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Abstract. We investigate the curved thin-film limit of a family of perturbed Dirichlet en-
ergies in the space of H1 Sobolev maps defined in a tubular neighborhood of an (n − 1)-
dimensional submanifold N of Rn and with values in an (m − 1)-dimensional submanifold
M of Rm. The perturbation K that we consider is represented by a matrix-valued function
defined on M and with values in Rm×n. Under natural regularity hypotheses on N , M , and
K, we show that the family of these energies converges, in the sense of Γ-convergence, to an
energy functional on N of an unexpected form, which is of particular interest in the theory
of magnetic skyrmions. As a byproduct of our results, we get that in the curved thin-film
limit, antisymmetric exchange interactions also manifest under an anisotropic term whose
specific shape depends both on the curvature of the thin film and the curvature of the target
manifold. Various types of antisymmetric exchange interactions in the variational theory of
micromagnetism are a source of inspiration and motivation for our work.

1. Introduction and motivation

In this paper, we investigate the curved thin-film limit of a perturbed Dirichlet energy of
the form

Gε (v) := 1
2ε

∫
Ωε

|Dv(x) + K (v(x))|2 dx (1)

defined on H1 Sobolev maps v : Ωε → M , where for every ε > 0 the domain Ωε ⊆ Rn is
the ε-tubular neighborhood of an (n − 1)-dimensional submanifold N of Rn, and M is an
(m − 1)-dimensional submanifold of Rm. The perturbation K is represented by a matrix-
valued function defined on M and with values in Rm×n (m rows, n columns). We show that
under natural regularity hypotheses on N , M , and K, the family (Gε) converges, in the sense
of Γ-convergence, to an energy functional on N , which strongly depends both on N and M
and reveals remarkable physical implications to relevant systems, for instance, to magnetic
materials.

Our analysis shows that in the curved thin-film regime, when general base and target
manifolds are considered, generic antisymmetric exchange interactions manifest themselves
under an additional anisotropy term whose specific shape depends both on the curvature of
the thin film and the curvature of the target manifold.

A specific form of (1), namely the one emerging when N is a planar surface in R2 × {0},
M := S2, and K is the antisymmetric matrix K (v) = • × v, was recently addressed in
the framework of micromagnetics [13]. This specific choice of N,M , and K, describes a
micromagnetic energy functional (1) that accounts for antisymmetric interactions known as
bulk Dzyaloshinskii–Moriya interactions (DMI), whose presence explains the emergence of
chiral spin textures known as magnetic skyrmions [22, 42]. Even in this particular case, the
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derived limiting model in [13] revealed intriguing physics: a portion of the isotropic bulk
DMI contributes to the shape anisotropy originating from the magnetostatic self-energy. Our
extension unveils additional mechanisms even in the planar setting. Namely, what happens
when the target manifold is not really S2, the DMI contribution is anisotropic, or there are
temperature variations in the ferromagnetic media (see Subsection 1.2).

Given the importance of the energy Gε in the analysis of antisymmetric interactions, we will
also refer to the energy (1) as the chiral Dirichlet energy, even when K is not antisymmetric.

1.1. Outline. To adequately explain the ramifications of our findings, we first review the
physical framework that led us to the investigation of (1). In Subsection 1.3, we sum up
earlier research on the subject. In Section 2, we describe the rigorous setting of the problem
and detail the contributions of the present work. Proofs are given in Section 3. In Section 4,
we look at several applications of our results to the variational theory of micromagnetism.

1.2. Physical context. In single-crystal ferromagnets, the observable magnetization states
correspond to the local minimizers of the micromagnetic energy functional, which, after nor-
malization, reads as [8, 30]

Gsym(m) := Hex (m) + W(m) := 1
2

∫
Ω

|∇m(x)|2dx+ 1
2

∫
R3

|∇um(x)|2 dx, (2)

with m ∈ H1(Ω, S2). The nonlocal term W(m) represents the magnetostatic self-energy and
describes the energy due to the demagnetizing field ∇um generated by mχΩ, where mχΩ
denotes the extension of m by zero in R3 \ Ω. The scalar potential um can be characterized
as the unique solution in H1(R3) of the Poisson equation [7, 16, 43]:

−∆um = div mχΩ in D′ (
R3)

. (3)

The exchange energy Hex penalizes nonuniformities in the orientation of the magnetization.
Up to a constant term, Hex can be considered as the very-short-range limit of a family of
nonlocal Heisenberg models of the type

Hε
ex (m) := −

∫
Ω×Ω

ωε(|y − x|)m(x) · m(y)dxdy, (4)

with ωε being a family of interaction kernels which tends to concentrate around the origin
(cf. [6]).

The interaction energy Hε
ex is physically symmetric in the lattice points x, y where the

magnetic dipoles m(x), m(y) are located and, mathematically, this is captured in the com-
mutativity of the dot product in (4). However, magnetic materials with low crystallographic
symmetry can exhibit a weak antisymmetric exchange interaction [19, 38]: a relativistic effect
caused by the spin-orbit coupling among neighbor magnetic spins. This type of interaction
was initially predicted and investigated by Dzyaloshinskii [19] and Moriya [38]. For this rea-
son, antisymmetric exchange interactions are usually referred to as Dzyaloshinskii–Moriya
interactions (DMI).

