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IN NON-EUCLIDEAN SETTINGS
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Abstract. We introduce a new space of generalized functions of bounded deforma-
tion GBDF , made of functions u whose one-dimensional slices u(γ) · γ̇ have bounded
variation in a generalized sense for all curves γ solution of the second order ODE
γ̈ = F (γ, γ̇) for a fixed field F . For u ∈ GBDF we study the structure of the jump
set in connection with its slices and prove the existence of a curvilinear approximate
symmetric gradient. With a particular choice of F in terms of the Christoffel symbols
of a Riemannian manifold M, we are able to define and recover similar properties for
a space of 1-forms on M which have generalized bounded deformation in a suitable
sense.

1. Introduction

In the last decades the study of Free Discontinuity functionals has lead to the de-
velopment of different notions of functions with bounded variation. We recall here the
original BV and BD spaces [7, 8, 44] and the unifying approach [9, 39] of functions of
bounded A-variation BV A. In a more applied framework, the spaces GBV and GBD
have been introduced in [8, 20] to supply to the lack of integrability of the field u
and of the jump [u] with respect to the (n− 1)-dimensional Hausdorff measure Hn−1

restricted to the jump set Ju. The spaces GBD and GSBD, in particular, have found
applications in the study of functionals of the form∫

Ω
|e(u)|2 dx+Hn−1(Ju) , (1.1)

where e(u) denotes the approximate symmetric gradient of u. In this respect, we
mention results on compactness and lower semicontinuity [5, 12, 16, 15, 27, 30, 43],
Ambrosio-Tortorelli approximations [11, 13, 14, 23, 33], dimension reduction, homoge-
nization, atomistic derivation, and nonlocal approximations [1, 3, 6, 10, 26, 28, 31, 38,
40, 41, 42], linearization in elasticity [2, 24, 25], and modeling of fracture, epitaxially
strained films, and stress-driven rearragnement instabilities [19, 22, 29, 34].

The common feature of the above mentioned works is that the underlying ambient
space is of euclidean type. Nevertheless, there are number of interesting applications in
which the reference configuration is represented by a Riemannian manifold (M, g). For
instance, when deriving model of brittle fractures on linearly elastic shells embedded
in R3 via dimension reduction, the limiting energy and function spaces have to take
into account the geometry of the shell. This was noticed, e.g., in [1, 36] where the
limit displacements are expressed in curvilinear coordinates, hinging on the fact that
one still has a control of the full gradient displacements. However, in the linear elastic
case, the lack of a control on the full gradient requires the definition of an intrinsic
BD-like space which is sensible of the geometry of the reference manifold. Indeed,
the classical approach to study the structure of BD-functions in Rn relies on slicing
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techniques, where the vector fields are restricted to and projected onto lines, which
are the geodesics of Rn. The equivalent procedure on M consists in replacing lines
with the geodesics given by the metric g. Furthermore, following the approach in [17],
differently from the euclidean case in which displacements are modelled as vector fields,
it is more convenient to use the representation as one-forms ω on M. This leads us
to a local description of ω in terms of a vector field u in Rn whose entries are its
contravariant components. If ω is smooth, its symmetric gradient writes in curvilinear
coordinates as the matrix [17, Section 1.2]

(E(u))ij =
1

2
(∂iuj + ∂jui)−

n∑
`=1

Γ`iju` i, j = 1, . . . , n , (1.2)

where ∂i denotes the derivative with respect to xi and Γ`ij are the Christoffel symbols.
Moreover if γ is a geodesic of M expressed in coordinates, for t ∈ R it holds true

d

dτ

∣∣∣
τ=t

u(γ(τ)) · γ̇(τ) = ∇u(γ(t))γ̇(t) · γ̇(t)−
n∑

`,i,j=1

Γ`ij(γ(t))u`(γ(t))γ̇i(t)γ̇j(t) (1.3)

= Eu(γ(t))γ̇(t) · γ̇(t) ,

where the first equality follows from the geodesics equation γ̈` = −
∑n

i,j=1 Γ`ij(γ)γ̇iγ̇j .

Motivated by (1.3) and [20], we consider a space of functions whose one-dimensional
slices t 7→ u(γ(t)) · γ̇(t) have bounded variation when computed on solutions γ of suit-
able second order ODEs. More precisely, we fix a smooth field F : Rn×Rn → Rn which
is a quadratic form in the second variable (cf. (F.1)) and a class of curvilinear projec-
tions (Pξ)ξ∈Sn−1 from Ω to ξ⊥ satisfying the transversality condition of Definition 2.9

(see also [32, Definition 2.4]) and whose level sets P−1
ξ (y) are the images of the map

t 7→ ϕξ(y + tξ) solution of γ̈ = F (γ, γ̇). Moreover, for E ⊆ Ω, u : Ω → Rn, ξ ∈ Sn−1,

and y ∈ ξ⊥ we define the slices

Eξy := {t ∈ R : ϕξ(y + tξ) ∈ E} ,

ûξy(t) := u(ϕξ(y + tξ)) · ϕ̇ξ(y + tξ) for t ∈ Ωξ
y . (1.4)

Then, we say that a measurable function u : Ω → Rn belongs to GBDF (Ω) if there
exists a positive bounded Radon measure λ on Ω such that for every ξ ∈ Sn−1, for

Hn−1-a.e. y ∈ ξ⊥ we have that ûξy ∈ BVloc(Ωξ
y) and∫

ξ⊥
|D(τ(ûξy))|(Ωξ

y) dHn−1(y) ≤ ‖ϕ̇ξ‖∞ Lip(Pξ)
n−1λ(Ω) , (1.5)

whenever τ ∈ C1(R) is such that −1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1. We refer to Section 4
for the precise definition. We remark that if F = 0 and the family (Pξ)ξ∈Sn−1 is the

family of orthogonal projections πξ : Rn → ξ⊥, the space GBDF (Ω) coincides with the
space GBD(Ω) introduced in [20].

By means of the space GBDF (Ω), with the choice

F`(x, ζ) = −
n∑

i,j=1

Γ`ij(x)ζiζj for ` = 1, . . . , n, x ∈ Ω, and ζ ∈ Rn, (1.6)

it is possible to define an intrinsic space of measurable one-forms on M having gener-
alised bounded deformation, which we denote by GBD(M). We refer for all details to
Sections 3 and 4.4.

In this paper we mainly focus on the structure of the jump set in relation with one
dimensional slices (1.4) and on the existence of an approximate symmetric gradient.
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In this regard we make use of the recent result [21] ensuring that the jump set of any
measurable function is countably (n − 1)-rectifiable. However, it is of fundamental
importance to establish a precise relation between the slices of the jump set and the
jump sets of the slices. In this regard, the non-linear nature of our setting leads to
a crucial point, which is the lack of symmetry required to exploit the parallelogram
law [7] (see also [20, Formula 7.1] and [9, Proposition 4.4]) and the possibility to
perform codimension-one slicing on which the BD and BV A theories hinge. In order
to overcome this difficulty we have to make a stronger assumption on the field F .
Namely, we suppose F to satisfy a condition which we call Rigid Interpolation (RI).
Such a condition requires a (local) control on the L∞-norm of the curvilinear symmetric
gradient, seen as an operator acting on smooth vector fields, in terms of a discrete semi-
norm defined on the vertices of n-dimensional simplexes of Rn (see (4.3)). Appealing to
the general slicing criterion developed in [4] we combine Lemma 6.8 to guarantee that,
given a family of curvilinear projections (Pξ)ξ∈Sn−1 , the jump set of u ∈ GBDF (Ω)

can be sliced by means of the jump sets of the one dimensional restrictions ûξy (see
Theorem 6.6). In addition, since the choice of the field F dictated by (1.6) does satisfy
the Rigid Interpolation property, the above mentioned result obtained in the GBDF -
context can be easily transferred to the Riemannian case GBD(M) (see Theorem 6.16).

Eventually, we prove in Theorem 6.9 that every u ∈ GBDF (Ω) admits a.e. in Ω
an approximate symmetric gradient ẽ(u) ∈ Mn

sym, where Mn
sym denotes the space of

symmetric matrices of order n. In this setting, we notice that ẽ(u) is not integrable
in Ω. Nevertheless, we may define a “curvilinear” approximate symmetric gradient
e(u) : Ω→Mn

sym as

e(u)(x)ζ · ζ := ẽ(u)(x)ζ · ζ − u(x) · F (x, ζ) for a.e. x ∈ Ω and every ζ ∈ Rn.

Then, it turns out that e(u) ∈ L1(Ω;Mn
sym), which is consistent with (1.2). Fur-

thermore, e(u) can be reconstructed by means of the approximate gradients of the
one-dimensional slices: for Hn−1-a.e. ξ ∈ Sn−1 it holds

∇ûξy(t) = (e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y.

In regards to the Riemmanian case, the existence of a curvilinear approximate sym-
metric gradient in the GBDF -context can be used to prove that every one form
ω ∈ GBD(M) admits an approximate symmetric gradient e(ω)(p) in the sense of (2.3)
for a.e. p ∈ M. We refer to Theorem 6.17 for the relevant properties of e(ω).

Outlook. In this paper we have introduced a new notion of functions with generalized
bounded deformation by working on one-dimensional slices that are solutions of a
second order ODE driven by a smooth field F . In particular, we have shown that,
with a suitable choice of F , this leads to the definition of a space of functions with
generalized bounded deformation on a Riemannian manifold M. Possible applications
of such space may be found in the modeling of brittle fracture in Riemannian setting
(see, e.g., [1, 17, 35]). For instance, Griffith’s energy (1.1) on M is well defined in terms
of the space GBD(M) and writes in the following form∫

M
|e(ω)|2 dHn +Hn−1(Jω),

where Jω denotes the jump set of ω (see Definition 2.5).
In the setting of dimension reduction problems for thin structures, such as the

shallow shell [18, 37] Sρ := {(x′, ρθ(x′)) : x′ ∈ U} for ρ > 0, U ⊆ R2 open bounded set
with Lipschitz boundary, and θ ∈ C∞(U), one is led to study the Γ-limit as ρ→ 0 of
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the energy functional∫
U×(−1,1)

Cρeρ(u) · eρ(u) dx+

∫
Ju

φρ(νu) dHn−1 . (1.7)

In (1.7), Cρ is a suitably rescaled elasticity tensor, φρ is a positive definite quadratic
form smoothly dependent on ρ and θ, and eρ is of the form

eαβ,ρ(u) =
1

2
(∂αuβ + ∂βuα)− upΓpαβ(ρ) ,

eα3,ρ(u) =
1

ρ

(1

2
(∂3uα + ∂αu3)− uσΓσα3(ρ)

)
,

e33,ρ(u) =
1

ρ2
∂3u3 ,

where the (rescaled) Christoffel symbols Γpij(ρ) behave as

Γσαβ(ρ) = O(ρ2) ,

Γ3
αβ(ρ) = −

∂2
αβθ√

1 + ρ2|∇θ|2
+O(ρ) ,

Γσα3(ρ) = O(ρ2) .

As ρ→ 0 we obtain the formal limit∫
U×(−1,1)

Ĉe(u) ·E(u) dx+

∫
Ju

φ(νu) dHn−1 ,

where Ĉ and φ are limit of Cρ and of φρ, respectively, while the displacement u belongs
to the space GSBDF (U × (−1, 1)) for the choice

F1(x, ζ) = F2(x, ζ) = 0 , F3(x, ζ) = −∇2θ ζ · ζ for x ∈ U × (−1, 1) and ζ ∈ R3.

Problems such as compactness and lower-semicontinuity inGBD(M) and inGBDF (Ω),
the rigorous computation of the Γ-limit of (1.7), as well as the applications to more
general reduction problems for brittle linearly elastic shells will be the subjects of
future investigations.

Plan of the paper. In Sections 3 and 4 we give the main assumptions of the paper
and present the notions of the space GBD(M) of functions of generalized bounded de-
formation on a Riemannian manifold M and of GBDF (Ω), respectively. In particular,
we show in Section 4.4 that the two spaces are equivalent on every chart (U,ψ) of M .
Section 5 contains a number of technical results that will be used in Section 6 in the
study of the structure of GBDF (Ω) and of GBD(M).

2. Preliminaries and notation

2.1. Basic notation. For n, k ∈ N, we denote by Ln and by Hk the Lebesgue and
the k-dimensional Hausdorff measure in Rn, respectively. The symbol Mn×n stands
for the space of square matrices of order n with real coefficients, while Mn×n

sym denotes
its subspace of symmetric matrices. The set {ei}ni=1 denotes the canonical basis of Rn
and | · | is the Euclidean norm on Rn. For every ξ ∈ Rn, the map πξ : Rn → Rn is
the orthogonal projection over the hyperplane orthogonal to ξ, which will be indicated
by ξ⊥. For x ∈ Rn and ρ > 0, Bρ(x) stands for the open ball of radius ρ and center x
in Rn. For every A ⊆ Rn × Sn−1, every ξ ∈ Sn−1, and every x ∈ Rn we will denote

Aξ := {(x ∈ Rn : (x, ξ) ∈ A} Ax := {ξ ∈ Sn−1 : (x, ξ) ∈ A} .
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We report the definitions of countably rectifiable set in Rn.

Definition 2.1 (Countably rectifiable set). We say that a set R ⊆ Ω is countably
(n−1)-rectifiable if and only if R equals a countable union of images of Lipschitz maps
(fi)i from some bounded sets Ei ⊂ Rn−1 to Ω.

Given Uj a sequence of open subsets of Rn, Ω open subset of Rn, and fj ∈ C∞(Uj ;Rk),
we say that fj → f in C∞loc(Ω;Rk) if f ∈ C∞(Ω;Rk), Uj ↗ Ω, and fj → f in C∞(W ;Rk)
for every W b Ω. We recall the definition of jump set of a measurable function.

Definition 2.2. Let Ω be an open subset of Rn and let u : Ω → Rm be measurable.
We say that x ∈ Ω belongs to Ju if and only if there exists (u+(x), u−(x), ν(x)) ∈
Rm × Rm × Sn−1 such that

ap- lim
z→x

±(z−x)·ν(x)>0

u(z) = u±(x).

We further recall the definition of approximate symmetric gradient of a measurable
function.

Definition 2.3 (Approximate symmetric gradient). A measurable function u : Ω→ Rn
admits an approximate symmetric gradient at x ∈ Ω if there exists ẽ(u)(x) ∈ Mn×n

sym

such that

ap- lim
z→x

|(u(z)− u(x)) · (z − x)− ẽ(u)(x)(z − x) · (z − x)|
|z − x|2

= 0. (2.1)

Notice that the approximate symmetric gradient, if it exists, is unique by for-
mula (2.1).

Given a metric space (X, dX),Mb(X) (resp.M+
b (X)) is the space of bounded Radon

measures on X (resp. bounded and positive Radon measures on X). Given (Y, dY )
another metric space, a Borel map f : X → Y , and a measure µ ∈ Mb(X), the push-
forward measure of µ through f is denoted by f](µ) ∈ Mb(Y ). The set of all Borel
subset of X is indicated by B(X). For a Lipschitz function f : X → Y , we denote by
Lip(f ;X) the least Lipschitz constant of f on X, defined as

Lip(f,X) := inf
x,y∈X,x6=y

dY (f(x), f(y))

dX(x, y)
.

We will drop the dependence on the set whenever it is clear from the context.
We recall the definition of (n− 1)-rectifiable measure in Rn.

Definition 2.4 (Rectifiable measure). Let Ω ⊆ Rn and let µ be a measure on Ω.
We say that µ is (n − 1)-rectifiable if there exist an (n − 1)-rectifiable set R and a
real-valued measurable function θ such that

µ = θHn−1 ¬R .

