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Abstract. In this paper we study the lower semicontinuous envelope of a class of functionals with linear growth defined

on mappings from the n-dimensional ball into RN that are constrained to take values into a smooth submanifold Y
of RN .

Let Bn be the unit ball in Rn and Y a smooth oriented Riemannian manifold of dimension M ≥ 1,
isometrically embedded in RN for some N ≥ 2. We shall assume that Y is compact, connected, without
boundary. In addition, we assume that the integral 1-homology group H1(Y) := H1(Y;Z) has no torsion.

In this paper we shall be concerned with manifold constrained energy relaxation problems, and we
consider variational functionals F : L1(Bn,Y) → [0, +∞] of the type

F(u) :=





∫

Bn

f(x, u,Du) dx if u ∈ C1(Bn,Y)

+∞ otherwise
(0.1)

for a suitable class of integrands f : Bn × RN ×M(N, n) → [0,+∞), where M(N, n) is the class of real
(N × n)-matrices and, for X = C1, L1, BV , W 1,1,

X(Bn,Y) := {u ∈ X(Bn,RN ) | u(x) ∈ Y for Ln-a.e. x ∈ Bn} .

We introduce the relaxed functional F : L1(Bn,Y) → [0, +∞] defined for every function u ∈ L1(Bn,Y) by

F(u) := inf
{

lim inf
k→∞

F(uk) | {uk} ⊂ C1(Bn,Y) ,

uk → u strongly in L1(Bn,RN )
}

.
(0.2)

We restrict our analysis to the class of integrands f given by

f(x, u, Du) := f̃(x, u, (|Du1|, . . . , |DuN |))

for some function f̃ : Bn × RN × RN
+ → R+, where R+ := [0, +∞), satisfying the following properties:

(a) z 7→ f̃(x, u, z) is convex and lower semicontinuous in RN
+ for every (x, u) ∈ Bn × RN ;

(b) C1 |z| ≤ f̃(x, u, z) ≤ C2 (1 + |z|) for every (x, u, z) ∈ Bn × RN × RN
+ and some absolute constants

Ci > 0;

(c) for every u ∈ RN there exists a continuous function ωu : R+ → R+ satisfying ωu(t) → 0 if t → 0,
and depending continuously on u ∈ RN , such that

|f̃(x, u, z)− f̃(x0, u, z)| ≤ ωu(x− x0) · (1 + |z|) ∀ z ∈ RN
+ .

Assuming that the first homotopy group π1(Y) is commutative, we will prove that

F(u) < +∞ ⇐⇒ u ∈ BV (Bn,Y) .
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Moreover, we will show that

F(u) = inf{Ef (T ) | T ∈ T 1,1
u } ∀u ∈ BV (Bn,Y) . (0.3)

In this formula, T 1,1
u denotes the class of Cartesian currents T in cart1,1(Bn × Y) such that the

underlying BV -function uT is equal to u, according to (0.5), and Ef (T ) a suitable f -energy on T .
To be more precise, see Sec. 3, we recall from [12] [13] that the class cart1,1(Bn × Y) agrees with the

currents that arise as weak limits of sequences {Guk
} of currents carried by the graphs of smooth maps

uk ∈ C1(Bn,Y) with equibounded total variation energies,

sup
k

∫

Bn

|Duk| dx < ∞ . (0.4)

The weak convergence Guk
⇀ T , with the energy bound (0.4), yields the weak convergence uk ⇀ uT in the

BV -sense to some function uT ∈ BV (Bn,Y), i.e., uk → uT in L1(Bn,RN ) and Duk ⇀ DuT weakly as
vector-valued measures. This clearly yields that for every T ∈ cart1,1(Bn × Y)

T (φ(x, y) dx1 ∧ · · · ∧ dxn) =
∫

Bn

φ(x, uT (x)) dx ∀φ ∈ C∞c (Bn × Y) . (0.5)

We will define for every current T in cart1,1(Bn × Y) a suitable f -energy Ef (T ) that is lower semi-
continuous and satisfies a density property, see Sec. 4 and Sec. 5, that is, if Tk, T ∈ cart1,1(Bn × Y) and
Tk ⇀ T , then we have

Ef (T ) ≤ lim inf
k→∞

Ef (Tk) ,

and for every T ∈ cart1,1(Bn × Y) we can find a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that
Guk

⇀ T , uk ⇀ uT weakly in the BV -sense, and

lim
k→∞

∫

Bn

f(x, uk, Duk) dx = Ef (T ) .

These properties yield that the f -energy agrees with the relaxed energy of currents, i.e., for every T ∈
cart1,1(Bn × Y)

Ef (T ) = inf
{

lim inf
k→∞

∫

Bn

f(x, uk, Duk) dx | {uk} ⊂ C1(Bn,Y) , Guk
⇀ T

}
,

the weak convergence to be precised in Sec. 1. As a consequence, in Sec. 6 we will then show that the relaxed
energy F(u) is finite if and only if u ∈ BV (Bn,Y), and that (0.3) holds true.

The f -energy of a current T ∈ cart1,1(Bn × Y) is defined in Sec. 3 by

Ef (T ) :=
∫

Bn

f(x, uT (x),∇uT (x)) dx +
∫

Bn

f∞
(

x, u+
T (x),

dDCuT

d|DCuT | (x)
)

d|DCuT |

+
∫

Jc(T )

fT (x) dHn−1(x) ,

where f∞ : Bn × RN ×M(N,n) → [0, +∞] denotes the recession function of f ,

f∞(x, u,G) := lim
t→+∞

f(x, u, t G)− f(x, u, 0)
t

∀ (x, u, G) ∈ Bn × RN ×M(N, n) .

In the last term of the previous formula, Jc(T ) is the countably Hn−1-rectifiable set given by the points
of jump-concentration of T . Roughly speaking, it is the union of the Jump set JuT of uT and of the
(n − 1)-rectifiable set where the ”homological vertical part” of T lives. Moreover, fT (x) denotes for any
x ∈ Jc(T ) the minimal ”length” of Lipschitz curves γ : [0, 1] → Y with end points given by the one sided
approximate limits u±T (x) and with image current γ#[[ (0, 1) ]] equal to the ”vertical part” of T over x, the
length being given for any such γ = (γ1, . . . , γN ) by

Lf,x(γ) :=
∫ 1

0

f̃∞
(
x, γ(t), (|γ̇1(t)|, . . . , |γ̇N (t)|)) dt .
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Note that in the model case f(x, u, G) = |G|, or f(x, u, G) =
√

1 + |G|2, we have f∞(x, u, G) = |G| and
hence Lf,x(γ) agrees with the standard length of γ, compare [12] and [13].

As a consequence, by (0.3) we will obtain that for every map u ∈ BV (Bn,Y)

F(u) =
∫

Bn

f(x, u(x),∇u(x)) dx +
∫

Bn

f∞
(

x, u+(x),
dDCu

d|DCu| (x)
)

d|DCu|

+ inf

{∫

Jc(T )

fT (x) dHn−1(x) | T ∈ T 1,1
u

}
.

We also remark that if the target manifold Y is simply-connected, i.e., if π1(Y) = 0, for every u ∈
BV (Bn,Y) we have

F(u) =
∫

Bn

f(x, u(x),∇u(x)) dx +
∫

Bn

f∞
(

x, u+(x),
dDCu

d|DCu| (x)
)

d|DCu|

+
∫

Ju

Φf,u(x) dHn−1(x) ,

where
Φf,u(x) := inf{Lf,x(γ) | γ ∈ Lip([0, 1],Y) , γ(0) = u−(x) , γ(1) = u+(x)} .

Therefore, in the model case f(x, u, G) = |G|, or f(x, u, G) =
√

1 + |G|2, Φf,u(x) agrees with the geodesic
distance between u−(x) and u+(x), compare [2].

Moreover, we will show that the commutativity hypothesis on π1(Y) cannot be dropped. Namely, if
π1(Y) is not an Abelian group we can find BV -functions u ∈ BV (B2,Y), smooth outside the origin, for
which property (0.3) fails to hold; more precisely:

F(u) >

∫

B2
f(x, u,Du) dx = inf{Ef (T ) | T ∈ T 1,1

u } .

We finally mention that in the case Y = S1, the unit sphere of R2, these results have been obtained in
[8], and that the main references for this paper are [12] and the books [9] [13].

1 Preliminary results

In this section we collect a few known facts that are relevant for the sequel.

Vector valued BV -functions. Let Ω ⊂ Rn be an open set and u : Ω → RN be a function in
BV (Ω,RN ), i.e., u = (u1, . . . uN ) with all components uj ∈ BV (Ω). The Jump set of u is the countably
Hn−1-rectifiable set Ju in Ω given by the union of the complements of the Lebesgue sets of the uj ’s. Let
ν = νu(x) be a unit vector in Rn orthogonal to Ju at Hn−1-a.e. point x ∈ Ju. Let u±(x) denote the
one-sided approximate limits of u on Ju, so that for Hn−1-a.e. point x ∈ Ju

lim
ρ→0+

ρ−n

∫

B±ρ (x)

|u(x)− u±(x)| dx = 0 ,

where B±
ρ (x) := {y ∈ Bρ(x) : ±〈y− x, ν(x)〉 ≥ 0}. Note that a change of sign of ν induces a permutation of

u+ and u− and that only for scalar functions there is a canonical choice of the sign of ν which ensures that
u+(x) > u−(x). The distributional derivative of u is the sum of a ”gradient” measure, which is absolutely
continuous with respect to the Lebesgue measure, of a ”jump” measure, concentrated on a set that is σ-finite
with respect to the Hn−1-measure, and of a ”Cantor-type” measure. More precisely,

Du = Dau + DJu + DCu ,

where
Dau = ∇u · dx , DJu = (u+(x)− u−(x))⊗ ν(x)Hn−1 Ju ,
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∇u := (∇1u, . . . ,∇nu) being the approximate gradient of u, compare e.g. [3] or [9, Vol. I]. We also recall
that {uk} is said to converge to u weakly in the BV -sense, uk ⇀ u, if uk → u strongly in L1(Bn,RN )
and Duk ⇀ Du weakly in the sense of (vector-valued) measures.

One-dimensional restrictions of BV -functions. Given ν ∈ Sn−1 we denote by πν the
hyperplane in Rn orthogonal to ν and by Ων the orthogonal projection of Ω on πν . For any y ∈ Ων we
let

Ων
y := {t ∈ R | y + tν ∈ Ω}

denote the (non-empty) section of Ω corresponding to y. Accordingly, for any function u : B ⊂ Ω → RN

and any y ∈ Bν the function uν
y : Bν

y → RN is defined by

uν
y(t) := u(y + tν) .

Proposition 1.1 Let u ∈ L1(Ω,RN ). Then u ∈ BV (Ω,RN ) if and only if there exist n linearly independent
unit vectors νi such that uνi

y ∈ BV (Ωνi
y ,RN ) for Ln−1-a.e. y ∈ Ωνi and

∫

Ωνi

|Duνi
y |(Ωνi

y ) dLn−1(y) < ∞ ∀ i = 1, . . . , n .

