3, and we will only highlight the
differences. First, there is an extra approximation due to the infinite horizon: we fix T (and, later, we will
consider T → ∞) and we solve

(37) min
ρ∈En

FT
n (ρ).

We adapt the proof of theorem 3.3 and we mention here the main differences.
STEP 1 Using the fact that e−rT ≤ e−rt, we can conclude similarly to Step 1 in theorem 3.3 that there

exists a solution to problem (37).
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STEP 2 Let ρn (denoted ρ in this step for simplicity) be a minimizer of Fn. We exploit the Euler-Lagrange
equation for each component ρi(t) in order to obtain bounds. The equation is slightly different now, due to
the coefficient e−rt. We have (

e−rt L′
ϵ(ρ̇i)

)′
= e−rt

(
V n
i (t, xi) + f ′n(nρi) +

∑
j ρj − 1

δ

)
(38)

i.e − rL′
ϵ(ρ̇i) + (L′

ϵ(ρ̇i))
′ = V n

i (t, xi) + f ′n(nρi) +

∑
j ρj − 1

δn
.

Similarly to the proof of Theorem 3.3, we differentiate Eq. (38), multiply it by ρ̇i and sum over i:

∑
i

(−rρ̈iρ̇iL′′
ϵ (ρ̇i) + ρ̇i(L

′
ϵ(ρ̇i))

′′) =
∑
i

(
ρ̇i(V

n
i )′(t, xi) + nρ̇2i f

′′
n (nρi)

)
+

(
∑

i ρ̇i)
2

δn
.

Compared to Section 3, there is an extra term equal to
∑

i(−rρ̈iρ̇iL′′
ϵ (ρ̇i). We now take again h the

function such that

h(s) = sL′
ϵ(s)− Lϵ(s)

and look at maxt∈ [0,T ]

∑n
i=1 h(nρ̇i(t)).

The extra term in the Euler-Lagrange equation appears in considering the maximum in (0, T ), but in this
case we also have

n∑
i=1

h′(nρ̇i(t))ρ̈i(t) = 0.

Using h′(s) = sL′′
ε (s) we see that this lets the extra term vanish, and the computations are then inchanged.

As for the case where the maximum is reached at t = 0, the transversality condition is exactly the same as
in Section 3 because of e−rt = 1. When the maximum is reached at t = T , the transversality condition now
gives e−rT L′

ε(nρ̇i(T )) = 0 for every i. This allows to obtain ρ̇i(T ) = 0 and the maximum cannot be reached
at t = T .

This allows to bound
∑

i nρ̇i(t)
2 by a constant which only depends on c0 and supt∈[0,Tn[ ∥V

′(t, ·)∥2L2(Ω) ≤
supt∈[0,∞) ∥V ′(t, ·)∥2L2(Ω).

STEP 3 Now, we pass to the limit in n for fixed T . This follows the very same procedure based on the
Arzelà-Ascoli’s theorem, as in Section 3. In this way, we obtain a family (ρT )T of equilipschitz functions in t
valued in L2(Ω), satisfying the very same uniform bound on the time derivative, and each ρT minimizes FT

by proceeding the same way as in Step 4 of Theorem 3.3.
STEP 4 We pass to the limit T → ∞. The previous step provides a family (ρT )T∈N of equilipschitz

minimizers of FT . By choosing a density m such that
´
f(m) < +∞ and comparing ρT to the constant

curve equal to m, using the integrability of the exponential discount coefficient e−rt, we obtain a uniform
bound FT (ρT ) ≤ C (independent of T ). Let us fix T0 < ∞. Since ρT is a minimizer of FT , we have
FT0(ρT ) ≤ FT (ρT ) ≤ C. Thus we have a bound (depending on T0, because of the coefficient e−rt)

sup
t∈[0,T0]

∥ρT (t)∥L2(Ω) ≤ CT0
.

This allows to apply Arzelà-Ascoli’s theorem for the convergence in the sense of (7), and extracting a diagonal
subsequence we obtain a subsequence of (ρT )T which converges towards ρ ∈ C([0,+∞[, L2(Ω)) in the sense
of (7), on each interval [0, T0].