For U ∈ B(Rn), for every p ∈ [1,+∞] the symbol Lp(U ;Rk) stands for the space
of p-summable functions from U with values in Rk. The usual Lp-norm is denoted
by ‖ · ‖Lp(U). We will drop the set U in the notation of the norm when there is no
chance of misunderstanding.

Given (M, g) an n-dimensional Riemannian manifold, we denote by expp the ex-
ponential map centered at p ∈ M. For q ∈ M, we further denote by d expp[q] the
differential of the exponential map expp in the point q, which maps TpM in TqM. The
symbol 〈·, ·〉p stands for the usual duality pairing between T∗pM and TpM, while (·, ·)p
indicates the Riemannian scalar product in TpM. The norm of a vector v ∈ TpM is

denoted by |v|p =
√

(v, v)p. We will indicate by injp > 0 the injectivity radius of expp,
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that is, the smallest r > 0 such that expp is injective on the set {v ∈ TpM : |v|p < ρ}
for every ρ ∈ (0, r). For every p ∈ M and every quadratic form Q ∈ TpM ⊗ TpM we
define

‖Q‖TpM⊗TpM := sup
v∈TpM

Q(v)

|v|2p
.

2.2. Jump set of one-forms. Let (M, g) be an n-dimensional Riemannian manifold.
We define the jump set of a measurable one-form ω ∈ D1(M) as follows.

Definition 2.5. Let ω ∈ D1(M) measurable. We say that a point p ∈ M belongs to the
jump set Jω of ω if and only if there exists νω ∈ TpM with |νω|p = 1 and ω±(p) ∈ T∗pM

with ω+(p) 6= ω−(p) such that

ap- lim
q→p

q∈H±(p)

〈ω(q), d expp[q](v)〉q = 〈ω±(p), v〉p for every v ∈ TpM , (2.2)

where H±(p) ∩ Br(p) = expp({v ∈ TpM : |v|p < r and ± (v, νω(p))p > 0}) for every
0 < r < injp.

2.3. Approximate symmetric gradient of one-forms. Assume that (M, g) is an
n-dimensional Riemannian manifold and consider a measurable one-form ω ∈ D1(M).
We want to define the approximate symmetric gradient of ω at a point p ∈ M as
a quadratic form acting on the tangent space TpM, and satisfying a suitable first
order expansion in a measure theoretical sense. Inspired by the euclidean notion of
approximate symmetric gradient for measurable vector fields [20], we give the following
definition.

Definition 2.6 (Approximate symmetric gradient of one-forms). Let ω ∈ D1(M) be
measurable. Then we say that ω admits an approximate symmetric gradient at p ∈ M
if there exists a quadratic form e(ω)(p) ∈ TpM⊗ TpM such that

ap- lim
q→p

|〈ω(q), d expp[q](vq)〉q − 〈ω(p), vq〉p − e(ω)(p)(vq)|
dM(q, p)2

= 0 , (2.3)

where vq ∈ TpM is the unique vector satisfying expp(vq) = q, namely, vq = exp−1
p (q).

Remark 2.7. The approximate limit in (2.3) is well defined since exp−1
p is a well defined

map for every q ∈ Br(p) for every 0 < r < injp.

Remark 2.8 (Uniqueness of approximate symmetric gradient). The approximate sym-
metric gradient e(ω)(p) of a measurable one-form ω at p is unique whenever it exists.
This can be easily checked by a contradiction argument. Indeed, assuming the ex-
istence of two different approximate symmetric gradients e1(ω)(p) and e2(ω)(p) we
obtain the validity of

lim
q→p

|e1(ω)(p)(vq)− e2(ω)(p)(vq)|
dM(q, p)2

= 0. (2.4)

The approximate limit in (2.4) can be rewritten as

lim
v→0

|e1(ω)(p)(v)− e2(ω)(p)(v)|
dM(expp(v), p)2

= lim
v→0

|e1(ω)(p)(v)− e2(ω)(p)(v)|
|v|2p

= 0,

which clearly implies e1(ω)(p) = e2(ω)(p) as element of TpM⊗ TpM.
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2.4. A rectifiability criterion for a class of integralgeometric measures. The
notion of transversal family of maps will play a fundamental role along this section.
The following definition is an adaptation of [32, Definition 2.4] (see also [4, Defini-
tion 2.3]).

Definition 2.9 (Transversality). Let Ω ⊆ Rn be open and let Si := {ξ ∈ Sn−1 :
|ξ · ei| ≥ 1/

√
n} for i = 1, . . . , n. We say that a family of Lipschitz maps Pξ : Ω→ ξ⊥

for ξ ∈ Sn−1 is a transversal family of maps on Ω if for every i = 1, . . . , n the maps

P iξ(x) := πei ◦ Pξ(x) for ξ ∈ Si, x ∈ Ω ,

T ixx′(ξ) :=
P iξ(x)− P iξ(x′)
|x− x′|

for ξ ∈ Si, x, x′ ∈ Ω with x 6= x′

satisfy the following properties:

(H.1) For every x ∈ Ω the map ξ 7→ P iξ(x) belongs to C2(Si;Rn−1) and

sup
(ξ,x)∈Si×Ω

|Dj
ξP

i
ξ(x)| <∞, for j = 1, 2 ;

(H.2) There exists a constant C ′ > 0 such that for every ξ ∈ Si and x, x′ ∈ Ω with
x 6= x′

|T ixx′(ξ)| ≤ C ′ implies |JξT ixx′(ξ)| ≥ C ′;
(H.3) There exists a constant C ′′ > 0 such that

|Dj
ξT

i
xx′(ξ)| ≤ C ′′, for j = 1, 2

for ξ ∈ Si and x, x′ ∈ Ω with x 6= x′.

3. The space GBD on a Riemannian manifold

In this section we define the space of generalized functions of bounded deformation
on a Riemannian manifold (M, g) of dimension n. To this aim, we first introduce the
notions of parametrized maps and curvilinear projections on M, following the ideas
of [4] in the Euclidean setting (see also Section 5).

Definition 3.1 (Parametrized maps on M). Let V ⊆ M open and ξ ∈ Sn−1. We say
that a map P : V → ξ⊥ is a parametrized map on V if there exist ρ, τ > 0 and a
smooth Lipschitz map ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ)} → M such that the
following conditions hold:

(1) V ⊆ Im(ϕ);
(2) ϕ−1 ¬V is a bi-Lipschitz diffeomorphism with its image;
(3) P (ϕ(y + tξ)) = y for every (y, t) ∈ [ξ⊥ ∩ Bρ(0)] × (−τ, τ) such that y + tξ ∈

ϕ−1(V ).

Remark 3.2. Conditions (2) and (3) of parametrized map imply

(4) ϕ(P (p) + (ϕ−1(p) · ξ)ξ
)

= p for every p ∈ V .

We will more compactly denote by tξp the real number ϕ−1(p) · ξ for every p ∈ V and
every ξ ∈ Sn−1. Whenever ξ is fixed and there is no chance of misunderstanding, we

drop the index ξ and write tp instead of tξp.

Remark 3.3. Let (M, g) be a Riemannian manifold of dimension n, let V ⊆ M open,
and let P : V → ξ⊥ be a parametrized map on V with parametrization ϕ : {y + tξ :
(y, t) ∈ [ξ⊥ ∩ Bρ(0)] × (−τ, τ)} → M. Then, for every chart (U,ψ) on M with U ⊆ V
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we have that P := P ◦ ψ−1 : ψ(U) → ξ⊥ is a parametrized map on ψ(U) ⊆ Rn with
parametrization

ϕ := ψ ◦ ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ)} → Rn .

Definition 3.4 (Velocity field on M). Let V ⊆ M open, ξ ∈ Sn−1, let P : V → ξ⊥ be
a parametrized map on V with parametrizationi ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)] ×
(−τ, τ)} → M. For (y, t) ∈ [ξ⊥ ∩Bρ(0)]× (−τ, τ), we denote by ϕ̇(y+ tξ) ∈ Tϕ(y+tξ)M
the velocity field of the curve t 7→ ϕ(y + tξ).

Definition 3.5 (Curvilinear projections on M). Let V ⊆ M open and ξ ∈ Sn−1. We
say that a map P : V → ξ⊥ is a curvilinear projection on V if the following conditions
hold:

(1) P is parametrized on V with parametrization ϕ : {y+tξ : (y, t) ∈ [ξ⊥∩Bρ(0)]×
(−τ, τ)} → M;

(2) the parametrization ϕ is such that for every y ∈ [ξ⊥ ∩ Bρ(0)] the curve t 7→
ϕ(y + tξ) is a geodesic on M.

Remark 3.6. For P : V → ξ⊥ and ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ)} → M as
in Definition 3.5, we define

‖ϕ̇‖L∞,M := sup
(y,t)∈[ξ⊥∩Bρ(0)]×(−τ,τ)

|ϕ̇(y + tξ)|ϕ(y+tξ) .

Notice that in the notation of ‖ϕ̇‖L∞,M we will never drop the index M.

Given V ⊆ M open, a parametrized map P : V → ξ⊥, and ω ∈ D1(V ) measurable,
we define the slices of u w.r.t. P .

Definition 3.7 (Slices on M). Let (M, g) be a Riemannian manifold of dimension n,
let V ⊆ M open, ξ ∈ Sn−1, and let P : V → ξ⊥ be a curvilinear projection on V with
parametrization ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)] × (−τ, τ)}. For every B ∈ B(V ) we
define

Bξ
y := {t ∈ (−τ, τ) : ϕ(y + tξ) ∈ B} for y ∈ [ξ⊥ ∩ Bρ(0)].

For every ω ∈ D1(V ) we define

ω̂ξy(t) := 〈ω(ϕ(y + tξ)), ϕ̇(y + tξ)〉ϕ(y+tξ) for t ∈ V ξ
y .

In addition for every u ∈ Γ(V ) we define

ûξy(t) := (u(ϕ(y + tξ)), ϕ̇(y + tξ))ϕ(y+tξ) for t ∈ V ξ
y .

Definition 3.8. Let (M, g) be a Riemannian manifold of dimension n. We say that
u ∈ D1(M) has generalized bounded deformation on M, and we write ω ∈ GBD(M), if
there exists λ ∈ M+

b (M) such that for every V ⊆ M open, every ξ ∈ Sn−1, and every

curvilinear projection P : V → ξ⊥ on V , the following facts hold:

(1) for Hn−1-a.e. y ∈ ξ⊥ the map ω̂ξy belongs to BVloc(V
ξ
y );

(2) for every B ∈ B(M) we have that∫
ξ⊥

(∣∣|Dω̂ξy|(Bξ
y \ J1

ω̂ξy
) +H0(Bξ

y ∩ J1
ω̂ξy

)
)

dHn−1(y) ≤ ‖ϕ̇‖2L∞,M Lip(P ;V )n−1λ(B) .
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Remark 3.9. Since in Definition 3.8 the map t 7→ ϕ(y + tξ) is a geodesic on M. Thus,
for y ∈ [ξ⊥ ∩Bρ(0)] the speed modulus |ϕ̇(y+ tξ)|ϕ(y+tξ) is constant as a function of t.
Hence, the L∞-norm in item (2) of the definition is computed as a supremum w.r.t. y.

In order to study the structure of the space GBD(M), we show in the next section
that, locally on charts of M, it is equivalent to the space GBDF (Ω) for a suitable open
subset Ω of Rn and field F : Ω× Rn → Rn.

4. The space GBDF (Ω)

We start by recalling the definition of GBDF (Ω) for an open set Ω ⊆ Rn and
a field F ∈ C∞(Rn × Rn;Rn). First, we list the assumptions on F (see also [4,
Sections 3.1 and 6.1]).

4.1. Assumptions on the field F . We will always assume that F ∈ C∞(Rn×Rn;Rn)
fulfills

(F.1) F is a quadratic form in the second variable, that is, for every x ∈ Rn and
every v1, v2 ∈ Rn

F (x, v1 + v2) + F (x, v1 − v2) = 2F (x, v1) + 2F (x, v2) . (4.1)

In Section 6.1 we will require an additional property on F , namely the so-called
Rigid Interpolation property (cf. [4, Section 6.1])), which needs some further notation.
Let {e1, . . . , en} be the canonical basis of Rn. Thanks to (4.1) we associate to F a map
F q : Rn → Lin(Rn ⊗ Rn ⊗ Rn;R) as follows:

F q(x)(v1 ⊗ v2 ⊗ v3) :=
v3

2
· (F (x, v1 + v2)− F (x, v1)− F (x, v2)) v1, v2, v3 ∈ Rn.

It is worth noting that, under our hypothesis (F.1), for every v3 ∈ Rn the map
(v1, v2) 7→ F q(x)(v1⊗v2⊗v3) is symmetric and hence can be represented as an element
of Mn×n

sym . For this reason we can write

F q(x)(v1 ⊗ v2 ⊗ v3) = (v3 · F q(x))v1 · v2 for v1, v2, v3 ∈ Rn,

for a suitable (v3 ·F q(x)) ∈Mn×n
sym depending on v3. Given r > 0 and a point x ∈ Rn we

define Fr,x : Rn × Rn → Rn as Fr,x(z, v) := rF (x+ rz, v) and analogously F qr,x : Rn →
Lin(Rn ⊗ Rn ⊗ Rn;R) as F qr,x(z) := rF q(x+ rz).

For z ∈ B1(0), we set S0,z := {z + e0, . . . , z + en}, where e0 := 0. For r > 0 and
0 ≤ i < j ≤ n we define t 7→ `z,r,ij(t) as the curve γ(·) (whenever it is well defined)
satisfying 

γ̈(t) = Fr,x(γ(t), γ̇(t)), t ∈ [0, tij ], for some tij > 0

γ(0) = z + ei, γ(tij) = z + ej

|γ̇(0)| = 1.

Remark 4.1. Notice that, as shown in [4, Lemma 3.13 and Remark 6.1], for r > 0
sufficiently small the curve t 7→ `z,r,ij(t) is well-defined for every z ∈ B1(0) and every
0 ≤ i < j ≤ n.

We denote by Sr,1,z the 1-dimensional geodesic skeleton of S0,z, i.e.,

Sr,1,z := {h ∈ Rn : h = `z,r,ij(t) for some t ∈ [0, tij ] and i 6= j}.

For 0 ≤ i < j ≤ n we further set

ξr,ij(z) := ˙̀
z,r,ij(0) and ξr,ji(z) := ˙̀

z,r,ij(tij) .



10 S. ALMI AND E. TASSO

We consider the semi-norm Er,z : Rn+1 × Rn → [0,+∞) defined as

Er,z(w) :=
∑

0≤i<j≤n
|wj · ξr,ji(z)− wi · ξr,ij(z)| for w ∈ R(n+1)×n,

where wi denotes the i-th column of the matrix w. Eventually, we denote by Sn,z the
convex hull of S0,z. Observing that every z belonging to {z ∈ B1(0) : z · ei < 0, i =
1, . . . , n} satisfies Sn,z ⊂ B1(0) and that

Ln({z ∈ B1(0) : z · ei < 0, i = 1, . . . , n}) =
ωn
2n

,

we infer the existence of a dimensional constant 0 < ρ(n) ≤ 1 such that 2n+1Ln(Q(n)) ≥
ωn whenever

Q(n) := {z ∈ B1(0) : Bρ(n)(0) ⊂ S̊n,z ⊂ Sn,z ⊂ B1(0)} .