Theorem 1.2 If u ∈ BV (Ω,RN ) and ν ∈ Sn−1, then

〈Du, ν〉 = Ln−1 Ων ⊗Duν
y , 〈Dau, ν〉 = Ln−1 Ων ⊗Dauν

y ,
〈DJu, ν〉 = Ln−1 Ων ⊗DJuν

y , 〈DCu, ν〉 = Ln−1 Ων ⊗DCuν
y .

In addition, for Ln−1-a.e. y ∈ Ων the precise representative u∗ has classical directional derivatives along
ν L1-a.e. in Ων

y, the function (u∗)ν
y is a good representative in the equivalence class of uν

y, its Jump set is
(Ju)ν

y and
∂u∗

∂ν
(y + tν) = 〈∇u(y + tν), ν〉 for L1-a.e. t ∈ Ων

y .

Finally, σ(t) := 〈ν, νu(y + tν)〉 6= 0 for Ln−1-a.e. y ∈ Ων and L1-a.e. t ∈ Ων
y , and





lim
s↓t

u∗(y + sν) = u+(y + tν) , lim
s↑t

u∗(y + sν) = u−(y + tν) if σ(t) > 0

lim
s↓t

u∗(y + sν) = u−(y + tν) , lim
s↑t

u∗(y + sν) = u+(y + tν) if σ(t) < 0 .

Dn,1-currents. Let Bn be the unit ball in RN and, we recall,

BV (Bn,Y) := {u ∈ BV (Bn,RN ) | u(x) ∈ Y for Ln-a.e. x ∈ Bn} .

To every BV -map u ∈ BV (Bn,Y) we associate a suitable family of currents in the class Dn,1(Bn×Y), i.e.,
of linear functionals acting on Dn,1(Bn × Y). Here, Dp,1(Bn × Y) denotes the class of smooth compactly
supported p-forms in Bn × Y with at most one differential in the vertical Y-direction. Therefore, every
ω ∈ Dn,1(Bn × Y) splits as

ω = ω(0) + ω(1)

according to the number of y-differentials, where

ω(0) = φ(x, y)dx , dx := dx1 ∧ · · · ∧ dxn , (1.1)

for some φ ∈ C∞c (Bn × Y), and

ω(1) =
N∑

j=1

n∑

i=1

(−1)n−iφj
i (x, y) d̂xi ∧ dyj (1.2)

for some φj := (φj
1, . . . , φ

j
n) ∈ C∞0 (Bn × Y,Rn), where

d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn .
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Definition 1.3 A current G ∈ Dn,1(Bn × Y) is said to be in BV −graph(Bn × Y) if it decomposes into
its absolutely continuous, Cantor, and Jump parts

G := Ga + GC + GJ

and the following holds:

i) there exists a function u = u(G) ∈ BV (Bn,Y), say u = (u1, . . . , uN ), such that if ω(0) satisfies (1.1),
we have GC(ω(0)) = GJ (ω(0)) = 0 and

Ga(ω(0)) = Ga(φ(x, y) dx) :=
∫

Bn

φ(x, u(x)) dx ;

ii) if ω = ω(1) satisfies (1.2), we have

Ga(ω(1)) :=
N∑

j=1

∫

Bn

〈∇uj , φj(x, u(x))〉 dx

GC(ω(1)) :=
N∑

j=1

∫

Bn

φj(x, u(x)) dDCuj

GJ(ω(1)) :=
N∑

j=1

n∑

i=1

∫

Ju

(∫

γx

φj
i (x, y) dyj

)
νi dHn−1(x) ,

where γx is a 1-dimensional integral chain in Y satisfying ∂γx = δu+(x)− δu−(x) and δp denotes the
unit Dirac mass at the point p ∈ RN .

The previous definition clearly depends on the choice of the γx’s connecting the one-sided approximate limits
u±(x) at x ∈ Ju. Moreover, if u is smooth, at least u ∈ W 1,1(Bn,Y), it turns out that G = Ga and hence
G agrees with the current Gu carried by the rectifiable graph of u, where, we recall, Gu ∈ Dn,1(Bn×Y) is
defined in an approximate sense by

Gu := (Id ./ u)#[[ Bn ]] , (1.3)

i.e., by letting Gu(ω) = (Id ./ u)#(ω) for every ω ∈ Dn,1(Bn × Y), where (Id ./ u)(x) := (x, u(x)).

Remark 1.4 If n ≥ 2 in general the current G has a non-zero boundary in Bn × Y , even if u ∈
W 1,1(Bn,Y). Taking for example n = 2, Y = S1 ⊂ R2, and u(x) = x/|x|, we have

∂G B2 × S1 = −δ0 × [[S1 ]] ,

where δ0 is the unit Dirac mass at the origin, see [9, Vol. I, Sec. 3.2.2].

Weak limits of smooth graphs. A first step in the study of our relaxation results is the analysis
of the weak limits of sequences {Guk

} of currents carried by the graphs of smooth maps uk ∈ C1(Bn,Y)
with equibounded W 1,1-energies, supk ‖Duk‖L1 < ∞, compare [12] [13]. Possibly passing to a subsequence,
we infer that Guk

⇀ T weakly in Dn,1 to some current T ∈ Dn,1(Bn × Y), i.e.,

lim
k→∞

Guk
(ω) = T (ω) ∀ω ∈ Dn,1(Bn × Y) ,

and uk ⇀ uT weakly in the BV -sense to some function uT ∈ BV (Bn,Y). This yields that if ω ∈
Dn,1(Bn × Y) is completely horizontal, see (1.1), we clearly obtain (0.5).

Since by Stokes theorem the Guk
’s have no boundary in Bn ×Y, by the weak convergence we also infer

∂T = 0 on Zn−1,1(Bn × Y) , (1.4)

where, we recall, ∂T (ω) := T (dω). Here, Zp,1(Bn × Y) denotes the class of p-forms ω in Dp,1(Bn × Y)
for which the ”vertical” dy-differential of the component ω(1) of ω with exactly one vertical differential
vanishes,

Zp,1(Bn × Y) := {ω ∈ Dp,1(Bn × Y) | dyω(1) = 0} .
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We may and do associate to the weak limit current T a current GT ∈ BV −graph(Bn × Y), see
Definition 1.3, where the function u = u(GT ) ∈ BV (Bn,Y) is given by uT and the γx’s in the definition of
the jump part GJ

T are e.g. the indecomposable 1-dimensional integral chains obtained as in Definition 3.2
below. Setting then

ST := T −GT ,

by (0.5) we clearly have ST (φ(x, y) dx) = 0 for every φ ∈ C∞c (Bn × Y). In general ∂GT Bn × Y 6= 0, see
Remark 1.4. However, on account of (1.4) we proved in [12]:

Proposition 1.5 ST (ω) = 0 for every form ω = ω(1) such that ω = dyω̃ for some ω̃ ∈ Dn−1,0(Bn × Y).

Homological facts. Since H1(Y) has no torsion, there are generators [γ1], . . . , [γs], i.e. integral
1-cycles in Z1(Y), such that

H1(Y) =

{
s∑

s=1

ns [γs] | ns ∈ Z
}

,

see e.g. [9], Vol. I, Sec. 5.4.1. By de Rham’s theorem the first real homology group is in duality with the
first cohomology group H1

dR(Y), the duality being given by the natural pairing

〈[γ], [ω]〉 := γ(ω) =
∫

γ

ω , [γ] ∈ H1(Y;R) , [ω] ∈ H1
dR(Y) .

We will then denote by [ω1], . . . , [ωs] a dual basis in H1
dR(Y) so that γs(ωr) = δsr, where δsr denotes the

Kronecker symbols. Finally, in the sequel π : Rn+N → Rn and π̂ : Rn+N → RN shall denote the projections
onto the first n and the last N coordinates, respectively.

By Proposition 1.5, similarly to [9], Vol. II, Sec. 5.4.3, we infer that the weak limit current T is given by

T = GT + ST , where ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) ,

Ls(T ) ∈ Dn−1(Bn) being defined by

Ls(T ) := (−1)n−1π#(ST π̂#ωs) , s = 1, . . . , s ,

so that
Ls(T )(φ) = ST (π#φ ∧ π̂#ωs) ∀φ ∈ Dn−1(Bn) .

By the equiboundedness of the W 1,1-energies of the uk’s, and by the lower semicontinuity of the E1,1-
norm in Dn,1, we finally infer that the weak limit current T has finite E1,1-norm, ‖T‖E1,1 < +∞, where,
for ω ∈ Dn,1(Bn × Y) and T ∈ Dn,1(Bn × Y),

‖ω‖E1,1 := max
{

sup
x,y

|ω(0)(x, y)|
1 + |y| ,

∫

Bn

sup
y
|ω(1)(x, y)| dx

}
,

‖T‖E1,1 := sup
{

T (ω) | ω ∈ Dn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1
}

.

(1.5)

Remark 1.6 Setting

ST,sing := T −GT −
s∑

s=1

Ls(T )× γs ,

it turns out that ST,sing is nonzero only possibly on forms ω with non-zero vertical component, ω(1) 6= 0,
and such that dyω(1) 6= 0. Therefore, ST,sing ≡ 0 on forms in Zn,1(Bn ×Y), hence ST,sing does not carry
homology. However, even if T is the weak limit of a sequence of smooth graphs with equibounded Dirichlet
energies, in principle ST,sing may be any measure.
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Vertical homology classes. Finally, it is convenient to consider vertical homology equivalence
classes of currents satisfying the same structure properties as weak limits of graphs of smooth maps uk :
Bn → Y with equibounded total variation, supk ‖Duk‖L1 < ∞. More precisely, we say that

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ω ∈ Zn,1(Bn × Y) . (1.6)

Moreover, we will say that Tk ⇀ T weakly in Zn,1(Bn×Y) if Tk(ω) → T (ω) for every ω ∈ Zn,1(Bn×Y).

Definition 1.7 We denote by E1,1−graph(Bn × Y) the set of equivalence classes, in the sense of (1.6), of
currents T in Dn,1(Bn × Y) which have no interior boundary,

∂T = 0 on Zn−1,1(Bn × Y) ,

finite E1,1-norm, i.e.

‖T‖E1,1 := sup
{

T (ω) | ω ∈ Zn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1
}

< ∞ ,

and decompose as

T = GT + ST , ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) , (1.7)

where GT ∈ BV −graph(Bn×Y), see Definition 1.3, and Ls(T ) is an i.m. rectifiable current in Rn−1(Bn)
for every s.

Remark 1.8 If T̃ ∼ T , in general GeT 6= GT . However, the corresponding BV -functions coincide, i.e.,
u(GT ) = u(GeT ), see Definition 1.3. This yields that we may refer to the underlying functions uT ∈
BV (Bn,Y) associated to currents T in E1,1−graph(Bn × Y).

2 Parametric variational integrals on currents

In this section we shall consider integrands f : Bn × RN ×M(N, n) → R+, where M(N, n) is the class of
real (N × n)-matrices and R+ := [0,+∞), satisfying the following properties:

(a) G 7→ f(x, u,G) is convex and lower semicontinuous in M(N,n) for every (x, u) ∈ Bn × RN ;

(b) C1 |G| ≤ f(x, u,G) ≤ C2 (1 + |G|) for every (x, u, G) ∈ Bn × RN ×M(N, n) and for some absolute
constants Ci > 0;

(c) for every (x0, u0) ∈ Bn × RN and ε > 0 there exists δ > 0 such that

f(x, u,G) ≥ (1− ε) f(x0, u0, G) ∀G ∈ M(N, n)

for every (x, u) ∈ Bn × RN such that |x− x0| < δ and |u− u0| < δ.