STEP 5 In this step, we show that ρ defined previously is a minimizer of F . Let us denote by (ρTk
)k,

the subsequence which converges to ρ. Let m ∈ E∞ be a competitor and T a fixed value. For all Tk ≥ T , we
have

FT (ρTk
) ≤ FT (m) ≤ F∞(m).

By the lower semi-continuity of FT we obtain FT (ρ) ≤ F∞(m) and, taking the limit T → ∞, we see
F∞(ρ) ≤ F∞(m).

This shows that ρ is a minimizer of F . Additionally, it verifies

∀t, s ∈ [0,+∞[, ∥ρ(t)− ρ(s)∥L2(Ω) ≤ C∞|t− s|,

hence (36). □
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5. Regularity in space

While the regularity shown in the previous sections is in time, we can show regularity in space under
additional conditions on V and on the boundary conditions. We will start from the problem with Dirichlet
boundary conditions:

(39) min
ρ∈E

ρ(0,·)=m0,ρ(T,·)=mT

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt := F (ρ),

where we remind that E := BV([0, T ], L1(Ω))∩L2([0, T ]×Ω). Similarly to Section 3 and 4, we approximate
the problem (48) by
(40)

min
ρ∈En

ρ(0,·)=mn
0 ,

ρ(T,·)=mn
T

ˆ T

0

( n∑
i=1

1

n
Lϵ(nρ̇i(t)) + nρi(t)

ˆ
An

i

V (t, x)dx+
1

n
f(nρi(t))

)
+

(∑
j ρj(t)− 1

)2
2δ

 dt := Fn(ρ),

with the usual choices for Lϵ(s) =
√
s2 + ϵ2+ ϵs2 and En, the set of piecewise constant functions ρ ∈ E such

that

∀t ∈ [0, T ],∀x ∈ Ω, ρ(t, x) =

n∑
i=1

nρi(t)1An
i
(x),

where ρi : [0, T ] → R is a real-valued function. Note that here we prefer not replace the Dirichlet boundary con-
ditions with L1 penalizations, so that we need to discretize the initial and final data as well. We then definemn

t

to be piecewise constant approximations of mt (for t = 0, T ), taking in particular mn
i,t :=

1
|An

i |
´
An

i
mt(x)dx.

We also set, as usual, V n
i (t) := 1

|An
i |
´
An

i
V (t, x)dx

We will consider the problem solved by ρi(t) for all i ∈ {1, . . . , n}:

(41) min
nρi(0)=mn

i,t,nρi(T )=mn
i,t

ˆ T

0

Lϵ(nρ̇i(t)) + f(nρi(t)) + nρi(t)V
n
i +

(∑
j ρj(t)− 1

)2
2δ

 dt.

The Euler-Lagrange system of (41) is

(42)


(L′

ϵ(nρ̇i(t)))
′

= V n
i (t, xi) + f ′(nρi(t)) + c(t),

nρi(0) = mn
i,0,

nρi(T ) = mn
i,T ,

where c(t) :=
´
ρ(t,y)dy−1

δn .

Lemma 5.1. If ρ is a minimizer of (40), then for every i, j we have the following inequality:

(43) n sup
t∈[0,T ]

ρi(t)− ρj(t) ≤ max

(
sup

t∈[0,T ]

V n
j (t)− V n

i (t),mn
i,0 −mn

j,0,m
n
i,T −mn

j,T ,

)
.

Proof. We consider

max
t∈[0,T ]

ρi(t)− ρj(t).

We distinguish three cases:

• the maximum is reached on (0, T ),
• the maximum is reached at 0
• the maximum is reached at T .

(i) If the maximum is attained at t0 ∈ (0, T ), we have ρ̇i(t0) = ρ̇j(t0) as well as ρ̈i(t0) ≤ ρ̈j(t0). This
implies ρ̈i(t0)L′′

ϵ (nρ̇i(t0)) ≤ ρ̈j(t0)L
′′
ϵ (nρ̇j(t0)). By using (42) and substracting the equation for i and
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that for j, we have

nρi(t0)− nρj(t0) ≤
1

c0
(f ′n(nρi(t0)− f ′n(nρj(t0))

=ρ̈i(t0)L
′′
ϵ (nρ̇i(t0))− ρ̈j(t0)L

′′
ϵ (nρ̇j(t0)) + V n

j (t0)− V n
i (t0)

≤ V n
j (t0)− V n

i (t0) ≤ sup
t∈[0,T ]

V n
j (t)− V n

i (t),

Consequently, n(ρi(t0)− ρj(t0)) is bounded by supt∈[0,T ] V
n
j (t)− V n

i (t).
(ii) If the maximum is reached at t = 0 we have

nρi(t)− nρj(t) ≤ nani − anj

using the Dirichlet condition.
(iii) If the maximum is reached at t = T we have

nρi(t)− nρj(t) ≤ nbni − bnj

using the other Dirichlet condition.