With the above notation at hand, the Rigid Interpolation property reads as follows:

(RI) Given x ∈ Rn there exists a radius rx > 0 such that for every z ∈ Q(n), every

w ∈ R(n+1)×n, and every 0 < r ≤ rx, we find a smooth map ar : B1(0) → Rn
such that

ar(h) = wi for every h ∈ S0,z, (4.2)

‖ẽ(ar)− ar · F qr,x‖L∞(Sn,z ;Mn×n
sym ) ≤ c(n)Er,z(w) , (4.3)

where c(n) > 0 is a dimensional constant and where ẽ(ar) denotes the sym-
metric gradient of ar.

4.2. Curvilinear projections on Ω. In this section we recall the definitions of (fami-
lies of) curvilinear projections on Ω w.r.t. a field F ∈ C∞(Rn×Rn;Rn) satisfying (F.1).
(cf. Definitions 4.5 and 4.6 and [4, Section 3.1]). We refer to Section 5 for some tech-
nical properties of a specific family of curvilinear projections, which will be used in
Section 6.2.

Definition 4.2 (Velocity field). Let Ω be a bounded open subset of Rn, ξ ∈ Sn−1,
and let P : Ω→ ξ⊥ be a map parametrized by ϕ on Ω. For every x ∈ Ω we define the
velocity field

ξϕ(x) := ϕ̇(P (x) + txξ).

Definition 4.3 (Curvilinear projections on Ω w.r.t. F ([4, Definition 3.5])). Let Ω be
an open subset of Rn and ξ ∈ Sn−1. We say that a smooth Lipschitz map P : Ω→ ξ⊥

is a curvilinear projection (with respect to F ) on Ω if the following holds:

(1) P is parametrized on Ω by ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ)} → Rn;

(2) For every (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ) we have

ϕ̈(y + tξ) = F (ϕ(y + tξ), ϕ̇(y + tξ)) .

Remark 4.4. Let (M, g) be a Riemannian manifold of dimension n, let V ⊆ M open,
and let P : V → ξ⊥ be a curvilinear projection on V with parametrization ϕ : {y+ tξ :
(y, t) ∈ [ξ⊥ ∩ Bρ(0)] × (−τ, τ)} → M. Similar to Remark 3.3, we notice for every

chart (U,ψ) on M with U ⊆ V we have that, setting P := P ◦ψ−1 and ϕ := ψ ◦ϕ, the
map P is a curvilinear projection on ψ(U) with respect to the field F

F (x, v) := −
( n∑
i,j=1

Γ1
ij(x)vivj , . . . ,

n∑
i,j=1

Γnij(x)vivj

)
(x, v) ∈ ψ(U)× Rn , (4.4)
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where Γ`ij denote the Christoffel symbols on M induced by the chart (U,ψ). Indeed,

for every y ∈ [ξ⊥ ∩ Bρ(0)] the curve t 7→ ϕ(y + tξ) solves the ODE ϕ̈ = F (ϕ, ϕ̇), since
t 7→ ϕ(y + tξ) is a geodesic on M.

We notice that the viceversa is also true: for every open subset Ω of ψ(U) and
every curvilinear projection P : Ω → ξ⊥ on Ω with respect to the field F and with
parametrization ϕ, we have that P := P ◦ ψ : ψ−1(Ω)→ ξ⊥ is a curvilinear projection
on ψ−1(Ω) ⊆ M with parametrization ϕ := ψ−1 ◦ ϕ.

Definition 4.5 (Parametrized family on Ω ([4, Definition 3.6])). Let Ω be an open
subset of Rn. We say that a family Pξ : Ω → ξ⊥ for ξ ∈ Sn−1 is parametrized on Ω if
and only if there exist ρ, τ > 0, an open subset A of Rn×Sn−1, and a smooth Lipschitz
map ϕ : A→ Rn such that

(1) for every ξ ∈ Sn−1 we have Aξ = {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ)};
(2) for every ξ ∈ Sn−1, Pξ is parametrized on Ω by the map ϕξ := ϕ(·, ξ) : Aξ → Rn.

We also give the definition of family of curvilinear projections.

Definition 4.6 (Family of curvilinear projections on Ω ([4, Definition 3.7])). Let Ω
be an open subset of Rn. We say that a family of maps Pξ : Ω→ ξ⊥ for ξ ∈ Sn−1 is a
family of curvilinear projections on Ω if the following conditions hold:

(1) the family (Pξ)ξ∈Sn−1 is parametrized by ϕ : A→ Rn;

(2) for every ξ ∈ Sn−1, Pξ is a curvilinear projection on Ω with parametrization
ϕξ = ϕ(·, ξ);

(3) (Pξ)ξ∈Sn−1 is a transversal family of maps on Ω;

(4) for every x ∈ Ω, the map ξ 7→ ξϕ(x)/|ξϕ(x)| is a diffeomorphism from Sn−1

onto itself.

We conclude by recalling the definition of slices of a measurable function u : Ω→ Rn
w.r.t. a curvilinear projection P : Ω→ ξ⊥ on Ω.

Definition 4.7 (Slices). Let Ω be an open subset of Rn, ξ ∈ Sn−1 and let P : Ω→ ξ⊥

be a curvilinear projection on Ω parametrized by ϕ : {y + tξ : (y, t) ∈ [ξ⊥ ∩ Bρ(0)] ×
(−τ, τ)} → Rn. For every measurable function u : Ω→ Rm, we define uξ : Ω→ R by

uξ(x) := ûξP (x)(tx) = ûξP (x)(ϕ
−1(x) · ξ),

and we notice the following identity

uξ(ϕ(y + tξ)) = ûξy(t) for ξ ∈ Sn−1 and (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ). (4.5)

For a measurable function v : Ω → Rm we also set vξy(t) := v(ϕ(y + tξ)) for t ∈ Ωξ
y.

Eventually, in order to simplify the notation, if ϕ is the identity we use the notation

B̃ξ
y := {t ∈ R : y + tξ ∈ B} ,

ũξy(t) := u(y + tξ) · ξ for t ∈ Ω̃ξ
y .

4.3. Definition of GBDF (Ω). We recall here the definition of the space GBDF (Ω)
introduced in [4, Definition 6.4].

Definition 4.8 (The space GBDF (Ω)). Let Ω be an open subset of Rn. We say that a
measurable function u : Ω→ Rn belongs to GBDF (Ω) if there exists λ ∈M+

b (Ω) such

that for every U ⊆ Ω, every ξ ∈ Sn−1, and every curvilinear projection P : U → ξ⊥

on U the following facts hold:

(1) ûξy ∈ BVloc(U ξy ) for Hn−1-a.e. y ∈ ξ⊥;
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(2) for every Borel subset B ∈ B(U)∫
ξ⊥

(
|Dûξy|(Bξ

y \ J1
ûξy

) +H0(Bξ
y ∩ J1

ûξy
)
)

dHn−1(y) ≤ ‖ϕ̇ξ‖2L∞ Lip(Pξ;U)n−1λ(B) .

Remark 4.9. Notice that the integral in (2) is justified by [4, Proposition 6.3].

We recall here a general fact about measurable functions that was proven in [20,
Theorem 3.5]. To this end, we introduce the following notation.

Definition 4.10. We denote by T the family of all functions τ ∈ C1(R) such that
−1

2 ≤ τ ≤
1
2 and 0 ≤ τ ′ ≤ 1.

As usual, for a function v ∈ L1
loc(U) and for ξ ∈ Sn−1 we denote by Dξv the

distributional derivative of v in direction ξ.

Theorem 4.11. Let v : U → R be measurable, ξ ∈ Sn−1, and θ ∈ M+
b (U). Then, the

following facts are equivalent:

(i) for every τ ∈ T , Dξ(τ(v)) belongs to Mb(U) and

|Dξ(τ(v))|(B) ≤ θ(B) for every B ∈ B(U);

(ii) for Hn−1-a.e. y ∈ ξ⊥ the function ṽξy belongs to BVloc(Ũ
ξ
y ) and∫

ξ⊥

(
|Dṽξy|(B̃ξ

y \ J1
ṽξy

) +H0(B̃ξ
y ∩ J1

ṽξy
)
)
dHn−1(y) ≤ θ(B)

for every B ∈ B(U).

As a consequence of Theorem 4.11 we can show the equivalent property in our
parametrized setting.

Corollary 4.12. Let Ω be an open subset of Rn and u : Ω → Rn measurable. Then,
u ∈ GBDF (Ω) if and only if there exists λ ∈M+

b (Ω) such that for every U ⊆ Ω, every
ξ ∈ Sn−1, every curvilinear projection Pξ on U , every τ ∈ T , and every B ∈ B(U) it
holds

(ϕξ)]
∣∣Dξ

(
τ((u · ξϕ) ◦ ϕξ)

)∣∣(B) ≤ ‖ϕ̇ξ‖2L∞ Lip(Pξ;U)n−1λ(B) .

Proof. We may apply Theorem 4.11 to the function v = (u · ξϕ) ◦ ϕξ : ϕ−1
ξ (U) →

R and θ = ‖ϕ̇ξ‖2L∞Lip(Pξ;U)n−1(ϕ−1
ξ )]λ and use the fact that ϕξ is a bi-Lipschitz

diffeomorphism with its image. Indeed, it is enough to notice that for every C ∈
B(ϕ−1

ξ (U)), we have B := ϕξ(C) ∈ B(U) and Bξ
y = C̃ξy for y ∈ ξ⊥. Moreover,

ṽξy(t) = ûξy(t) for a.e. t ∈ Bξ
y. �

Similar to [20, Definition 3.7], we now define the measures µξy and µξu.

Definition 4.13. Let Ω be an open subset of Rn, U ⊆ Ω open, ξ ∈ Sn−1, let Pξ : U →
ξ⊥ be a curvilinear projection on U , and u ∈ GBDF (Ω). For Hn−1-a.e. y ∈ ξ⊥ we

define the measure µξy ∈M+
b (U ξy ) as

µξy(B) := |Dûξy|
(
Bξ
y \ J1

ûξy

)
+H0

(
Bξ
y ∩ J1

ûξy

)
for B ∈ B(U ξy ). We also define µξu ∈M+

b (U) as

µξu(B) :=

∫
ξ⊥

(
|Dûξy|(Bξ

y \ J1
ûξy

) +H0(Bξ
y ∩ J1

ûξy
)
)

dHn−1(y)

for every B ∈ B(U).
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Remark 4.14. We notice that the measures µξy and µξu depend on the choice of the
curvilinear projection Pξ. For simplicity, we have decided to not explicitly indicate
such dependence in our notation.

In the following proposition we state the lower semicontinuity of µξu(U) w.r.t. ξ ∈
Sn−1. It is worth noting that such a lower semicontinuity will be only used to extend
some structure properties holding for a.e. ξ to the entire of Sn−1. Even if this fact can
be deduced from [20], for convenience of the reader we present here its proof.

Proposition 4.15. Let Ω be an open subset of Rn, U ⊆ Ω open, let (Pξ)ξ∈Sn−1 be a

family of curvilinear projections on U , let u ∈ GBDF (Ω), and let (µξu)ξ∈Sn−1 be the

family of measures introduced in Definition 4.13. Then, for every ξj , ξ ∈ Sn−1 such
that ξj → ξ we have that

µξu(U) ≤ lim inf
j→∞

µ
ξj
u (U) . (4.6)

Proof. We prove that given U ⊆ Ω open the value µξu(U) can be obtained as

µξu(U) = sup
k∈N

sup
k∑
i=1

∣∣Dξ(τi((u · ξϕ) ◦ ϕξ))
∣∣(ϕ−1

ξ (Ui))

where the second supremum is taken over all the families τ1, . . . τk ∈ T and all the
families of pairwise disjoint open subsets U1, . . . Uk of U . To this purpose, let ϕξ be
the parametrization of Pξ over U , as given in Definition 4.6. Denoting v := (u ·ξϕ)◦ϕξ,
by [20, Theorem 3.8] we have that for every open set V ⊆ ϕ−1

ξ (U) it holds∫
ξ⊥

(
|Dṽξy|(Ṽ ξ

y \ J1
ṽξy

) +H0(Ṽ ξ
y ∩ J1

ṽξy
)
)

dHn−1(y) = sup
k∈N

sup

k∑
i=1

∣∣Dξ(τi(v))
∣∣(Vi) ,

where the second supremum is taken over all the families τ1, . . . τk ∈ T and all the
families of pairwise disjoint open subsets V1, . . . Vk of V . Using the fact that ϕξ is a

bi-Lipschitz diffeomorphism with its image, we have that for V = ϕ−1
ξ (U) with U ⊆ Ω

open it holds Ṽ ξ
y = U ξy for every ξ ∈ Sn−1 and every y ∈ ξ⊥. Moreover, ṽξy(t) = ûξy(t)

for a.e. t ∈ U ξy .

Now we observe that for every ψ ∈ C1
c (ϕ−1

ξ (U)) and for j ∈ N large enough we have

that ψ ∈ C1
c (ϕ−1

ξj
(U)). Thus, for every τ ∈ T we have∫

ϕ−1
ξ (U)

τ((u · ξϕ)(ϕξ(z))∇ψ(z) · ξ dz = lim
j→∞

∫
ϕ−1
ξj

(U)
τ(u · ξj,ϕ)(ϕξj (z))∇ψ(z) · ξj dz .

This, together with Definition 4.6 of curvilinear projection, implies (4.6). �

4.4. Equivalence of GBD(M) and GBDF (Ω). Let (M, g) be a Riemannian manifold
of dimension n. We now show that, when restricted to a chart (U,ψ) on M with U b M,
the spaces GBD(U) and GBDF (ψ(U)) are equivalent, with the field F defined in (4.4).
We recall that properties (F.1) and (RI) for such F have been proven in [4, Section 6.4].
The above equivalence implies that the structure of the space GBD(M) can be deduced
from the structure of GBDF (Ω), that will be discussed in the next sections. Using the
classical notation for manifolds we write ω ∈ D1(M) in coordinates on a chart (U,ψ)
as

ω(p) =

n∑
i=1

ωi(p)g
i(p) for p ∈ U ,
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where ωi : U → R is measurable and for every i = 1, . . . , n and every f ∈ C∞(M) we
have gi ∈ Γ(TM)

gi(f)(p) :=
∂(f ◦ ψ−1)

∂xi
(ψ(p)) for p ∈ U ,

and gi ∈ D1(M) is such that 〈gi(p), gj(p)〉 = δij . We also define the function u : ψ(U)→
Rn as

u(x) :=

n∑
i=1

ωi(ψ
−1(x))ei for x ∈ ψ(U), (4.7)

where {ei}ni=1 denotes the canonical basis of Rn.

Proposition 4.16. Let (M, g) be a Riemannian manifold of dimension n, let ω ∈
GBD(M), and let (U,ψ) be a chart on M with U b M. Then, the function u : ψ(U)→
Rn defined in (4.7) belongs to GBDF (ψ(U)) for F as in (4.4). In particular, if λ ∈
M+

b (M) can be used in (2) of Definition 3.8 for ω, then

λ :=
[
Lip(ψ−1;ψ(U))2Lip(ψ;U)n−1

]
ψ]λ ∈M+

b (ψ(U)) (4.8)

can be used in (2) of Definition 4.8 for u.