We shall discuss the parametric polyconvex l.s.c. extension of f for mappings from Bn into RN that
are constrained to take values into a smooth submanifold Y ⊂ RN , and the related parametric variational
integral for currents in E1,1−graph(Bn × Y).

The recession function. Property (a) allows us to give the

Definition 2.1 The recession function f∞ : Bn × RN ×M(N,n) → R+ := [0, +∞] of f is defined by

f∞(x, u,G) := lim
t→+∞

fx,u(tG)− fx,u(0)
t

∀ (x, u, G) ∈ Bn × RN ×M(N, n) .
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It turns out that for every (x, u) the function G 7→ f∞x,u(G) := f∞(x, u, G) is positively homogeneous
of degree one, convex and lower semicontinuous. Moreover, property (b) yields that G 7→ f∞x,u(G) :=
f∞(x, u, G) is actually real valued and hence continuous for every (x, u).

Notation on multivectors. Let ΛnRn+N denote the space of n-vectors in Rn+N . For 0 ≤ k ≤
min(n,N), we let

Vn,k := Λn−kRn ⊗ ΛkRN

and denote by ξ(k) ∈ Vn,k the ”component” of an n-vector ξ ∈ ΛnRn+N with k ”vertical” components. For
example, denoting by (e1, . . . , en) and (ε1, . . . , εN ) the canonical basis in Rn and RN , respectively,

ξ(0) = ξ00e1 ∧ · · · ∧ en ,

ξ00 ∈ R being the first component of ξ ∈ ΛnRn+N . Moreover, we have

ξ(1) =
N∑

j=1

n∑

i=1

ξj
i êi ∧ εj , êi := e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en ,

for some ξj
i ∈ R. We set

Λ1 := {ξ ∈ ΛnRn+N | ξ00 = 1}
Λ+ := {ξ ∈ ΛnRn+N | ξ00 > 0}
Λ0 := {ξ ∈ ΛnRn+N | ξ00 = 0} .

We also denote by Σ the class of simple n-vectors in ΛnRn+N and

Σ1 := {ξ ∈ Σ | ξ00 = 1}
Σ+ := {ξ ∈ Σ | ξ00 > 0} .

If G ∈ M(N,n), the vectors ei + Gei ∈ Rn+N , i = 1, . . . , n, yield a basis of the tangent n-plane to the
graph of G in Rn+N that agrees with the graph of G. Letting

M(G) := (e1 + Ge1) ∧ · · · ∧ (en + Gen) ∈ ΛnRn+N ,

we find that the unit simple n-vector

ξG :=
M(G)
|M(G)| ,

called the tangent n-vector to the graph of G, identifies the plane graph of G, and in fact orients such an
n-plane. We also see that the map M : M(N,n) → ΛnRn+N given by G 7→ M(G) is injective. Moreover,
if M(k) : M(N, n) → Vn,k is the map given by G 7→ M(k)(G), it turns out that M(1) yields an isometry of
linear spaces. Notice that M(0)(G) = e1 ∧ · · · ∧ en and

M(1)(G) =
N∑

j=1

n∑

i=1

(−1)n−i Gj
i êi ∧ εj , G = (Gj

i )
N,n
j,i=1 .

Therefore, to every ξ ∈ Λ+ we can associate the matrix Gξ ∈ M(N,n) defined by

Gξ := M(1)
−1

(
ξ(1)

ξ00

)
.

Note that for every ξ ∈ Λ+ we have

Gξ = 0 if and only if ξ(1) = 0

and
Gλξ = Gξ ∀λ > 0 .
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Most importantly, Gξ = M−1(ξ) if ξ ∈ Σ1, i.e.
{

GM(G) = G ∀G ∈ M(N, n)
ξ = M(Gξ) ⇐⇒ ξ ∈ Σ1

(2.1)

and finally

ξ ∈ Λ+ is simple if and only if
ξ

ξ00
= M(Gξ) .

The parametric polyconvex l.s.c. envelope. Consider the map

f : Ω× RN × Σ1 → R+

defined, according to (2.1), by
f(x, u, ξ) := f(x, u, Gξ) .

Taking x, u as parameters, we consider the parametric polyconvex l.s.c. envelope of the integrand G 7→
fx,u(G) := f(x, u, G), given by the convex l.s.c. envelope of ξ 7→ fx,u(ξ),

Fx,u(·) := ΓCfx,u(·) ,

where

fx,u(ξ) :=
{

ξ00f(x, u, ξ/ξ00) = ξ00fx,u(Gξ) if ξ ∈ Σ+

+∞ otherwise .

Since in principle (x, u, ξ) 7→ Fx,u(ξ) is not l.s.c., we set

Definition 2.2 The parametric polyconvex l.s.c. envelope of a function f : Bn × RN ×M(N,n) → R+ is
the function F : Bn × RN × ΛnRn+N → R+ defined by

F (x, u, ξ) := sup{g(x, u, ξ) | g : Bn × RN × ΛnRn+N → R+ ,
g is l.s.c. , g(y, v, ·) is convex for any y, v ,

g(y, v, η) ≤ fy,v(η) for any (y, v, η)} .

We emphasize that F (x, u, ξ) is l.s.c. in all variables and convex in ξ for any x, u. Notice that in general
F (x, u, ξ) ≤ ΓCfx,u(ξ). However, the equality

F (x, u, ξ) = ΓCfx,u(ξ) (2.2)

holds if and only if (x, u, ξ) 7→ ΓCfx,u(ξ) is l.s.c., and we actually have that property (c) yields (2.2).
Moreover, for every (x, u) ∈ Bn × RN we have

F (x, u, ξ) = sup{φ(ξ) | φ : ΛnRn+N → R+ , φ linear,
φ(M(G)) ≤ f(x, u,G) ∀G ∈ M(N, n)} (2.3)

for every ξ ∈ ΛnRn+N . Arguing as in [9, Vol. II], we then obtain:

Proposition 2.3 If the integrand f satisfies the properties (a), (b), (c), its parametric polyconvex l.s.c.
envelope is given for every (x, u) ∈ Bn × RN by

‖ξ‖fx,u := F (x, u, ξ) =





ξ00f(x, u,Gξ) if ξ ∈ Σ+

f∞
(
x, u, M−1

(1) (ξ(1))
)

if ξ ∈ (Λ+ ∪ Λ0) \ Σ+

+∞ otherwise.
(2.4)

Proof: On account of (2.3), we decompose every linear map φ : ΛnRn+N → R+ as φ =
∑n

k=0 φk, where
n := min(n,N) and the φk’s are linear maps on Vn,k. The condition φ(M(G)) ≤ f(x, u, G) ≤ C2(1 + |G|)
for all G ∈ M(N, n) yields by homogeneity that φk = 0 for k = 2, . . . , n and

φ0(−→e ) + φ1(M(1)(G)) ≤ f(x, u, G) ∀G ∈ M(N, n) ,
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where −→e := e1 ∧ · · · ∧ en, so that for any ξ ∈ Λ1 we have

‖ξ‖fx,u = sup
{
a + φ1(ξ(1)) | a ∈ R , φ1 : Vn,1 → R+ linear,

a + φ1(M(1)(G)) ≤ f(x, u, G) ∀G ∈ M(N, n)
}

and hence ‖ξ‖fx,u
= F (x, u, M(Gξ)), see (2.3), if we take into account that ξ(0) = M(0)(Gξ) = −→e and

ξ(1) = M(1)(Gξ). On the other hand the maps G 7→ a + φ1(M(1)(G)) are affine and G 7→ f(x, u,G) is
convex. Then, the maximum of a + φ1(M(1)(G)) under the constraint a + φ1(M(1)(G)) ≤ f(x, u, G) is
taken for a and φ1 such that

a + φ1(M(1)(G)) = f∞(x, u,G) .

Therefore,
‖ξ‖fx,u = F (x, u, M(Gξ)) = f∞(x, u, Gξ)

and the claim is proved for ξ ∈ Λ1. By homogeneity we obtain ‖ξ‖fx,u
= f∞

(
x, u, M−1

(1) (ξ(1))
)

for every
ξ ∈ Λ+. The continuity of ξ 7→ f∞

(
x, u, M−1

(1) (ξ(1))
)

yields the result also for ξ ∈ Λ0. ¤

Remark 2.4 In the model case f(x, u, G) := |G|, or f(x, u, G) :=
√

1 + |G|2, we clearly have

‖ξ‖fx,u =





ξ00f(x, u, Gξ) if ξ ∈ Σ+

|ξ(1)| if ξ ∈ (Λ+ ∪ Λ0) \ Σ+

+∞ otherwise.

We deal with mappings that are constrained to take values into a smooth manifold Y isometrically
embedded in RN . To this purpose, we replace the integrand f in Definition 2.2 with the integrand f̂ :
Bn × RN × ΛnRn+N → R+ defined by

f̂(x, u,G) :=
{

f(x, u, G) if u ∈ Y and G ∈ Su

+∞ otherwise ,

where
Su := {G ∈ M(N, n) | G ∈ TuY} , u ∈ Y ,

TuY being the tangent space to Y at u. We denote by Ff (x, u, ξ) : Bn×RN×ΛnRn+N → R+ the parametric
polyconvex l.s.c. extension of the integrand f̂ , i.e., for mappings from Bn into RN that are constrained to
take values into the given submanifold Y ⊂ RN . The n-vector M(G) corresponding to matrices G ∈ Su

belongs to the subspace Λn(RN ×TuY). This yields to the following property, compare [9, Vol. II, Sec. 1.2.4]
or [13, Sec. 4.8].

Proposition 2.5 We have:

Ff (x, u, ξ) :=
{ ‖ξ‖fx,u if u ∈ Y, ξ ∈ Λn(Rn × TuY)

+∞ otherwise ,
(2.5)

where ‖ξ‖fx,u is given by (2.4) and TuY is the tangent space to Y at u.

Parametric variational integral. If T ∈ Dn,1(Bn × Y) is such that ‖T‖E1,1 < ∞, we denote

T = ‖T‖E1,1

−→
T

the Radon-Nikodym decomposition of T with respect to the E1,1-norm, see (1.5). Here T is identified with
the R1+Nn-valued linear functional

T :=
(
T 00, (T ij)RNn

)
, i = 1, . . . n , j = 1, . . . N .

The parametric variational integral associated to the integrand f is defined for every Borel set B ⊂ Bn

Ff (T, B × Y) :=
∫

B×Y
Ff

(
π(z), π̂(z),

−→
T (z)

)
d‖T‖E1,1(z) (2.6)
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where Ff (x, u, ξ) is given by (2.5), and we let

Ff (T ) := Ff (T,Bn × Y) .

Since ‖T‖E1,1 < ∞, by property (b) we infer that Ff (T ) < ∞. Moreover, the following lower semicontinuity
property trivially holds.

Proposition 2.6 Let {Tk} ⊂ Dn,1(Bn ×Y) be such that supk ‖Tk‖E1,1 < ∞ and Tk ⇀ T weakly in Dn,1.
Then

Ff (T ) ≤ lim inf
k→∞

Ff (Tk) .