The claim follows by putting together the three cases □

Theorem 5.2. Let ρ be a minimizer of (48) and ω a function such that

1

c0
(V (t, x)− V (t, x′)),mt(x)−mt(x

′) ≤ ω(x− x′)

for all t, x, x′. Suppose either that ω is a constant or that limz→0 ω(z) = 0 (i.e., ω is a modulus of continuity).
Then we have for a.e. t, x, x′

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. We first consider the curves ρn minimizing (40). We write the estimate from Lemma 5.1 in terms of
the densities ρn(t, x) = nρi(t). We obtain

ρn(t, x)− ρn(t, x
′) ≤ ω(x− x′) + εn.

Indeed, if the function ω is a constant M , then the oscillations of V
c0
, a and b are bounded by M and so

nρi − nρj ≤ M as well. Otherwise, if ω is a modulus of continuity, then the functions V
c0
, a and b are

continuous and their averages on small pieces An
i can be replaced by the values at the center of these pieces

up to a small error εn (which also takes into account that x and x′ can differ from the centers of the
corresponding pieces).

The family (ρn)n is bounded in L2([0, T ] × Ω). Differently from the case of Section 3, we do not have
Lipschitz estimates in time (note that this is not the same approximation as in Section 3, since we impose
the Dirichlet boundary conditions instead of penalizing them), but luckily we will not need them. Indeed,
the equicontinuity in time was essential to obtain uniform and pointwise bounds and deal with the boundary
terms. Here we just use weak convegence in L2([−1, T + 1] × Ω) after extending ρn to a on [−1, 0] and to
b on [T, T + 1]. It is easy to see that ρn admits a weakly converging subsequence and that the limit solves
(48). Note that the extension before t = 0 and after t = T is needed to include the possible jump at those
instants of time in the total variation and hence play the role of the Dirichlet boundary condition.

The conclusion comes from the following lemma 5.3. □

Lemma 5.3. Let ρn be a sequence weakly converging to ρ in L2([0, T ] × Ω) and suppose that there exists a
function ω such that

(44) ∀n ∈ N∗,∀t ∈ [0, T ],∀x, x′ ∈ Ω, ρn(t, x)− ρn(t, x
′) ≤ ω(x− x′) + εn

for a sequence εn → 0.
Then we have

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′)

whenever (t, x) and (t, x′) are Lebesgue points of ρ.
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Proof. Let us take (t0, x0) and (t0, y0) in [0, T ] × Ω, two Lebesgue points of ρ. Let r > 0 be such that
]t0 − r, t0 + r[⊂ [0, T ], B(x0, r) ⊂ Ω and B(y0, r) ⊂ Ω, we have in particular t0+r

t0−r

 
B(x0,r)

ρn(t, x)dxdt −→
n→∞

 t0+r

t0−r

 
B(x0,r)

ρ(t, x)dxdt,(45)

and
 t0+r

t0−r

 
B(y0,r)

ρn(t, x)dxdt −→
n→∞

 t0+r

t0−r

 
B(y0,r)

ρ(t, x)dxdt.(46)

By assumption we have the inequality
 t0+r

t0−r

( 
B(x0,r)

ρn(t, x)dx−
 
B(y0,r)

ρn(t, x
′)dx′

)
dt =

 t0+r

t0−r

 
B(x0,r)

(ρn(t, x)− ρn(t, x− x0 + y0)) dxdt

≤ ω(x0 − y0) + εn

By taking the limit n→ ∞ and applying (45) and (46) to the left-hand side of the inequality, we get
 t0+r

t0−r

( 
B(x0,r)

ρ(t, x)dx−
 
B(y0,r)

ρ(t, x′)dx′

)
dt ≤ ω(x0 − y0).