Proof. Let ω ∈ D1(M), let V ⊆ M open, let P : V → ξ⊥ be a curvilinear projection
on V with parametrization ϕ : {y + tξ : (t, ξ) ∈ [ξ⊥ ∩ Bρ(0)] × (−τ, τ)} → M, and

let (U,ψ) be a chart on M with U b V . We set P := P ◦ ψ−1 and ϕ := ψ ◦ ϕ. Thanks
to Remark 4.4, P is a curvilinear projection on ψ(U) with respect to F defined in (4.4)
with parametrization ϕ. We write ϕ̇ in coordinates as

ϕ̇(y + tξ) =
n∑
i=1

[
∂(ψ ◦ ϕ(y + tξ))

∂t

]
i

gi(ϕ(y + tξ)) (4.9)

=

n∑
i=1

[
∂ϕ(y + tξ)

∂t

]
i

gi(ϕ(y + tξ)) =

n∑
i=1

ϕ̇i(y + tξ)gi(ϕ(y + tξ)) .

Hence, for (y, t) ∈ [ξ⊥ ∩ Bρ(0)]× (−τ, τ) we have that

ω̂ξy(t) = 〈ω(ϕ(y + tξ), ϕ̇(y + tξ)〉ϕ(y+tξ)

=

〈
n∑
i=1

ωi(ϕ(y + tξ)) gi(ϕ(y + tξ)),

n∑
i=1

ϕ̇i(y + tξ)gi(ϕ(y + tξ))

〉
ϕ(y+tξ)

=
n∑
i=1

ωi(ϕ(y + tξ))ϕ̇i(y + tξ) =
n∑
i=1

ui(ϕ(y + tξ))ϕ̇i(y + tξ) = ûξy(t) .

This implies that for every B ∈ B(ψ(U)) it holds true∫
ξ⊥

(∣∣|Dûξy|(Bξ
y \ J1

ûξy
) +H0(Bξ

y ∩ J1
ûξy

)
)

dHn−1(y) (4.10)

=

∫
ξ⊥

(∣∣Dω̂ξy|(ψ−1(B)ξy \ J1
ω̂ξy

) +H0(ψ−1(B)ξy ∩ J1
ω̂ξy

)
)

dHn−1(y)

≤ ‖ϕ̇‖2L∞,M Lip(P ;U)n−1λ(ψ−1(B)) .

By definition of P we have that

Lip(P ;U) ≤ Lip(ψ;U) Lip(P ;ψ(U)) . (4.11)
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Since M is a Riemannian manifold and U b V , by (4.9) we have that for p ∈ U

|ϕ̇|p =
n∑

i,j=1

[
∂(ψ ◦ ϕ(P (p) + tξ))

∂t
(tp)

]
i

[
∂(ψ ◦ ϕ(P (p) + tξ))

∂t
(tp)

]
j

gi(ϕ(P (p) + tpξ)) · gj(ϕ(P (p) + tpξ))

=

n∑
i,j=1

ϕ̇i(P (p) + tpξ)ϕ̇j(P (p) + tpξ)gi(ϕ(P (p) + tpξ)) · gj(ϕ(P (p) + tpξ)) ,

where we have denoted by tp the unique t ∈ (−τ, τ) such that p = ϕ(P (p) + tpξ).
Hence, we deduce that

‖ϕ̇‖L∞,M ≤ Lip(ψ−1;ψ(U))2‖ϕ̇‖L∞(ψ(U)) . (4.12)

Setting λ as in (4.8), we deduce from (4.10)–(4.12) that for every B ∈ B(ψ(U)) it holds∫
ξ⊥

(∣∣|Dûξy|(Bξ
y \ J1

ûξy
) +H0(Bξ

y ∩ J1
ûξy

)
)

dHn−1(y) (4.13)

≤ ‖ϕ̇‖2L∞(ψ(U))Lip(P ;ψ(U))n−1λ(B) .

By the first equality in (4.10) and by Remark 4.4 we can show that (4.13) actually

holds for every curvilinear projection P̃ : Ω→ ξ⊥ on some open subset Ω of ψ(U) with
respect to the field F in (4.4). This implies that u ∈ GBDF (U). �

Remark 4.17. For later use, we notice that for every ε > 0 we may further assume, up
to rescaling ψ and taking U b V small enough (depending on ε)), that

Lip(ψ;U) < 1 + ε , Lip(ψ−1;ψ(U)) < 1 + ε ,

which in turn implies that λ ≤ (1 + ε)n+1ψ]λ, with the notation used in (4.8).

5. A particular family of curvilinear projections and its properties

We recall here the construction of a local family of curvilinear projections discussed
in [5, Section 3.3].

Definition 5.1. Let x0 ∈ Rn and ρ0 > 0. For every ξ ∈ B2(0) and every y ∈ ξ⊥∩Bρ0(0)
we consider the solution t 7→ uξ,y(t) to the ODE system

ü(t) = F (u(t), u̇(t)) t ∈ R,
u(0) = y + x0 ,

u̇(0) = ξ ,

which is well-defined for t ∈ (−τ, τ), for a suitable τ > 0 depending only on x0 and ρ0,
but not on ξ and y. Then, we define ϕξ,x0 : Rn → Rn as follows: for every x ∈ Rn, if

x = y + tξ with y ∈ ξ⊥ ∩ Bρ0(0) and t ∈ (−τ, τ), we set ϕξ,x0(x) := uξ,y(t).
We further define ϕx0 : Rn × Sn−1 → Rn as ϕx0(x, ξ) := ϕξ,x0(x) for x ∈ Rn and

ξ ∈ Sn−1.

In [4, Corollary 3.21] it has been shown that for every x0 ∈ Ω there exists Rx0 > 0
such that for every ξ ∈ B2(0) the map ϕ−1

ξ,x0
bBRx0

(x0) is a diffeomorphism with its

image. This justifies the following definition.

Definition 5.2. Let x0 ∈ Ω, ξ ∈ B2(0) and Rx0 > 0 be as above. We define the map
Pξ,x0 : BRx0

(x0)→ ξ⊥ as

Pξ,x0 := πξ ◦ ϕ−1
ξ,x0

,

where πξ : Rn → ξ⊥ denotes the orthogonal projection onto the orthogonal to ξ.
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In [4, Theorem 3.25] the following result has been proven.

Theorem 5.3. Let F ∈ C∞(Rn × Rn;Rn) satisfy condition (F.1). Then, for every
x0 ∈ Ω there exists R0 > 0 such that the family of maps {Pξ,x0 : BR0(x0) → ξ⊥ : ξ ∈
Sn−1} is a family of curvilinear projections on BR0(x0).

We further recall the definitions of ϕξ,x0,r, of Pξ,x0,r, and of the exponential map
in Rn induced by F (see also [4, Definitions 3.11, 3.19, and 3.22]).

Definition 5.4. Let x0 ∈ Rn and R0 > 0 be as in Theorem 5.3, and let r > 0. For
every ξ ∈ B2(0) we define

ϕξ,x0,r(x) := r−1(ϕξ,x0(rx)− x0) for x ∈ BR0
r

(0),

Pξ,x0,r := πξ ◦ ϕ−1
ξ,x0,r

.

In [4, Lemmas 3.20 and 3.24] we have proven the following.

Lemma 5.5. Let x0 ∈ Rn and let ϕξ,x0,r and Pξ,x0,r be as in Definition 5.4. Then,

ϕξ,x0,r → id in C∞loc(Rn;Rn),

Pξ,x0,r → πξ in C∞loc(Rn;Rn),

and the convergences are uniform w.r.t. ξ ∈ Sn−1.

Definition 5.6. Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1). For every x0 ∈ Rn we define,
where it exists, the exponential map expx0 : Rn → Rn as expx0(ξ) := vξ,x0(1), where
t 7→ vξ,x0(t) solves 

ü(t) = F (u(t), u̇(t)), t ∈ R ,
u(0) = x0 ,

u̇(0) = ξ .

(5.1)

Remark 5.7. Points on a manifold M are always denoted by p and q, while points in Rn
will be denoted by x or x0. Hence, there is no confusion in the definition of the two
exponential maps expp : TpM→ M and expx0 : Rn → Rn.

In the next definition we introduce the concept of injectivity radius.

Definition 5.8. For every x0 ∈ Rn we define the injectivity radius injx0 ∈ [0,+∞) as

the supremum of all r > 0 for which expx0
¬
Br(0) is well defined and exp−1

x0

¬
Br(x0) is

a diffeomorphism with its image.

The well-posedness of expx0 in a small ball Br(0) has been justified in [4, Lemma 3.13].
We recall here the statement, together with the asymptotic behavior of the exponential
map.

Lemma 5.9. Let F ∈ C∞(Rn × Rn;Rn) satisfy (F.1). For every x0 ∈ Ω we have
injx0 > 0. Moreover, for x ∈ B1(0) and r > 0 we have

exp−1
x0 (x0 + rx)

r|x|
− x

|x|
= o(r|x|) , (5.2)

exp−1
x0 (x0 + rx)

|exp−1
x0 (x0 + rx)|

=
x

|x|
+ o(r|x|) . (5.3)
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Proof. By the 2-homogeneity of F (x, ·) we get that

vsξ,x0(t) = vξ,x0(st) for s, t ∈ [0,+∞), ξ ∈ Rn. (5.4)

Hence, by the local well-posedness of ODEs we have that there exists r > 0 such
that expx0 is well-defined on Br(0).

For every i ∈ {1, . . . , n} we have that

D expx0(0)ei = lim
t→0+

vtei,x0(1)− v0,x0(1)

t
= lim

t→0+

vei,x0(t)− vei,x0(0)

t
= v̇ei,x0(0) = ei .

Thus, the differential of expx0 at 0 is the identity. Applying the implicit function

theorem, we find a sufficiently small r̃ > 0 such that exp−1
x0

¬
Br̃(x0) is a diffeomorphism

with its image. We conclude by setting r := min{r, r̃}.
Since expx0 is C∞-regular and its differential at 0 is the identity, we get (5.2). As a

consequence, for every x ∈ B1(0) and r > 0

exp−1
x0 (x0 + rx)

|exp−1
x0 (x0 + rx)|

− x

|x|
=

(
x

|x|
+ o(r|x|)

)
(1 + o(r|x|))− x

|x|
= o(r|x|) ,

which is exactly (5.3). �

We introduce an auxiliary map φx0 for x0 ∈ Ω.

Definition 5.10. Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1), let x0 ∈ Ω, let (Pξ,x0)ξ∈Sn−1

be the family introduced in Definition 5.2, and let R0 be as in Theorem 5.3. Thanks
to Lemma 5.9 we may define for 0 < r < injx0 the map φx0 : Br(x0) \ {x0} → Sn−1 as

φx0(x) :=
exp−1

x0 (x)

|exp−1
x0 (x)|

for every x ∈ Br(x0) \ {x0} . (5.5)

The following proposition holds.

Proposition 5.11. Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1), let x0 ∈ Ω, let (Pξ,x0)ξ∈Sn−1

be the family be the family introduced in Definition 5.2 parametrized by ϕx0, and let R0

be as in Theorem 5.3. For 0 < r < injx0, the function φx0 ∈ C1(Br(x0) \ {x0};Sn−1)
satisfies

Pξ(x) = Pξ(x0) if and only if ξ = φx0(x) for every x ∈ Br(x0) \ {x0}. (5.6)

C ′x0
|x− x0|n−1

≤ |Jφx0(x)| ≤ Cx0
|x− x0|n−1

for every x ∈ Br(x0) \ {x0}, (5.7)

for some constant Cx0 , C
′
x0 > 0.

Proof. The result is a byproduct of [4, Proposition 3.15] and of Lemma 5.5. �

We conclude by introducing the maps χx0 , and d(·, x0) for x0 ∈ Ω and by collecting
their convergence properties.

Definition 5.12. Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1), let x0 ∈ Ω, let (Pξ,x0)ξ∈Sn−1

be the family introduced in Definition 5.2, and let R0 be as in Theorem 5.3. Given
0 < r < injx0 we define the vectorfield χx0 : Br(x0) \ {x0} → Sn−1 by

χx0(x) = ξϕ(x) with ξ = φx0(x). (5.8)

Moreover, we define the function d(·, x0) : Br(x0)→ R by

d(x, x0) := |exp−1
x0 (x)| . (5.9)
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Proposition 5.13. Let x0 ∈ Ω, let (Pξ,x0)ξ∈Sn−1 be the family of curvilinear projections
defined in Definition 5.2, and let R0 > 0 be given by Theorem 5.3. Then, the following
convergences hold:

φx0(x0 + rξ)→ ξ in C∞(Sn−1;Sn−1), as r ↘ 0 , (5.10)

x

r|x|2
− χx0(x0 + rx)

r|x|
→ 0 uniformly in B1(0) \ {0}, as r ↘ 0 , (5.11)

d(x0 + rx, x0)

r|x|
→ 1 uniformly in B1(0) \ {0}, as r ↘ 0 . (5.12)

Proof. Since x0 is fixed, we drop the index x0 in the functions φx0 and χx0 . Defini-
tion 5.6 of the map expx0 , the uniqueness property of ODEs, and the fact that F (x, ·) is
2-homogeneous imply that the solution u of (5.1) with initial datum ξ := x/|x| satisfies
u(|x|) = expx0(x). From Definition 5.1 we deduce that ϕx/|x|,x0(x) = u(|x|) = expx0(x).
Thus, we deduce from [4, Lemma 3.20] that

expx0(r ·)− x0

r
→ id in C∞loc(Rn \ {0};Rn), as r ↘ 0 . (5.13)

The convergence in (5.13) allows us to pass to the inverse maps, and thus write

exp−1
x0 (x0 + r ·)

r
→ id in C∞loc(Rn \ {0};Rn), as r ↘ 0 . (5.14)

By definition of φ in (5.5), (5.14) gives exactly (5.10).
In order to show (5.11), let us recall the notation ξϕ(x) = ϕ̇ξ,x0(Pξ,x0(x)+(ϕ−1

ξ,x0
(x) ·

ξ)ξ) and let us suppose for a moment that we already know that

ξϕ(x) = ξ + o(|x− x0|) for every ξ ∈ Sn−1. (5.15)

Then, we can write for every x ∈ B1(0) \ {0}
x

r|x|2
− χ(x0 + rx)

r|x|
=

x

r|x|2
− φ(x0 + rx) + o(r|x|)

r|x|

=
x

r|x|2
−

exp−1
x0 (x0 + rx)

r|x|| exp−1
x0 (x0 + rx)|

+
o(r|x|)
r|x|

,

and from (5.3) we immediately deduce (5.11).
It remains to prove (5.15). In view of Lemma 5.5 we have that for ξ ∈ Sn−1

ϕξ,x0(ry + rtξ)− x0

r
→ y + tξ in C∞loc(ξ

⊥ × R;Rn) as r ↘ 0. (5.16)

In particular, the convergence in (5.16) is uniform w.r.t. ξ ∈ Sn−1. The convergence
in (5.16) implies that

ϕ̇ξ,x0(ry + rtξ)→ ξ in L∞loc(Sn−1 × ξ⊥ × R;Rn) , (5.17)

∂βyi∂
α
t ϕ̇ξ,x0(ry + rtξ)→ 0 in L∞loc(Sn−1 × ξ⊥ × R;Rn) , (5.18)

where yi := y · ηi and {η1, . . . , ηn−1} is an orthonormal basis of ξ⊥ and α, β are any
positive integers. Again, the convergences in (5.17)–(5.18) are uniform w.r.t. ξ ∈ Sn−1.
We can thus fix ξ ∈ Sn−1 and write a Taylor expansion of the form

ϕ̇ξ,x0(ry + rtξ) = ξ + ∂tϕ̇ξ,x0(ry + rtξ)rt (5.19)

+

n−1∑
i=1

∂yiϕ̇ξ,x0(ry + rtξ)ryi + oξ(r|(y, t)|) ,
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where we used also ϕ̇ξ,x0(0) = ξ. Notice that oξ(r|(y, t)|) can be taken independent of
ξ ∈ Sn−1 because of the uniform convergences (5.17)–(5.18).