An explicit formula. If T = G ∈ BV −graph(Bn × Y) for some BV -function u = u(G) ∈
BV (Bn,Y) with no jump-part, |DJu|(Bn) = 0, see Definition 1.3, it is readily checked that

Ff (T,B × Y) =
∫

B

f(x, u(x),∇u(x)) dx +
∫

B

f∞
(

x, u+(x),
dDCu

d|DCu| (x)
)

d|DCu| . (2.7)

If T ∈ E1,1−graph(Bn × Y) and the singular part ST,sing vanishes, i.e., if (1.7) holds on the whole of
Dn,1(Bn × Y), then an explicit formula can be obtained. For example, let Y = S1 ⊂ R2, the unit sphere,
and G = Ga = (Id ./ u)#[[ Bn ]] for some u ∈ W 1,1(Bn,Y), i.e., GC = GJ = 0. In this case

T = Gu + L× [[S1 ]]

for some i.m. rectifiable current L ∈ Rn−1(Bn), say L = τ(L, θ,
−→L ). If f is isotropic, i.e., f(x, u, G) =

f̂(x, u, |G|), where f̂ : Bn × RN × R+ → R+, we readily obtain

Ff (T ) =
∫

Bn

f̂(x, u, |Du|) dx +
∫

L
θ(x)

(∫ 2π

0

f̂∞(x, (cos θ, sin θ), 1) dt

)
dHn−1 .

Gap phenomenon. As noticed in [8], see Sec. 5 below, in the simple case Y = S1, the unit circle in
R2, and in any dimension n, for any current T ∈ E1,1−graph(Bn × S1) such that Ff (T ) < ∞ we can find
a sequence of smooth maps {uk} ⊂ C1(Bn, S1) such that Guk

weakly converges to T in Dn(Bm×S1) and
the f -energies the uk’s converge to the parametric variational integral of T , i.e.,

lim
k→∞

Ff (Guk
) = lim

k→∞

∫

Bn

f(x, uk, Duk) dx = Ff (T ) ,

see [8] and [9, Vol. II, Sec. 6.2.2]. However, in case of general target manifolds, even in the model case
f(x, u, G) := |G| and in dimension n = 1, a gap phenomenon occurs, see [12]. More precisely, in general for
every smooth sequence {uk} ⊂ C1(Bn,Y) such that Guk

⇀ T weakly in Dn,1(Bn × Y) we have that

lim inf
k→∞

∫

Bn

f(x, u, Duk) dx ≥ Ff (T ) + C

for some absolute constant C > 0. This means that in general Ff (T ) does not agree with the relaxed energy
functional of T :

Ff (T ) > inf
{

lim inf
k→∞

∫

Bn

f(x, uk, Duk) dx | {uk} ⊂ C1(Bn,Y) ,

Guk
⇀ T weakly in Zn,1(Bn × Y)

}
.

Remark 2.7 This gap phenomenon is typical of integrands with linear growth of the gradient. Take for
example n = 1 and T = Gu + δ0 × C, where u ≡ P ∈ Y is a constant map and C is a integral 1-cycle in
Y. The images of smooth approximating sequences may have to ”connect” the point P to the cycle C, this
way paying a cost in term of the distance of P to C, see (3.4) and (3.5) below. For this reason, such a gap
phenomenon does not occur if the target manifold Y is the unit sphere S1.
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3 Cartesian currents with finite energy

The gap phenomenon previously outlined leads us to introduce a suitable energy functional on the class
of currents E1,1−graph(Bn × Y). In order to recover lower semicontinuity and density properties, we shall
restrict the class of integrands. More precisely, in the sequel we shall consider functions f̃ : Bn×RN×RN

+ →
R+ satisfying the following properties:

(a) z 7→ f̃(x, u, z) is convex and lower semicontinuous in RN
+ for every (x, u) ∈ Bn × RN ;

(b) C1 |z| ≤ f̃(x, u, z) ≤ C2 (1 + |z|) for every (x, u, z) ∈ Bn × RN × RN
+ and some absolute constants

Ci > 0;

(c) for every u ∈ RN there exists a continuous function ωu : R+ → R+ satisfying ωu(t) → 0 if t → 0,
and depending continuously on u ∈ RN , such that

|f̃(x, u, z)− f̃(x0, u, z)| ≤ ωu(x− x0) · (1 + |z|) ∀ z ∈ RN
+ .

For any matrix G = (Gj
i )

N,n
j,i=1 ∈ M(N, n), we denote by Gj := (Gj

1, . . . , G
j
n) ∈ Rn the n-vector corre-

sponding to the jth-row. The corresponding integrand f : Bn × RN ×M(N,n) → R+ is defined by

f(x, u, G) := f̃(x, u, (|G1|, . . . , |GN |)) , (x, u, G) ∈ Bn × RN ×M(N,n) , (3.1)

the isotropic case corresponding to f̃(x, u, z) = f̂(x, u, |z|) for some f̂ : Bn×RN×R+ → R+. Therefore, the
related variational functional F(u), see (0.1), is such that for any smooth map u = (u1, . . . , uN ) ∈ C1(Bn,Y)

F(u) =
∫

Bn

f̃
(
x, u(x), (|Du1(x)|, . . . , |Du1(x)|)) dx .

Remark 3.1 Since f(x, u,G) is convex and lower semicontinuous in G for every (x, u) ∈ Bn × RN , it
satisfies the properties (a), (b), (c) stated at the beginning of the previous section. We notice that the
continuity hypothesis (c) is used in the proof of the density theorem 5.1.

We now collect the following facts from [12], see also [13].

Jump-concentration set. Let T ∈ E1,1−graph(Bn × Y), see Definition 1.7. If L(T ) denotes the
(n− 1)-rectifiable set given by the union of the sets of positive multiplicity of the Ls(T )’s, we infer that the
union

Jc(T ) := JuT
∪ L(T )

does not depend on the choice of the representative in T . The countably Hn−1-rectifiable set Jc(T ) is said
to be the set of points of jump-concentration of T .

Restriction over points of jump-concentration. If n = 1, since T has finite mass,
η 7→ T (χBr(x) ∧ η), where x ∈ B1 and 0 < r < 1 − |x|, defines a current in D1(Y). The 1-dimensional
restriction of T over the point x

π̂#(T {x} × Y) ∈ D1(Y)

is well-defined on closed 1-forms in Z1(Y) by the limit

π̂#(T {x} × Y)(η) := lim
r→0+

T (χBr(x) ∧ η) , η ∈ Z1(Y) .

Moreover, for every x ∈ Jc(T ) there exists a 1-dimensional integral chain Γx on Y such that

∂Γx = δu+
T (x) − δu−T (x) and π̂#(T {x} × Y) = Γx .

Therefore, by applying Federer’s decomposition theorem [6], we find an indecomposable 1-dimensional inte-
gral chain γx on Y, satisfying ∂γx = δu+

T (x) − δu−T (x), and an integral 1-cycle Cx in Y, satisfying ∂Cx = 0,
such that

Γx = γx + Cx and M(Γx) = M(γx) + M(Cx) . (3.2)
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If n ≥ 2, we let νT : Jc(T ) → Sn−1 denote an extension to Jc(T ) of the unit normal νuT
to the Jump set

JuT
. For any k = 1, . . . , n−1, let P be an oriented k-dimensional subspace in Rn and Pλ := P +

∑n−k
i=1 λiνi

the family of oriented k-planes parallel to P , where λ := (λ1, . . . , λn−k) ∈ Rn−k, span(ν1, . . . , νn−k) being
the orthogonal space to P . Since T has finite E1,1-norm, similarly to the case of normal currents, for Ln−k-
a.e. λ such that Pλ ∩ Bn 6= ∅, the slice T π−1(Pλ) of T over π−1(Pλ) is a well defined k-dimensional
current in E1,1−graph((Bn ∩ Pλ)× Y) with finite E1,1-norm. Moreover, for any such λ we have

Jc(T π−1(Pλ)) = Jc(T ) ∩ Pλ in the Hk−1-a.e. sense ,

whereas the BV -function associated to T π−1(Pλ) is equal to the restriction uT |Pλ
of uT to Pλ. Therefore,

in the particular case k = 1, the 1-dimensional restriction

π̂#

(
(T π−1(Pλ)) {x} × Y) ∈ D1(Y) (3.3)

of the 1-dimensional current T π−1(Pλ) over any point x ∈ Jc(T ) ∩ Pλ such that νT (x) does not belong
to P is well defined. In this case, from the slicing properties of BV -functions, if x ∈ (Jc(T ) \ JuT

)∩ Pλ we
have uT |Pλ

(x) = uT (x). Moreover, if x ∈ JuT
∩ Pλ, the one-sided approximate limits of uT are equal to

the one-sided limits of the restriction uT |Pλ
, i.e.

u+
T |Pλ

(x) = u+
T (x) and u−T |Pλ

(x) = u−T (x) ,

provided that 〈ν, νuT
(x)〉 > 0, where ν is an orienting unit vector to P , compare Theorem 1.2. We finally

infer that for Hn−1-a.e. point x ∈ Jc(T ) the 1-dimensional restriction (3.3), up to the orientation, does not
depend on the choice of the oriented 1-space P and on λ ∈ Rn−1, provided that x ∈ Pλ and νT (x) does
not belong to P . As a consequence we may and do give the following

Definition 3.2 For Hn−1-a.e. point x ∈ Jc(T ), the 1-dimensional restriction π̂#(T {x} × Y) is well-
defined by (3.3) for any oriented 1-space P and λ ∈ Rn−1 such that x ∈ Pλ and 〈ν, νT (x)〉 > 0, where ν
is the orienting unit vector to P .

Vertical minimal connection. For every current T ∈ E1,1−graph(Bn × Y) and every point
x ∈ Jc(T ) we will denote by

ΓT (x) := {γ ∈ Lip([0, 1],Y) | γ(0) = u−T (x) , γ(1) = u+
T (x) ,

γ#[[ (0, 1) ]](η) = π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y)}

the family of all smooth curves γ in Y, with end points u±T (x), such that their image current γ#[[ (0, 1) ]]
agrees with the 1-dimensional restriction π̂#(T {x}×Y) on closed 1-forms in Z1(Y). On account of (2.6),
to every γ ∈ ΓT (x), say γ = (γ1, . . . , γN ), we associate the parametric integrand

Lf,x(γ) :=
∫ 1

0

f̃∞
(
x, γ(t), (|γ̇1(t)|, . . . , |γ̇N (t)|)) dt . (3.4)

It turns out that Lf,x(γ) does not depend on the parameterization of γ. Moreover, we denote by

fT (x) := inf{Lf,x(γ) | γ ∈ ΓT (x)} , x ∈ Jc(T ) , (3.5)

the minimal ”length” of curves γ connecting the ”vertical part” of T over x to the graph of uT . For future
use, we remark that the infimum in (3.5) is attained, i.e.,

∀x ∈ Jc(T ) , ∃ γ ∈ ΓT (x) : Lf,x(γ) = fT (x) . (3.6)

Remark 3.3 In the model case f(x, u,G) := |G|, or f(x, u, G) :=
√

1 + |G|2, we have f∞(x, u,G) = |G|
and hence Lf,x(γ) agrees with the standard length L(γ) of the curve γ. Therefore, in this case we have

fT (x) = LT (x) := inf{L(γ) | γ ∈ ΓT (x)} , x ∈ Jc(T ) . (3.7)

13



The energy. To any current T ∈ E1,1−graph(Bn × Y) we associate its f -energy given for every Borel
set B ⊂ Bn by

Ef (T,B × Y) :=
∫

B

f(x, uT (x),∇uT (x)) dx +
∫

B

f∞
(

x, u+
T (x),

dDCuT

d|DCuT | (x)
)

d|DCuT |

+
∫

Jc(T )∩B

fT (x) dHn−1(x) .
(3.8)

We also let
Ef (T ) := Ef (T,Bn × Y) .