Since (t0, x0) and (t0, y0) are Lebesgue points, we can pass to the limit r → 0 and obtain

ρ(t0, x0)− ρ(t0, y0) ≤ ω(x0 − y0). □

The case where the Dirichlet conditions are replaced by penalizations are harder to deal with. The only
case that is easy to consider requires that the transversality condition is the same for ρi and ρj . We can
obtain the following results for which we just sketch the modifications to the previous proofs.

Theorem 5.4. Let ρ be a minimizer of

(47) min
ρ∈E

ρ(0,·)=m0,
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+

ˆ
ΨT ρ(T, x).

Let A ⊂ Ω be a set where ΨT is constant. Suppose that ω is a function (either constant or a modulus of
continuity) such that 1

c0
(V (t, x)−V (t, x′)),m0(x)−m0(x

′) ≤ ω(x− x′) for all t, x, x′. Then we have for a.e.
x, x′ ∈ A

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. The approximation will be the same as before, but the Dirichlet boundary condition at t = T is
replaced by a transversality condition. Choosing a decomposition into pieces An

i such that x, x′ belong to
two pieces contained in A, this transversality condition will be the same for the two curves ρi(t) and ρj(t)
that we need to consider to estimate ρ(t, x) − ρ(t, x′). In particular, we will have ρ̇i(T ) = ρ̇j(T ). Hence,
when considering maxt ρi(t)−ρj(t), the maximum could be attained on t0 = T but in this case the first-order
optimality condition will be satisfied, and this allows to obtain the second-order one, which is the main tool
to estimate ρi(t0)− ρj(t0). The rest of the analysis goes as in the rest of the Section. □

Theorem 5.5. Let ρ be a minimizer of

(48) min
ρ∈E

ρ(0,·)=m0,
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

e−rt

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt := F (ρ).

Suppose that ω is a function (either constant or a modulus of continuity) such that 1
c0
(V (t, x)−V (t, x′)),m0(x)−

m0(x
′) ≤ ω(x− x′) for all t, x, x′. Then we have for a.e. x, x′

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. We first replace F with FT as in Section 4. Then, the claim is the same as in Theorem 5.4 with
ϕT = 0 (hence we can take A = Ω) with the only difference that have an extra coefficient e−rt. This lets
an extra term −rL′

ε(nρ̇i) appear in the Euler-Lagrangian equation, but this term cancels when taking the
difference between i and j because of the first-order optimality condition for t0. The rest of the analysis goes
as in Theorem 5.4 and in the rest of the Section. This provides a uniform estimate on ρT , independent of T ,
and we can then take the limit T → ∞. □
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We conclude summarizing the result that we can obtain in terms of spatial regularity:
• For the problem with two Dirichlet boundary conditions, if V,m0, and mT are continuous, then the

solution ρ shares the same modulus of continuity of V
c0
,m0, and mT . Combining this with the L2

Lipschitz regularity in time obtained in Section 3 this gives a uniform continuity result in (t, x).
• In the same problem, if V,m0, and mT are only bounded, then ρ is bounded, since its oscillation is

bounded by that of V
c0
,m0, and mT and its L2 norm is also bounded.

• For the problem with a Dirichlet boundary condition at t = 0 and a penalization ΨT at t = T , if
ΨT is piecewise constant and V and m0 are continuous, then ρ is piecewise continuous, and hence
bounded. The solution ρ is also bounded if we only assume V and m0 to be bounded, and ΨT to be
piecewise constant.

• In the infinite-horizon problem with Dirichlet boundary condition at t = 0, the solution shares the
same modulus of continuity of V

c0
and m0 and is uniformly continuous in (t, x). It is uniformly

bounded if V and m0 are bounded.
• In the periodic case (which we briefly presented in Section 2 but did not develop here) the solution
ρ shares the same continuity or boundedness of V

c0
.

6. Numerical approximation

In this section, numerical simulations are carried out on the following problem

(49) min
ρ∈E

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

ρ≥0

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t, x)|+ V (t, x)ρ(t, x) +

ρ(t, x)2

2

)
dxdt+ ψ0(ρ(0)) + ψT (ρ(T )) = F (ρ)

and on some of its variants (Dirichlet conditions, periodic case. . . ). The parameter λ > 0 allows us to add
more or less importance to the L1-norm.

