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Abstract. We introduce a mathematically new approach for quantization of

vectorial signals which is already widely used by engineers, and discuss its basic

properties. Consider a vectorial signal on the input to a computational device
calculating a given function of the input. The main objective is to quantize

the signal components separately in a way that optimizes the output quality.

We study existence of optimal quantizers and estimate the optimal cost for
several classes of functions.
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1. Introduction

Suppose that a d-dimensional vectorial signal Z = (X1, . . . , Xd) with scalar
components Xi is input to a computational device that produces the value f(Z) of
the given function f on the output. We want to quantize (substitute with a signal
which might have only a discrete set of values) separately and independently the
components of input, i.e. the scalar signals Xi, so as to maximize the quality of
the output. That is, our goal is to minimize the expectation of the error between
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output on Z and output on its quantized version, once Z is a random vector with
a given distribution law (common distribution law of (X1, . . . , Xd)). We will call
this a functional product quantization problem. The general problem statement is
described formally in the next section.

The term quantization is known as a process of mapping a large (probably con-
tinuous) set to a small (often finite) set and it has a long history. The idea is so
natural, that it dates back hundreds of years, as it was used to find approximate
values of integrals by discretization of input, which is, by modern standards, part
of Numerical analysis. Later on, the process itself was defined formally as finding
the best discrete measure with a given number of support points that approximates
a given measure. This topic occurres in various fields, such as Information theory
(compression), Stochastic processes (sampling), Machine learning (clustering), Nu-
merical analysis. Naturally, there are many works dedicated to this subject, see
[5] for an introduction to the field as well as [7] for a survey on classical results.
Note that in the classical setting the space is quantized as a whole, which might
lead to the “Curse of dimensionality” (various troubling effects that arise when the
dimension of a quantized space increases). In addition, the quality of quantization
is usually measured as the expectation of some power of the distance between signal
and its quantized version. Product quantization has been introduced in Machine
learning community by Jégou, Douze and Schmid [1] as a technique that allows to
significantly reduce the dimension of the quantized space. It is most famous as it
improves the nearest neighbor search algorithm. When considering quantization in
Information theory, it appears that the idea of independent coding of joint sources
dates back to the works of Slepian, Wolf [2] and Wyner, Ziv [3]. It gained attention
recently with practical development of sensor networks, see Xiong, Liveris, Cheng
[4].

As a step further, we suggest to use product quantization with an objective to
improve quality of the output on the signal, not the signal itself. Note that this is
exactly what happens when an integral of a function is being approximated with
a discretization, one of the oldest appearances of quantization idea itself. More-
over, in recent studies related to quantization of neural networks, see for example
[8], the most important part is also to improve quality of the output function.
Thus, it seems natural to combine an efficient product quantization technique with
an important goal of controlling quality of the output. This problem seems to be
underdeveloped from a mathematical perspective, so in this work we lay its founda-
tion and study general properties as well as asymptotic results for the most natural
output functions.

1.1. Functional product quantization problem. Let us fix d = 2 for simplic-
ity. Assume that 2 sets X1,X2 with random elements Xi ∈ Xi and their common
distribution law being given. Let µ = law(X1, X2) be a Borel probability measure.
Finally, assume that a Borel function f : X1×X2 → R is given. For (n1, n2) ∈ N×N
one has to find the quantization maps

qi : Xi → Xi,#qi(Xi) ≤ ni, i = 1, 2

such that for a given distance d on R

Lf (q1, q2) := E d (f (X1, X2) , f (q1(X1), q2(X2)))→ min .
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In this paper, we are mainly interested in the asymptotics of the quantization cost

Cf (n1, n2) := inf{Lf (q1, q2) : #q1(X1) ≤ n1,#q2(X2) ≤ n2}.
Throughout the paper, we will assume, unless otherwise explicitly stated, the

most common situation in applications, namely that Xi = Rki is just the Euclidean
space and µ� Lk1 ⊗Lk2 with compact support. Even more, in most cases, we will
limit ourselves to the case k1 = k2 = 1, i.e. X1 = X2 = R, µ� L2. We will see that
this case already contains all the essential difficulties of the problem considered.

1.2. Comparison with classical quantization. The functional product quanti-
zation problem introduced above has to be compared with the following (relatively)
well studied classical quantization problem, namely, that of finding the quantization
map

q : Z := X × Y → Z, #q(Z) ≤ N,
so that

L(q) := E c (Z, q(Z))→ min,

where c is the given cost on Z. In other words, here, as opposed to the functional
product quatization problem, one would like to quantize just the input vector min-
imizing the error on the input, i.e. the expectation of the norm of the difference
between Z and its quantized version, without taking in consideration the function
f to be calculated on the input. The cost of such classical quantization is given by

C(N) := inf{Lf (q) : #q(Z) ≤ N}.
The case X = Y = [0, 1] ⊂ R, so that Z = [0, 1]2 and µ = L2x[0, 1]2 is the most
well studied. In this case

C(N) ∼ C/
√
N,

with C > 0 known.

2. Notation and preliminaries

For brevity we denote the whole space as X := X1× . . .×Xd, the signal as X :=
(X1, . . . , Xd) and the set of quantizers as q := (q1, . . . , qd). Then, qi has ni values
that we denote as asii , si = 1, . . . , ni. Define Asii := q−1

i (asii ), si = 1, . . . , ni, i =
1, . . . , d.

Sometimes to emphasize the dependence of the costs on c and µ we write Lf,c,µ(q)
and Cf,c,µ(n1, . . . , nd) instead of Lf (q) and Cf (n1, . . . , nd) respectively. Also for
the classical quantization problem, to emphasize the dependence of the cost on c
and µ we may write Lc,µ(q) and Cc,µ(n1, . . . , nd) instead of L(q) and C(n1, . . . , nd)
respectively.

For a Borel measure µ on a metric space E and D ⊂ E Borel, we let µxD stand
for the restriction of µ to D and by 1D the characteristic function of D. If µ and
ν are measures with µ absolutely continuous with respect to ν, we write µ � ν.
By Ld we denote the Lebesgue measure over the Euclidean space Rd. The notation
Lp(E,µ) stands for the usual Lebesgue space of functions over a metric space E
which are p-integrable with respect to µ, if 1 ≤ p < +∞, or µ-essentially bounded,
if p = +∞. The norm in this space is denoted by ‖ · ‖p. The reference to the metric
space E will be often omitted from the notation when not leading to a confusion, i.e.
we will often write Lp(µ) instead of Lp(E,µ). Similarly, if E = Rd is a Euclidean
space and µ = Ld is the Lebesgue measure, then we will omit the reference to µ
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writing just Lp(Rd) instead of Lp(Rd, µ). The weak* convergence in L∞(E,µ) is

denoted by
∗
⇀. For a random variable Y we denote by E (Y ) its expectation, by

Var (Y ) its variance and by law(Y ) its law.

3. A bridge between classical and functional product quantization

The quantization of only one of the variables is a bridge between classical case
and the one we are studying. In this case the following estimate is considered

Lf (q) = E c(f(X,Y ), f(q(X), Y ))

and

Cf (N) = inf{Lf (q) : #q(X) ≤ N}.
On one hand, if c and f are continuous and the support of the measure is compact,
by taking a uniform quantization over the second coordinate we get

Cf (N) ≥ lim
n2→∞

Cf (N,n2).

Surprisingly, the reverse inequality is not true. Even the slightest quantization of
the second coordinate may drastically decrease the total error, as the following
example shows.

Example 3.1. Let µ := L2x[0, 1]× [0, 1], c(u, v) := |u− v| and let

f(x, y) := (1[1/3,2/3]×[0,1/3] + 1[0,1/3]×[1/3,2/3] + 1[2/3,1]×[2/3,1])(x, y).

Let N := 1. Then whatever q is, one has that f(q(x), y) differs from f(x, y) on the
union of 4 squares of the total area 4/9, so that Cf (1) = 4/9. On the other hand,
if q([0, 1]) ∈ (0, 1/3) and q2([0, 1]) ∈ (0, 1/3), then f(q(x), q2(y)) differs from f(x, y)
on the union of 3 squares of the total area 3/9, so that

4/9 = Cf (1) > 3/9 ≥ Cf (1, 1) ≥ Cf (1, n2)

for all n2 ∈ N. Note that this result does not change if we ask for f to be smooth,
since one can just approximate a characteristic function with smooth functions.

4. Random quantization and existence of optimal quantizers

The goal of this section is to prove the existence of optimal quantizers. For a
particular quantizing lattice w := {(xs11 , . . . , x

sd
d ), si = 1, . . . , ni} denote values of

f at its points as f(w) = (f(xs11 , . . . , x
sd
d ))si=1,...,ni

. Denote by W the set of all
lattices with xsii ∈ Xi and by f(W) = {f(w) : w ∈ W} ⊂ Rn1...nd . Essentially,
f(W) describes all the potential quantizations of the output. In order to have the
existence of optimal quantizers we request f(W) to be compact. Note that this
requirement is in particular satisfied in the following two important cases indicated
in the statement below

Proposition 4.1. The set f(W) is compact in Rn1...nd , in particular, when either

(A) f has finite set of values
(B) or f is continuous and all Xi are compact.

Proof. In case (A) the set f(W) is finite thus compact.
For the case (B) f(W) is precompact as a subset of f(X )n1...nd . To show that it is

closed consider a sequence of lattices wk such that f(wk) converges. Then, since all
Xi are compact metric spaces, we can pick a subsequence of lattices (not relabelled)
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such that each point xsii,k converges to some xsii for i = 1, . . . , d, si = 1, . . . , ni. Then,
for all si = 1, . . . , ni one has

f(xs11,k, . . . , x
s,d
d,k)→ f(xs11 , . . . , x

sd
d ).

Thus f(wk) → f(w) where w = {(xs11 , . . . , x
sd
d ), si = 1, . . . , ni}, proving the claim.

�

We often face a situation of non-compact Xi, for instance Xi = R. If Xi are
not compact it is easy to construct an example with nice continuous functions such
that the problem has no minimizers, see Example 4.2. However, for practical use
in engineering applications the sets Xi may always assumed to be compact.

Example 4.2. Consider f(x, y) := x + y, c(u, v) := e−|u−v|
2

and µ := L2x[0, 1]2.
Take n1 = n2 = 1 and q1,k(x) = q2,k(x) = k. Then Lf (q1,k, q2,k)→ 0, but there is
no quantizers providing zero cost.

Theorem 4.3. Assume that µ = w(x1, . . . , xd)µ1 ⊗ . . . ⊗ µd for Borel probability
measures µi on Xi and w(x1, . . . , xd) ∈ L1(X , µ1 ⊗ . . .⊗ µd). Let f(W) be compact
c(u, v) ≥ 0 and the map v 7→ c(u, v) be lower semicontinuous for all u. Then
the best quantization error Cf (n1, . . . , nd) is achievable as Lf (q1, . . . , qd) for some
quantizers q1, . . . , qd.

To prove this result we will introduce the relaxed problem setting, that of random
quantization, show that it has solution, and then show that the same quantization
error can be achieved by usual (non random, or deterministic) quantizers.