Moreover, if u : Bn → Y is a smooth W 1,1-function, we set

Ef (u) :=
∫

Bn

f(x, u,Du) dx =
∫

Bn

f̃(x, u, |Du1|, . . . , |DuN |) dx .

Remark 3.4 The first two terms in (3.8), corresponding to the ”diffuse” part ∇uT dx + DCuT of DuT ,
agree with the corresponding terms of the parametric variational energy Ff (T ), see (2.7). Moreover, in the
case Y = S1, the unit sphere, it can be readily checked that

Ef (T ) = Ff (T ) ∀T ∈ E1,1−graph(Bn × S1) ,

and if Y = S1 no gap phenomenon occurs for Ff (T ), see Remark 2.7. However, for more general target
manifolds Y, the presence of the last term in (3.8) yields that Ef (T ) is not a ”local” energy, i.e., it cannot
be written as an integral functional depending on the components

−→
T and ‖T‖E1,1 of the decomposition

T = ‖T‖E1,1

−→
T , as in (2.6).

Due to (3.1), the volume term in the definition of Ef (T,B × Y) is
∫

B

f(x, uT ,∇uT ) dx =
∫

B

f̃(x, uT , (|∇u1
T |, . . . , |∇uN

T |)) dx .

Therefore, if T = Gu for some smooth function u ∈ W 1,1(Bn,Y), we have

Ef (Gu) = Ef (u) .

As to the Cantor-type term, since f∞(x, u, G) = f̃∞(x, u, (|G1|, . . . , |GN |)), it turns out that

∫

B

f∞
(

x, u+
T ,

dDCuT

d|DCuT |
)

d|DCuT | =
∫

B

f̃∞
(

x, u+
T ,

(
dDCu1

T

d|DCuT | , . . . ,
dDCuN

T

d|DCuT |
))

d|DCuT | .

Moreover, in the isotropic case f(x, u,G) = f̂(x, u, |G|), we clearly have
∫

B

f(x, uT ,∇uT ) dx =
∫

B

f̂(x, uT , |∇uT |) dx

and ∫

B

f∞
(

x, u+
T ,

dDCuT

d|DCuT |
)

d|DCuT | =
∫

B

f̂∞(x, u+
T , 1) d|DCuT | .

Remark 3.5 As to the last term in (3.8), the so called ”jump-concentration” part, it turns out that in
general the ”jump” part cannot be separated from the ”homological” part. For instance, in the decomposition
(1.7) of T we may define the jump part GJ

T of GT by choosing γx as the 1-current integration over an
oriented geodesic arc in Y connecting u−T (x) and u+

T (x), see Definition 1.3. However, even in dimension
n = 1 and in the particular case Y = S1, in general it may happen that the jump-concentration part of the
energy of T cannot be recovered by the sum of the energies of its components GJ

T and ST , see [12].
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The case of simply-connected manifolds. If the first homotopy group π1(Y) is trivial, we
have H1(Y) = 0 and hence every current T ∈ E1,1−graph(Bn × Y) has no homological vertical part, i.e.,
ST ≡ 0 on Zn,1(Bn × Y), see (1.7). Therefore, T reduces to the vertical equivalence class of the elements
G ∈ BV −graph(Bn×Y) with corresponding BV -function u(G) equal to uT , see Definition 1.3. Moreover,
for every such current G, the action of the jump part Gj , on forms in Zn,1(Bn × Y), does not depend on
the choice of the integral 1-chain γx, but only on the one-sided approximate limits u±T (x).

Remark 3.6 The above facts yield that if π1(Y) = 0, for every T ∈ E1,1−graph(Bn × Y) the jump-
concentration set Jc(T ) agrees with the jump set JuT of uT and for every x ∈ JuT the 1-dimensional
restriction π̂#(T {x}×Y), see Definition 3.2, agrees on closed 1-forms in Z1(Y) with the current integration
over any integral 1-chain γx in Y satisfying ∂γx = δu+

T (x) − δu−T (x), see (3.2).

Cartesian currents. In the model case f(x, u,G) = |G|, clearly Ef (T ) agrees with

E1,1(T ) :=
∫

Bn

|∇uT | dx + |DCuT |(Bn) +
∫

Jc(T )

LT (x) dHn−1(x) , (3.9)

the BV -energy of T , see [12]. Notice that by property (b) we infer that for any T ∈ E1,1−graph(Bn × Y)

Ef (T ) < ∞ ⇐⇒ E1,1(T ) < ∞ . (3.10)

Definition 3.7 We denote by cart1,1(Bn × Y) the class of currents T in E1,1−graph(Bn × Y) such that
E1,1(T ) < ∞.

For example, if u ∈ W 1,1(Bn,Y) the current Gu carried by the graph of u, see (1.3), belongs to cart1,1(Bn×
Y) if and only if

∂Gu(ω) = 0 ∀ω ∈ Zn−1,1(Bn × Y) . (3.11)

The previous definitions are motivated by the following lower semicontinuity property, compare [12].

Theorem 3.8 Let n ≥ 1 and T ∈ cart1,1(Bn×Y). For every sequence of smooth maps {uk} ⊂ C1(Bn,Y)
such that Guk

⇀ T weakly in Zn,1(Bn × Y), we have

lim inf
k→∞

E1,1(uk) ≥ E1,1(T ) , E1,1(uk) :=
∫

Bn

|Duk| dx .

In addition, if we assume that the first homotopy group π1(Y) is commutative, the following density
result holds true, see [12].

Theorem 3.9 Let T ∈ cart1,1(Bn × Y). There exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such
that Guk

⇀ T weakly in Zn,1(Bn × Y) and E1,1(uk) → E1,1(T ) as k →∞.

Properties. As a consequence, we also obtain:

i) the functional T 7→ E1,1(T ) is lower semicontinuous on cart1,1(Bn × Y) with respect to the weak
Zn,1-convergence;

ii) the class of Cartesian currents cart1,1(Bn × Y) is closed under the weak Zn,1-convergence with equi-
bounded energies;

iii) E1,1-bounded sequences in cart1,1(Bn × Y) are relatively compact in the Zn,1-topology.

4 Lower semicontinuity of the energy

In this section we consider integrands f(x, u, G) of the type (3.1) for some function f̃ : Bn×RN×RN
+ → R+

satisfying the properties (a), (b), (c) of the previous section. We shall prove that the energy functional
T 7→ Ef (T ) defined by (3.8) is lower semicontinuous in cart1,1(Bn × Y) along smooth sequences.
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Theorem 4.1 Let T ∈ cart1,1(Bn × Y). For every sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that
Guk

⇀ T weakly in Zn,1(Bn × Y), we have

lim inf
k→∞

Ef (uk) ≥ Ef (T ) .

The proof follows the lines of the one given in [12] in the case f(x, u,G) = |G|, see Theorem 3.8. More
precisely, we shall first prove Theorem 4.1 in the case of dimension n = 1. Secondly, applying arguments as
for instance in [7], we shall deal with the case of higher dimension n ≥ 2.

Remark 4.2 Theorem 4.1 continues to hold if we weaken the continuity assumption (c) by requiring an
upper semicontinuity property similar to the one in property (c) from Sec. 2.

Proof of Theorem 4.1 (The case n = 1): We follow line by line the proof given in [12], taking into
account the following facts and modifications:

i) We have T = GT + ST , where GT ∈ BV −graph(B1 × Y) and

ST =
I∑

i=1

δxi
× Ci on Z1,1(B1 × Y) ,

{xi : i = 1, . . . , I} being a finite disjoint set of points in B1, possibly intersecting the Jump set JuT
,

and Ci is a homologically non-trivial integral 1-cycle in Y.

ii) If {xi}i>I ⊂ B1 is the at most countable set of discontinuity points in JuT
\ {xi : i = 1, . . . , I}, by

the properties of Y we have

LT (xi) ≤ C · |u+
T (xi)− u−T (xi)| ∀ i > I ,

where C = C(Y) > 0 is an absolute constant, see (3.7). Now, property (b) yields

C1 |γ̇(t)| ≤ f̃∞(x, γ(t), (|γ̇1(t)|, . . . , |γ̇N (t)|)) ≤ C2 |γ̇(t)|

and hence
C1 L(γ) ≤ Lf,x(γ) ≤ C2 L(γ) (4.1)

for every γ ∈ ΓT (x) and x ∈ Jc(T ). Therefore, for every ε > 0 we find again l(ε) > I such that

∞∑

i=l(ε)+1

fT (xi) < ε . (4.2)

iii) If {γ̃i
k}k is a sequence of Lipschitz arcs γ̃i

k : [0, 1] → Y uniformly converging to a Lipschitz arc
γ̃i ∈ ΓT (xi), by lower semicontinuity of the functional w.r.t. the uniform convergence, we have

Lf,xi(γ̃
i) ≤ lim inf

k→∞
Lf,xi(γ̃

i
k) .

By (3.5) we thus conclude again that

fT (xi) ≤ lim inf
k→∞

Lf,xi(γ
i
k) ∀ i = 1, . . . , l(ε) ,

where γi
k : [0, 1] → Y is the Lipschitz reparametrization with constant velocity of uk|[ai

k,bi
k].

iv) By lower semicontinuity, due to the weak BV -convergence of uk ⇀ uT we have
∫

B1
f(x, uT ,∇uT ) dx +

∫

B1
f∞

(
x, u+

T ,
dDCuT

d|DCuT |
)

d|DCuT | ≤ lim inf
k→∞

∫

B1
f(x, uk, Duk) dx .
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We finally obtain

Ef (T )− ε ≤ lim inf
k→∞

∫

B1
f(x, uk, Duk) dx

and hence the assertion, by letting ε ↘ 0. ¤

To prove Theorem 4.1 in the higher dimension n ≥ 2, we shall need the following property.

One-dimensional restrictions of Cartesian currents. If T ∈ cart1,1(Bn,Y), for any
ν ∈ Sn−1 the 1-dimensional slice

T ν
y := T (Bn)ν

y × Y
defines a Cartesian current T ν

y ∈ cart1,1((Bn)ν
y ×Y) for Ln−1-a.e. y ∈ (Bn)ν . By Theorem 1.2 and by the

definition (3.8), on account of (3.1) we infer that the f -energy of T ν
y is given for Ln−1-a.e. y ∈ (Bn)ν by

Ef (T ν
y , Aν

y × Y) =
∫

Aν
y

f̃
(
x, uT (y + tν), (|〈∇u1

T (y + tν), ν〉|, . . . , |〈∇uN
T (y + tν), ν〉|)) dt

+
∫

Aν
y

f̃∞
(

x, u+
T ,

(
dDC(u1

T )ν
y

d|DC(uT )ν
y |

, . . . ,
dDC(uN

T )ν
y

d|DC(uT )ν
y |

))
d|DC(uT )ν

y |

+
∑

t∈(Jc(T )∩A)ν
y

fT (y + tν)

(4.3)

for any open set A ⊂ Bn.