For these numerical examples, we take the domain Ω := [0, S] to be one-dimensional with S > 0. In this
section, we study the following cases:

• periodic solutions in 1D (only the time variable, Section 6.2, Figure 1).
• periodic solutions in 2D (periodic in time, Section 6.3, Figures 2, 3).
• non-periodic solutions in 2D, with or without Dirichlet conditions or penalizations at the time bound-

ary (Section 6.4, Figures 4, 5, and 6).

6.1. The numerical method. Let {t0, . . . , tK} and {x0, . . . , xN} be the regular subdivisions of respectively
[0, T ] and [0, S]. To approximate the integral in F , the left-rectangle method will be used, hence we will
consider solutions (ρ(ti, xj))0≤i≤K−1

0≤j≤N−1
in the vector space RK·N . With an abuse of notations, we also write

V ∈ RK·N the vector (V (ti, xj))0≤i≤K−1
0≤j≤N−1

. In the following, the notations< ·|· > and ∥·∥ designate respectively

the scalar product and the euclidean norm in a vector space of finite dimension.
The problem that will be numerically solved can be written in the form

min
ρ∈RK·N

f(ρ) + g(Aρ),

where, of course, f and g have nothing to do with the functions introduced in the previous sections. Here
ρ ∈ RK·N , f(ρ) = h < V |ρ > +h∥ρ∥2

2 is a proper, closed and h-strongly convex function and g(ρ0, ρ1, ρ2) =
λ∥ρ0∥1 + δC0(ρ1) + δC1(ρ2) is a proper, closed and convex function. The notation ∥ · ∥1 refers to the l1-norm
in a vector space of finite dimension and δCi is the indicator function defined by

δCi(ρ) =

{
0, ρ ∈ Ci,
+∞, ρ /∈ Ci,

where C0 = (R+)K·N and C1 = {ρ ∈ RK·N ; ∀i ∈ {0, . . . ,K − 1},
∑N−1

j=0 ρ(ti, xj) · l = 1} are the sets of
constraints. The linear transformation A is A(ρ) = (Aρ, ρ, ρ), where the matrix A will be detailed for each
case.

An algorithm to approximate the solution of this problem is already known and is called (Fast) Dual
Proximal Gradient Method which can be found in [2]. We will use its primal representation which does not
involve the dual representation of the problem.

Since g is a sum of separable functions, its proximal operator is

proxg(ρ0, ρ1, ρ2) =
(
proxλ∥·∥1

(ρ0),proxδC0
(ρ1),proxδC1

(ρ2)
)
.
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We remind that for all x ∈ R,

proxλ|·|(x) = [|x| − λ]+ sgn(x) and proxδC (x) = PC(x)

where PC is the projection on the set C.
The algorithm is described below.

Initialization: L ≥ ∥A∥2

h , w0 = y0 ∈ (RK·N )3, t0 = 1.
Step for k ≥ 0:

• uk = argmaxu{< u,ATwk > −f(u)} = ATwk

h − V

= 1
h (A

Twk
0 + wk

1 + wk
2 )− V

• yk+1
0 = wk

0 − 1
LAu

k + 1
L proxLλ∥·∥1

(Auk − Lwk
0 )

• yk+1
1 = wk

1 − 1
Lu

k + 1
L proxLδC0

(uk − Lwk
1 )

• yk+1
2 = wk

2 − 1
Lu

k + 1
L proxLδC1

(uk − Lwk
2 )

• tk+1 = k+1+a
a

• wk+1 = yk+1 + tk−1
tk+1 (y

k+1 − yk)

The role of the parameter tk is to acelerate the algorithm, in the spirit of Nesterov’s accelerated gradient
or (in the proximal case) of the FISTA algorithm (see [15, 3]).

Note that our problem is essentially, up to minor modifications and the presence of extra constraints (unit
mass, positivity, Dirichlet conditions), a simplified version of some standard problems in image denoising
based on total variation (see, for instance, the classical paper [16]): here,whether the problem is 1D or 2D or
higher-dimensional, the main feature is that the total variation is only computed in time.

The following sections describe different examples of solutions to (49) by using this algorithm. For each
case, the differences with the description above will be specified.