4.1. Random quantization. In a random quantization setting we are looking for
sets of ni quantization points {x1

i , . . . , x
ni
i } ⊂ Xi and weight functions p1

i , . . . , p
ni
i

such that for all x ∈ R one has

0 ≤ psii (x) ≤ 1 for all si = 1, . . . , ni,

ni∑
si=1

psii (x) = 1

where i = 1, . . . , d. For brevity we denote

p̄i(·) := (p1
i (·), . . . , p

ni
i (·)), x̄i := (x1

i , . . . , x
ni
i ).

The best random quantization by definition minimizes the error

Lf (p̄1, . . . , p̄d, x̄1, . . . , x̄d)

:=

n1∑
s1=1

. . .

nd∑
sd=1

�
X
ps11 (x1) . . . psdd (xd)c(f(x), f(xs11 , . . . , x

sd
d )) dµ(x).

In other words, we pick ni quantizing points in Xi and we quantize every point
xi in one of x1

i , . . . , x
ni
i with probabilities p1

i (xi), . . . , p
ni
i (xi) independently from

everything else.
Nonrandom quantization problem that we are most interested in corresponds

to the case of random quantization where all the weights except one are zero, i.e.
psii (xi) = δ(xsii , qi(xi)), where δ(a, b) stands for Kronecker symbol.

The following proposition shows that the best error for a random quantization
problem is achievable.
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Proposition 4.4. Assume that µ = w(x1, . . . , xd)µ1⊗. . .⊗µd, for Borel probability
measures µi on Xi and w(x1, . . . , xd) ∈ L1(X , µ1⊗ . . .⊗µd). Let f(W) be compact,
c(u, v) ≥ 0 and the map v 7→ c(u, v) be lower semicontinuous for all u. Then
random quantization functional Lf attains its minimum.

Proof. The proof is divided in two steps.

Step 1. We will further prove that if psii,k
∗
⇀ psii in L∞(Xi, µi) (here

∗
⇀ denotes

weak* convergence) and f(xs11,k, . . . , x
sd
d,k)→ as1,...,sd as k →∞, then

(4.1)

lim inf
k→∞

�
d∏

j=1
Xj

ps11,k(x1) . . . psdd,k(xd)c(f(x), f(xs11,k, . . . , x
sd
d,k))dµ(x)


≥
�

d∏
j=1
Xj

ps11 (x1) . . . psdd (xd)c(f(x), as1,...,sd)dµ(x).

Taking for the moment (4.1) for granted, we deduce from it the lower semicon-
tinuity of Lf . Namely, we show that, denoting

p̄i,k(·) := (p1
i,k(·), . . . , pni

i,k(·)), x̄i,k := (x1
i,k, . . . , x

ni

i,k),

one has

lim inf
k→∞

Lf (p̄1,k, . . . , p̄d,k, x̄1,k, . . . , x̄d,k)

= lim inf
k→∞

n1∑
s1=1

. . .

nd∑
sd=1

�
d∏

j=1
Xj

ps11,k(x1) . . . psdd,k(xd)c(f(x), f(xs11,k, . . . , x
sd
d,k)) dµ(x)


≥

n1∑
s1=1

. . .

nd∑
sd=1

lim inf
k→∞

�
d∏

j=1
Xj

ps11,k(x1) . . . psdd,k(xd)c(f(x), f(xs11,k, . . . , x
sd
d,k)) dµ(x)


≥

n1∑
s1=1

. . .

nd∑
sd=1

�
d∏

j=1
Xj

ps11 (x1) . . . psdd (xd)c(f(x), as1,...,sd)dµ(x)

= Lf (p̄1, . . . , p̄d, x̄1, . . . , x̄d),

where points xsii are such that as1,...,sd = f(xs11 , . . . , x
sd
d ). Note that such points

exist because f(W) is closed, thus limit of values of f on a sequence of lattices is
a value of f on some lattice. To finish the proof it remains to take a minimizing
sequence of p̄1,k, . . . , p̄d,k, x̄1,k, . . . , x̄d,k for Lf , extract convergent subsequences (not

relabeled) such that psii,k
∗
⇀ psii in L∞(Xi, µi), f(xs11,k, . . . , x

sd
d,k)→ as1,...,sd as k →∞

for all i = 1, . . . , d, si = 1, . . . , ni, and apply the inequality above. Note, that a
convergent subsequence can be chosen because a unit ball in L∞(Xi, µi) with weak*
topology is compact and metrizable, while f(W) is assumed to be compact.

Step 2. It remains thus to prove (4.1). To thos aim let us show that

(4.2) ps11,k(x1) . . . psdd,k(xd)
∗
⇀ ps11 (x1) . . . psdd (xd) in L∞(X , µ).

It suffices in fact to check that for φ ∈ L∞(X , µ) one has�
X
ps11,k(x1) . . . psdd,k(xd)φ(x)dµ→

�
X
ps11 (x1) . . . psdd (xd)φ(x)dµ.
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The latter is true, because φ(x)w(x1, . . . , xd) ∈ L1(X , µ1 ⊗ . . .⊗ µd) and

ps11,k(x1) . . . psdd,k(xd)
∗
⇀ ps11 (x1) . . . psdd (xd) in L∞(X , µ1 ⊗ . . .⊗ µd),

thus proving (4.2).
Now, from (4.2) one has that the sequence of measures ps11,k(x1) . . . psdd,k(xd)dµ(x)

converges setwise to the measure ps11 (x1), . . . psdd (xd)dµ(x), because for any Borel
A ⊂ X one has 1A ∈ L1(X , µ), and thus

�
A

ps11,k(x1) . . . psdd,k(xd)dµ(x)→
�
A

ps11 (x1), . . . psdd (xd)dµ(x).

Now, the statement (4.1) follows from the Fatou lemma with varying measures [9,
section 11.4, proposition 17] �

4.2. Existence of nonrandom optimal quantizers. Now we are going to show
that this minimum can be obtained by nonrandom quantizers, and therefore the
best error in nonrandom quantization is also achievable.

Proof of Theorem 4.3: We are going to prove a stronger statement, namely that
although nonrandom quantization is a particular case of random quantization,
the best quantizers are actually nonrandom. For the proof there is no need in
assumptions on µ, f(x), c(u, v), they only appear so that the best quantizers in
random setting exist. Consider the optimum for a random quantization problem
psii (xi), x

si
i , si = 1, . . . , ni, i = 1, . . . , d. We will show that it is achievable by non-

random quantizers. We disintegrate

µ(x1, . . . , xd) = µxi
(x1, . . . , xi−1, xi+1, . . . , xd)⊗ dµXi

(xi),

where µxi are the rspective conditional measures. Among all optimal quantizers
psii , x

si
i pick one with the least number of random quantizers (we name a quantizer

psii , si = 1, . . . , ni non-random, if one of the weights is one and the others are zero),
and show that it is non-random (i.e. the number of random quantizers is zero).
Suppose the contrary. Without loss of generality we may assume that ps1 is not
random. Define

ŝ1(x1) := arg min
s1=1,...,n1

gx1
(s1), where

gx1
(s1) :=�

X2×...×Xd

∑
s2,...,sd

ps22 (x2) . . . psdd (xd)c(f(x), f(xs11 , . . . , x
sd
d ))dµx1(x2, . . . , xd).
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Here and below we abbreviate
∑n1

s1=1 . . .
∑nd

sd=1 as
∑
s1,...,sd

. Denoting xs :=

(xs11 , . . . , x
sd
d ) for brevity, one clearly has

�

X

∑
s1,...,sd

ps11 (x1) . . . psdd (xd)c(f(x), f(xs))dµ(x)

=

�

X1

n1∑
s1=1

ps11 (x1)gx1
(s1) dµX1

(x1)

≥
�

X1

n1∑
s1=1

ps11 (x1)gx1
(ŝ1(x1)) dµX1

(x1) =

�

X1

gx1
(ŝ1(x1)) dµX1

(x1)

=

�

X

∑
s2,...,sd

ps22 (x2) . . . psdd (xd)c(f(x), f(x
ŝ1(x1)
1 , xs22 , . . . , x

sd
d )) dµ(x).

In other words, we transformed random quantizer ps1(x1) into non-random one (cor-

responding to the choice of quantization function q1(x1) = x
ŝ1(x1)
1 ) without increas-

ing the cost. Thus, this is an optimal quantizer with less random quantizers than
before, contradicting the construction. Thus, there were no random quantizers to
begin with, meaning that there is an optimal completely non-random quantization
strategy. �

Remark 4.5. As a byproduct of the above proof we have that the best quantization
error is equal to the best random quantization error.

4.3. Properties of quantizing sets. We prove here a simple property of optimal
quantizers

Lemma 4.6. Let f be bounded, c(u, v) ≥ 0 and c(u, v) = 0 only if u = v, the map
v 7→ c(u, v) be lower semicontinuous for all u, and µ(f−1(λ)) = 0 for all λ ∈ R.
Let qi, i = 1, . . . , d, be quantization maps. Denoting {asii }

ni
si=1 := qi(Xi), set

As+ii (ni) := q−1
i (asii ).

Assuming that Lf (q1, . . . , qd)→ 0 as (n1, . . . , nd)→∞, one has then

max
s1,...,sd

µ(As11 (n1)× . . .×Asdd (nd))→ 0, as n1, . . . , nd →∞.

Proof. If not, there is an ε > 0 and some As11 (n1), . . . , Asdd (nd) with

µ(As11 (n1)× . . .×Asdd (nd)) ≥ ε with si = si(ni).

Note that

Lf (q1, . . . , qd) ≥
�
A

s1
1 (n1)×...×Asd

d (nd)

c(f(x), f(as11 , . . . , a
sd
d )) dµ(x).

Up to a subsequence (not relabeled) one has 1As1
1 (n1)×...×Asd

d (nd) → ϕ in the weak*

sense of L∞(µ) and f(as11 , . . . , a
sd
d )→ λ as (n1, . . . , nd)→∞. Moreover,

�
X
ϕdµ ≥ ε
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and ϕ ≥ 0 µ-a.e. Therefore, again due to the Fatou lemma with varying measures [9,
section 11.4, proposition 17], one has�

X
ϕ(x)c(f(x), λ) dµ(x)

≤ lim inf
(n1,...,nd)→∞

�
X

1As1
1 (n1)×...×Asd

d (nd)(x)c(f(x), f(as11 , . . . , a
sd
d )) dµ(x)

≤ lim inf
(n1,...,nd)→∞

Lf (q1, . . . , qd) = 0.

Since c ≥ 0 this gives �
X
ϕ(x)c(f(x), λ) dµ(x) = 0,

which implies f(x) = λ on the set {ϕ(x) > 0} which has positive measure µ,
contrary to the assumptions. �

5. Optimal quantizers for particular classes of functions

5.1. Characteristic functions of measurable rectangles and their finite
sums. We first consider the case when f is a characteristic function of a measurable
rectangle, i.e. f = 1A1×...×Ad

for Ai ⊂ Xi measurable sets.

Proposition 5.1. If f(x) = 1A1×...×Ad
(x), with measurable Ai ⊂ Xi then for

ni ≥ 2 for all i = 1, . . . , d, one has Cf (n1, . . . , nd) = 0.