Proof of Theorem 4.1 (The case n ≥ 2): We modify the proof given in [12] in the case f(x, u,G) = |G|,
where we followed [3, Thm. 5.4]. Since {uk} ⊂ C1(Bn,Y) is such that Guk

⇀ T weakly in Zn,1(Bn × Y),
for Ln−1-a.e. y ∈ (Bn)ν we infer that

(Guk
)ν
y ⇀ T ν

y weakly in Z1,1((Bn)ν
y × Y) ,

where
(Guk

)ν
y = G(uk)ν

y
, (uk)ν

y(t) := uk(y + tν) ∈ C1((Bn)ν
y ,Y) .

Therefore, by the case n = 1 we infer that

Ef (T ν
y , Aν

y × Y) ≤ lim inf
k→∞

Ef ((uk)ν
y , Aν

y)

for any open set A ⊂ Bn, where

Ef ((uk)ν
y , Aν

y) := Ef (G(uk)ν
y
, Aν

y × Y) =
∫

Aν
y

f(x, uk(y + tν), 〈∇uk(y + tν), ν〉) dt .

Denote by νT an extension to the countably Hn−1-rectifiable set Jc(T ) of the outward unit normal to
the Jump set JuT

. We now define, for every open set A ⊂ Bn and ν ∈ Sn−1,

Ef (T, A× Y, ν) := Ea
f (T, A× Y, ν) + EC

f (T,A× Y, ν) + EJc
f (T, A× Y, ν) ,

where

Ea
f (T, A× Y, ν) :=

∫

A

f̃
(
x, uT , (|〈∇u1

T , ν〉|, . . . , |〈∇uN
T , ν〉|)) dx

EC
f (T, A× Y, ν) :=

∫

A

f̃∞
(

x, u+
T ,

(
d〈DCu1

T , ν〉
d|〈DCuT , ν〉| , . . . ,

d〈DCuN
T , ν〉

d|〈DCuT , ν〉|
))

d|〈DCuT , ν〉|

EJc

f (T, A× Y, ν) :=
∫

Jc(T )∩A

|〈νT (x), ν〉| fT (x) dHn−1(x) .

By the coarea formula we have

EJc

f (T, A× Y, ν) =
∫

πν

( ∑

t∈(Jc(T )∩A)ν
y

fT (y + tν)
)

dLn−1(y) .
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Moreover, Theorem 1.2 gives

Ea
f (T,A× Y, ν) =

∫

πν

(∫

Aν
y

f̃
(
x, uT (y + tν), (|〈∇u1

T (y + tν), ν〉|, . . . , |〈∇uN
T (y + tν), ν〉|)) dt

)
Ln−1(y)

and

EC
f (T, A× Y, ν) =

∫

πν

(∫

Aν
y

f̃∞
(

x, u+
T ,

(
dDC(u1

T )ν
y

d|DC(uT )ν
y |

, . . . ,
dDC(uN

T )ν
y

d|DC(uT )ν
y |

))
d|DC(uT )ν

y |
)

dLn−1(y) .

By (4.3) we thus obtain the identity

Ef (T,A× Y, ν) =
∫

πν

Ef (T ν
y , Aν

y × Y) dLn−1(y) . (4.4)

Similarly, setting for every k

Ef (uk, A, ν) :=
∫

A

f̃
(
x, uk, (|〈∇u1

k, ν〉|, . . . , |〈∇uN
k , ν〉|)) dx ,

we obtain
Ef (uk, A, ν) =

∫

πν

Ef ((uk)ν
y , Aν

y) dLn−1(y) . (4.5)

The rest of the proof follows exactly the one in [12] for the case f(x, u, G) = |G|, but taking this time
Ef instead of E1,1. In particular, we set λ := Ln + fT (·)Hn−1 Jc(T ) + |DCuT |, choose an Ln-negligible
set E ⊂ Bn \ Jc(T ) on which |DCuT | is concentrated, and define

ϕi(x) :=





f̃
(
x, uT , (|〈∇u1

T , νi〉|, . . . , |〈∇uN
T , νi〉|)

)
if x ∈ Bn \ (E ∪ Jc(T ))

|〈νT (x), νi〉| fT (x) if x ∈ Jc(T )

f̃∞
(

x, u+
T ,

(
d〈DCu1

T , νi〉
d|DCuT | , . . . ,

d〈DCuN
T , νi〉

d|DCuT |
))

if x ∈ E

for a countable dense sequence {νi} ⊂ Sn−1. The assertion follows, as
∫

Bn supi∈N ϕi dλ = Ef (T,Bn × Y).¤

5 Density results for the energy

In this section we shall assume that the first homotopy group π1(Y) is commutative and prove the following
density result for the energy Ef (T ) corresponding to integrands f as in Sec. 3, see Theorem 3.9 for the
model case f(x, u, G) = |G|, i.e., for the total variation integrand.

Theorem 5.1 Let T ∈ cart1,1(Bn × Y). There exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such
that Guk

⇀ T weakly in Zn,1(Bn × Y) and Ef (uk) → Ef (T ) as k →∞.

Remark 5.2 As noticed in [9], in the simple case of Y = S1, the unit sphere, since the f -energy Ef (T ) agrees
with the parametric variational integral Ff (T ), see Remark 3.4, the continuity theorem by Reshetnyak, see
Proposition 5.8 and Theorem 5.9 below, yields at once Theorem 5.1 as consequence of the corresponding
theorem in [8] relative to the total variation integrand.

Relaxed functional. As a consequence of Theorems 4.1 and 5.1, setting

Ẽf (T ) := inf
{

lim inf
k→∞

∫

Bn

f(x, uk, Duk) dx | {uk} ⊂ C1(Bn,Y) ,

Guk
⇀ T weakly in Zn,1(Bn × Y)

}
,

(5.1)

we conclude that
Ef (T ) = Ẽf (T ) ∀T ∈ cart1,1(Bn × Y) .

Properties. By Theorems 4.1 and 5.1 we also infer the following lower semicontinuity property.
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Proposition 5.3 Let {Tk} ⊂ cart1,1(Bn × Y) converge weakly in Zn,1(Bn × Y), Tk ⇀ T , to some T ∈
cart1,1(Bn × Y). Then

Ef (T ) ≤ lim inf
k→∞

Ef (Tk) .

On account of property (b) and of the sequential closure of cart1,1(Bn × Y) under the weak convergence
with equibounded E1,1-energies, we also obtain:

Proposition 5.4 Let {Tk} ⊂ cart1,1(Bn×Y) converge weakly in Zn,1(Bn×Y) to some T ∈ Dn,1(Bn×Y),
and supk Ef (Tk) < ∞. Then T ∈ cart1,1(Bn × Y).

By the relative compactness of E1,1-bounded sequences in cart1,1(Bn × Y) in the Zn,1-topology, we finally
infer:

Proposition 5.5 Let {Tk} ⊂ cart1,1(Bn × Y) be such that supk Ef (Tk) < ∞. Then, possibly passing to a
subsequence, Tk ⇀ T weakly in Zn,1(Bn × Y) to some T ∈ cart1,1(Bn × Y).

Proof of Theorem 5.1 (The case n = 1): Arguing as in the proof of the lower semicontinuity result,
Theorem 4.1, we will adapt our proof from the analogous one of [12], mentioning only the necessary changes.
In fact, due to the hypotheses (a), (b), (c), see Sec. 3, arguing e.g. as in Proposition 5.8 below, we may and
do apply a mollification procedure to the function uε

δ, defining this way a smooth map vε
δ : B1 → RN such

that ‖vε
δ − uε

δ‖L1(B1) ≤ δ and

∫

B1
f(x, vε

δ , Dvε
δ) dx ≤

∫

B1
f(x, uε

δ,∇uε
δ) dx +

∫

B1
f∞

(
x, (uε

δ)
+,

dDsuε
δ

d|Dsuε
δ|

)
d|Dsuε

δ| ,

where Dsuε
δ := DCuε

δ + DJuε
δ. Since uT is continuous outside the Jump set JuT and (4.2) holds true, for

every σ > 0 we find again η = η(σ, δ, ε) > 0 such that, in the a.e. sense,

∀x, y ∈ B1 , |x− y| < η =⇒ |uε
δ(x)− uε

δ(y)| < σ + ε .

As a consequence, we may and do define vε
δ in such a way that in particular

dist(vε
δ(x),Y) < ε ∀x ∈ B1 ,

as required. ¤

Proof of Theorem 5.1 (The case n ≥ 2): Following the proof of Theorem 3.9 for the model case
f(x, u, G) = |G|, compare [12], we will first prove:

Theorem 5.6 Let T ∈ cart1,1(Bn × Y). We can find a sequence of currents {Tk} ⊂ cart1,1(Bn × Y) such
that

Tk ⇀ T weakly in Zn,1(Bn × Y) , Ef (Tk) → Ef (T )

and the corresponding functions uk := uTk
in BV (Bn,Y) have no Cantor part, i.e, |DCuk|(Bn) = 0 for

every k. Moreover, uk weakly converges to uT in the BV -sense and

lim
k→∞

|Duk|(Bn) = |DuT |(Bn) .

Secondly, we will prove:

Theorem 5.7 Let T ∈ cart1,1(Bn ×Y) be such that the corresponding BV -function uT ∈ BV (Bn,Y) has
no Cantor part, i.e., |DCuT | = 0. There exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that
Guk

⇀ T weakly in Zn,1(Bn × Y) and the energy Ef (uk) → Ef (T ) as k →∞.

By a diagonal argument we then clearly obtain Theorem 5.1.
We shall recover Theorem 5.6 from the analogous result proved in [12] for the model case f(x, u,G) = |G|.

To this purpose, we shall make use of the following continuity property from [9, Vol. II].
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A continuity property. Denote by F1,1(T ) the parametric variational integral associated to the
total variation integral f(x, u, G) := |G|, see Sec. 2. According to Remark 2.4 and to (2.5), we have

F1,1(T ) :=
∫

Bn×Y
FTV

(
π(z), π̂(z),

−→
T (z)

)
d‖T‖E1,1(z) ,

compare (2.6), where for every (x, u) ∈ Bn × RN

FTV (x, u, ξ) :=
{
|ξ(1)| if u ∈ Y, ξ ∈ Λn(Rn × TuY) and ξ00 ≥ 0
+∞ otherwise in ΛnRn+N .

Proposition 5.8 Let {Tk} ⊂ E1,1−graph(Bn ×Y) be such that Tk ⇀ T weakly in Zn,1(Bn ×Y) to some
T ∈ E1,1−graph(Bn ×Y). If F1,1(Tk) → F1,1(T ), then Ff (Tk) → Ff (T ) for every continuous integrand f
satisfying the properties (a), (b), (c) of Sec. 2.