6.2. 1D-periodic. When we consider the periodic problem (in time, so that the interval [0, T ] becomes a
circle of length T ), and we assume S = T and V (t, x) = v(t−x) for an S-periodic function v, it is possible to
reduce the problem to the one dimensional case, namely a problem with one only variable in [0, T ] instead of
[0, T ]× [0, S]. One expects the solution ρ(t, x) = u(t−x) to be transported according to time. The uniqueness
of the solution and the symmetry with respect to translations in both time and space (replacing (t, x) with
(t + δ, x + δ)) show that the solution should indeed be of this form. Then, a change of variables y = t − x
can be carried out in F as following:

F (ρ) =

ˆ T

0

ˆ S

0

(
λ|u̇(t− x)|+ v(t− x)u(t− x) +

u(t− x)2

2

)
dxdt

=

ˆ T

0

ˆ t−S

t

−
(
λ|u̇(y)|+ v(y)u(y) +

u(y)2

2

)
dydt

= T

ˆ S

0

(
λ|u̇(y)|+ v(y)u(y) +

u(y)2

2

)
dy.

The problem reduces hence to the search of an S-periodic solution with one variable. By the way, up to
multiplicative and additive constants this problem is equivalent to minimizingˆ S

0

(
λ|u̇(y)|+ |u(y) + v(y)|2

2

)
dy,

which is exactly the problem described as an example at the end of Section 2, with ω = −v, except for the
constraints

´ S

0
u(y)dy = 1 and u ≥ 0.

In the following subsections, we will see that the solution obtained through numerical simulations coincide
with u computed as above.

For the numerical simulation shown in Figure 1 we take v(y) = −a0cos( 2πS y) and the choice of the
parameters are shown in Table 1.

Let {y0, . . . , yK} be a regular subdivision of [0, S] and h := y1 − y0 the step-size of the subdivision. By
the left-rectangle method, the problem is approximated by

(50)
K−1∑
i=0

(
λ|u(yi+1)− u(yi)|+ v(yi)u(yi)h+

u(yi)
2

2
h

)
+ δC0(u) + δC1(u).
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Figure 1. The simulation of the solution u to the 1D periodic case with v(y) =
−a0cos( 2πS y). The parameters are displayed in Table 1. The blue solid line corresponds
to the solution u, while the red dashed line is the profile of c− v with c = 1/S.

Parameter Value
S 10
K 500
h 0.02
L 6/h
a0 0.1
λ 0.1

Table 1. Parameters for the solution to the problem in Fig. 1.

We observe that with this choice of parameters the solution u is strictly positive and “follows” the profile
of c− v for a constant c which appears as a Lagrange multiplier for the mass constraint and allows to obtain
unit mass. The function u is also a(n unconstrained) solution of the problem at the end of Section 2 with
ω = c− v and its profile, shown in Figure 1, is consistent with the explicit description of the solution which
we gave.

Remark 6.1. If v(y) = −a0 cos( 2πS y), it is possible to compute the critical λ at which the aspect of the
solution u switches from Figure 1 to the constant solution. Assuming that the solution becomes constant
when ϵ = S

4 and extending the solution periodically on [−S, 0], we integrate the Euler-Lagrange equation
z′ = v + u− c over [−ϵ, ϵ]:

−2λ =

ˆ ϵ

−ϵ

z′(y)dy =

ˆ ϵ

−ϵ

(v(y) + u(y)− c)dy =

ˆ ϵ

−ϵ

(v(y)− v(ϵ))dy

=

ˆ ϵ

−ϵ

(
−a0 cos(

2π

S
y) + a0 cos(

2π

S
ϵ)

)
dy = −a0

S

π
sin(

2π

S
ϵ) + 2ϵa0 cos(

2π

S
ϵ).

By taking ϵ = S
4 , we obtain that λ = a0S

2π .
When λ > a0S

2π , the solution u is constant equal to c. While the condition λ < a0S
2π gives the solution u as

in Figure 1. This explains the choice of parameter λ.

6.3. 2D periodic in time. We consider now the case where we keep two variables, but we assume the time
domain to be periodic. This case is slightly simpler to handle from the point of view of the discretization of
the time derivative.
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By using the subdivisions described in Section 6.1, we approximate the integral F by the left-rectangle
method as following:

(51)
K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|l + V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

)
,

where h := t1 − t0 and l := x1 − x0 are the step-sizes of each subdivision. We will consider that ρ(t0, xj) =
ρ(tK , xj) for all j ∈ {0, N − 1}.