We recall that for every x ∈ B1(0) and ξ ∈ Sn−1

Pξ,x0(x0 + rx) = rPξ,x0,r(x) and ϕ−1
ξ,x0

(x0 + rx) = rϕ−1
ξ,x0,r

(x) .

Replacing in (5.19) y, t with Pξ,x0,r(x), ϕ−1
ξ,x0,r

(x) · ξ, respectively, and using conver-

gence (5.18) we obtain

ξϕ(x0 + rx)− ξ = o(r|(Pξ,x0,r(x), ϕ−1
ξ,x0,r

(x) · ξ)|) for every (x, ξ) ∈ B1(0)× Sn−1.

(5.20)
By Lemma 5.5 we have that

Pξ,x0,r → πξ, ϕ−1
ξ,x0,r

→ id in C∞loc(Rn;Rn) ,

as r ↘ 0 uniformly w.r.t. ξ ∈ Sn−1. Hence, we can rewrite (5.20) as

ξϕ(x0 + rx)− ξ = o(r|x|) for ξ ∈ Sn−1 ,

which implies (5.15) and completes the proof of (5.11).
Finally, (5.12) follows directly from (5.2). �

6. Structure properties of GBDF (Ω) and GBD(M)

In this section we study the structure of functions in GBD(M) and in GBDF (Ω). In
particular, in Sections 6.1–6.2 we show that under the assumptions (F.1) and (RI) on F
the jump set of a function u ∈ GBDF (Ω) can be sliced into the 0-dimensional jump
set of suitable one dimensional slices of u (see Theorem 6.6). In Theorem 6.9 we show
that if F satisfies (F.1), a function u ∈ GBDF (Ω) admits an approximate symmetric
gradient. Relying on such results, we show in Sections 6.3–6.4 that ω ∈ GBD(M)
satisfies the same properties on the Riemannian manifold (M, g).

6.1. Rectifiability of the jump and its one dimensional slices in GBDF (Ω).
Throughout this section we assume that Ω is an open subset of Rn and we fix F ∈
C∞(Rn × Rn;Rn) fulfilling (F.1) and (RI). Furthermore, we rely on the notation
introduced in Section 5. Here we present a fundamental property of the jump set
(cf. [21]).

Theorem 6.1. Let u : Ω→ Rn be measurable. Then, Ju is countably (n−1)-rectifiable.

We define the directional jump set of a measurable function.

Definition 6.2. Let (Pξ)ξ∈Sn−1 be a family of curvilinear projections on Ω and let

u : Ω → Rm. Given ξ ∈ Sn−1 we define the directional jump set as Jûξ := {x ∈ Ω :

tξx ∈ Jûξ
Pξ(x)

}. We further define Aû := {(x, ξ) ∈ Ω× Sn−1 : x ∈ Jûξ}.

We now introduce a family of Borel regular measures {ηξ}ξ∈Sn−1 depending on a

direction ξ and on the jump set of ûξy defined w.r.t. a family of curvilinear projec-
tion {Pξ}ξ∈Sn−1 .

Definition 6.3. Let u ∈ GBDF (Ω), let (Pξ)ξ∈Sn−1 be a family of curvilinear projec-

tions on an open subset U of Ω, and let p ∈ [1,+∞]. For every ξ ∈ Sn−1 consider the
Borel regular measure ηξ of Rn given by

ηξ(B) :=

∫
ξ⊥

∑
t∈(B∩Jûξ )ξy

(
|[ûξy(t)]| ∧ 1

)
dHn−1(y) B ∈ B(Rn) , (6.1)
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ηξ(E) := inf {ηξ(B) : E ⊆ B, B ∈ B(Ω)} . (6.2)

We recall that the integral in (6.1) is well defined thanks to [4, Lemma 4.5]. For
B ∈ B(Ω) and ξ ∈ Sn−1, we further set fB(ξ) := ηξ(B) and ζp(B) := ‖fB‖Lp(Sn−1).
Via the classical Carathéodory’s construction we define the measure

Iu,p(E) := sup
δ>0

inf
Gδ

∑
B∈Gδ

ζp(B) for E ⊆ Ω,

where Gδ is the family of all countable Borel coverings of E made of sets having
diameter less than or equal to δ.

Definition 6.4. In the same setting of Definiton 6.3, we define

ζ̂(A) :=

∫
Sn−1

ηξ(Aξ) dHn−1(ξ) for every A ∈ B(Ω× Sn−1) ,

Îu(D) := sup
δ>0

inf
Gδ

∑
B∈Gδ

ζ̂(B) for D ⊆ Ω× Sn−1,

where G′δ is the family of all countable Borel coverings of F made of sets having
diameter less than or equal to δ.

In particular, we have the following representation for Iu,p and Îu (see also [4,
Proposition 2.9]).

Proposition 6.5. In the setting of Definitions 6.3 and 6.4, the measures Iu,1 and Îu

satisfy

Iu,1(E) = inf
E⊆B
B∈B(Ω)

∫
Sn−1

ηξ(B) dHn−1(ξ) for every E ⊆ Ω ,

Îu(D) = inf
F⊆A

A∈B(Ω×Sn−1)

∫
Sn−1

ηξ(Aξ) dHn−1(ξ) for every D ⊆ Ω× Sn−1.

We now show that the jump set of a vector field u ∈ GBDF (Ω) can be sliced into the
0-dimensional jump set of suitable one dimensional slices of u. More precisely, we prove
the following refined version of [4, Theorem 1.1 and Corollary 1.2] for a GBDF -vector
field.

Theorem 6.6 (Slicing of the jump set). Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1)–(RI),
let Ω be an open subset of Rn, let u ∈ GBDF (Ω), and let (Pξ)ξ∈Sn−1 be a family of
curvilinear projections on an open subset U of Ω. Then, it holds true

J
ûξy

= (Juξ)
ξ
y for every ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥, (6.3)

J
ûξy

= (Ju)ξy for Hn−1-a.e. ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥, (6.4)

J
ûξy
⊆ (Ju)ξy for every ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥. (6.5)

Moreover, the following relation between traces holds true for every ξ ∈ Sn−1, for

Hn−1-a.e. y ∈ ξ⊥, and for every t ∈ (Juξ)
ξ
y

ap- lim
z→x

±(z−x)·νuξ (x)>0

uξ(z) = ap- lim
s→t±σ(x)

ûξy(s) , (6.6)

whenever x = ϕξ(y + tξ) ∈ U and νuξ : Juξ → Sn−1 is a Borel measurable orientation
(Juξ is countably (n− 1)-rectifiable thanks to Theorem 6.1).
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Before proving Theorem 6.6, we state the equivalent of [4, Corollary 1.2] for u ∈
GBDF (Ω).

Theorem 6.7. Let F ∈ C∞(Rn ×Rn;Rn) satisfy (F.1)–(RI), let Ω be an open subset
of Rn, let u ∈ GBDF (Ω), let U ⊆ Ω open, and let (Pξ)ξ∈Sn−1 be a family of curvilinear
projections on U . Then, it holds that

(Jûξ)
ξ
y = (Juξ)

ξ
y for Hn−1-a.e. ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥. (6.7)

Proof. The thesis follows from [4, Corollary 1.2] with the choice g(x, z) = z for
(x, z) ∈ Ω×Rn. Indeed, we notice that [4, Condition (G.2)] is automatically satisfied,
while [4, Corollary 1.2, item (3)] is automatically satisfied in view of Definition 4.8 and
Corollary 4.12. �

We now prove an intermediate lemma which allows us to pass from an a.e. condition
on ξ to the entire Sn−1 in (6.7).

Lemma 6.8. Let F ∈ C∞(Rn × Rn;Rn) satisfy (F.1)–(RI), let Ω be an open subset
of Rn, let u ∈ GBDF (Ω), let U ⊆ Ω open, and let (Pξ)ξ∈Sn−1 be a family of curvilinear
projections on U . If B ∈ B(U) satisfies Iu,1(B) = 0, then we have

Hn−1
(
Pξ(Jûξ ∩B)

)
= 0 for every ξ ∈ Sn−1. (6.8)

Proof. In order to simplify the notation we assume that U = Ω. From the definition
of Iu,1 we have that condition Iu,1(B) = 0 implies that there exists N ⊆ Sn−1

with Hn−1(N) = 0 such that for every ξ ∈ Sn−1 \N it holds

Hn−1
(
Pξ(Jûξ ∩B)

)
= 0 .

If we define the measure µu as

µu(B′) := sup
k∈N

sup

k∑
i=1

µξiu (Bi) (6.9)

for every B′ ∈ B(Ω), where the second supremum is taken over all the families
ξ1, . . . ξk ∈ Sn−1 \ N and all the families of pairwise disjoint Borel subset B1, . . . , Bk
of B′, we have µu(B) = 0. Since for every ξ /∈ N we have by construction µξu ≤ µ̃u,
Proposition 4.15 implies that for every open set U ⊆ Ω and every ξ ∈ Sn−1

µξu(U) ≤ µu(U). (6.10)

Both measures appearing in (6.10) are Radon, hence the outer regularity of Radon
measures implies that for every B′ ∈ B(Ω) and for every ξ ∈ Sn−1

µξu(B′) ≤ µu(B′) .

The previous inequality computed in B implies that µξu(B) = 0 for every ξ ∈ Sn−1.
Denoting by v a Borel representative of u, we write

0 = µξu(B ∩ Jv̂ξ) =

∫
ξ⊥
|Dûξy|

(
Bξ
y ∩ (Jv̂ξ)

ξ
y \ J1

ûξy

)
+H0

(
Bξ
y ∩ (Jv̂ξ)

ξ
y ∩ J1

ûξy
) dHn−1(y)

=

∫
Pξ(Jv̂ξ∩B)

m(y) dHn−1(y) ,

where m(y) > 0 for Hn−1-a.e. y ∈ Pξ(Jv̂ξ ∩ B). We deduce Hn−1(Pξ(Jv̂ξ ∩ B)) = 0
from which (6.8) follows. �

We are now in a position to prove Theorem 6.6.
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Proof of Theorem 6.6. In order to simplify the notation we assume that U = Ω. For-
mula (6.6) holds by [4, Proposition 4.10], since Juξ is countably (n − 1)-rectifiable

and Dξ(uξ ◦ ϕξ) ∈ Mb(ϕ
−1
ξ (Ω)) (see Corollary 4.12). Theorem 6.7 yields (6.3)–(6.5),

respectively, but for Hn−1-a.e. ξ ∈ Sn−1. In order to pass from Hn−1-a.e. ξ to the
entire Sn−1, we notice that the inclusion

J
ûξy
⊆ (Ju)ξy for Hn−1-a.e. ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥

leads to Iu,1(Ω\Ju) = 0. This last information allows us to make use of Lemma 6.8 and

infer Hn−1(Pξ(Jûξ ∩ (Ω \ Ju))) = 0 for every ξ ∈ Sn−1. Using the identity (Jûξ)
ξ
y = J

ûξy

we immediately infer the validity of (6.5). In order to prove (6.3) we argue as above
with Ju replaced by Juξ and infer that

J
ûξy
⊆ (Juξ)

ξ
y for every ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥.

The opposite inclusion is a direct consequence of (6.6). �

6.2. The approximate symmetric gradient in GBDF (Ω). In the next theorem we
show that every function u ∈ GBDF (Ω) admits an approximate symmetric gradient
at a.e. x ∈ Ω. We recall the definition of approximate symmetric gradient.

Theorem 6.9 (Existence of the approximate symmetric gradient). Let F ∈ C∞(Rn×
Rn;Rn) satisfy (F.1), let Ω be an open subset of Rn, and let u ∈ GBDF (Ω). Then,
there exists e(u) ∈ L1(Ω;Mn×n

sym ) such that, setting

ẽ(u)(x)ζ · ζ := e(u)(x)ζ · ζ + u(x) · F (x, ζ) for x ∈ Ω and ζ ∈ Rn, (6.11)

ẽ(u)(x) is the approximate symmetric gradient of u at x for a.e. x ∈ Ω and∫
B
|e(u)|dx ≤ λ(B), for every B ⊂ Ω Borel. (6.12)

Moreover, if (Pξ)ξ∈Sn−1 is a family of curvilinear projections on an open set U ⊆ Ω,

then for Hn−1-a.e. ξ ∈ Sn−1 it holds true

∇ûξy(t) = (e(u))ξy ϕ̇ξ(y+tξ)·ϕ̇ξ(y+tξ) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ U ξy . (6.13)

Remark 6.10. We notice that formula (6.11) together with the uniqueness of the sym-
metric approximate gradient tell us that e(u) does not depend on the chosen family of
curvilinear projections.

Before proving Theorem 6.9 we need two intermediate results.

Lemma 6.11. Let u : Ω→ Rn be measurable and with compact support in Ω. Suppose
that there exists q̃ : Ω × Rn → R which is 2-homogeneous in the second variable and
satisfies for a.e. x ∈ Ω

ap- lim
z→x

|(u(z)− u(x)) · (z − x)− q̃(x, z − x)|
|z − x|2

= 0 . (6.14)

Then there exists a measurable map S(u) : Ω→Mn×n
sym such that for a.e. x ∈ Ω

S(u)(x)ζ · ζ = q̃(x, ζ) for a.e. ζ ∈ Rn. (6.15)



GENERALIZED BOUNDED DEFORMATION IN NON-EUCLIDEAN SETTINGS 23

Proof. We claim that there exists S ⊆ Rn × Rn with L2n(Rn × Rn \ S) = 0 and such
that for every (ζ1, ζ2) ∈ S the parallelogram law

q̃(x, ζ1 + ζ2) + q̃(x, ζ1 − ζ2) = 2q̃(x, ζ1) + 2q̃(x, ζ2), (ζ1, ζ2) ∈ S, (6.16)

holds for a.e. x ∈ Ω (depending on (ζ1, ζ2)). Indeed an application of the dominated
convergence theorem together with (6.14) and the 2-homogeneity of q̃(x, ·) allows us
to write for every λ > 0

lim
r↘0

λn
∫

B 1
λ

(0)

(∫
Ω

∣∣∣∣(u(x+ rλz)− u(x)) · z|z|
rλ|z|

− q̃
(
x,

z

|z|

)∣∣∣∣ ∧ 1 dx

)
dz (6.17)

≤ ωn lim
r↘0

∫
Ω

(
−
∫

Br(x)

|(u(z)− u(x)) · (z − x)− q̃(x, z − x)|
|z − x|2

∧ 1 dz

)
dx = 0 ,

where ωn := Ln(B1(0)). Let us fix λm ↘ 0. It follows from (6.17) and a diagonal
argument that there exists a sequence r` ↘ 0 such that for every m ∈ N it holds

lim
`→∞

∫
Ω

∣∣∣∣(u(x+ r`z)− u(x)) · z|z|
r`|z|

− q̃
(
x,

z

|z|

)∣∣∣∣∧ 1 dx = 0 for a.e. z ∈ B 1
λm

(0). (6.18)

The arbitrariness of m ∈ N in (6.18) yields

lim
`→∞

∫
Ω

∣∣∣∣(u(x+ r`z)− u(x)) · z|z|
r`|z|

− q̃
(
x,

z

|z|

)∣∣∣∣ ∧ 1 dx = 0 for a.e. z ∈ Rn. (6.19)

Let us set

K := {z ∈ Rn : (6.19) does not hold in z} ,
S := {(ζ1, ζ2) ∈ Rn × Rn : ζ1 ± ζ2, 2ζ1, 2ζ2 /∈ K} .