Proof. Take a1
i ∈ Ai, a2

i ∈ Xi \Ai and set

qi(xi) :=

{
a1
i , xi ∈ Ai,
a2
i , xi ∈ X \Ai,

�

Now, it is easy to generalize this to the case of f being a finite sum of charac-
teristic functions of measurable rectangles.

Proposition 5.2. If

f(x) =

N∑
j=1

cj1Aj
1
(x1) . . .1Aj

d
(xd),

where Aji ⊂ Xi whatever is Xi, then there is an N̄ such that for ni ≥ N̄ , one has
Cf (n1, . . . , nd) = 0.

Proof. Let us encode each point with the sets containing it. Denote

ei(xi) =
(
1Aj

i
(xi)

)N
j=1

.

By definition the images of ei are binary codes of size N . For every binary code w in
the image ei(X ) pick xwi such that ei(x

w
i ) = w. Consider the following quantization:

qi(xi) = x
ei(x)
i . Then for all x ∈ X ei(xi) = ei(qi(xi)). Therefore from definition of

ei one has

f(x) = f(q1(x1), . . . , qd(xd)).

Consequently, Lf (q1, . . . , qd) = 0 for any cost function c. �

Remark 5.3. Note that in Proposition 5.2
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(1) the measurable rectangles Aj1 × . . .×A
j
d may be intersecting.

(2) in general, one has N̄ = O(2N ) as N → ∞ because it is a total number

of binary strings of length N . Nevertheless, when Xi = R and all Aji are
intervals one has N̄ ≤ 2N .

(3) the statement is constructive, i.e. it provides an algorithm for quantization.

To prove (2) note that N intervals in R divide it into at most 2N parts. Moreover,
all of them, except the union of two rays, are intervals. The encodings ei(Xi) are
constant on these intervals, therefore their images consist of at most 2N elements.

Finally, the reverse statement, that only the finite sum of characteristic functions
of measurable rectangles has zero-quantization cost, is also true to some extent.

Proposition 5.4. Let c ≥ 0 be a Borel function such that c(u, v) = 0 only if u = v.
If Cf (n1, . . . , nd) = 0 and this error is achievable, then there are disjoint measurable
sets Asii ⊂ X , si = 1, . . . , ni, i = 1, . . . , d such that the union ∪s1,...,sdA

s1
1 ×. . .×A

sd
d

covers X up to a µ-negligible set and

(5.1) f(x) =

n1∑
s1=1

. . .

nd∑
sd=1

cs1,...,sd1As1
1

(x1) . . .1Asd
d

(xd)

for some cs1,...,sd ∈ R, whatever are Xi.

Proof. By definition there are q1, . . . , qd such that Lf (q1, . . . , qd) = 0. If qi(Xi) =

{asi}
ni
s=1, set Asi = q−1

i (asi ). One has then

0 = Lf (q1, . . . , qd) =

�
X
c(f(x), f(q1(x1), . . . , qd(xd))) dµ(x)

=

n1∑
s1=1

. . .

nd∑
sd=1

�
A

s1
1 ×...×A

sd
d

c(f(x), f(as11 , . . . , a
sd
d )) dµ(x)

which means that f(x) = f(as11 , . . . , a
sd
d ) for µ - a.e. x ∈ As11 × . . . × A

sd
d . Denote

cs1,...,sd = f(as11 , . . . , a
sd
d ) and get that (5.2) is true. �

We can now apply Theorem 4.3 to get the following statement.

Corollary 5.5. Suppose that µ = wµ1 ⊗ . . . ⊗ µd with Borel probability measures
µi on Xi, w ∈ L1(X , µ1⊗ . . .⊗µd) and c : R×R→ R is nonnegative Borel function
such that the map v 7→ c(u, v) is lower semicontinuous for all u. If, moreover, f is
bounded and c(u, v) = 0 iff u = v, then Cf (n1, . . . , nd) = 0 implies that there are
disjoint measurable sets Asii ⊂ Xi, si = 1, . . . , ni, i = 1, . . . , d such that the union
∪s1,...,sdA

s1
1 × . . .×A

sd
d covers X up to a µ-negligible set and for µ-a.e. x one has

(5.2) f(x) =

n1∑
s1=1

. . .

nd∑
sd=1

cs1,...,sd1As1
1

(x1) . . .1Asd
d

(xd)

for some cs1,...,sd ∈ R.

Proof. Under the assumptions of corollary being proven the zero cost is achievable
by Theorem 4.3 and Proposition 4.1 once one shows that f has a finite number of
values. This would allow us to use Proposition 5.4 to finish the proof. However, this
property cannot be proven for f directly, and therefore we are going to construct
a new function f̃ with a finite set of values, that equals f µ-a.e. and has zero
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quantization cost. To his aim, consider a sequence of quantizers q1,k, . . . , qd,k such
that

0 = lim
k→∞

Lf (q1,k, . . . , qd,k) =

�
X
c(f(x), f(q1,k(x1), . . . , qd,k(xd))) dµ(x)

=

n1∑
s1=1

. . .

nd∑
sd=1

�
A

s1
1,k×...×A

sd
d,k

c(f(x), f(as11,k, . . . , a
sd
d,k)) dµ(x).

Now, by taking a weak* converging subsequence (not relabelled) we obtain that

1As1
1,k×...×A

sd
d,k

∗
⇀ φs1,...,sd in L∞(X , µ) for all si = 1, . . . , ni. Clearly φs1,...,sd(x1, . . . , xd) ∈

[0, 1] µ-a.e. Note that since∑
s1,...,sd

1As1
1,k×...×A

sd
d,k

(x1, . . . , xd) = 1

for all xi ∈ Xi, one has ∑
s1,...,sd

φs1,...,sd(x1, . . . , xd) = 1

for µ-a.e. (x1, . . . , xd). Moreover, consider a subsequence (not relabelled) such that
f(as11,k, . . . , a

sd
d,k) converges to some cs1,...,sd ∈ R. Now, from weak* convergence we

get that the measure 1As1
1,k×...×A

sd
d,k

(x)dµ(x) setwise converges to φs1,...,sd(x)dµ(x).

Thus, by Fatou lemma with varying measures [9, section 4, proposition 17], we get

0 = lim
k→∞

�
A

s1
1,k×...×A

sd
d,k

c(f(x), f(as11,k, . . . , a
sd
d,k)) dµ(x)

≥
�
X
φs1,...,sd(x1, . . . , xd) lim inf

k→∞
c(f(x), f(as11,k, . . . , a

sd
d,k)) dµ(x)

≥
�
X
φs1,...,sd(x1, . . . , xd)c(f(x), cs1,...,sd) dµ(x),

where the last inequality follows from lower semicontinuity of v 7→ c(u, v). Since
integrand of the r.h.s. is non-negative, then

(5.3)

�
X
φs1,...,sd(x1, . . . , xd)c(f(x), cs1,...,sd) dµ(x) = 0.

Thus f(x) = cs1,...,sd µ-a.e. on a set Ds1,...,sd = {φs1,...,sd > 0}. Consequently,

f has a finite number of values µ-a.e. Now, let us construct f̃ with a finite set of
values that has zero-cost and equals f µ-a.e. First of all, take f̃ := f on Ds1,...,sd for
all si and set it to 0 elsewhere. Secondly, take any lattice w = (xs11 , . . . , x

sd
d ), si =

1, . . . , ni and redefine

f̃(xs11 , . . . , x
sd
d ) := cs1,...,sd .

We claim that Cf̃ (n1, . . . , nd) = 0. Define q̃i,k : Xi → Xi, i = 1 . . . , d by setting

q̃i,k(x) := xsii , if x ∈ A
si
i,k, si = 1, . . . , ni.

In other words, we leave quantizing sets the same as for f , but instead of taking
f(as11,k, . . . , a

sd
d,k) as values, we take cs1,...,sd . Clearly, from weak* convergence of
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1As1
1,k×...×A

sd
d,k

⇀ φs1,...,sd in L∞(X , µ), one has

lim
k→∞

�
A

s1
1,k×...×A

sd
d,k

c(f̃(x), f̃(xs11 , . . . , x
sd
d ))dµ(x)

= lim
k→∞

�
A

s1
1,k×...×A

sd
d,k

c(f̃(x), cs1,...,sd)dµ(x)

=

�
X
φs1,...,sd(x1, . . . , xd)c(f̃(x), cs1,...,sd) dµ(x)

=

�
X
φs1,...,sd(x1, . . . , xd)c(f(x), cs1,...,sd) dµ(x) since f̃ = f µ-a.e.

= 0, by (5.3),

which proves Cf̃ (n1, . . . , nd) = 0. Consequently, by Proposition 4.1 and Theo-

rem 4.3 we get that the best quantization error is achievable for f̃ . Thus, the claim
follows from Proposition 5.4 for f̃ , and thus also for f because f = f̃ µ-a.e. �

5.2. Characteristic functions of “nice” planar sets. In this subsection we
estimate the quantization cost for f being a characteristic function of some suffi-
ciently nice planar set K, i.e. f = 1K : R× R→ R. Without loss of generality we
suppose K ⊂ [0, 1]2. Let µ be the standard Lebesgue measure µ = L2x[0, 1]2 and
wlog c(1, 0) = c(0, 1) = 1.

Theorem 5.6. Let f be a characteristic function f(x, y) = 1K(x, y) for an open
K ⊂ [0, 1]2, standard Lebesgue measure µ = L2x[0, 1]2 and cost c(1, 0) = c(0, 1) = 1.
Then

(i) if K has a piecewise smooth topological boundary, one has

Cf (n1, n2) ≤
√

2P (K)(1 + o(1))

min(n1, n2)
, as n1, n2 →∞,

the upper bound being achieved by uniform quantization.
(ii) if, moreover, K is convex different from a rectangle, one has

Cf (n1, n2) ≥ c(1 + o(1))

min(n1, n2)
, as n1, n2 →∞,where c depends only on K.

Remark 5.7. For a fixed total number of points N = n1 + n2 it is clear that
c1
N
≤ Cf (N) ≤ c2

N
, as N →∞

for some positive constants c1 and C2.

Proof. Step 1. The upper bound holds for a uniform quantization, i.e.

qi(xi) :=
bnixic
ni

+
1

2ni
.

This way we have a lattice with n1n2 small rectangles of area n−1
1 n−1

2 with different
quantizing points each. Clearly, only the ones that intersect ∂K add value to the
error. All such rectangles belong to (∂K)ε – the ε-neighbourhood of ∂K with

ε :=
√

2 max(n−1
1 , n−1

2 ). But for a K with a piecewise smooth boundary

lim
ε→0

1

ε
L2((∂K)ε) = P (K).
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Hence, the total area of such rectangles is bounded by

L2((∂K)ε) = εP (K)+o(ε) =

√
2P (K)

min(n1, n2)
+o

(
1

min(n1, n2)

)
, as min(n1, n2)→∞.

Since the quantization cost is bounded by the total area of these rectangles, we get
the claim (i).

