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Abstract

We exhibit explicit Lipschitz maps from Rn to Rn which have almost
everywhere orthogonal gradient and are equal to zero on the boundary of
a cube. We solve the problem by induction on the dimension n.

1 Introduction

We consider in the general n�dimensional case (n > 1) the nonlinear system of
pde�s

DutDu = I ; (1)

where Dut denotes the transpose matrix of the gradient Du of a map u : Rn !
Rn, while I is the identity matrix. A map u satisfying (1) is said to be an
isometric map or rigid map and its gradient is an orthogonal matrix ; brie�y as
usual we write Du 2 O(n).
To the system (1) we associate the homogeneous boundary condition u = 0

on the boundary of a bounded open set of Rn. The Dirichlet problem that we
obtain is critical; i.e., it is incompatible with classical solutions. In fact any
isometric map u : 
 � Rn ! Rn of class C1 on an open connected set 

of Rn is a¢ ne by the classical Liouville theorem, and it therefore cannot be
equal to zero on its boundary @
. Even more: since its invertibility, it cannot
be equal to zero in more than a single point. We can then consider Lipschitz
continuous maps u : Rn ! Rn, satisfying the system (1) almost everywhere;
then, if u is equal to zero at the boundary @
 it must be not di¤erentiable at
any neighbourhood of any boundary point, thus presenting a fractal behaviour
at the boundary.
In this paper we �nd an explicit Lipschitz solutions to the di¤erential prob-

lem (
Du(x) 2 O(n) a.e. x 2 Q
u(x) = 0 x 2 @Q ;

where Q = (0; 1)n is the unit cube and O (n) stands, as said above, for the set
of orthogonal matrices in Rn�n:
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The study of di¤erential inclusions of the form(
Du(x) 2 E a.e. x 2 

u(x) = u0(x) x 2 @
 ;

where E � RN�n; u : 
 � Rn ! RN and u0 is a given map, has received
considerable attention. In the vectorial case n;N � 2; general theories of exis-
tence have been developed either via the Baire category method (see Dacorogna�
Marcellini [3], [4], [5]) or via the convex integration method by Gromov (see
Müller�Sverak [9]). These methods are purely existential and do not give a way
of constructing explicit solutions. In parallel, for some special problems mostly
related to the case when E is the set of orthogonal matrices, some solutions were
provided in a constructive way. This started with the work of Cellina�Perrotta
[1] when n = N = 3 and u0 = 0, Dacorogna�Marcellini�Paolini [6], [7] when
n = N = 2 or n = N = 3 and Iwaniec�Verchota�Vogel [8] for n = N = 2. In
this context there are also some related unpublished arguments by R. D. James
for n = N = 2. In [7] the connection between this problem with isometric
immersions and origami has been made. Moreover in [7] we also dealt with
inhomogeneous linear boundary data.
In the present article we give a self contained and purely analytical con-

struction in any dimension. Despite its generality our proof is shorter than the
existing ones which were, however, restricted to the cases n = 2; 3:We �rst solve
the problem by induction on the dimension in the half space (0;1)�Rn�1:We
then get the solution to our problem by composing the solution in the half space
with a map that sends the whole boundary of the unit cube in Rn to one of its
faces. We should point out that our construction in fact solves the problem in
a more precise way: instead of considering matrices in the whole of O (n), we
use only a �nite number of them, namely permutation matrices whose non zero
entries are �1.

2 The fundamental brick

De�ne f : R! R by
f(t) = minft; 1� tg:

Then de�ne h : R2 ! R2 by

h(x; y) = (h1(x; y); h2(x; y)) =

(
(x; f(y)) if x � y,
(y; f(x)) if x � y.

(2)

Finally we de�ne a map �n : Rn ! Rn, for n = 2; 3; � � � , by induction on n8><>:
�2(x1; x2) = h(x1; x2)

�n+1(x1; x2; � � � ; xn+1)
=
�
�n(h

1(x1 � n+ 1; xn+1) + n� 1; x2; � � � ; xn); h2(x1 � n+ 1; xn+1)
�
:
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More in details, �n+1 can be written as a composition of the following maps

(x1; � � � ; xn+1) 7! (x1 � n+ 1; x2; � � � ; xn+1)
(y1; � � � ; yn+1) 7! (h1(y1; yn+1); y2; � � � ; yn; h2(y1; yn+1))
(z1; � � � ; zn+1) 7! (z1 + n� 1; z2; � � � ; zn+1)
(w1; � � � ; wn+1) 7! (�n(w1; � � � ; wn); wn+1):

We recall that u : Rn ! Rn is called a rigid map, or equivalenly an isometric
map, if it is Lipschitz continuous and Du(x) 2 O(n) for almost every x 2 Rn;
i.e., if u satis�es (1) for almost every x 2 Rn.