As Ln(K) = 0, by Fubini’s theorem we have that L2n(Rn × Rn \ S) = 0. Let us fix
(ζ1, ζ2) ∈ S. We make use of the parallelogram identity to write for every x ∈ Ω and
for r` such that x± r`ζi ∈ Ω for i = 1, 2

|2q̃(x, ζ1 + ζ2) + 2q̃(x, ζ1 − ζ2)− 4q̃(x, ζ1)− 4q̃(x, ζ2)| ∧ 1 (6.20)

≤
(
|ζ1 + ζ2|2

∣∣∣∣(u(x+ r`ζ1)− u(x− r`ζ2)) · ζ1+ζ2
|ζ1+ζ2|

r`|ζ1 + ζ2|
− q̃
(
x,

ζ1 + ζ2

|ζ1 + ζ2|

)∣∣∣∣) ∧ 1

+

(
|ζ1 + ζ2|2

∣∣∣∣(u(x+ r`ζ2)− u(x− r`ζ1)) · ζ1+ζ2
|ζ1+ζ2|

r`|ζ1 + ζ2|
− q̃
(
x,

ζ1 + ζ2

|ζ1 + ζ2|

)∣∣∣∣) ∧ 1

+

(
|ζ1 − ζ2|2

∣∣∣∣(u(x+ r`ζ1)− u(x+ r`ζ2)) · ζ1−ζ2|ζ1−ζ2|

r`|ζ1 − ζ2|
− q̃
(
x,

ζ1 − ζ2

|ζ1 − ζ2|

)∣∣∣∣) ∧ 1

+

(
|ζ1 − ζ2|2

∣∣∣∣(u(x− r`ζ1)− u(x− r`ζ2)) · ζ1−ζ2|ζ1−ζ2|

r`|ζ1 − ζ2|
− q̃
(
x,

ζ1 − ζ2

|ζ1 − ζ2|

)∣∣∣∣) ∧ 1

+

(
4|ζ1|2

∣∣∣∣(u(x+ r`ζ1)− u(x− r`ζ1)) · ζ1|ζ1|
2r`|ζ1|

− q̃
(
x,

ζ1

|ζ1|

)∣∣∣∣) ∧ 1

+

(
4|ζ2|2

∣∣∣∣(u(x+ r`ζ2)− u(x− r`ζ2)) · ζ2|ζ2|
2r`|ζ2|

− q̃
(
x,

ζ2

|ζ2|

)∣∣∣∣) ∧ 1 .

In particular, we notice that since u has compact support, the restriction on r` can be
made independent of x ∈ Ω. As (ζ1, ζ2) ∈ S, by integrating (6.20) w.r.t. x ∈ Ω and
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using (6.19) on each term on the right-hand side of (6.20) we deduce that∫
Ω
|2q̃(x, ζ1 + ζ2) + 2q̃(x, ζ1 − ζ2)− 4q̃(x, ζ1)− 4q̃(x, ζ2)| ∧ 1 dx = 0 ,

which in turn implies (6.16). We notice that the set of admissible pairs (ζ1, ζ2) in (6.16)
is independent of x ∈ Ω.

We now claim that there exists a vector subspace X over Q which is countable and
dense in Rn, fulfills X \ {0} ⊂ Rn \ K, and such that the following hold: for every
ζ1, ζ2 ∈ X and for a.e. x ∈ Ω

q̃(x, ζ1 + ζ2) + q̃(x, ζ1 − ζ2) = 2q̃(x, ζ1) + 2q̃(x, ζ2) . (6.21)

To this regard we construct recursively a basis of X. Let us define U1 := {v ∈ Rn \K :
qv ∈ Rn \K, q ∈ Q \ {0}}. Then, it holds

U1 =
⋂

q∈Q\{0}

q · (Rn \K) . (6.22)

Indeed, if v ∈ U1, then for every q ∈ Q \ {0} we have v/q ∈ Rn \ K, which implies
that v belongs to the intersection on the right-hand side of (6.22). Conversely, if v
belongs to the intersection in the right-hand side of (6.22), then for every q ∈ Q \ {0}
there exists w ∈ Rn \K such that v = qw. Hence, v/q ∈ Rn \K for every q ∈ Q \ {0}
and v ∈ U1. Since Ln(K) = 0, (6.22) yields Ln(Rn \ U1) = 0 and we fix v1 ∈ U1. Let
j ≤ n and suppose we have already defined U1, . . . , Uj−1 and v1, . . . , vj−1. Then, we
set

Uj := {v ∈ Rn \K : qv + q1v1 + . . .+ qj−1vj−1 ∈ Rn \K ,

(q, q1, . . . , qj−1) ∈ Qj with q 6= {0}} .
We can write

Uj =
⋂

(q,q1,...,qj−1)∈Qj ,
q 6=0

q · (Rn \K)− q1v1 − . . .− qj−1vj−1 . (6.23)

Indeed, if v ∈ Uj , then given any jth-uplet (q, q1, . . . , qj−1) ∈ Qj with q 6= 0 we
have v/q + q1v1/q . . . + qj−1vj−1/q ∈ Rn \ K. Thus, v belongs to the intersection
on the right-hand side of (6.23). Conversely, if v belongs to the intersection on the
right-hand side of (6.23), then for every jth-uplet (q, q1, . . . , qj−1) ∈ Qj and q 6= 0
there exists w ∈ Rn \ K such that v = w/q − q1v1/q − . . . − qj−1vj−1/q. Hence,
qv+q1v1+. . .+qj−1vj−1 ∈ Rn\K and v ∈ Uj . Since Ln(K) = 0, we have Ln(Rn\Uj) =
0 and we can find vj ∈ Uj .

Let us set X := {q1v1 + . . . + qnvn : (q1, . . . , qn) ∈ Qn}. We check that X \ {0} ⊆
Rn\K. For every n-tuple (q1, . . . , qn) ∈ Qn\{0} let j ≤ n be the largest positive integer
less than or equal to n for which qj 6= 0. Then, we have that q1v1 + . . .+ qjvj ∈ Rn \K
by definition of Uj . Hence, X \ {0} ⊆ Rn \K and X is a vector space over Q which is
at most countable and dense in Rn.

Since ζ1, ζ2 ∈ X implies (ζ1, ζ2) ∈ S and X is at most countable, we deduce (6.21).
Let us denote by N0 ⊆ Ω such an exceptional set. Arguing as in the proof of [20,
Theorem 9.1], for every x ∈ Ω \N0 we deduce the existence of a symmetric Q-bilinear
form Bx : X ×X → R such that

Bx(ζ, ζ) = q̃(x, ζ) for every ζ ∈ X.

This implies that for every x ∈ Ω \N0 there exists S(u)(x) ∈Mn×n
sym such that

S(u)(x)ζ · ζ = q̃(x, ζ) for every ζ ∈ X. (6.24)
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In order to pass from (6.24) to (6.15) let us fix an arbitrary ζ ∈ Rn and let us
denote by Xζ the vector space over Q generated by X ∪ {ζ}. Notice that the set of
ζ ∈ Rn \ K for which Xζ \ {0} ⊆ Rn \ K has full measure. We choose ζ ∈ Rn \ K
such that Xζ \ {0} ⊆ Rn \ K. Using the same argument above with X replaced
by Xζ , we deduce the existence of a negligible set N ′0 ⊃ N0 such that (6.21) holds true
with x ∈ Ω \ N ′0 and ζ1, ζ2 ∈ Xζ . Therefore, we find for every x ∈ Ω \ N ′0 a matrix

S′(u)(x) ∈ Mn×n
sym such that (6.24) holds true for ζ̃ ∈ Xζ . In addition, being X ⊂ Xζ ,

for every x ∈ Ω \N ′0 it holds true S(u)(x)ζ̃ · ζ̃ = S′(u)(x)ζ̃ · ζ̃ for every ζ̃ ∈ X. As X
dense in Rn, S(u)(x) = S′(u)(x).

In order to concludes the proof it remains to prove the measurability of the map
S(u)(x) : Ω→Mn×n

sym . For this purpose we fix an orthonormal basis {w1, . . . , wn} of Rn
such that wi ∈ Rn \K and |w1| = . . . = |wn| =: α > 0. We notice that if we denote

by ẽ(u)(x)ji the (i, j) entry of the symmetric matrix ẽ(u)(x) represented with respect
to the orthonormal basis {w1/α, . . . , wn/α}, we have

2α2S(u)(x)ji = S(u)(x)(wi +wj) · (wi +wj)−S(u)(x)wi ·wi−S(u)(x)wj ·wj . (6.25)

By formula (6.14) we have that x 7→ q̃(x, ξ) is Ln-measurable for every ξ ∈ Sn−1.
Equalities (6.15) and (6.25) imply that x 7→ S(u)(x) is a Ln-measurable map with
values in Mn×n

sym . �

Lemma 6.12. Let F ∈ C∞(Rn×Rn;Rn) satisfy (F.1), let Ω be an open subset of Rn,
let u ∈ GBDF (Ω) be Borel measurable, and let {Pξ}ξ∈Sn−1 be a family of curvilinear
projections on Ω w.r.t. F parametrized by ϕ. Then, the set

A :=
{

(x, ξ) ∈ Ω× Sn−1 : tξx is a Lebesgue point of ûξPξ(x), (6.26)

ûξPξ(x) is approximatively differentiable at tξx
}
,

is Borel measurable. Moreover, there exist two Borel measurable maps v, θ : Ω×Sn−1 →
Rn such that for every ξ ∈ Sn−1 θ(·, ξ) is Borel measurable and

ap- lim
t→tξx

∣∣∣∣ ûξPξ(x)(t)− v(x, ξ)

t− tξx
− θ(x, ξ)

∣∣∣∣ = 0 for a.e. x ∈ Ω , (6.27)

∇ûξy(t) = (θ(·, ξ))ξy(t) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y . (6.28)

Proof. We set

u+(x, ξ) := ap- lim sup
s→tξx

ûξPξ(x)(s) ,

u−(x, ξ) := ap- lim inf
s→tξx

ûξPξ(x)(s) ,

θ+(x, ξ) := ap- lim sup
s→tξx

ûξPξ(x)(s)− u
+(x, ξ)

s− tξx
,

θ−(x, ξ) := ap- lim inf
s→tξx

ûξPξ(x)(s)− u
−(x, ξ)

s− tξx
.

Arguing as in [4, Proposition 4.15] we can prove that (x, ξ) 7→ u±(x, ξ) and (x, ξ) 7→
θ±(x, ξ) are Borel measurable functions. Since

A = {(x, ξ) ∈ Ω× Sn−1 : u+(x, ξ) = u−(x, ξ) and θ+(x, ξ) = θ−(x, ξ)} ,
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we deduce that A is Borel. For (x, ξ) ∈ A, let us denote v(x, ξ) := u+(x, ξ) = u−(x, ξ)
and θ(x, ξ) := θ+(x, ξ) = θ−(x, ξ).

By definition of GBDF (Ω) we know that given ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥

it holds ûξy ∈ BVloc(Ω
ξ
y). Thanks to a well known property of BV functions in one

variable, this implies that for fixed ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y

we have that t is a Lebesgue point and a point of approximate differentiability of

s 7→ ûξy(s). In particular, this implies (6.27) and (6.28). �

We now prove Theorem 6.9.

Proof of Theorem 6.9. In view of Remark 4.9, we can consider a cover of Ω made of at
most countably many open sets Ui ⊂ Ω and associated family of curvilinear projections
(P iξ)ξ∈Sn−1 on Ui. In addition, thanks to Remark 6.10, we can limit ourselves to prove
that for every i = 1, 2, . . . the first part of the theorem is satisfied on Ui. Without
loss of generality we may thus ease the notation by assuming that Ui = U = Ω and
(Pξ)ξ∈Sn−1 are curvilinear projections on Ω. Since statements (2.1) and (6.13) do not
depend on the representative in the Lebesgue class, we may as well assume u to be
Borel and to coincide with its Lebesgue representative out of a Borel negligible set.
Moreover, since the problem is local, we may assume without loss of generality that u
has compact support in Ω. Let us define

A :=
{

(x, ξ) ∈ Ω× Sn−1 : tξx is a Lebesgue point of ûξPξ(x),

ûξPξ(x) is approximatively differentiable at tξx
}
,

Aξ := {x ∈ U : (x, ξ) ∈ A} Ax := {ξ ∈ Sn−1 : (x, ξ) ∈ A} .

Then, by Lemma 6.12 we deduce that A is Borel. Moreover, there exists v, θ : Ω ×
Sn−1 → Rn Borel measurable such that (6.27) and (6.28) hold. In particular, from (6.28)
and condition (2) in Definition 4.8 we deduce that∫

ξ⊥

(∫
Ωξy

|((θ(·, ξ))ξy(t)| dt
)

dHn−1(y) ≤ ‖ϕ̇ξ‖2L∞Lip(Pξ)
n−1 λ(Ω) , (6.29)

which implies (after a change of variables) θ(·, ξ) ∈ L1(Ω).
Since for every ξ ∈ Sn−1 we have Ln(Aξ) = Ln(Ω), applying Fubini’s theorem to

the Borel set A ⊆ Ω× Sn−1 we obtain

Hn−1(Sn−1) · Ln(Ω) =

∫
Sn−1

Ln(Aξ) dHn−1(ξ) =

∫
Ω
Hn−1(Ax) dx .