Step 2. To prove the lower bound we reformulate the statement in the following
way. Without loss of generality we assume that n1 ≤ n2. Consider the quantizing
sets of q1 and q2, Aj , j = 1, . . . , n1 and B̃k, k = 1, . . . , n2 respectively. For each

j = 1, . . . , n1 we take Kj = {k ∈ 1, . . . , n2 : f(q1(Aj), q2(B̃k)) = 1} and construct

Bj :=
⋃
k∈Kj

B̃k.

In other words, f(q1(x), q2(y)) = 1, if and only if (x, y) ∈ ∪n1
j=1(Aj ×Bj). Our next

step is to show that one has

(5.4) L2

K4 n1⋃
j=1

(Aj ×Bj)

 ≥ c(1 + o(1))

n1
, as n1 →∞.

Note that this is exactly the lower bound we want, since the symmetric difference
L2(K4

⋃n1

j=1(Aj×Bj)) is the set where f(x, y) 6= f(q1(x), q2(y)), thus it contributes
its measure to the total error.

Consider a smooth part of the ∂K where all the outward normal vectors have
nonzero coordinates. Denote its natural parametrization as θ(t). Denote lengths

of its x and y projections as P̃x and P̃y. By choosing the directions of coordinate
axes appropriately, we may assume that all the coordinates of the considered nor-
mal vectors are strictly positive, i.e. they look in the north-east direction. For
some constant C that we specify later, consider a polygonal line of k = Cn1 seg-
ments that are tangent to the chosen part of ∂K in its points of differentiability
and have x-projections of the same length. Construct k right triangles with their
vertices at the right angle inside K by using segments of this polygonal line as hy-
pothenuses. Enumerate all the triangles such that their y-coordinate is increasing
and x-coordinate is decreasing. Let Xi, Yi be the projections of cathetes of the i-th
triangle on x and y axes. Define

Px =

k∑
i=1

|Xi| = k|X1|, Py =

k∑
i=1

|Yi|.

Clearly, Px = (1+o(1))P̃x, and Py = (1+o(1))P̃y as n1 →∞. Denote (νi,
√

1− ν2
i )

the unit outward normal vector to ∂K in the tangency point of ∂K and the hy-
pothenuses of the i-th triangle. Then

|Yi| =
|Xi|νi√
1− ν2

i

,

consequently,

Py =

k∑
i=1

|Yi| = |X1|
k∑
i=1

νi√
1− ν2

i

.
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Denote

ρ̄1 :=

(√
1− ν2

1

ν1k

k∑
i=1

νi√
1− ν2

i

)−1

, ρ̄2 =

√
1− ν2

k

νkk

k∑
i=1

νi√
1− ν2

i

.

Note that

1

k

k∑
i=1

νi√
1− ν2

i

=
1

k|X|1

k∑
i=1

νi
√
|Xi|2 + |Yi|2,

and thus for ` denoting the length of θ one has

ρ̄1 → ρ1 :=

(
1

P̃x

θ̇(0)x

θ̇(0)y

�
θ

θ̇y

)−1

, ρ̄2 → ρ2 :=
1

P̃x

θ̇(`)x

θ̇(`)y

�
θ

θ̇y, as n1 →∞.

From definition of ρ1 and ρ2 we have

ρ̄−1
1 max

i
|Yi| ≤

Py
k
≤ ρ̄2 min

i
|Yi|,

hence

(5.5) (1 + o(1))ρ−1
1 max

i
|Yi| ≤

Py
k
≤ (1 + o(1))ρ2 min

i
|Yi|, as n1 →∞.

Now we can clarify the choice of C, namely we set C := 4ρ1, i.e. k = 4ρ1n1.

In what follows we prove that the inequality (5.4) holds with c :=
P̃xP̃y

16ρ1(2ρ1ρ2+1) .

In order to prove this, we will show that the following claim.

Claim 5.8. For c :=
P̃xP̃y

16ρ1(2ρ1ρ2+1) the set ∪n1
j=1(Aj×Bj) either does not cover area

of at least (1+o(1))cn−1
1 inside considered triangles, or covers at least (1+o(1))cn−1

1

outside of K, as n1 →∞.

The inequality (5.4) follows from Claim 5.8 because the area of triangles outside

ofK is asymptotically smaller than total area of triangles, i.e. it is o(
∑k
i=1 |Xi||Yi|) =

o(|X1|
∑k
i=1 |Yi|) = o(PxPy/k) = o(n−1

1 ), which is asymptotically negligible for (5.4).
Thus Claim 5.8 concludes the proof.

Step 3. It remains to prove Claim 5.8. To this aim, denote aji := |Aj ∩Xi|/|Xi|
and bji := |Bj∩Yi|/|Yi|. Clearly aji , b

j
i ∈ [0, 1]. We now make the following estimates.

(i) The area that Aj ×Bj covers inside of the union of triangles is not greater
than

(5.6)

k∑
i=1

aji b
j
i |Xi||Yi| ≤ (1 + o(1))k−2ρ1PxPy

k∑
i=1

aji b
j
i .

This is because Aj×Bj covers at most (Aj∩Xi)×(Bj∩Yi) inside of the i-th

triangle. Thus, it covers area of at most aji b
j
i |Xi||Yi| inside i-th triangle.

Now we sum up over all triangles. The estimate on the r.h.s. follows from
the equality |Xi| = Px/k and the inequality (5.5).

(ii) The area that Aj ×Bj covers outside of K is not smaller than
(5.7)
k−1∑
i=1

aji |Xi|(bji+1|Yi+1|+ . . .+ bjk|Yk|) ≥ (1+o(1))k−2ρ−1
2 PxPy

k−1∑
i=1

aji (b
j
i+1 + . . .+ bjk).
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This is because the set ∪h≥1((Aj ∩Xi)× (Bj ∩ Yi+h)) lies outside of K (so
does the union of rectangles ∪h≥1Xi×Yi+h due to the fact that considered
curve θ is a graph of a monotone function x2 = x2(x1)) and its area is the
l.h.s.. The estimate on the r.h.s. follows from the equality |Xi| = Px/k and
the inequality (5.5).

By Lemma A.1 one has

(5.8)

k−1∑
i=1

aji (b
j
i+1 + . . .+ bjk) ≥ 1

2

k∑
i=1

aji b
j
i −

1

2
.

The whole area of all the triangles is
∑k
i=1 |Xi||Yi|/2 = PxPy/(2k) since all the |Xi|

are equal. Let

λ :=
4ρ1ρ2 + 1

4ρ1ρ2 + 2
.

If at least (1− λ)-portion of the total area of triangles is not covered by
∪n1
j=1(Aj ×Bj), Claim 5.8 immediately follows since

(1− λ)PxPy/(2k) =
PxPy

(8ρ1ρ2 + 4)k
=

PxPy
16ρ1(2ρ1ρ2 + 1)n1

=
(1 + o(1))c

n1
.

Therefore, it remains to consider the case when at least λ portion of the total
area of triangles is covered by ∪n1

j=1(Aj × Bj), that is the covered area is at least

λPxPy/(2k). From claim (i) above and (5.6) we get

(5.9) k−2ρ1PxPy

n1∑
j=1

k∑
i=1

aji b
j
i ≥ (1 + o(1))λPxPy/(2k).

Thus, one has

(5.10)

PxPy
k2ρ2

n1∑
j=1

k−1∑
i=1

aji (b
j
i+1 + . . .+ bjk)

≥ PxPy
2k2ρ2

n1∑
j=1

k∑
i=1

aji b
j
i −

n1PxPy
2k2ρ2

by (5.8)

≥ (1 + o(1))
λPxPy
4ρ1ρ2k

− n1PxPy
2k2ρ2

by (5.9)

=
(1 + o(1))PxPy

16ρ1(2ρ1ρ2 + 1)n1
by definitions of λ and k

=
(1 + o(1))c

n1
.

But claim (ii) and (5.7) implies that ∪n!
j=1(Aj × Bj) covers outside of K the area

at least

(1 + o(1))
PxPy
k2ρ2

n1∑
j=1

k−1∑
i=1

aji (b
j
i+1 + . . .+ bjk),

hence, by (5.10), at least (1+o(1))c/n1, which concludes the proof of Claim 5.8. �

The careful inspection of Step 2 and Step 3 of the proof of the above Theorem 5.6
provides the following curious corollary for the case when K ⊂ R2 is a right-angled
triangle with catheti parallel to the coordinate axes.
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Corollary 5.9. For a characteristic function of a right-angled triangle with sides
Px, Py the quantizing error is bounded from below

Cf (n1, n2) ≥ (1 + o(1))PxPy
48 min(n1, n2)

, as min(n1, n2)→∞.

Proof. In terms of the above proof of Theorem 5.6 one can explicitly calculate
ρ1 = ρ2 = 1, and, therefore, c = (16(2ρ1ρ2 + 1))−1 = 1/48 . �

5.3. Linear functions. For the case when f is a linear function we are able to
calculate exactly the quantization cost for a fairly large class of cost functions c.

Theorem 5.10. Let f(x) :=
∑d
i=1 wixi with wi 6= 0 for all i = 1, . . . , d, and

c(u, v) := p(|u − v|), where t 7→ p(t) is convex and strictly increasing for t ≥ 0,
while µ := Ldx[0, 1]d. Then

Cf (n) =

∣∣∣∣∣ 1∏d
i=1 wi

� w1/2

−w1/2

. . .

� wd/2

−wd/2

p

(∣∣∣∣∣
d∑
i=1

xi/ni

∣∣∣∣∣
)
dxd . . . dx1

∣∣∣∣∣ .
Moreover, the best quantization functions are uniform, i.e. for x ∈ [0, 1]d take

qi(xi) =
bnixic
ni

+
1

2ni
.

Proof. The absolute value in the formula for Cf is to cover the case of negative
coefficients, but in the proof it is convenient to consider all wi > 0, i = 1, . . . , d. To
see that this restriction does not lose generality, note that linearity of f allows us to
shift the defining measure Ldx[0, 1]d to Ldx[−1/2, 1/2]d. This translation changes
f up to a constant, but an additive constant gets canceled in f(x)− f(q(x)). Now,
when we work in a symmetrical region, for a negative wi one can change xi → −xi
and wi → −wi. The function f and the measure µ do not change, i.e. the error
remains the same. Therefore, we work with the case all wi > 0, i = 1, . . . , d.

Let Ãsii , si = 1, . . . , ni denote the level sets of qi, i = 1, . . . , d with ãisi := qi(Ã
si
i ).

Denote for brevity s = (s1, . . . , sd), cs := f(q1(ãs11 ), . . . , qd(ã
sd
d )). Then

Cf (n1, . . . , nd) =
∑

s1,...,sd

�
Ã

s1
1 ×...×Ã

sd
d

p

(∣∣∣∣∣
d∑
i=1

wix̃i − cs

∣∣∣∣∣
)
dx̃(5.11)

=
∑

s1,...,sd

1∏d
i=1 wi

�
A

s1
1 ×...×A

sd
d

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dx,

where Asii := wiÃ
si
i . Note that ∪ni

si=1A
si
i = [0, wi]. Let us write a single error term

in the above sum in the following way

�
A

s1
1 ×...×A

sd
d

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dx =

�
A

s1
1

G(x1) dx1,

where

G(x1) :=

�
A

s2
2 ×...×A

sd
d

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dxd . . . dx2.