Theorem 1 (properties of �n) The map �n : Rn ! Rn, for every n = 2; 3; � � � ,
satis�es the following properties

(i) �n is a piecewise a¢ ne rigid map;

(ii) if x2; � � � ; xn+1 2 [0; 1] then

�n(0; x2; � � � ; xn) = (0; f(x2); � � � ; f(xn));

(iii) on the cube [n� 1; n]� [0; 1]n�1 the map �n is a¢ ne.

Proof. We will use the following properties of the map h de�ned in (2):
1) h is a piecewise a¢ ne rigid map;
2) if y � 0 and x � 0 then h(x; y) = (x; f(y));
3) if x � 1 and y 2 [0; 1] then h(x; y) = (y; 1� x).
We prove the theorem by induction on n. In the case n = 2 the claims are

direct consequences of the properties of h. We assume now that the theorem
holds true for n, and we prove it for n+ 1.
Claim (i) is a consequence of the fact that the composition of piecewise a¢ ne

rigid maps is again a piecewise a¢ ne rigid map.
To prove (ii) we compute, for any x2; � � � ; xn+1 2 [0; 1],

�n+1(0; x2; � � � ; xn+1)
= (�n(h

1(1� n; xn+1) + n� 1; x2; � � � ; xn); h2(1� n; xn+1)) ;

since 1�n � 0 � xn+1, by property 2 of the function h we have h(1�n; xn+1) =
(1� n; f(xn+1)), hence we continue

= (�n(0; x2; � � � ; xn); f(xn+1))

and by the induction hypothesis

= (0; f(x2); � � � ; f(xn); f(xn+1))

which is the claim.
Let us conclude by proving (iii). Let x1 2 [n; n+1] and x2; � � � ; xn+1 2 [0; 1].

We have

�n+1(x1; x2; � � � ; xn+1)
= (�n(h

1(x1 � n+ 1; xn+1) + n� 1; x2; � � � ; xn); h2(x1 � n+ 1; xn+1));
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since x1 � n + 1 � 1 and xn+1 2 [0; 1], by the property 3 of h we �nd that
h(x1 � n+ 1; xn+1) = (xn+1; n� x1), hence

= (�n(xn+1 + n� 1; x2; � � � ; xn); n� x1);

since now xn+1 + n � 1 2 [n � 1; n], by the induction hypothesis we conclude
that �n+1 is a¢ ne on this region.

3 The pyramid construction

Let us start with some notations. Let f be as in the previous section. For every
x = (x1; � � � ; xn) we order the real numbers f(x1); � � � ; f(xn) so that

f (xi1) � f (xi2) � � � � � f (xin) :

We then de�ne v : [0; 1]n ! Rn as

v(x) = (f (xi1) ; f (xi2) ; � � � ; f (xin)):

Note that for v(x) =
�
v1(x); � � � ; vn(x)

�
we have

v1(x) = min
i=1;��� ;n

ff(xi)g ; vn(x) = max
i=1;��� ;n

ff(xi)g

vk(x) = max
i1;��� ;ik�1

�
min

i 6=i1;��� ;ik�1
ff(xi)g

�
; k = 2; � � � ; n� 1;

in particular, when n = 3;

v2(x) = max [min ff(x1); f (x2)g ;min ff(x1); f (x3)g ;min ff(x2); f (x3)g] :

Theorem 2 (pyramid construction) Let Q = (0; 1)n � Rn. The map v : �Q!
Rn de�ned above, has the following properties
(i) v is a piecewise a¢ ne rigid map;

(ii) v(Q) � (0; 1=2]n � fx 2 Rn : x1 > 0g;
(iii) v(@Q) � fx 2 Rn : x1 = 0g; meaning that v1 = 0 on @Q:

Proof. The map v is constructed as the composition of piecewise a¢ ne rigid
maps, so it is piecewise a¢ ne rigid. The second property is a consequence of
the fact that if x1; � � � ; xn 2 (0; 1) then f(x1); � � � ; f(xn) 2 (0; 1=2]: If we take
x 2 @Q we know that at least one component xk of x is equal to either 0 or 1.
So f(xk) = 0. Since f(xj) � 0 for every xj 2 [0; 1] we conclude that f(xk) = 0
is the �rst component of v(x).
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4 The solutions to the Dirichlet problem

Now we are going to construct a locally piecewise rigid map w : [0;+1) �
Rn�1 ! Rn with zero boundary condition.
First we consider the zigzag function F : R ! R which is de�ned by the

conditions (
F (t) = 2f(t=2) = minft; 2� tg; when t 2 [0; 2];
F (t) = F (t+ 2); for every t 2 R:

We also consider the a¢ ne map x 7! Jx+ a, with J 2 O(n), a 2 Rn, such that
(as mentioned in Theorem 1)