This implies that for Ln-a.e. x ∈ Ω we have Hn−1(Ax) = Hn−1(Sn−1). Hence, by
definition of A we infer that there exists N ⊆ Ω with Ln(N) = 0 and such that for
every x ∈ Ω \N

ap- lim
t→tξx

|ûξPξ(x)(t)− v(x, ξ)| = 0 for Hn−1-a.e. ξ ∈ Sn−1, (6.30)

ap- lim
t→tξx

∣∣∣∣ ûξPξ(x)(t)− v(x, ξ)

t− tξx
− θ(x, ξ)

∣∣∣∣ = 0 for Hn−1-a.e. ξ ∈ Sn−1. (6.31)

Up to consider a larger negligible set, still denoted by N , we may suppose that u
is approximately continuous at every x ∈ Ω \ N . Thus, by denoting, with abuse of
notation, by u(x) the approximate continuous representative of u at x ∈ Ω \N , (6.30)
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and (6.31) may be rewritten as

ap- lim
t→tξx

|ûξPξ(x)(t)− u(x) · ξϕ(x)| = 0 for Hn−1-a.e. ξ ∈ Sn−1, (6.32)

ap- lim
t→tξx

∣∣∣∣ ûξPξ(x)(t)− u(x) · ξϕ(x)

t− tξx
− θ(x, ξ)

∣∣∣∣ = 0 for Hn−1-a.e. ξ ∈ Sn−1. (6.33)

Moreover, since Pξ is a curvilinear projection and condition (2) of Definition 4.3 holds,
for every x ∈ Ω \ N , for every ξ ∈ Sn−1 the curve t 7→ expx(tξϕ(x)) (see Definition

5.6) coincides for t small enough with the curve t 7→ ϕξ(Pξ(x) + (t+ tξx)ξ) (remember

that ξϕ(x) = ϕ̇ξ(Pξ(x) + tξxξ)). Thanks to property (3) of Definition 4.6 of curvilinear
projections, the map ξ 7→ ξϕ(x)/|ξϕ(x)| is a diffeomorphism between Sn−1 and itself.
Therefore, (6.32) and (6.33) can be reformulated for every x ∈ Ω \ N and for Hn−1-
a.e. ξ ∈ Sn−1 as

ap- lim
t→0

|u(expx(tξϕ(x))) · ˙expx(tξϕ(x))− u(x) · ξϕ(x)| = 0 , (6.34)

ap- lim
t→0

∣∣∣∣u(expx(tξϕ(x))) · ˙expx(tξϕ(x))− u(x) · ξϕ(x)

t
− θ(x, ξ)

∣∣∣∣ = 0 . (6.35)

Now for every (x, ξ) ∈ Ω×Sn−1 for which (6.34) and (6.35) hold, we set q(x, ξϕ(x)) :=
θ(x, ξ), and we define q(x, ξϕ(x)) := 0 otherwise. Then, we consider q : Ω×Rn → R the
positively 2-homogeneous extension of q(x, ξϕ(x)) in the second variable. This means
that, exploiting the fact that ξ 7→ ξϕ(x)/|ξϕ(x)| is a diffeomorphism of Sn−1 and itself,
we have

q(x, ζ) =
|ζ|2

|ξϕ(x)|2
q(x, ξϕ(x)) for (x, ζ) ∈ Ω× Rn, (6.36)

whenever ζ satisfies ξϕ(x)/|ξϕ(x)| = ζ/|ζ|.
For x ∈ Ω \ N , let φ : Br(x) \ {x} → Sn−1 be given by Proposition 5.11, and let

χ : Br(x) \ {x} → Rn and d(·, x) : Br(x)→ R be given by Definition 5.12 (notice that,
for simplicity of notation, we have dropped the index x). We now show that

ap- lim
z→x

∣∣∣∣u(z) · χ(z)− u(x) · φ(z)

d(z, x)
− q
(
x, φ(z)

)∣∣∣∣ = 0 . (6.37)

By (5.12), there exists c > 0 such that H1({φ−1(ξ) ∩ Bρ(x)}) ≤ cρ for every ξ ∈ Sn−1

and for every ρ ∈ (0, r). Thanks to (5.7) we can make use of Coarea formula with
map φ to write for ρ ∈ (0, r)

−
∫

Bρ(x)

∣∣∣∣u(z) · χ(z)− u(x) · φ(z)

d(z, x)
− q
(
x, φ(z)

)∣∣∣∣ ∧ 1 dz

≤ c
∫
Sn−1

(
−
∫ cρ

0

∣∣∣∣u(expx(tη)) · ˙expx(tη)− u(x) · η
t

− q(x, η)

∣∣∣∣ ∧ 1
| ˙expx(tη)|
|Jφ(expx(tη))|

dt

)
dHn−1(η)

≤ c′
∫
Sn−1

(
−
∫ cρ

0

∣∣∣∣u(expx(tη)) · ˙expx(tη)− u(x) · η
t

− q(x, η)

∣∣∣∣ ∧ 1 | expx(tη)− x|n−1 dt

)
dHn−1(η)

≤ c′′
∫
Sn−1

(
−
∫ cρ

0

∣∣∣∣u(expx(tη)) · ˙expx(tη)− u(x) · η
t

− q(x, η)

∣∣∣∣ ∧ 1 tn−1 dt

)
dHn−1(η).

By (6.35)–(6.36) and dominated convergence we infer (6.37). Setting

qw(x, ζ) := w · F (x, ζ) for every w, ζ ∈ Rn,
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by using the definition of exponential map, it can be directly shown that if we replace u
with a constant map w ∈ Rn in (6.37) it holds

ap- lim
z→x

∣∣∣∣w · (χ(z)− φ(z))

d(z, x)
− qw(x, φ(z))

∣∣∣∣ = 0 . (6.38)

We introduce

q̃(x, ζ) := q(x, ζ)− qu(x)(x, ζ) x ∈ Ω \N and ζ ∈ Rn. (6.39)

We now show that for every x ∈ Ω \N it holds

ap- lim
z→x

|(u(z)− u(x)) · (z − x)− q̃(x, z − x)|
|z − x|2

= 0 . (6.40)

To simplify the notation we set e(z) := (z − x)/|z − x|. Making use of the maps φ
and χ defined for x ∈ Ω \N , we first estimate by triangle inequality∣∣∣∣(u(z)− u(x)) · e(z)

|z − x|
− q̃(x, e(z))

∣∣∣∣ ≤ ∣∣∣∣(u(z)− u(x)) · (e(z)− χ(z))

|z − x|

∣∣∣∣ (6.41)

+

∣∣∣∣u(x) · (χ(z)− φ(z))

d(z, x)
− qu(x)(x, φ(z))

∣∣∣∣
+

∣∣∣∣u(z) · χ(z)− u(x) · φ(z)

d(z, x)
− q(x, φ(z))

∣∣∣∣
+

∣∣∣∣u(x) · (φ(z)− χ(z))

d(z, x)

∣∣∣∣∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣
+

∣∣∣∣u(z) · χ(z)− u(x) · φ(z)

d(z, x)

∣∣∣∣∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣
+ |qu(x)(x, φ(z))− qu(x)(x, e(z))|
+ |q(x, φ(z))− q(x, e(z))| .

Now we examine the limit as r → 0+ of each term appearing in the right-hand side
of (6.41). By (5.11) and by the approximate continuity of u at x we have that

lim sup
r↘0

−
∫

Br(x)

|(u(z)− u(x)) · (e(z)− χ(z))|
|z − x|

∧ 1 dz (6.42)

≤ lim sup
r↘0

[(
sup

z∈Br(x)\{x}

|e(z)− χ(z)|
|z − x|

)
∨ 1

]
−
∫

Br(x)
|u(z)− u(x)| ∧ 1 dz = 0 .

By definition of qu(x) we have

lim sup
r↘0

−
∫

Br(x)
|qu(x)(x, φ(z))− qu(x)(x, e(z))| ∧ 1 dz (6.43)

≤ lim sup
r↘0

−
∫

Br(x)
|u(x) · [F (x, φ(z))− F (x, e(z))]| ∧ 1 dz .

We show that the limsup on the right-hand side of inequality (6.43) goes to zero. To
this purpose we write

lim sup
r↘0

−
∫

Br(x)
|u(x) · [F (x, φ(z))− F (x, e(z))]| ∧ 1 dz

≤ (|u(x)| ∨ 1) lim sup
r↘0

∫ 1

0

(∫
∂Bs(0)

|F (x, φ(x+ rη))− F (x0, e(x+ rη))|dHn−1(η)

)
ds
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= (|u(x)| ∨ 1) lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|F (x, φ(x+ rsξ))− F (x, ξ)| dHn−1(ξ)

)
ds .

Convergence (5.10) implies that

φ(x+ rsξ)→ ξ in C∞(Sn−1;Sn−1) as r ↘ 0, uniformly in s ∈ (0, 1). (6.44)

As F (x, ·) : Sn−1 → Rn is an Hn−1-measurable function, for ε > 0 there exists ψ ∈
C0(Sn−1;Rn) with

∫
Sn−1 |F (x, ξ) − ψ(ξ)|dHn−1(ξ) ≤ ε. Denoting by φ−1

x,s,r(ξ) the
inverse of the map of ξ 7→ φ(x+ rsξ), we can continue with

lim sup
r↘0

−
∫

Br(x)
|u(x) · [F (x, φ(z))− F (x, e(z))]| ∧ 1 dz (6.45)

≤ (|u(x)| ∨ 1)

(
lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|F (x, φ(x+ rsξ))− ψ(φ(x+ rsξ))| dHn−1(ξ)

)
ds

+ lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|ψ(φ(x+ rsξ))− ψ(ξ)|dHn−1(ξ)

)
ds

+ lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|F (x, ξ)− ψ(ξ)| dHn−1(ξ)

)
ds

)
≤ (|u(x)| ∨ 1)

(
lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|F (x, ξ)− ψ(ξ)| |Jξφ−1
x,s,r(ξ)|dHn−1(ξ)

)
ds

+ lim sup
r↘0

∫ 1

0

(
sn−1

∫
Sn−1

|F (x, ξ)− ψ(ξ)| dHn−1(ξ)

)
ds

)
≤ ε(|u(x)| ∨ 1)

(
lim sup
r↘0

∫ 1

0
‖Jξφ−1

x,s,r‖L∞(Sn−1)s
n−1 ds+

1

n

)
.

By (6.44) we have that ‖Jξφ−1
x,s,r‖L∞(Sn−1) → 1 uniformly in s ∈ (0, 1) as r ↘ 0. This

also means that for every but sufficiently small r > 0, ‖Jξφ−1
x,s,r‖L∞(Sn−1) is bounded

uniformly with respect to s ∈ (0, 1). Applying the dominated convergence theorem
to (6.45) we infer that

lim sup
r↘0

−
∫

Br(x)
|u(x) · [F (x, φ(z))− F (x, e(z))]| ∧ 1 dz ≤ 2ε (|u(x)| ∨ 1)

n
.

Thanks to the arbitrariness of ε > 0 we conclude that

lim
r↘0
−
∫

Br(x)
|u(x) · [F (x, φ(z))− F (x, e(z))]| ∧ 1 dz = 0 , (6.46)

which in turn implies that

lim sup
r↘0

−
∫

Br(x)
|qu(x)(x, φ(z))− qu(x)(x, e(z))| ∧ 1 dz = 0 . (6.47)

From (6.35) it follows that q(x, ·) : Sn−1 → R is an Hn−1-measurable function for
every x ∈ Ω \N . Therefore, we may argue as in (6.43)–(6.46) to deduce that

lim
r↘0
−
∫

Br(x)
|q(x, φ(z))− q(x, e(z))| ∧ 1 dz = 0 . (6.48)

By triangle inequality, by (5.12), by (6.38) with w = u(x), and by dominated con-
vergence we get that

lim sup
r↘0

−
∫

Br(x)

(∣∣∣∣u(x) · (φ(z)− χ(z))

d(z, x)

∣∣∣∣∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣) ∧ 1 dz (6.49)
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≤ lim sup
r↘0

−
∫

Br(x)

(∣∣∣∣u(x) · (χ(z)− φ(z))

d(z, x)
− qu(x)(x, φ(z))

∣∣∣∣∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣) ∧ 1 dz

+ lim sup
r↘0

−
∫

Br(x)

(
|qu(x)(x, φ(z))|

∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣) ∧ 1 dz

= lim sup
r↘0

−
∫

B1(0)

(
|qu(x)(x, φ(x+ rz))|

∣∣∣∣1− d(x+ rz, x)

|rz|

∣∣∣∣) ∧ 1 dz = 0 .

In the very same way we also deduce that

lim
r↘0
−
∫

Br(x)

(∣∣∣∣u(z) · χ(z)− u(x) · χ(z)

d(z, x)

∣∣∣∣∣∣∣∣1− d(z, x)

|z − x|

∣∣∣∣) ∧ 1 dz = 0 . (6.50)

Combining (6.37), (6.38), and (6.41)–(6.50) we infer (6.40) for every x ∈ Ω \N .
We are in position to apply Lemma 6.11 and infer the existence of a symmetric

bi-linear form ẽ(u)(x) : Rn × Rn → R such that

ẽ(u)(x)ζ · ζ = q̃(x, ζ) for every ζ ∈ Rn (6.51)

holds true. This, together with (6.40), implies (2.1).
By Lemma 6.11 x 7→ ẽ(u)(x) is an Ln-measurable map with values in Mn×n

sym . Thus,
the map (x, ζ) 7→ ẽ(u)(x)ζ · ζ is (Ln × Ln)-measurable. Therefore, thanks to Fu-
bini’s theorem and the 2-homogeneity of q̃(x, ·), relation (6.51) can be turned into the
following one: for Hn−1-a.e. ξ ∈ Sn−1

ẽ(u)(x)ξ · ξ = q̃(x, ξ) for a.e. x ∈ Ω. (6.52)

Setting for a.e. x ∈ Ω

e(u)(x)ζ · ζ := ẽ(u)(x)ζ · ζ + u(x) · F (x, ζ) for ζ ∈ Rn, (6.53)

we infer from (6.28), from (6.39), and from the equality θ(x, ξ) = q(x, ξϕ(x)) that for
Hn−1-a.e. ξ ∈ Sn−1

∇ûξy(t) = (e(u))ξy ϕ̇ξ(y+ tξ) · ϕ̇ξ(y+ tξ) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y. (6.54)

Finally, by (6.29) we have that∫
Ω
|e(u)(x)| dx ≤

∫
Sn−1

(
1

c(Ω)

∫
U
|e(u)(x)ξϕ(x) · ξϕ(x)| dx

)
dHn−1(ξ) (6.55)

≤
∫
Sn−1

(
c′(Ω)

c(Ω)

∫
ξ⊥

(∫
Uξy

|(e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ)|dt
)

dHn−1(y)

)
dHn−1(ξ)

≤ c′(Ω)

c(Ω)
sup

ξ∈Sn−1

‖ϕ̇ξ‖2L∞(Ω)Lip(Pξ)
n−1 λ(Ω) ,

where

c(Ω) := inf
x∈Ω

min
A∈Mn×n

sym

|A|=1

∫
Sn−1

|Aξϕ(x) · ξϕ(x)|dHn−1(ξ) and c′(Ω) := sup
ξ∈Sn−1

x∈Ω

|JPξ(x)|−1.

It remains to show that e(u) ∈ L1(Ω;Mn
sym) and inequality (6.12). To this end, given

ε > 0, for every x ∈ Ω we fix r(x) ∈ (0,+∞) such that the family of maps (Pξ,x)ξ∈Sn−1

given in Definition 5.2 is a family of curvilinear projections on Br(x)(x) and for every
0 < r ≤ r(x)

sup
ξ∈Sn−1

‖ϕ̇ξ,x‖L∞(Br(x)) ≤ 1 + ε , sup
ξ∈Sn−1

Lip(Pξ,x; Br(x)) ≤ 1 + ε , (6.56)

1

1 + ε
≤ c(Br(x)) , c′(Br(x)) ≤ 1 + ε . (6.57)
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Notice that such r(x) exists in view of Theorem 5.3 and of Lemma 5.5. Hence, in view
of Remark 6.10 the same estimate (6.55)–(6.57) holds true if we replace (Pξ)ξ∈Sn−1

and Ω with (Pξ,x)ξ∈Sn−1 and Br(x) (0 < r ≤ r(x)), respectively. This implies that for
every x ∈ Ω it holds true∫

Br(x)
|e(u)(z)| dz ≤ (1 + ε)n+3 λ(Br(x)) for 0 < r ≤ r(x). (6.58)

We can apply Vitali covering theorem (see, e.g., [8, Theorem 2.19]), to find sequences
ri > 0 and xi ∈ Ω such that the family {Bri(xi) : i ∈ N} is pairwise disjoint and
Ln(Ω \

⋃
i Bri(xi)) = 0. Therefore, we infer from (6.58) and the arbitrariness of ε > 0

that ∫
Ω
|e(u)|dx ≤ λ(Ω) < +∞ . (6.59)

In particular e(u) ∈ L1(Ω;Mn×n
sym ). To conclude we notice that the same argument

yields (6.59) with Ω replaced by any open subsets U ⊆ Ω. Thus, relation (6.12) follows
from the approximation property by means of open sets of Radon measure and the
proof is concluded. �

Remark 6.13. We notice that, differently from the classical Euclidean case [20, Theo-
rem 9.1], equality (6.13) does not hold for every ξ ∈ Sn−1. For this reason, we show in

the next proposition that ∇ûξy can always be controlled in terms of (e(u))ξy ϕ̇ξ(y+ tξ) ·
ϕ̇ξ(y + tξ).