We consider G to be defined on the whole real line. Note, that all the functions

x1 7→ p(|
∑d
i=1 xi − cs|) are convex, implying that the function G is also convex.
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In addition, G extended to the whole real line is not monotone, since assuming an
extension p(+∞) = +∞ we get G(−∞) = +∞ and G(+∞) = +∞. Therefore, for
the extreme point α of G the function G decreases up to α and increases after.

Now, consider the following transformation of As11 into an interval of the same
measure. Denote as11 := L1(As11 )/2. Take t ∈ R such that α−t = L1(As11 ∩(−∞, α)).
We will prove that

(5.12)

�
A

s1
1

G(x1) dx1 ≥
� t+2a

s1
1

t

G(x1) dx1.

To this aim we rewrite (5.12) as
(5.13)� ∞

0

L1({x1 ∈ As11 : G(x1) > r}) dr ≥
� ∞

0

L1({x1 ∈ [t, t+ 2as11 ] : G(x1) > r}) dr.

To prove (5.13) it suffices to show that for all r ≥ 0 one has

L1({x1 ∈ As11 : G(x1) > r}) ≥ L1({x1 ∈ [t, t+ 2as11 ] : G(x1) > r}).

Since L1(As11 ) = 2as11 = L1([t, t+2as11 ]) it is enough to prove the opposite, i.e. that

(5.14) L1({x1 ∈ As11 : G(x1) ≤ r}) ≤ L1({x1 ∈ [t, t+ 2as11 ] : G(x1) ≤ r}).

Clearly, it is enough to consider r ≥ G(α). Then the condition G(x1) ≤ r can be
reformulated as x1 ∈ [u, v] with u ≤ α ≤ v, because G is convex (the endpoints
of the interval might not be included, but it does not affect the measure anyway).
Now (5.14) would follow once one shows that for any u ≤ α ≤ v one has

(5.15)
L1(As11 ∩ [u, α]) ≤ L1([max(t, u), α]) = min(α− t, α− u),

L1(As11 ∩ [α, v]) ≤ L1([α,min(t+ 2as11 , v)]) = min(t+ 2as11 − α, v − α).

By definition L1(As11 ∩ [−∞, α]) = α − t, which proves the first inequality. The
second one follows from L1(As11 ∩ [α,+∞)) = t+ 2as11 − α. This finishes the proof
of (5.14) hence (5.13) hence (5.12).

After that, similarly, one by one we transform all the other sets Asii into intervals
in a way that decreases the error term. As a result, we get that for some ti ∈ R
one has

�
A

s1
1 ×...×A

sd
d

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dx ≥

� t1+2a
s1
1

t1

. . .

� td+2a
sd
d

td

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dx.

Performing a linear change of variables, we write the latter integral as

(5.16)

� a
s1
1

−as11
. . .

� a
sd
d

−asdd
p

(∣∣∣∣∣
d∑
i=1

xi − c

∣∣∣∣∣
)
dx,

with a new constant c := cs −
∑d
i=1(ti + asii ). In order to get rid of c we use the

following simple lemma.

Lemma 5.11. Let Z be a centrally symmetric real random variable and t 7→ p(|t|)
be a convex function with minimum at zero. Then

min
c∈R

E p(|Z − c|) = E p(|Z|).
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Proof. The function c 7→ E p(|Z − c|) is convex, because for a fixed z the function
c 7→ p(|z − c|) is convex. Moreover it is centrally symmetric, because so is Z, i.e.

E p(|Z − c|) = E p(| − Z − c|) = E p(|Z + c|).

Clearly, any centrally symmetric convex function has its minimum at zero. �

The distribution of Z1 + . . .+Zd for a vector (Z1, . . . , Zd) uniformly distributed
on [−as11 , a

s1
1 ] × . . . × [−asdd , a

sd
d ] is symmetric with respect to zero. Therefore, by

Lemma 5.11 the integral (5.16) is minimal when c is zero. Note that c = 0 gives

cs =
∑d
i=1(ti + asii ). Putting all together, we obtain the inequality

�
A

s1
1 ×...×A

sd
d

p

(∣∣∣∣∣
d∑
i=1

xi − cs

∣∣∣∣∣
)
dx ≥

� a
s1
1

−as11
. . .

� a
sd
d

−asdd
p

(∣∣∣∣∣
d∑
i=1

xi

∣∣∣∣∣
)
dx.

Then, using this estimate for all the terms in the initial formula (5.11) for a quan-
tization error, we get following lower bound

Cf (n1, . . . , nd) ≥
1∏d

i=1 wi

∑
s1,...,sd

� a
s1
1

−as11
. . .

� a
sd
d

−asdd
p

(∣∣∣∣∣
d∑
i=1

xi

∣∣∣∣∣
)
dx,

where for all i = 1, . . . , d one has
∑ni

si=1 a
si
i = wi/2, since Asii , si = 1, . . . , ni cover

[0, wi] and this sum is half the measure of their union. Now, to finish the proof,
we have to find the minimum of the right hand side with respect to all asii . This is
provided by Lemma A.4, which implies that

Cf (n1, . . . , nd) ≥
∏d
i=1 ni∏d
i=1 wi

� w1
2n1

− w1
2n1

. . .

� wd
2nd

− wd
2nd

p

(∣∣∣∣∣
d∑
i=1

xi

∣∣∣∣∣
)
dx.

The latter becomes the claimed lower bound after a linear change of variables
yi := nixi.

To prove the second part of the statement, it remains to verify that this error is
achieved for a uniform quantization, i.e. for

qi(xi) :=
bnixic
ni

+
1

2ni
.

Note that linearity of the function implies that the error is the same on all the
rectangles of the form

∏
i[
ki
ni
, ki+1
ni

] where ki = 0, . . . , ni−1. Therefore, it is sufficient

to check that for one rectangle
∏
i[0,

1
ni

] the error term is equal to∣∣∣∣∣ 1∏d
i=1 niwi

� w1/2

−w1/2

. . .

� wd/2

−wd/2

p

(∣∣∣∣∣
d∑
i=1

xi/ni

∣∣∣∣∣
)
dxd . . . dx1

∣∣∣∣∣ .
At the same time, by definition this term is

� 1
n1

0

. . .

� 1
nd

0

p

(∣∣∣∣∣
d∑
i=1

wixi −
d∑
i=1

wi
2ni

∣∣∣∣∣
)
dx.

A linear change of variables yi := wi(nixi − 1/2) comcludes the proof. �

One might wonder what is the best quantizing error when the total number of
points in the grid n1n2 . . . nd is fixed. The next remark answers this question, its
proof is postponed to the Appendix A.
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A standard example of a cost function is the power of the euclidean distance. In
this case, the error can be calculated explicitly.

Remark 5.12. For a linear function f(x) =
∑d
i=1 wixi, cost c(u, v) = |u−v|γ , γ ≥ 1

and Lebesgue measure µ(x) = Ldx[0, 1]d Theorem 5.10 gives the exact error

Cf =

∏d
i=1 niw

−1
i

2γ+dγ(γ + 1) . . . (γ + d− 1)

∑
ε1=±1

. . .
∑
εd=±1

d∏
i=1

εi

∣∣∣∣∣
d∑
i=1

εiwi
ni

∣∣∣∣∣
γ+d

.

Remark 5.13. Under conditions of Remark 5.12, when N = n1 + n2 + . . . + nd is
fixed, one can show that the best possible quantizing error has the following order

min
n1,...,nd:

∑
i ni=N

Cf ∼ C/Nγ ,

with C = C(w1, . . . , wd) > 0.

5.4. Lower bounds for monotone functions. The approach we used for a linear
function works in a slightly more general case, but gives only a lower bound.

Theorem 5.14. Let f(x1, . . . , xd) be monotone in each coordinate and satisfy
|f(x1, . . . , xi + ∆i, . . . , xd) − f(x1, . . . , xd)| ≥ wi∆i for all ∆i > 0, i = 1, . . . , d
and some fixed positive wi. In addition, c(u, v) = p(|u − v|) for an increasing
function t 7→ p(t), t ≥ 0 and µ = Ldx[0, 1]d. Then

Cf (n1, . . . , nd) ≥
1∏d

i=1 wi

� w1
2

0

. . .

� wd
2

0

p

(∣∣∣∣∣
d∑
i=1

xi/ni

∣∣∣∣∣
)
dx.

Proof. First of all, f is not required to be increasing in each coordinate, similarly
to the linear case, where negativity of coefficients does not affect the result. To see
this, one can use translation to work with Ldx[−1/2, 1/2]d instead of Ldx[0, 1]d and
then change sign of all coordinates along which f is decreasing, obtaining a new
function that is increasing in each coordinate.

Let Asii , si = 1 . . . , ni denote the level sets of qi, i = 1, . . . , d. Denote an output
on one quantizing value as cs := f(q1(As11 ), . . . , qd(A

sd
d )). Then

Cf (n1, . . . , nd) =
∑

s1,...,sd

�
A

s1
1 ×...×A

sd
d

p(|f(x)− cs1,...,sd |) dx.

Denote As := As11 × . . . × A
sd
d for brevity. Let us estimate one term of the sum

as follows. Denote centers of mass of Asii as αi respectively. Consider the case
f(α1, . . . , αd) > cs, the opposite one is completely analogous. Since f is increasing
in each coordinate, one has f(x1, . . . , xd) > f(α1, . . . , αd) > cs when all xi > αi
(for the opposite case take all xi < αi). Then, from monotonicity of p(·) we obtain

�
As

p(|f(x)− cs|) dx ≥
� ∞
α1

. . .

� ∞
αd

1As(x)p(|f(x)− f(α1, . . . , αd)|) dx

From the assumptions on f the r.h.s is not less than

� ∞
α1

. . .

� ∞
αd

1As(x)p

(∣∣∣∣∣
d∑
i=1

wi(xi − αi)

∣∣∣∣∣
)
dx.



20 TAO GUO, NIKITA KARAGODIN, AND EUGENE STEPANOV

For asii := |Asii |/2, since αi is a center of mass of Asii , this integral is not less than

� α1+a
s1
1

α1

. . .

� αd+a
sd
d

αd

p

(∣∣∣∣∣
d∑
i=1

wi(xi − αi)

∣∣∣∣∣
)
dx =

� a
s1
1

0

. . .

� a
sd
d

0

p

(∣∣∣∣∣
d∑
i=1

wixi

∣∣∣∣∣
)
dx.

By definition, Asii , si = 1, . . . , ni cover [0, 1], thus
∑ni

si=1 a
si
i = 1/2. Combining this

for all terms in Cf we get a lower bound

Cf (n1, . . . , nd) ≥ min
a
si
i :

∑ni
si=1 a

si
i =1/2

∑
s1,...,sd

� a
s1
1

0

. . .

� a
sd
d

0

p

(∣∣∣∣∣
d∑
i=1

wixi

∣∣∣∣∣
)
dx.

It remains to show the the right hand side attains its minimum for asii = 1
2ni

. The
proof of this bound is based on the same idea, as the proof of Lemma A.4, i.e. uses
the Lagrange condition, but it is easier because all the variables are positive now.
It remains to prove that∑
s1,...,sd

� a
s1
1

0

. . .