�n(x) = Jx+ a when x1 2 [n� 1; n] and x2; � � � ; xn 2 [0; 1] :

De�ne, for k 2 Z, the vector bk 2 Rn as

bk =
+1X
j=k

J�j

2j+1
a0 ;

where a0 = (n� 1; 0; � � � ; 0) + J�1a.
Let H = (0;+1)� Rn�1. Given x 2 H there exists k 2 Z such that

(n� 1)2�k � x1 < (n� 1)21�k :

Then, for such a point x, we de�ne

w(x1; � � � ; xn) = 2�kJ�k�n(2kx1 � n+ 1; F (2kx2); � � � ; F (2kxn)) + bk ;

where �n is the map considered in Theorem 1, while for x1 = 0 we de�ne

w(0; x2; � � � ; xn) = 0 for all x2; � � � ; xn 2 R :

Theorem 3 (solution in the half space) Let H = (0;+1) � Rn�1. The
map w : H ! Rn is locally piecewise a¢ ne in H and it is rigid on H. Moreover
w(@H) = 0.

Proof. We �rst want to check the continuity of w on the planes x1 = (n�1)2�k,
for every k 2 Z. So let x be a point on such a plane and let us check that

w(x1; x2; � � � ; xn)
= 2�k�1J�k�1�n(2

k+1x1 � n+ 1; F (2k+1x2); � � � ; F (2k+1xn)) + bk+1: (3)

With the substitution x1 = (n� 1)2�k in the de�nition of w, the left hand side
of (3) becomes

2�kJ�k�n(0; F (2
kx2); � � � ; F (2kxn)) + bk ;
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by Theorem 1, since F (t) 2 [0; 1] for all t,

= 2�kJ�k(0; f(F (2kx2)); � � � ; f(F (2kxn))) + bk

and by the identity f(F (t)) = F (2t)=2

= 2�k�1J�k(0; F (2k+1x2); � � � ; F (2k+1xn)) + bk :

While the right hand side of (3) is, for x1 = (n� 1)2�k, equal to

2�k�1J�k�1�n(n� 1; F (2k+1x2); � � � ; F (2k+1xn)) + bk+1 ;

since F (t) 2 [0; 1] for every t 2 R, by Theorem 1 we can replace �n with the
a¢ ne map Jx+ a, and get

= 2�k�1J�k�1[J(n� 1; F (2k+1x2); � � � ; F (2k+1xn)) + a] + bk+1
= 2�k�1J�k(n� 1; F (2k+1x2); � � � ; F (2k+1xn)) + 2�k�1J�k�1a+ bk+1
= 2�k�1J�k(0; F (2k+1x2); � � � ; F (2k+1xn))
+ 2�k�1J�k(n� 1; 0; � � � ; 0) + 2�k�1J�k�1a+ bk+1

= 2�k�1J�k(0; F (2k+1x2); � � � ; F (2k+1xn))
+ 2�k�1J�ka0 + bk+1 ;

by recalling the de�nition of bk, we obtain, as desired

= 2�k�1J�k(0; F (2k+1x2); � � � ; F (2k+1xn)) + bk :

So the map w on H = (0;+1)�Rn�1 is locally piecewise a¢ ne and rigid. We
now inspect the boundary values of w. Take any k 2 Z, and i2; � � � ; in 2 Z. We
have

w(2�k(n� 1); 2�ki1; � � � ; 2�kin) = 2�kJ�k�n(0; F (i1); � � � ; F (in)) + bk ;

by Theorem 1 we get

= 2�kJ�k(0; f(F (i1)); � � � ; f(F (in))) + bk ;

now notice that F (ik) is either 0 or 1 hence f(F (ik)) = 0, so we �nd

= bk :

Now since bk ! 0 as k ! +1 and w is Lipschitz continuous, we conclude that
w ! 0 at every point of @H and hence is continuous on the whole set H.

Theorem 4 (solution in the cube) Let Q = (0; 1)n; w be as above and v as
in Section 3. The map u = w � v : Q! Rn is locally piecewise a¢ ne in Q and
it is rigid on Q. Moreover u(@Q) = 0.
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Proof. The map w of Theorem 3 is a Lipschitz solution to the Dirichlet problem(
Dw 2 O(n) a.e. in H

w = 0 on @H

where H is the half space of Rn. Since u = w � v; we clearly have that u is rigid
and so Du 2 O(n) a.e. Moreover since v(@Q) � @H and w(@H) = 0; we get the
condition u(@Q) = 0:

Notice that we have solved a more precise problem, namely

Du (x) 2 �(n) � O (n)

where �(n) is the set of permutation matrices whose non zero entries are �1:
In particular we have used at most n!2n di¤erent matrices in the construction
of w and v:
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