With this discretization, we look for a solution in the space RK·N where ρ is viewed as a vector.
The discretized problem is

(52) min
ρ∈RK·N

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|l + V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

)
+ δC0(ρ) + δC1(ρ).

To avoid numerical errors due to small values, searching a minimizer of (52) is the same as searching a
minimizer to the problem divided by l:

min
ρ∈RK·N

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|+ V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
+ δC0

(ρ) + δC1
(ρ).

The function f : RK·N → R defined by

(53) f(ρ) =

K−1∑
i=0

N−1∑
j=0

(
V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
= h < V |ρ > +h

∥ρ∥2

2

corresponds to the function f described in Section 6.1.
The linear transformation A : RK·N → (RK·N )3 is the same as in Section 6.1. The squared matrix A is of

order K ·N and its coordinates are

Ai,j =

 −1 if j = i,
1 if j ≡ i+N [K ·N ],
0 otherwise,

namely

A =


−IN IN

. . . . . .
−IN IN

IN −IN


where IN is the identity matrix of order N and blank space corresponds to zeros.

The function g : (RK·N )3 → R is defined as in Section 6.1:

g(ρ0, ρ1, ρ2) =
K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0
(ρ1) + δC1

(ρ2)(54)

=λ∥ρ0∥1 + δC0
(ρ1) + δC1

(ρ2).

In Figure 2, we consider the same case as in Figure 1, but with a 2D approach. The profile of the solution
ρ at time 0 is the same as in Figure 1. Whilst in Figure 1, the problem is viewed on one dimensional space,
here we can see that the solution is transported according to time from the left to the right.

Parameter Value
T 10
S 10
K 100
N 500
h 0.02
L 6/h
a0 0.1
λ 0.1

Table 2. Parameters for the numerical simulation of the solution to (49).
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Figure 2. Profile of the solution to (49) with V (t, x) = −a0 cos( 2πS (t − x)) at times t =
0, 2, 4, 6, 8, 9.9. The blue solid line describes the solution ρ at each specified time and the red
dashed line is the profile of 0.1− V at each time. The parameters are displayed in Table 2.

The next case (see Figure 3) we show is different. Here we impose a Dirichlet boundary condition at time
0 which corresponds here to m0 being the constant density equal to 1/S. This is the same as studying the
non-periodic problem on [0, T ] and imposing two Dirichlet boundary conditions, which are (by chance) equal.
In this case, keeping the periodic structure allows to use a simpler form of the matrix A.

Let m0 ∈ RN a vector verifying the constraints, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0,j l = 1.

Let us define the new set C2 = {ρ ∈ RK·N ; ∀j ∈ {0, . . . , N−1}, ρ(0, xj) = m0,j} which encodes the constraint
ρ(0) = m0.

The function f is the same as in (53). The linear transformation is now Aρ = (Aρ, ρ, ρ, ρ) and the function
g : (RK·N )4 → R is

g(ρ0, ρ1, ρ2, ρ3) =

K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0
(ρ1) + δC1

(ρ2) + δC2
(ρ3)

=λ∥ρ0∥1 + δC0
(ρ1) + δC1

(ρ2) + δC2
(ρ3).

In Figure 3 we see that the Dirichlet condition is indeed verified at t = 0 and then, immediately, the
solution jumps (coherently with Remark 2.3) from the constant state to t = 0.1. One can notice that the
profile is different from Figure 2 in a way that on the subintervals where the solution does not follow 0.1−V ,
it is not constant anymore. However, between times t = 4 and t = 6, the solution comes back to the profile
when there is no boundary condition, namely, it is constant when it does not follow 0.1 − V . When t ≥ 6,
the profile of the solution varies again on the subintervals where it should be constant.