� a
sd
d

0

p

(∣∣∣∣∣
d∑
i=1

wixi

∣∣∣∣∣
)
dx ≥

d∏
i=1

ni

� 1
2n1

0

. . .

� 1
2nd

0

p

(∣∣∣∣∣
d∑
i=1

wixi

∣∣∣∣∣
)
dx,

because after a linear change of variables yi = winixi the latter integral becomes
exactly what we need, namely

1∏d
i=1 wi

� w1
2

0

. . .

� wd
2

0

p

(∣∣∣∣∣
d∑
i=1

yi/ni

∣∣∣∣∣
)
dy.

Clearly, the r.h.s. is decreasing in ni. Now, we use a standard argument. Take
n1, . . . , nd with the smallest sum, such that for them there is a point contradicting
the inequality. Since the condition

∑ni

si=1 a
si
i = 1/2, asii ≥ 0 describes a compact

and the difference between l.h.s. and r.h.s. is continuous w.r.t. asii , this difference
attains its minimum at some point, clearly that minimum being less than zero. At
this point all asii are strictly positive, otherwise one could get rid of zero values, as
this would only increase right hand side due to its monotonicity in ni, but would
not change the left hand side. Then we would obtain a contradictory configuration
with smaller sum of ni. When all the variables are strictly positive, one can apply
Lagrange conditions and get that for any fixed i = 1, . . . , d all the partial derivatives
with respect to asii , si = 1, . . . , ni are the same. The derivative with respect to as11

is
n2∑
s2=1

. . .

nd∑
sd=1

� a
s2
2

0

. . .

� a
sd
d

0

p

(∣∣∣∣∣w1a
s1
1 +

d∑
i=2

wixi

∣∣∣∣∣
)
dxd . . . dx2.

It is monotone in as11 , i.e. Lagrange condition implies a1
1 = . . . = an1

1 . Similarly,
we get a1

i = . . . = ani
i for all i = 1, . . . , d. Note that this is exactly the point of

equality.
�

Remark 5.15. Using this lower bound for a linear function f we would get a result
worse than the exact error in Theorem 5.10, but it loses only by a factor not greater
than 2d. On the other hand, the restrictions in Theorem 5.10 are stronger, because
the function t 7→ p(|t|) is convex and f is linear.

The following easy statement is also worth mentioning.
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Proposition 5.16. For any function f and nonnegative cost c and two measures
µ ≤ ν, in the sense that for any Borel set B one has µ(B) ≤ ν(B), it is true that

Cf,c,µ(n1, . . . , nd) ≤ Cf,c,ν(n1, . . . , nd).

Proof. For any quantization functions q1, q2 one has

Lf,c,µ(q1, . . . , qd) =

�
c(f(x), f(q1(x1), . . . , qd(xd))) dµ(x)

≤
�
c(f(x), f(q1(x1), . . . , qd(xd))) dν(x) = Lf,c,ν(q1, . . . , qd).

By passing to the infimum over all q1, . . . , qd we finish the proof. �

This immediately implies the following corollary,

Corollary 5.17. Let f and c be as in Theorem 5.10. If for some rectangle R =
[a1, a1 + r1]× . . .× [ad, ad + rd] one has the inequality µ ≤ C1R Ld, it is true that

Cf,c,µ ≤

∣∣∣∣∣ C∏
i wiri

� w1r1/2

−w1r1/2

. . .

� wdrd/2

−wdrd/2

p

(∣∣∣∣∣∑
i

xi/ni

∣∣∣∣∣
)
dx

∣∣∣∣∣ .
If for some rectangle R′ = [a1, a1 + r′1] × . . . × [ad, ad + r′d] one has µ ≥ c1R′ Ld,
then

Cf,c,µ ≥

∣∣∣∣∣ c∏
i wir

′
i

� w1r
′
1/2

−w1r′1/2

. . .

� wdr
′
d/2

−wdr′d/2

p

(∣∣∣∣∣∑
i

xi/ni

∣∣∣∣∣
)
dx

∣∣∣∣∣
In particular, for a cost function c(u, v) = |u − v|γ , γ ≥ 1, if N = n1 + . . . + nd is
fixed and µ� Ld with bounded l.s.c. density and compact support, then

c

Nγ
≤ Cf,c,µ ≤

C

Nγ

for some c > 0, C > 0 depending on the data.

Proof. Note that due to Proposition 5.16 for the upper estimate it is enough to
prove the same upper bound for the measure CLdxR. Since f is linear we can
change the variables yi = (xi − ai)/ri, where y ∈ [0, 1]d. Then f(x) :=

∑
i wixi =∑

wiriyi + const = f̃(y) for a linear function f̃ . The cost c(u, v) is translation

invariant, thus the constant in f̃ can be omited. Finally, the loss Lf,µ(q1, . . . , qd) is
clearly linear in µ, therefore we can use Theorem 5.10 to obtain claimed estimate.
The lower estimate is completely analogous and the last statement follows from the
Remark 5.13. �

5.5. Quadratic cost. For the quadratic cost c(u, v) := |u− v|2 we are able to say
slightly more.

Theorem 5.18. Let f(x) =
∑d
i=1 φi(xi), where all φi have convex image and

c(u, v) := |u−v|2. Let Xi be independent with law(Xi) = νi, so that the joint law is
µ = ⊗iνi. Then one can choose the best quantization functions qi(xi) independently
from each other, minimizing E |φi(Xi)−φi(qi(Xi))|2 respectively. The error is then
the sum of separate errors, i.e.

Cf (n1, . . . , nd) =

d∑
i=1

Cφi,c,νi(ni)
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Proof. Let Asii , si = 1, . . . , ni denote the level sets of qi respectively and asii :=
qi(A

si
i ). Denote q := (q1, . . . , qd) for brevity. Then, for cs := f(q1(as11 ), . . . , qd(a

sd
d ))),

by definition one has

Lf (q) =
∑

s1,...,sd

�
A

sd
d

. . .

�
A

s1
1

(
d∑
i=1

φi(xi)− cs

)2

dν1(x1) . . . dνd(xd).

Consider one term of this sum. Define a random vector

(Xs1
1 , . . . , Xsd

d ) = (X|X ∈ As11 × . . .×A
sd
d ) ∼ ⊗i

(
1Asi

i
(xi)

νi(xi)

νi(A
si
i )

)
.

The integral can be expressed as

�
A

s1
1 ×...×A

sd
d

(
d∑
i=1

φi(xi)− cs

)2

dµ(x) =
d∏
i=1

νi(A
si
i )E

( d∑
i=1

φi(X
si
i )− cs

)2
 .

It is well-known (one can show it by taking the derivative with respect to c), that
this expectation is at minimum for

cs = E

[
d∑
i=1

φi(X
si
i )

]
=

d∑
i=1

E [φi(X
si
i )]

and the minimum value is exactly

min
cs∈R

E

( d∑
i=1

φi(X
si
i )− cs

)2
 = Var

[
d∑
i=1

φi(X
si
i )

]
=

d∑
i=1

Var [φi(X
si
i )] ,

because the variables Xsi
i are independent. Consequently, we obtain a lower bound

Lf (q) ≥
∑

s1,...,sd

(
d∏
i=1

νi(A
si
i )

d∑
i=1

Var [φi(X
si
i )]

)
=

d∑
i=1

ni∑
si=1

νi(A
si
i )Varφi(X

si
i ),

and the equality is achieved for the right choice of cs, namely cs =
∑
i=1 Eφi(X

si
i ).

Recall that by definiton cs =
∑
i=1 φi(a

si
i ). It is possible to pick asii ∈ φ

−1
i (Eφ(Xsi

i )),
because all φi have convex image. Therefore, for fixed level sets Asii and the best
choice of qi(a

si
i ) for such Asii we get

Lf (q) =

d∑
i=1

ni∑
si=1

νi(A
si
i )Varφi(X

si
i ).

What is convenient here, is that different quantizers are completely separated,
reducing the problem to a classical quantization.

More precisely, one term of this sum is exactly a classical quantization error for
the same choice of qi(xi)

ni∑
si=1

νi(A
si
i )Varφi(X

si
i ) = Lφi,c,νi(qi).

This follows from exactly the same argument that we used to obtain this sum in
the first place. Therefore, one can pick the best quantizers minimizing their own
errors. �
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5.6. Further examples of functions. The above theorem can be combined with
the following statement (of immediate proof) to provide a lot of examples for the
asymptotic behaviour of costs.

Lemma 5.19. Let g : R→ R satisfy the estimate

c(x, y) ≤ c(g(x), g(y)) ≤ c̄(x, y)

for all x, y ∈ f(suppµ). Then

Cf,c(n1, n2) ≤ Cg◦f,c(n1, n2) ≤ Cf,c̄(n1, n2).

Corollary 5.20. Let c(u, v) = p(|u − v|) for an increasing function p(t), t ≥ 0
and µ = Ldx[0, 1]d. Let f(x) = g(〈w, x〉). Assuming that for some function s the
function t 7→ (p ◦ s)(t), t ≥ 0 is convex increasing and |g(a)− g(b)| ≤ s(|a− b|), a, b
in the range of x 7→ 〈w, x〉, one has

Cf (n1, . . . , nd) ≤

∣∣∣∣∣ 1∏
i wi

� w1/2

−w1/2

. . .

� wd/2

−wd/2

(p ◦ s)

(∣∣∣∣∣∑
i

xi/ni

∣∣∣∣∣
)
dx

∣∣∣∣∣
Assuming that for some convex function r it is true that (p ◦ s)(t), t ≥ 0 is convex
increasing and |g(a)− g(b)| ≥ r(|a− b|), a, b in the range of x 7→ 〈w, x〉, one has

Cf (n1, . . . , nd) ≥

∣∣∣∣∣ 1∏
i wi

� w1/2

−w1/2

. . .

� wd/2

−wd/2

(p ◦ r)

(∣∣∣∣∣∑
i

xi/ni

∣∣∣∣∣
)
dx

∣∣∣∣∣ .
Proof. Both inequalities immediately follow from Lemma 5.19 and Theorem 5.10.

�

Remark 5.21. Let f(x) = g(〈w, x〉), where g is α-Hölder with a constant C, c(u, v) =
|u− v|γ , γ ≥ 1/α, and µ := Ldx[0, 1]d. Then

Cf (n1, . . . , nd)

≤
Cγ
∏
i niw

−1
i

2αγ+dαγ(αγ + 1) . . . (αγ + d− 1)

∑
ε1=±1

. . .
∑
εd=±1

d∏
i=1

εi

∣∣∣∣∑ εiwi
ni

∣∣∣∣αγ+d

.

If instead |g(a)− g(b)| ≥ c|a− b|α, {a, b} in the range of x 7→ 〈w, x〉, then

Cf (n1, . . . , nd)

≥
cγ
∏
i niw

−1
i

2αγ+dαγ(αγ + 1) . . . (αγ + d− 1)

∑
ε1=±1

. . .
∑
εd=±1

d∏
i=1

εi

∣∣∣∣∑ εiwi
ni

∣∣∣∣αγ+d

.