Proposition 6.14. Let Ω be an open subset of Rn, u ∈ GBDF (Ω), and let e(u) ∈
L1(Ω;Mn×n

sym ) be the map determined in Theorem 6.9. Then, for every family (Pξ)ξ∈Sn−1

of curvilinear projections on some open set U ⊂ Ω, and every ξ ∈ Sn−1 we have

|∇ûξy(t)| ≤ |(e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ)| for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ U ξy .
(6.60)

Proof. In order to simplify the notation we assume U = Ω. We denote by v, θ : Ω ×
Sn−1 → Rn the maps constructed in Lemma 6.12 by means of the family (Pξ)ξ∈Sn−1 .

In particular, we have that for every ξ ∈ Sn−1

∇ûξy(t) = (θ(·, ξ))ξy(t) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y . (6.61)

We claim that for every ξ ∈ Sn−1 and for every B ∈ B(Ω) Borel we have∫
ξ⊥

(∫
Bξy

|θ(·, ξ))ξy(t)| dt
)

dHn−1(y) (6.62)

≤
∫
ξ⊥

(∫
Bξy

|(e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ)| dt
)

dHn−1(y).

Let us set N := {ξ ∈ Sn−1 : (6.13) is satisfied in ξ} and let us fix ξ ∈ Sn−1.
Since Hn−1(Sn−1 \N) = 0, there exists a sequence ξj ∈ N such that ξj → ξ as j →∞.
We define the measure µ̃u,k as in (6.9) with ξ is restricted to the family (ξj)j≥k. By

construction it holds that µ
ξj
u ≤ µ̃u,k for every j ≥ k. Therefore, Proposition 4.15 and

Theorem 6.9 imply that for every open set V ⊆ Ω∫
ξ⊥

(∫
V ξy

|θ(·, ξ))ξy(t)| dt
)

dHn−1(y) ≤ µξu(V ) ≤ µ̃u,k(V ) for every k. (6.63)
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The measures appearing in inequality (6.63) are Radon. Hence, we deduce that for
every B ∈ B(Ω) we have∫

ξ⊥

(∫
Bξy

|θ(·, ξ))ξy(t)|dt
)

dHn−1(y) ≤ µξu(B) ≤ µ̃u,k(B) for every k. (6.64)

We infer from (6.13) that for every j the absolutely continuous part (µ
ξj
u )a of µ

ξj
u

w.r.t. the Lebesgue measure is given by

(µ
ξj
u )a(B) =

∫
ξ⊥j

(∫
Bξy

(e(u))
ξj
y ϕ̇ξj (y+tξj)·ϕ̇ξj (y+tξj) dt

)
dHn−1(y) for B ∈ B(Ω).

Therefore, for every k the absolutely continuous part µ̃au,k of µ̃u,k w.r.t. the Lebesgue
measure is given by

µ̃au,k(B) = sup
∑
j

(µ
ξj
u )a(Bj) (6.65)

= sup
∑
j

∫
ξ⊥j

(∫
(Bj)

ξj
y

(e(u))
ξj
y ϕ̇ξj (y + tξj) · ϕ̇ξj (y + tξj) dt

)
dHn−1(y)

= sup
∑
j

∫
Bj

|e(u)(x)ξj,ϕ(x) · ξj,ϕ(x)||JPξj (x)|dx

for every B ⊂ Ω Borel, where the supremum is taken among all subsets of indices in
{j : j ≥ k} and among all finite families of pairwise disjoint Borel sets Bj contained
in B. Notice that in view of condition (4) in Definition 4.6 we can estimate∫

Ω
(|e(u)(x)ξj,ϕ(x) · ξj,ϕ(x)||JPξj (x)| − |e(u)(x)ξϕ(x) · ξϕ(x)||JPξ(x)|) dx

≤ C
∫

Ω
|e(u)(x)||ξj,ϕ(x)− ξϕ(x)||JPξj (x)|dx+

∫
Ω
|e(u)(x)|(|JPξj (x)| − |JPξ(x)|) dx ,

for a positive constant C independent of j. Therefore, exploiting the fact that ξj,ϕ(x)→
ξϕ(x) and |JPξj (x)| → |JPξ(x)| uniformly in Ω as j →∞ and that e(u) ∈ L1(Ω;Mn×n

sym )
we get from (6.65) that

µ̃au,k(B) =

∫
ξ⊥

(∫
Bξy

(e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ) dt

)
dHn−1(y) +O(k−1). (6.66)

Combining (6.64) and (6.66) we conclude (6.62).
Inequality (6.62) can be extended to all measurable sets, and in particular holds for

B = {x ∈ Ω : θ(x, ξ) > e(u)(x)ξϕ(x) · ξϕ(x)}. This implies that for every ξ ∈ Sn−1

|(θ(·, ξ))ξy(t)| ≤ |(e(u))ξy ϕ̇ξ(y + tξ) · ϕ̇ξ(y + tξ)| (6.67)

for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ Ωξ
y. Finally, (6.60) follows from (6.61) and (6.67). �

6.3. Slicing the jump set in GBD(M). Let (M, g) be a Riemannian manifold of
dimension n. In this subsection we recover the slicing properties of the jump set of
ω ∈ GBD(M). In order to state the result, we need the notion of family of curvilinear
projections on the manifold M, which follows from Definition 4.6 of family of curvilinear
projections on Ω ⊆ Rn.

Definition 6.15 (Family of curvilinear projections on M). Let V ⊆ M open. We say
that a family of maps Pξ : V → ξ⊥ for ξ ∈ Sn−1 is a family of curvilinear projections

on V if for every chart (U,ψ) we have that the {P ξ = Pξ ◦ ψ−1}ξ∈Sn−1 is a family of
curvilinear projections on ψ(U ∩ V ).
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Given ω ∈ D1(M), V ⊆ M open, {Pξ}ξ∈Sn−1 a family of curvilinear projections on V ,

for every chart (U,ψ) and every ξ ∈ Sn−1 we set

ωξ(p) := u(ψ(p)) · ξϕ(ψ(p)) ,

where {P ξ = Pξ ◦ψ−1}ξ∈Sn−1 is a family of curvilinear projections on ψ(U ∩V ), ϕ is a

parametrization of the family {P ξ}ξ∈Sn−1 according to Definition 4.5, ξϕ is the velocity
field defined in Definition 4.2, and u is as in (4.7).

Theorem 6.16. Let (M, g) be an n-dimensional Riemannian manifold and let ω ∈
GBD(M). Then Jω is countably (n− 1)-rectifiable. Moreover, if (U,ψ) is a chart and
(Pξ)ξ∈Sn−1 is a family of curvilinear projections on U , then it holds true

J
ω̂ξy

= (Jωξ)
ξ
y for every ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥, (6.68)

J
ω̂ξy

= (Jω)ξy for Hn−1-a.e. ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥, (6.69)

J
ω̂ξy
⊆ (Jω)ξy for every ξ ∈ Sn−1, for Hn−1-a.e. y ∈ ξ⊥. (6.70)

In addition, the following relation between traces holds true for every ξ ∈ Sn−1, for

Hn−1-a.e. y ∈ ξ⊥, and for every t ∈ (Jωξ)
ξ
y

ap- lim
q→p

q∈H±(p)

ωξ(q) = ap- lim
s→t±σ(p)

ω̂ξy(s) , (6.71)

whenever p = ϕξ(y+ tξ) ∈ U and νωξ ∈ Γ(U) is a Borel measurable orientation of Jωξ .

Proof. Since rectifiability is a local property we reduce ourselves to work on a chart
(U,ψ). Notice that

〈ω(q), d expp[q](v)〉q = u(ψ(q)) · v(ψ(q)),

where u : ψ(U) → Rn is defined as in (4.7) and v : ψ(U) → Rn are the components of
d expp[q](v) w.r.t. the basis (gi(q))i. From the continuity of gi(·) and gi(·) together with
the facts that limq→p v(ψ(q)) = v(ψ(p)) and the map v 7→ v(ψ(p)) is an isomorphism
between the vector spaces TpM and Rn (for every p), a standard geometric argument
leads to

ψ(Jω ∩ U) = Ju ∩ ψ(U).

The countably (n− 1)-rectifiability of Jω follows thus from Theorem 6.1.
Now we consider the family of curvilinear projections (P ξ)ξ∈Sn−1 on ψ(U) defined as

P ξ := Pξ ◦ ψ−1. Since by Proposition 4.16 we have u ∈ GBDF (ψ(U)), the remaining
part of theorem follows by a direct application of Theorem 6.6. �

6.4. Approximate symmetric gradient in GBD(M). In this subsection we show
that ω ∈ GBD(M) admits an approximate symmetric gradient.

Theorem 6.17 (Existence of the approximate symmetric gradient). Let (M, g) be an
n-dimensional Riemannian manifold and let ω ∈ GBD(M). Then for Hn-a.e. p ∈ M
there exists the approximate symmetric gradient e(ω)(p) and moreover∫

M
‖e(ω)(p)‖TpM⊗TpM dHn(p) ≤ λ(M) . (6.72)

In addition, if (Pξ)ξ∈Sn−1 is a family of curvilinear projections on an open set U ⊆ M,

then for Hn−1-a.e. ξ ∈ Sn−1 it holds true

∇ω̂ξy(t) = (e(ω))ξy(ϕ̇ξ(y + tξ)) for Hn−1-a.e. y ∈ ξ⊥, for a.e. t ∈ U ξy . (6.73)
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Proof. Let (U,ψ) be a chart of M. By Proposition 4.16, the function u : ψ(U) →
Rn defined in (4.13) belongs to GBDF (ψ(U)) with F given by (4.4). Moreover, if
λ ∈ M+

b (M) is the measure appearing in Definition 3.8 of GBD(M), defining λ as

in (4.8) we have that for every V ⊆ ψ(U) open, every ξ⊥ ∈ Sn−1, and every curvilinear
projection P : V → ξ⊥∫

ξ⊥

(∣∣|Dûξy|(Bξ
y \ J1

ûξy
) +H0(Bξ

y ∩ J1
ûξy

)
)

dHn−1(y) ≤ ‖ϕ̇‖2L∞Lip(P ;V )n−1λ(B) ,

for every B ∈ B(V ). By Remark 4.17, for ε > 0 fixed we may further assume that

λ ≤ (1 + ε)ψ]λ , Lip(ψ;U) < 1 + ε , Lip(ψ−1;ψ(U)) < 1 + ε . (6.74)

For x0 ∈ ψ(U) consider φx0(·) and χx0(·) the vector fields defined in (5.5) and (5.8),
respectively, and let d(·, x0) be the function defined in (5.9). Notice that, because of
the identity dM(q, p) = |vq|p we can rewrite (2.3) as

ap- lim
q→p

∣∣∣∣〈ω(q), d expp[q](vq)〉q − 〈ω(p), vq〉p
|vq|p

− e(ω)(p)(vq)

∣∣∣∣ = 0, (6.75)

where vq := vq/|vq|p. In addition we have

vq =
1

cp(q)

n∑
i=1

φψ(p)(ψ(q))i gi(p)

d expp[q](vq) =
1

cp(q)

n∑
i=1

χψ(p)(ψ(q))i gi(q),

where we used that the renormalization constant cp(q) is the same because of the fact
that the Riemannian norm of the velocity field of geodesics are constant in time. We
therefore infer that

〈ω(p), vq〉p =
1

cp(q)
u(ψ(p)) · φψ(p)(ψ(q))

〈ω(q), d expp[q](vq)〉q =
1

cp(q)
u(ψ(q)) · χψ(p)(ψ(q)).

In addition the definition of d(x0, ·) gives d(ψ(p), ψ(q)) = |wq| where wq ∈ Rn is
such that expψ(p)(wq) = ψ(q). Therefore, the geodesic which starts at p with initial

velocity
∑n

i=1(wq)i gi(p) ∈ TpM reaches at time t = 1 the point q. This means that
vq =

∑n
i=1(wq)i gi(p). We also have φψ(p)(ψ(q)) = wq/|wq|. Therefore

vq =
1

cp(q)

n∑
i=1

φψ(p)(ψ(q))i gi(p) =
1

cp(q)|wq|

n∑
i=1

(wq)i gi(p) =
vq

cp(q)|wq|
.

Hence, we get that
dM(p, q)

d(ψ(p), ψ(q))
=
|vq|p
|wq|

= cp(q) .

In particular,

〈ω(q), d expp[q](vq)〉q − 〈ω(p), vq〉p
|vq|p

=
u(ψ(q)) · χψ(p)(ψ(q))− u(ψ(p)) · φψ(p)(ψ(q))

cp(q)2d(ψ(p), ψ(q))

We already know from (6.37),(6.39), and (6.53) that the following holds true

ap- lim
q→p

∣∣∣∣u(ψ(q)) · χψ(p)(ψ(q))− u(ψ(p)) · φψ(p)(ψ(q))

cp(q)2d(ψ(p), ψ(q))
(6.76)
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−
e(u)(ψ(p))φψ(p)(ψ(q)) · φψ(p)(ψ(q))

cp(q)2

∣∣∣∣ = 0,

as soon as we provide a strictly positive lower bound for the function cp(·) in a neigh-
borhood of p. But this follows from the fact that

cp(q) =
|vq|p
|wq|

≥ inf
ξ∈Sn−1

n∑
i,j=1

ξiξj(gi(p) · gj(p)) > 0,

since (gi · gj)ij is a positive definite matrix.
Defining e(ω)(p) ∈ TpM⊗ TpM as

e(ω)(p)(v) := e(u)(ψ(p))Lp(v) · Lp(v) for every v ∈ TpM , (6.77)

where Lp : TpM→ Rn is the linear map defined as Lp(v) :=
∑n

i=1〈gi(p), v〉ei, we verify
that

e(ω)(p)(vq) := |vq|2p
e(u)(ψ(p))φψ(p)(ψ(q)) · φψ(p)(ψ(q))

cp(q)2

= |wq|2e(u)(ψ(p))φψ(p)(ψ(q)) · φψ(p)(ψ(q)))

= e(u)(ψ(p))wq · wq = e(u)(ψ(p))Lp(vq) · Lp(vq).
By combining the above equalities with (6.76) we finally obtain the validity of (6.75).

In order to prove that ‖e(ω)‖TpM⊗TpM ∈ L1(M) we infer from (6.77)

‖e(ω)(p)‖TpM⊗TpM = sup
v∈TpM

|e(ω)(p)(v)|
|v|2p

= sup
v∈TpM

|e(u)(ψ(p))Lp(v) · Lp(v)|
|v|2p

(6.78)

≤ ‖Lp‖2L(TpM;Rn)|e(u)(ψ(p))|

In view of (6.74), we further have that for p ∈ U we have that

‖Lp‖L(TpM ;Rn) ≤ sup
v∈TpM
|v|p≤1

|Lpv| ≤ (1 + ε)

√√√√ n∑
i=1

|vi|2 ≤ (1 + ε)2 (6.79)

by definition of gi, gi, and of g(p)(v) =
∑n

i,j=1 vivjgi(p) · gj(p).
By (6.12) of Theorem 6.9 and by (6.74) we have that∫

U
|e(u)(ψ(p))| dHn(p) =

∫
ψ(U)
|e(u)(x)| Jψ−1(x) dx (6.80)

≤ Lip(ψ−1;ψ(U))n
∫
ψ(U)
|e(u)(x)|dx ≤ Lip(ψ−1;ψ(U))nλ(ψ(U))

≤ (1 + ε)n+1ψ]λ(ψ(U)) = (1 + ε)n+1λ(U) .

Repeating the covering argument of (6.58)–(6.59) on M, we infer from (6.78)–(6.80)
and from the arbitrariness of ε > 0 the validity of (6.72). This concludes the proof of
the theorem. �
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