6.4. 2D, non periodic. Unlike Sections 6.2 and 6.3, we do not impose anymore a periodic time behavior,
and the value ρ(tK , xj) of the solution ρ ∈ R(K+1)·N may be different from ρ(t0, xj). The integral in F is
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Figure 3. Simulation of the solution to (49) at times t = 0, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9.9 with
V (t, x) = −a0 cos( 2πS (t − x)) and m0(x) = 1/S with parameters from Table 2 except for
parameter L where L = 7/h. The blue solid line is the profile of the solution ρ and the red
dashed line corresponds to 0.1− V taken at each time t.

now approximated by:

(55)
N−1∑
j=0

(
K−1∑
i=0

λ|ρ(ti+1, xj)− ρ(ti, xj)|l +
K∑
i=0

(
V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

))
.

Remark 6.2. The formula (55) contains an extra term in tK which should not be in the left-rectangle method.
However, with this choice of discretization, the function f is strongly convex which allows us to apply the
algorithm. The error is of order o(h) so it is negligible.

The new function f is

f(ρ) : R(K+1)·N −→ R(56)

ρ 7→ h < V |ρ > +h
∥ρ∥2

2
=

K∑
i=0

N−1∑
j=0

(
V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
.
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The function g is defined as in (54) and A is the same as in Section 6.1 with a different matrix A which is
rectangle of dimension (K ·N)× ((K + 1) ·N) such that

Ai,j =

 −1 if i = j,
1 if j = i+N,
0 otherwise,

namely

A =

−IN IN
. . . . . .

−IN IN

 .

Figure 4. The simulation of the solution to (49) at times t =
0, 0.2, 0.4, 0.5, 1, 1.5, 5, 8.3, 8.8, 9, 9.5, 10 with V (t, x) = (t − x)2 and parameters from
Table 2. The blue solid line corresponds to the solution ρ at different times.

Figure 4 shows the simulation of the solution ρ to the problem (49) with a given V which is not periodic
anymore. No Dirichlet boundary conditions nor penalizations ψt at t = 0, T are considered. The different
times are chosen to show the most significant changes in the profile of ρ. Since V (t, x) is minimal at x = t,
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the general behavior is that the solution is transported from the left to the right. Between times t = 1.5 and
t = 8.3, the solution either follows c− V (where c is a constant to define) or it is constant. Close to the time
boundaries, the behavior is different.

Remark 6.3. The constant c such that ρ follows c− V depends on λ. The parameter λ can be studied as in
remark 6.1. Different values of λ can either imply that ρ follows c−V or that it follows c−V and is constant
in the middle.

The next case that we present (Figure 5) involves Dirichlet conditions in time. Let m0 ∈ RN and mT ∈ RN

be two vectors verifying the boundary conditions, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0,j l = 1,

mT ∈ (R+)N and
N−1∑
j=0

mT,j l = 1.

Let us define the new set of constraints by C2 = {ρ ∈ RK·N ; ∀j ∈ {0, . . . , N−1}, ρ(0, xj) = m0,j and ρ(T, xj) =
mT,j}. The function f is defined as in (56), Aρ = (Aρ, ρ, ρ, ρ) and the function g : (RK·N )4 → R is

g(ρ0, ρ1, ρ2, ρ3) =

K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0(ρ1) + δC1(ρ2) + δC2(ρ3)

=λ∥ρ0∥1 + δC0(ρ1) + δC1(ρ2) + δC2(ρ3).

Remark 6.4. Instead of adding the constraint ρ(0) = m0 in the problem, one could have discretized the
integral with the right-rectangle method in time and directly used that ρ(0) = m0 in the algorithm.

The profile of Figure 5 is quite similar to Figure 4 and mainly differs around t = 0, T . Again, a jump in
time is observed.

The very last example we consider is non-periodic in time and involves both a Dirichlet condition at t = 0
and penalization at t = T . We consider the penalization

ψT (ρ(T )) =

ˆ S

0

ΨT (x)ρ(T, x)dx.

The left-rectangle method applied to ψT gives

ψT (ρ(T )) =

N−1∑
j=0

ΨT (xj)ρ(T, xj)l.

We use the discretization from (55). The difference is in the definition of V . We shall take Ṽ such that

Ṽ = V + (0, . . . , 0,
ΨT

h
).

Again, the profile of Figure 6 is similar to Figures 4 and 5 except for the behavior close to the time
boundaries. In Figure 6, we have put penalization at times 0 and T such that it costs less to be close to 0 in
space, hence the concentration of the mass at time 0 in x = 0 and the jump at time T .
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