Proof. If g is α-Hölder with a constant C, then c(g(x), g(y)) = |g(x) − g(y)|γ ≤
Cγ |x−y|αγ . Therefore, by using Lemma 5.19 and Remark 5.12 we obtain the upper
bound inequality. Analogously, when |g(a)− g(b)| ≥ c|a− b|α, {a, b} in the range of
x 7→ 〈w, x〉, then c(g(x), g(y)) = |g(x)− g(y)|γ ≥ cγ |x− y|αγ ., and hence the lower
bound inequality follows again by combining Lemma 5.19 and Remark 5.12. �

Corollary 5.22. Let f(x) = g(
∑
i φi(xi)), while Xi are independent with the joint

law ⊗iνi. If and c(g(a), g(b)) ≤ |a− b|2, then

Cf (n1, . . . , nd) ≤
d∑
i=1

C2,φi,νi(ni).
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If c(g(a), g(b)) ≥ |a− b|2, then

Cf (n1, . . . , nd) ≥
d∑
i=1

C2,φi,νi(ni).

Remark 5.23. Let f(x) = g(
∑
i φi(xi)) and c(u, v) = |u − v|γ , while the joint law

of Xi is ⊗iνi. If g is 2/γ-Hölder with a constant R, then

Cf (n1, . . . , nd) ≤ R ·
d∑
i=1

C2,φi,νi(ni).

If |g(a)− g(b)| ≥ r|a− b|2/γ , then

Cf (n1, . . . , nd) ≥ r ·
d∑
i=1

C2,φi,νi(ni).

The next statement demonstrates how one can estimate the error by using general
results listed here. For simplicity of calculations, consider d = 2.

Remark 5.24. Let f(x, y) = φ(x) + ψ(y) and consider the cost function c(u, v) =
|1− u/v|2 which arizes frequently in engineering practice. Assume the joint law of
X and Y be µ⊗ ν supported on [a1, a2]× [b1, b2], with a1 > 0 and b1 > 0. Assume
that f(x, y) > δ > 0 on a support of µ⊗ ν (so that our cost function does not tend
to infinity inside the area we are working with). Then, as n1, n2 →∞ one has

Cf (n1, n2) ≤ 1 + o(1)

a1 + b1
(C2,φ#µ(n1) + C2,ψ#ν(n2))

and for some constant c

Cf (n1, n2) ≥ c(C2,φ#µ(n1) + C2,ψ#ν(n2)).

Proof. Note that as u/v → 1 one has c(u, v) = |1−u/v|2 ∼ | lnu−ln v|2. Quantizing

f with a cost function | lnu − ln v|2 is the same as quantizing f̃(x, y) = ln(φ(x) +
ψ(y)) with c̃(u, v) = |u − v|2 while the joint law of X and Y is µ ⊗ ν. Then the
previous remarks provide us with inequalities

Cf̃ (n1, n2) ≤ 1

a1 + b1
(C2,φ#µ(n1) + C2,ψ#ν(n2))

and

Cf̃ (n1, n2) ≥ 1

a2 + b2
(C2,φ#µ(n1) + C2,ψ#ν(n2)).

It remains to check how good the approximation |1 − u/v|2 ∼ | lnu − ln v|2 is.
First of all, for an upper bound we use a uniform quantization, therefore the ratio
f(x, y)/f(q1(x), q2(y)) tends to 1 uniformly over all x, y in this case. That is why
the approximation is good enough for an upper bound. Now let us assume that
we can achieve a better quantizing error, i.e. there is a sequence of quantizers
q1, q2 = q1(n1, n2), q2(n1, n2) with an error Lf (q1, q2) better that the one we claim.
Lemma 4.6 implies that the maximum measure of level sets of quantizers tends to
zero, as n1, n2 →∞. The actual lower bound can be written in the following way.
We divide all the points (x, y) ∈ [a1, a2]× [b1, b2] into two classes Sε and Bε, where
Sε = {(x, y) : |1 − f(q1(x), q2(y))/f(x, y)| < ε} and Bε = [a1, a2] × [b1, b2] \ Sε.
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To calculate the error divide the integral into 2 parts integrating over Sε and Bε
respectively. The latter integral is trivially bounded from below, thus we get

Lf (q1, q2) ≥
�
Sε

|1− f(q1(x), q2(y))/f(x, y)|2µ(dx)⊗ ν(dy) + ε2µ⊗ ν(Bε).

Now since our error is asymptotically better than C2,φ#µ(n1) +C2,ψ#ν(n2) one can
pick ε = ε(n1, n2)→ 0 so slowly, as n1, n2 →∞, such that inevitably µ⊗ ν(Bε) =
o(C2,φ#µ(n1) +C2,ψ#ν(n2), because ε2ν⊗µ(Bε) = O(Lf (q1, q2)) = o(C2,φ#µ(n1) +
C2,ψ#ν(n2)). Thus almost the whole measure is concentrated in Sε and in Sε one has

f(q1(x), q2(y))/f(x, y) uniformly close to 1, i.e. the cost |1− u/v|2 ∼ | lnu− ln v|2
there. Thereby, as n1, n2 →∞�

Sε

|1− f(q1(x), q2(y))/f(x, y)|2µ(dx)⊗ ν(dy)

≥
�
Sε

| ln f(q1(x), q2(y))− ln f(x, y)|2(1− ε)µ(dx)⊗ ν(dy)

∼
�
Sε∪Bε

| ln f(q1(x), q2(y))− ln f(x, y)|2µ(dx)⊗ ν(dy).

The last part is due to the fact that ε → 0 and that since the integrable func-
tion is uniformly bounded and the for the measure we know that µ ⊗ ν(Bε) =
o(C2,φ#µ(n1) + C2,ψ#ν(n2)) we obtain
�
Bε

| ln f(q1(x), q2(y))− ln f(x, y)|2µ(dx)⊗ ν(dy) = o(C2,φ#µ(n1) + C2,ψ#ν(n2)).

On the other hand�
Sε∪Bε

| ln f(q1(x), q2(y))− ln f(x, y)|2µ(dx)⊗ ν(dy) � C2,φ#µ(n1) + C2,ψ#ν(n2).

Thus the equivalence for the cost is good enough for the lower bound too, i.e. there
is no asymptotically better quantization possible for |1 − u/v|2 rather than one
considered for | lnu− ln v|2. �

Example 5.25. Let f(x, y) = (x + y)2, c(u, v) = |u − v|2, while the joint law of X
and Y is µ× ν in a rectangle [a1, a2]× [b1, b2]. Then

Cf (n1, n2) ≤ 2(max(|a1|, |a2|) + max(|b1|, |b2|))(C2,x#µ(n1) + C2,y#ν(n2))

and if a1 ≥ 0, b1 ≥ 0 and they are not 0 simultaneously, one has

Cf (n1, n2) ≥ 2(a1 + b1)(C2,x#µ(n1) + C2,y#ν(n2))

Proof. This example immediately follows from Remark 5.23. Here g(t) = t2, i.e.
g′(t) = 2t, thereby g is a Lipschitz function with a constant 2(max(|a1|, |a2|) +
max(|b1|, b2)) and the first claim is true. Additionally, if a1 ≥ 0, b1 ≥ 0 it is true
that |g(t)− g(s)| ≥ 2(a1 + b1)|t− s| for all t, s ∈ [a1 + b1, a2 + b2] and consequently
the second claim is true. �

6. General upper estimate for Sobolev functions

Assume that Xi are random vectors in Xi = Rki , i = 1, . . . , d. Set k :=
∑
i ki.
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Lemma 6.1. Let Ai ⊂ Xi be open rectangles and f ∈ C1(Ā1× . . .× Ād). Then for
γ ≥ 1 it is true that�
A1×...×Ad

|f(x)−f(a)|γ dx ≤ Ckdiam (A1×. . .×Ad)γLk(A1×. . .×Ad)M∗|∇f |γ(a),

where M∗ stands for the uncentered maximal function.

Proof. We denote for brevity Ω = A1 × . . .×Ad and D := diam (Ω) and write

f(x)− f(a) =

� 1

0

d

dt
f(tx+ (1− t)a) dt,

so that �
Ω

|f(x)− f(a)|γ dx ≤
�

Ω

dx

∣∣∣∣� 1

0

d

dt
f(tx+ (1− t)a) dt

∣∣∣∣γ
≤
�

Ω

dx

� 1

0

∣∣∣∣ ddtf(tx+ (1− t)a)

∣∣∣∣γ dt
≤ Dγ

�
Ω

dx

� 1

0

|∇f |γ (tx+ (1− t)a) dt

= Dγ

� 1

0

dt

td

�
(1−t)a+tΩ

|∇f |γ (w) dw

= Dγ

� 1

0

dt

td
tdLc(Ω)

 
(1−t)a+tΩ

|∇f |γ (w) dw

≤ DγLc(Ω)M∗|∇f |γ(a)

as claimed. �

Theorem 6.2. Let Ai ⊂ Xi be open cubes of sidelength ri, Ω := A1 × . . . × Ad,
f ∈ W 1,p(Ω), p ≥ γ. If µ � dx with density ϕ ∈ L∞(Rk) has compact support
suppϕ ⊂ Ω, while c(u, v) = |u− v|γ , then
(6.1)

Cf (n1, . . . , nd) ≤ Ck‖ϕ‖∞‖M∗|∇f |γ‖1 max
i

(rin
−1/ki
i )γ + o

(
max
i

(rin
−1/ki
i )γ

)
as n1, . . . , nd →∞, where M∗ stands for the uncentered maximal function.

Moreover, if p > γ, then
(6.2)

Cf (n1, . . . , nd) ≤ Ck,p‖ϕ‖∞‖∇f‖γp max
i

(rin
−1/ki
i )γ + o

(
max
i

(rin
−1/ki
i )γ

)
.

Proof. We approximate f ∈ W 1,p(Ω) by fk ∈ C1(Ω̄) converging in Sobolev norm,
and in particular with limk fk(y) = f(y) and limkM

∗|∇fk|γ(y) = M∗|∇f |γ(y) for
a.e. y ∈ Ω, i.e. for all y ∈ Ω \N with Lc(N) = 0.

It is enough to prove the statement for n
1/ki
i ∈ Z, i = 1, . . . , d, otherwise one

could take mi = bn1/ki
i cdi with m

1/ki
i ≤ n

1/ki
i ≤ 2m

1/ki
i . Then the inequalities for

mi combined with

Cf (n1, . . . , nd) ≤ Cf (m) and max
i

(rim
−1/ki
i ) ≤ 2 max

i
(rin

−1/ki
i )

would imply the estimate for any ni with a constant multiplied by 2γ .



OPTIMAL FUNCTIONAL PRODUCT QUANTIZATION 27

Divide each Ai into ni rectangles A1
i , . . . , A

n1
i and take as11 ∈ A

s1
1 , . . . , a

sd
d ∈ A

sd
d ,

such that (as11 , . . . , a
sd
d ) 6∈ N for all si = 1, . . . , ni, i = 1, . . . , d. Define then qi by

setting

qi(x) := asii whenever x ∈ Asii .

Denote As := As11 × . . . × A
sd
d and as := (as11 , . . . , a

sd
d ). Recalling that Lemma 6.1

implies
�
As

|fk(x)− fk(as)|γ dx ≤ Ckdiam (As)γLk(As)M∗|∇fk|γ(as).