This relies on the following continuity theorem due to Reshetnyak [14], compare Thm. 1 in Sec. 1.3.4 of
[9, Vol. II]. Here, for any Rm-valued Radon measure µ defined on an open set U ⊂ Rn+N , we will denote
by −→µ its Radon Nikodym derivative with respect to the total variation |µ|, and by µk ⇀ µ the weak
convergence in the sense of the measures.

Theorem 5.9 (Reshetnyak). Let G(z, p) be a non-negative continuous function defined in U × Rm

satisfying the following properties:

i) G(z, ·) is positively homogeneous of degree one for every z;

ii) G(·, p) is uniformly bounded as p ∈ Sm−1;

iii) G(z, ·) is essentially convex for every z, i.e.,

G(z, p + q) ≤ G(z, p) + G(z, q) ∀ p, q ∈ Rm,

where the equality holds if and only if q = λp for some λ ≥ 0.

Let F (z, p) be a non-negative continuous function that is homogeneous of degree one in p for every z and
that satisfies

0 ≤ F (z, p) ≤ c1 G(z, p) + c2 ∀ (z, p) ∈ U × Rm

for some absolute constants ci > 0. Then we have

lim
k→∞

∫

U

F (z,−→µ k(z)) d|µk| =
∫

U

F (z,−→µ (z)) d|µ|

provided that µk, µ are Rm-valued Radon measures on U satisfying

µk ⇀ µ ,

∫

U

G(z,−→µ k(z)) d|µk| →
∫

U

G(z,−→µ (z)) d|µ| as k →∞ .

Proof of Proposition 5.8: We set U = Bn × RN , z = (x, u), and m = 1 + nN . As before, we identify
vertical homology equivalence classes of currents T ∈ Dn,1(Bn × Y), see (1.6), with measures µ(T ), and
take the E1,1-norm of T instead of the total variation of µ(T ), so that −→µ (T ) =

−→
T if ‖T‖E1,1 < ∞ and

T = ‖T‖E1,1

−→
T . Set now

G(z, p) := FTV (x, u, p) , F (z, p) := Ff (x, u, p)

if u ∈ Y and p is identified with the components ξ(0) + ξ(1) of an n-vector satisfying ξ ∈ Λn(Rn × TuY)
and ξ00 ≥ 0. By suitably extending G and F , it is readily checked that we may and do apply Theorem 5.9.
Since the convergence µ(Tk) ⇀ µ(T ) reduces to the weak convergence Tk ⇀ T in Zn,1, whereas

∫

U

G(z,−→µ (T )(z)) d|µ(T )| = F1,1(T ) ,

∫

U

F (z,−→µ (T )(z)) d|µ(T )| = Ff (T ) ,

20



the proof is complete. ¤

Proof of Theorem 5.6: We recall from [12] the main steps of the proof of Theorem 5.6 for the model
case f(x, u,G) = |G|. In this case we have Lf (x) = LT (x) for x ∈ Jc(T ), see (3.7).

For every m ∈ N we find a closed subset Jm ⊂ Jc(T ) such that

Jm ⊂ Jm+1 and
∫

Jc(T )\Jm

LT (x) dHn−1(x) <
1
m

∀m. (5.2)

We also find an open subset Ωm ⊂ Bn \ Jm and a BV -function um ∈ BV (Bn,Y) such that the following
facts hold:

i) um = uT on Bn \ Ωm;

ii) Dum has no Cantor part, |DCum|(Bn) = 0;

iii) um ⇀ uT weakly in the BV -sense with |Dum|(Bn) → |DuT |(Bn) as m →∞;

iv) Daum ⇀ DauT + DCuT and |Daum|(Bn) → |DauT |(Bn) + |DCuT |(Bn);

v) setting
Tm := Gum Ωm × Y + T (Bn \ Ωm)× Y ,

then Tm ∈ cart1,1(Bn × Y) and Tm ⇀ T weakly in Zn,1(Bn × Y);

vi) E1,1(Tm, Ωm × Y) → |DauT |(Bn) + |DCuT |(Bn) by iv), so that by (5.2) we obtain

lim
m→∞

E1,1(Tm, Bn × Y) = E1,1(T, Bn × Y) .

From the above properties we also infer that

lim
m→∞

F1,1(Tm, Bn × Y) = F1,1(T,Bn × Y) .

Therefore, by Proposition 5.8 we obtain

lim
m→∞

Ff (Tm, Bn × Y) = Ff (T,Bn × Y) ,

where Ff is the parametric variational integral associated to the integrand f , see (2.6). Now, the first two
terms in Ef (T ), corresponding to the ”diffuse” part ∇uT dx+DCuT of DuT , agree with the corresponding
terms of Ff (T ), see Remark 3.4. Moreover, since Ωm ⊂ Bn \ Jm, property (4.1) yields that

∫

Jc(T )∩Ωm

fT (x) dHn−1(x) ≤
∫

Jc(T )\Jm

fT (x) dHn−1(x) ≤ C2

∫

Jc(T )\Jm

LT (x) dHn−1(x) .

By (5.2) we readily conclude that Ef (Tm) → Ef (T ), as required. ¤

Proof of Theorem 5.7: For any T̃ ∈ cart1,1(Bn × Y) we set

µJc,eT (B) :=
∫

Jc(eT )∩B

feT (x) dHn−1(x) . (5.3)

We also denote by F(T̃ ) the flat norm

F(T̃ ) := sup{T̃ (φ) | φ ∈ Zn−1(Bn × Y) , F(φ) ≤ 1} ,

where

F(φ) := max
{

sup
z∈Bn×Y

‖φ(z)‖ , sup
z∈Bn×Y

‖dφ(z)‖
}

,

and recall that the flat convergence F(Tk − T ) → 0 yields the weak convergence Tk ⇀ T in Zn,1(Bn ×Y),
compare [15]. Arguing as in [12], we reduce to prove:
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Proposition 5.10 Let T ∈ cart1,1(Bn×Y) be such that the Cantor part |DCuT |(Bn) = 0. Let ε ∈ (0, 1/2)
and k ∈ N. We can find a current T̂ ∈ cart1,1(Bn × Y) such that

Ef (T̂ , Bn × Y) ≤ Ef (T, Bn × Y) + εk , |DCubT |(Bn) = 0 ,

µJc,bT (Bn) ≤ 1
2
· µJc,T (Bn) and F(T̂ − T ) ≤ εk ,

(5.4)

where µJc,T is given by (5.3) and F is the flat norm.

In fact, by a diagonal argument, we find a sequence {Tk} ⊂ cart1,1(Bn×Y) that weakly converges to T
with Ef (Tk) → Ef (T ) as k →∞ and such that, if uk := uTk

is the BV -function corresponding to Tk, we
have |DCuk|(Bn) = 0 and µJc,Tk

(Bn) = 0, so that uk ∈ W 1,1(Bn,Y) for every k. Therefore, Tk agrees
with the current Guk

given by the integration of forms in Zn,1(Bn × Y) over the rectifiable graph of uk,
see (1.3), so that Ef (Tk) = Ef (uk).

By means of Bethuel’s density theorem [4], for every k we find a smooth sequence {u(k)
h }h ⊂ C1(Bn,Y)

that strongly converges to uk in the W 1,1-sense as h →∞. In fact, even if the first homotopy group π1(Y)
is non-trivial, being commutative it is homeomorphic to the first homology group H1(Y). Therefore, the
null-boundary condition (3.11) for uk allows to remove the (n−2)-dimensional singularities, compare [5] and
e.g. [10]. Lower dimensional singularities are removed as in [4]. Now, by the dominated convergence theorem
and by property (b), we infer that the strong convergence yields G

u
(k)
h

⇀ Guk
with Ef (u(k)

h ) → Ef (uk). The
assertion then follows by means of a diagonal argument. ¤

Remark 5.11 This is the exact point where the commutativity hypothesis on the first homotopy group
π1(Y) is used, in addition to (3.11), see the counterexample in Section 6 below.

Proof of Proposition 5.10: We follow the lines of the proof of the corresponding proposition from [12]
for the model case f(x, u, G) = |G|, but this time replacing the BV -energy E1,1(T ) with the energy Ef (T ),
taking Lf (x) instead of LT (x), see (3.5), and setting µT := µd,T + µJc,T , where

µd,T (B) :=
∫

B

f(x, uT ,∇uT (x)) dx

and µJc,T is given by (5.3), so that by (3.8) for every Borel set B ⊂ Bn we have

Ef (T,B × Y) = µT (B) = µd,T (B) + µJc,T (B) ,

as |DCuT |(Bn) = 0. The proof from [12] continues to hold, taking into account the following modifications:

Step 1: Blow-up argument. We use the estimate C1|DuT |(B) ≤ µT (B) to obtain the analogous conclusions.
In addition, due to the continuity hypothesis on f̃ , property (c) in Sec. 3, and to the compactness of Y in
RN , we may and do define the family of balls Bj := B(pj , rj) with radii rj sufficiently small that for every
x ∈ Bj we have

|f(x, u, G)− f(pj , u, G)| ≤ σ (1 + |G|) ∀u ∈ Y , ∀G ∈ M(N,n) . (5.5)

We also remark that, since fT (pj) is the (n− 1)-dimensional density of µJc,T at pj , we have

|µJc,T (Bj)− fT (pj) · ωn−1 rj
n−1| ≤ σ · ωn−1 rj

n−1 . (5.6)

Step 2: Approximation on the balls Bj. We have:

i) Since for every v ∈ BV (Bn,Y)

C1

∫

B

|∇v| dx ≤
∫

B

f(x, v,∇v) dx ≤ C2

∫

B

(1 + |∇v|) dx ,

we conclude again that ∫

Ωδ\eΩδ

f(x,wσ
j ,∇wσ

j ) dx

is small if δ and σ are small.
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ii) The current T̂ σ
j ∈ cart1,1((Bn

R \ Ω̃δ)× Y) satisfies the boundary condition

∂T̂σ
j = ∂Tσ

j ∂Bn
R × Y − [[ ∂Dr × {0} ]]× Γj

+ [[ ∂Ω̃δ ∩B+
r ]]× δz+

j
− [[ ∂Ω̃δ ∩B−

r ]]× δz−j

for a suitable integral chain Γj ∈ D1(Y) satisfying

π̂#(T {pj} × Y) = Γj on Zn,1(Bn × Y) ,

where z±j are the one-sided approximate limits of uT at pj , so that ∂Γj = δz+
j
− δz−j

. Moreover, the
following energy estimate holds:

Ef (T̂ σ
j , (Bn

R \ Ω̃δ)× Y) ≤
∫

Bn
R

f(x, uσ
j ,∇uσ

j ) dx

+ c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .
(5.7)

iii) To extend T̂σ
j to a current in cart1,1(int(Bj) × Y), we take γj ∈ ΓT (pj) satisfying (3.6). By the

construction γj belongs to ΓT σ
j
(pj) and satisfies

Lf,pj
(γj) = fT σ

j
(pj) = fT (pj) (5.8)

and γj#[[ (0, 1) ]] = Γj . Defining again vσ
j : Ω̃δ → Y by

vσ
j (x) := γj

(1
2

+
xn

ϕδ(y(x̃))

)
, x̃ ∈ Dr , ρ ≤ ϕδ(y(x̃))/2 ,

and changing variable t :=
1
2

+
xn

ϕδ(y(x̃))
for every x̃, we observe that by Fubini theorem

∫
eΩδ

f(pj , v
σ
j (x), Dvσ

j (x)) dx =

=
∫

Dr

dLn−1(x̃)
∫ ϕδ(y(ex))/2

−ϕδ(y(ex))/2

f̃
(
pj , γj(t),

(
ϕδ(y(x̃))−1 (|γ̇1(t)|, . . . , |γ̇N (t)|))) dxn

=
∫

Dr

dLn−1(x̃)
∫ 1

0

f̃
(
pj , γj(t),

(
ϕδ(y(x̃))−1 (|γ̇1(t)|, . . . , |γ̇N (t)|))) ϕδ(y(x̃)) dt ,

the last term converging as δ → 0+ to
∫

Dr

dLn−1(x̃)
∫ 1

0

f̃∞
(
pj , γj(t), (|γ̇1

j (t)|, . . . , |γ̇N
j (t)|)) dt = Ln−1(Dr) · Lf,pj (γj) ,

by definition of recession function, and hence, definitely, to Ln−1(Dr) · fT σ
j
(pj). On the other hand,

by (5.5), (5.6), (4.1), and (5.8) we obtain
∣∣∣∣
∫
eΩδ

f(x, vσ
j (x), Dvσ

j (x)) dx−
∫
eΩδ

f(pj , v
σ
j (x), Dvσ

j (x)) dx

∣∣∣∣ ≤

≤ σ ·
∫
eΩδ

(1 + |Dvσ
j (x)|) dx ≤ σ

(
|Ω̃δ|+ Ln−1(Dr) ·

∫ 1

0

|γ̇j(t)| dt

)

≤ σ
(|Ω̃δ|+ Ln−1(Dr)C2 fT (pj)

) ≤ σ
(|Ω̃δ|+ c · rn−1(µJc,T (Bj) + 1)

)
,

where c > 0 is an absolute constant.

iv) As a consequence, the function vσ
j satisfies the energy estimate

∫
eΩδ

f(x, vσ
j , Dvσ

j ) dx ≤ c σ rn−1 + c σµJc,T σ
j
(Bj) + Ln−1(Dr) · fT σ

j
(pj)
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if δ > 0 is small. Therefore, on account of (5.7), the current T̃
(σ)
j := T̂σ

j + Gvσ
j

belongs to
cart1,1(int(Bj)× Y) and satisfies

Ef (T̃ (σ)
j , int(Bj)× Y) ≤ Ef (T σ

j , Bn
R × Y)

+ c σ rn−1 + c σµJc,T σ
j
(B

n

R) .

Step 3: Flat distance. Unchanged.

Step 4: Approximation on the whole domain. This time we obtain

Ef (T (σ)
j , int(Bj)× Y) ≤

∫

Bj

f(x, uT ,∇uT ) dx + (1 + c σ)µJc,T (Bj) + c σ rj
n−1

and hence
Ef (T σ, Bn × Y) ≤

∫

Bn

f(x, uT ,∇uT ) dx + (1 + c σ) µJc,T (Bn) + c σHn−1(J) ,

so that if σ = σ(ε, k, J, µJc,T ) > 0 is small, we conclude with

Ef (Tσ, Bn × Y) ≤ Ef (T, Bn × Y) + εk ,

as required. ¤

6 The relaxed energy of functions

In this section we analyze the lower semicontinuous envelope (0.2) of the variational functional (0.1) corre-
sponding to integrands f defined as in Sec. 3. Of course, it may equivalently be defined for every function
u ∈ L1(Bn,Y) by

Ẽf (u) := inf
{

lim inf
k→∞

∫

Bn

f(x, uk, Duk) dx | {uk} ⊂ C1(Bn,Y) ,

uk → u strongly in L1(Bn,RN )
}

.

For any u ∈ BV (Bn,Y) we denote by

T 1,1
u := {T ∈ cart1,1(Bn × Y) | uT = u} (6.1)

the class of Cartesian currents T in cart1,1(Bn × Y) with underlying BV -function uT equal to u.
In the sequel we shall assume that the first homotopy group π1(Y) is commutative. We first prove

Proposition 6.1 Let u ∈ L1(Bn,Y). The following facts are equivalent:

i) u ∈ BV (Bn,Y);

ii) the class T 1,1
u is non-empty;

iii) Ẽf (u) < ∞.

Proof: The implication i) =⇒ ii) was proved in [12]. To prove that ii) =⇒ iii) we observe that, if T ∈ T 1,1
u ,

by Theorem 5.1 we find a sequence {uk} ⊂ C1(Bn,Y) such that Guk
⇀ T weakly in Zn,1(Bn × Y) and

Ef (uk) → Ef (T ) as k →∞; this yields also that uk ⇀ uT weakly in the BV -sense, where uT = u, and hence
Ẽf (u) < ∞. To show that iii) =⇒ i), we observe that if uk → u with

∫
Bn f(x, uk, Duk) dx → Ẽf (u) < ∞,

by property (b) we have lim supk→∞
∫

Bn |Duk| dx < ∞ whence, possibly passing to a subsequence, uk ⇀ u
weakly in the BV -sense and finally u ∈ BV (Bn,Y). ¤

From the results of the previous sections we also obtain the following representation formula.
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Theorem 6.2 For every u ∈ BV (Bn,Y) we have

Ẽf (u) = inf{Ef (T ) | T ∈ T 1,1
u } . (6.2)

Proof: Let {uk} ⊂ C1(Bn,Y) be a sequence of smooth maps with equibounded energies, supk Ef (uk) < ∞,
weakly converging to u in the BV -sense, see Proposition 6.1. Since supk ‖Duk‖L1 < ∞, see property (b),
by compactness, possibly passing to a subsequence we find that Guk

⇀ T weakly in Zn,1(Bn × Y) to
some T ∈ cart1,1(Bn × Y) satisfying uT = u, i.e. T ∈ T 1,1

u , see (6.1). Since by lower semicontinuity,
Proposition 5.3,

Ef (T ) ≤ lim inf
k→∞

Ef (uk) ,

we readily conclude that
inf{Ef (T ) | T ∈ T 1,1

u } ≤ Ẽf (u) .

To prove the opposite inequality, by applying Theorem 5.1, for every T ∈ T 1,1
u we find a sequence {uk} ⊂

C1(Bn,Y) such that Guk
⇀ T weakly in Zn,1(Bn × Y) and Ef (uk) → Ef (T ) as k →∞. Since the weak

convergence Guk
⇀ T yields the convergence uk → uT weakly in the BV -sense, hence strongly in L1, and

uT = u, we find that Ẽf (u) ≤ Ef (T ). ¤

As a consequence, by the definition (3.8) of f -energy we readily obtain

Corollary 6.3 For every u ∈ BV (Bn,Y) we have

Ẽf (u) =
∫

Bn

f(x, u(x),∇u(x)) dx +
∫

Bn

f∞
(

x, u+(x),
dDCu

d|DCu| (x)
)

d|DCu|

+ inf

{∫

Jc(T )

fT (x) dHn−1(x) | T ∈ T 1,1
u

}
.

(6.3)

The case of simply-connected manifolds. If the first homotopy group π1(Y) is trivial, e.g.,
if Y = Sp for some p ≥ 2, on account of Remark 3.6 we readily infer:

Corollary 6.4 Assume that π1(Y) = 0. Then for every u ∈ BV (Bn,Y) we have

Ẽf (u) =
∫

Bn

f(x, u(x),∇u(x)) dx +
∫

Bn

f∞
(

x, u+(x),
dDCu

d|DCu| (x)
)

d|DCu|

+
∫

Ju

Φf,u(x) dHn−1(x) ,

where
Φf,u(x) := inf{Lf,x(γ) | γ ∈ Γu(x)} ,

Lf,x(γ) is given by (3.4), and

Γu(x) := {γ ∈ Lip([0, 1],Y) | γ(0) = u−(x) , γ(1) = u+(x)}
is the family of all smooth curves γ in Y with end points u±(x).

Remark 6.5 In the model cases f(x, u,G) = |G|, or f(x, u,G) =
√

1 + |G|2, we have Lf,x(γ) = L(γ),
the standard length of γ. Therefore, if π1(Y) = 0, we infer that Φf,u(x) agrees with the geodesic distance
between u−(x) and u+(x).

Properties. Set now for every function u ∈ L1(Bn,Y) and open set A ⊂ Bn, say A ∈ A(Bn),

F(u,A) := inf
{

lim inf
k→∞

Ef (uk, A) | {uk} ⊂ C1(Bn,Y) ,

uk ⇀ u strongly in L1(Bn,RN )
}

,

where
Ef (v,A) :=

∫

A

f(x, v, Dv) dx , v ∈ C1(Bn,Y) , A ∈ A(Bn) .

From the above results we readily infer the following locality property:
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Corollary 6.6 For every u, v ∈ BV (Bn,Y) such that u = v a.e. on Bn we have

F(u,A) = F(v,A) ∀A ∈ A(Bn) .

However, a part from the case π1(Y) = 0, see Corollary 6.4, from Theorem 6.2 we infer that in general,
for a given u ∈ BV (Bn,Y), the set function A 7→ F(u,A) is not a measure.

A counterexample. If the first homotopy group π1(Y) is non-commutative, the density theorem 5.1
fails to hold, even in dimension n = 2 and with T = Gu for some Sobolev map u ∈ W 1,1(Bn,Y), see
(1.3). For example, take as Y a 2-surface of genus two in R3, e.g.., the standard torus with two ”holes”,
and let ϕ : S1 → Y be a Lipschitz function that is not homotopic to a constant map in Y but satisfies
ϕ#[[S1 ]] = 0, hence ϕ is homologically trivial. The map ϕ can be obtained by describing a continuous
loop that belongs to the nontrivial homotopy class given by the sequence of letters ABA−1B−1, where A,B
are suitable generators of π1(Y). Setting u(x) := ϕ(x/|x|), since ∂Gu = −δ0 × ϕ#[[S1 ]], see [9, Vol. I,
Sec. 3.2.2], the current Gu satisfies (3.11) and hence belongs to cart1,1(Bn × Y). Taking e.g. the area
integrand f(x, u,G) =

√
1 + |G|2, we cannot find a sequence of smooth maps uk : B2 → Y such that

Guh
⇀ Gu weakly in Z2,1(B2 × Y) and Ef (uk) → Ef (u). In fact, as noticed in [1], as a consequence of

Theorem 5.9, one obtains that the conditions

uk → u in L1 , Duk ⇀ Du weakly* in L1 ,

∫

B2

√
1 + |Duk|2 dx →

∫

B2

√
1 + |Du|2 dx

yield that uk → u strongly in W 1,1. Therefore, by B. White’s results [16], for a.e. radius 0 < r < 1 the
restriction u|∂B2

r
of u to the boundary of the 2-ball of radius r should have the same homotopy type of

uk|∂B2
r
, a contradiction, as u|∂B2

r
∼ ϕ but uk|∂B2

r
∼ 0. On the other hand, since Gu ∈ T 1,1

u we clearly have

inf{Ef (T ) | T ∈ T 1,1
u } = Ef (u) :=

∫

B2

√
1 + |Du|2 dx ,

but we have seen that Ẽf (u) > Ef (u), hence (6.2) fails to hold.
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