Summing up these inequalities, we get
(6.3)�

Ω

|fk(x)− fk(q1(x1), . . . , qd(xd))|γ dx ≤ Ck max
i

(
rin
−1/ki
i

)γ
∆(fk,Ω, n1, . . . , nd),

where ∆(fk,Ω, n1, . . . , nd) :=
∑

s1,...,sd

Lk(As)M∗|∇fk|γ(as).

Passing to the limit as k →∞ in (6.3), one arrives by Fatou’s lemma at
(6.4)�

Ω

|f(x)− f(q1(x1), . . . , qd(xd))|γ dx ≤ lim inf
k

�
Ω

|fk(x)− fk(q1(x1), . . . , qd(xd))|γ dx

≤ Ck max max
i

(
rin
−1/ki
i

)γ
∆(f,Ω, n1, . . . , nd).

Since M∗|∇f |γ is continuous, one has

∆(f,Ω, n1, . . . , nd)→
�

Ω

M∗|∇f |γ(x) dx

as (n1, . . . , nd)→∞, and hence (6.4) gives
(6.5)

Cf (n1, . . . , nd) ≤
�

Ω

|f(x)− f(q1(x1), . . . , qd(xd))|γ dµ(x)

≤ ‖ϕ‖∞
�

Ω

|f(x)− f(q1(x1), . . . , qd(xd))|γ dx

≤ Ck‖ϕ‖∞‖M∗|∇f |γ‖1 max
i

(
rin
−1/ki
i

)γ
+ o

(
max
i

(
rin
−1/ki
i

)γ)
as (n1, . . . , nd) → ∞, which is (6.1) In particular, if p > γ, then estimating
‖M∗|∇f |γ‖1 by Hardy-Littlewood theorem, we get (6.2). �

Remark 6.3. When N = n1 + . . .+ nd is fixed, the upper estimate is minimum at

ni =
Nrkii∑
i r
ki
i

,

hence providing the following estimates for Cf (N) = min∑
ni=N Cf (n1, . . . , nd)

Cf (N) ≤ Ck‖φ‖∞‖M∗|∇f |γ‖1 max
i

(∑
i r
ki
i

N

)γ/ki
+ o

max
i

(∑
i r
ki
i

N

)γ/ki ,
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as N →∞. Moreover, for p > γ

Cf (N) ≤ Ck,p‖φ‖∞‖∇f‖γp max
i

(∑
i r
ki
i

N

)γ/ki
+ o

max
i

(∑
i r
ki
i

N

)γ/ki .

Appendix A. Auxiliary statements

Here we collect some auxiliary statements used in proofs of results in the main
body of the paper.

Lemma A.1. For any k ≥ 1, ai, bi ∈ [0, 1] one has

k−1∑
i=1

ai(bi+1 + . . .+ bk) ≥ 1

2

k∑
i=1

aibi −
1

2
.

Proof. This inequality is linear in all variables, therefore it is enough to prove it for
ai, bi ∈ {0, 1}. If ai = 0, then there is no bi in the right hand side but there is bi
with a nonnegative coefficient in the left hand side, thus it is enough to prove the
statement for bi = 0. Similarly, if bi = 0, it is enough to prove the statement for
ai = 0. Therefore, we can omit all the pairs of zeros and check the same inequality
where all the variables are equal to one. It remains to note that for any k′ it is true
that

k′−1∑
i=1

(k′ − i) =
k′2 − k′

2
≥ 1

2
k′ − 1

2
,

implying the inequality, where k′ is the number of pairs such that ai = bi = 1. �

Lemma A.2. For a convex and strictly increasing on [0,+∞) function p(·) and a
fixed t0 the function t 7→ p(|t0 + t|) + p(|t0 − t|) is

(i) non-decreasing on [0,+∞),
(ii) and, in addition, strictly increasing on [|t0|,+∞).

Proof. First, without loss of generality, by symmetry, we might assume t0 ≥ 0. We
want to show that for any a > b ≥ 0 one has

p(|t0 + a|) + p(|t0 − a|) ≥ p(|t0 + b|) + p(|t0 − b|).

By convexity of t 7→ p(|t|) one has

a+ b

2a
p(|t0 + a|) +

a− b
2a

p(|t0 − a|) ≥ p
(∣∣∣∣a+ b

2a
(t0 + a) +

a− b
2a

(t0 − a)

∣∣∣∣)
= p(|t0 + b|),

a− b
2a

p(|t0 + a|) +
a+ b

2a
p(|t0 − a|) ≥ p

(∣∣∣∣a− b2a
(t0 + a) +

a+ b

2a
(t0 − a)

∣∣∣∣)
= p(|t0 − b|).

It remains to sum these two inequalities to get the claim (i).
For t ≥ t0 the function becomes t 7→ p(t0 + t) + p(t − t0) and thus it is strictly

increasing because so is p(·), proving the claim (ii). �
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Lemma A.3. For a convex and strictly increasing on [0,+∞) function p(·) and
fixed x2, . . . , xd the function

x1 7→ (Tp)(x1, . . . , xd) :=
∑
ε1=±1

. . .
∑
εd=±1

p

(∣∣∣∣∣
d∑
i=1

εixi

∣∣∣∣∣
)

is

(i) non-decreasing on [0,+∞)
(ii) and, moreover, strictly increasing on [|x2|+ . . .+ |xd|,+∞).

Proof. By definition one has

(Tp)(x1, . . . , xd) =
∑
ε2=±1

. . .
∑
εd=±1

(
p

(∣∣∣∣∣
d∑
i=2

εixi + x1

∣∣∣∣∣
)

+ p

(∣∣∣∣∣
d∑
i=2

εixi − x1

∣∣∣∣∣
))

.

Then, Lemma A.2 implies that each term of this sum is non-decreasing as a function

of x1 on [0,+∞) and strictly increasing as a function of x1 on [|
∑d
i=2 εixi|,+∞).

Then both claims immediately follow, since
∑d
i=2 |xi| ≥ |

∑d
i=2 εixi|. �

Lemma A.4. For any n1, . . . , nd ∈ N and asii ≥ 0, si = 1, . . . , ni, i = 1, . . . , d such
that

∑ni

si=1 a
si
i = wi/2 for any i = 1, . . . , d, one has

(A.1)∑
s1,...,sd

� a
s1
1

−as11
. . .

� a
sd
d

−asdd
p

(∣∣∣∣∣
d∑
i=1

xi

∣∣∣∣∣
)
dx ≥

d∏
i=1

ni

� w1
2n1

− w1
2n1

. . .

� wd
2nd

− wd
2nd

p

(∣∣∣∣∣
d∑
i=1

xi

∣∣∣∣∣
)
dx.

Proof. We divide the proof in two steps.
Step 1. We first show that the right hand side of (A.1) is non-increasing with

respect to ni. Set

(A.2) (Tp)(x1, . . . , xd) :=
∑
ε1=±1

∑
ε2=±1

. . .
∑
εd=±1

p

(∣∣∣∣∣
d∑
i=1

εixi

∣∣∣∣∣
)

Note, that the integral in the right-hand side of (A.1) can be rewritten in the
following form � ω1/2

0

. . .

� ωd/2

0

(Tp)(x1/n1, . . . , xd/nd) dx.

The inner function is non-increasing in ni due to Lemma A.3. Therefore, the
integral is also non-increasing in ni.

Step 2. We now prove the claim of the lemma. Assuming that there is a set
of numbers ((asii )), si = 1, . . . , ni, i = 1, . . . , d for which inequality (A.1) fails, take
the one with minimal n1 + . . .+ nd. We will show that one can change a1

1, . . . , a
n1
1

to be equal and inequality (A.1) would still fail. By doing similar change for all
i = 1, . . . , d, we would then obtain that inequality (A.1) must fail when for all
i = 1, . . . , d one has a1

i = . . . = ani
i .

To show that a1
1, . . . , a

1
n1

can be set equal, consider the left hand side as a function

F of (a1
1, . . . , a

n1
1 ) on a compact set {(a1

1, . . . , a
n1
1 ) : as11 ≥ 0, G(a1

1, . . . , a
n1
1 ) = 0},

where G(a1
1, . . . , a

n1
1 ) :=

∑n1

s1=1 a
s1
1 − w1/2. Since F is continuous in as11 , s1 =

1, . . . , n1 it attains its minimum at some point (ãs11 ), s1 = 1, . . . , n1 for which also
(A.1) fails. If some of the ãs11 were 0, we could remove it from the set (ãs11 ), s1 =
1, . . . , n1, obtaining a set of variables not satisfying (A.1) with a smaller sum n1 +
. . . + nd, because the right hand side is decreasing with respect to n1. Therefore,
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(ãs11 ), s1 = 1, . . . , n1 belongs to a relative interior point of a compact set we are
working with. Thus, method of Lagrange multipliers provides us with the following
equations on (ãs11 ): for some scalar λ and σ that are not 0 at the same time

λ · ∇F (ã1
1, . . . , ã

n1
1 ) = σ · ∇G(ã1

1, . . . , ã
n1
1 ) = σ · (1, 1, . . . , 1).

Note that λ 6= 0, otherwise we would get σ = 0 too. Thus, for all s1 = 1, . . . , n1 all
the derivatives

∂F

∂as11

(ã1
1, . . . , ã

n1
1 )

are equal. Note that the function F can be written as

F (ã1
1, . . . , ã

n1
1 ) =

∑
s1,...,sd

� ã
s1
1

0

� a
s2
2

0

. . .

� a
sd
d

0

(Tp)(y1, . . . , yd) dyd . . . dy1.

Therefore,

∂F

∂as11

(ã1
1, . . . , ã

n1
1 ) =

n2∑
s2=1

. . .

nd∑
sd=1

� a
s2
2

0

. . .

� a
sd
d

0

(Tp)(ãs11 , y2, . . . , yd) dyd . . . dy2.

Let us show that the integral is strictly increasing as a function of ãs11 > 0. First
of all, due to Lemma A.3 an integrand is non-decreasing. In addition, when y2 +
. . .+ yd < ãs11 the integrand is strictly increasing again by Lemma A.3. Therefore,
the whole integral is also strictly increasing.

Now, equality of partial derivatives implies that for any s1 = 1, . . . , n1 one has

n2∑
s2=1

. . .

nd∑
sd=1

� a
s2
2

0

. . .

� a
sd
d

0

(Tp)(ãs11 , y2, . . . , yd) dyd . . . dy2

=

n2∑
s2=1

. . .

nd∑
sd=1

� a
s2
2

0

. . .

� a
sd
d

0

(Tp)(ã1
1, y2, . . . , yd) dyd . . . dy2.

Hence ã1
1 = ãs11 , i.e. ã1

1 = . . . = ãn1
1 . Now, applying the same argument to all

(a1
i , . . . , a

ni
i ), i = 1, . . . , d one by one we get that the inequality (A.1) has to be

false for the point where a1
i = . . . = ani

i = wi/(2ni), i = 1, . . . , d (the latter equality
is due to the fact that

∑
si
asii = wi/2). But this is exactly the point where equality

holds in (A.1) . �
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