The DMI induces a spin canting of the magnetic moments, whereas symmetric exchange
interactions favor parallel-aligned spins. Mimicking the expression of the DMI energy associ-
ated with a discrete distribution of magnetic moments (cf. [11, p. 862]), one can assume that
for a continuous distribution of magnetic moments m ∈ L2 (Ω, S2), after normalization, the
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overall antisymmetric interactions among magnetic moments is described by the Hamiltonian
function

Hε
DM (m) :=

∫
Ω×Ω

dε(y − x) · (m(x) × m(y)) dxdy. (5)

The Dzyaloshinskii vector dε is an axial vector that, other than from the relative distance
between the magnetic moments m(x) and m(y), also depends on the symmetry group of the
crystal lattice; its precise form has to be determined following Moriya’s rules [38].

Under appropriate assumptions on the ε-decay rate (and concentration) of the family
(dε)ε>0 in (5), one can obtain the very-short-range limiting model of antisymmetric exchange
interactions

HDM (m) =
3∑

i=1

∫
Ω
∂im(x) · (di × m(x)) dx (6)

with (di)3
i=1 being suitable constant vectors that depend on the symmetry of the crystal

lattice. The energy HDM in (6) is, nowadays, the primary term used in the variational theory
of micromagnetics to explain the emergence of magnetic skyrmions.

Overall, in the presence of both symmetric and antisymmetric interactions, the Heisenberg
interaction energy, up to a constant factor, can be expressed under the general form:

HΩ (m) := 1
2

3∑
i=1

∫
Ω

|∂τi(ξ)m(x)|2 + 2 ∂im(x) · (di × m(x)) dx. (7)

Therefore, if we denote by J the linear operator mapping the standard basis (ei)3
i=1 into

the vectors (di)3
i=1, and denote by M (m) := • × m the m-dependent antisymmetric linear

operator representing the action of the cross-product with m, then (7) can be rewritten as

HΩ (m) = 1
2

3∑
i=1

∫
Ω

|∂im(x) + M (m(x)) J ei|2 − 1
2

3∑
i=1

∫
Ω

| M (m(x)) Jei|2 dx

= 1
2

∫
Ω

|Dm(x) + M (m(x)) J|2 − 1
2

∫
Ω

| M (m(x)) J|2 dx

= 1
2

∫
Ω

|Dm(x) + K (m(x))|2 − 1
2

∫
Ω

| K (m(x))|2 dx, (8)

where we denoted by K (m) := M (m) J the product of the m-dependent antisymmetric linear
operator K with the constant matrix J.

It is worth noting that the second term in (8) reflects a Γ-continuous term whose analysis
in the thin-film regime is straightforward. A similar remark applies to the magnetostatic
self-energy W investigated in [16, 15], where it is shown that in the curved thin-film limit,
the magnetostatic self-energy W localizes to an easy-surface anisotropy in the direction of the
normal to the base manifold. Overall, it is sufficient to study energy (1) to comprehend how
DMI affects magnetization behavior in curved thin layers.

1.3. State of the art. The investigations of Dirichlet-type energy functionals between man-
ifolds is a subject with a long history. Their minimization problem naturally arises in differen-
tial geometry for studying unit-speed geodesics and minimal surfaces [20, 44]. However, it also
appears in nonlinear field theories where certain forms of interactions are assimilated through
the ideas of elastic deformations. Outstanding examples are the elastic free energy in the
Oseen-Frank theory of nematic liquid crystals [3, 48], the exchange energy in the variational
theory of micromagnetism [8, 25], and string theory and M -theory [1, 4]. The first-order
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minimality conditions of Dirichlet energy produce harmonic map equations, whose systematic
treatment gained impetus after the seminal work of Eells and Sampson [21], who showed that
in specific geometric contexts, arbitrary maps could be deformed into harmonic maps. The
overall subject is so vast that it would be impossible here even to scratch the surface of the
literature on the topic; therefore, we refer to [20, 44, 32] and references therein for further
details.

Here, instead, we give an overview of the literature intimately related to our investigations
in the curved thin film regime. In the variational theory of micromagnetics, which consists
of a nonlocal addendum to the theory of S2-valued harmonic maps, the story dates back to
the seminal paper [24], where the authors showed that in thin films, the nonlocal effects of
the so-called demagnetizing field operator localize to an easy-surface anisotropy term. Later,
various static and dynamic reduced theories for thin-film micromagnetics has been established
under different scaling regimes in [2, 14, 26, 27, 28, 34, 35, 39, 40].

Ferromagnetic systems in the shape of curved thin films are currently of interest due to
their capability to host spontaneous skyrmion solutions, i.e., chiral spin textures that carry a
non-trivial topological degree, even in materials where the antisymmetric spin-orbit coupling
mechanism (in the guise of DMI) can be neglected. The evidence of these states sheds light
on the role of the geometry in magnetism: chiral spin-textures can be stabilized by curvature
effects only, in contrast to the planar case where DMI is required. In addition to fundamental
reasons, the interest in these geometries is triggered by recent advances in the fabrication of
magnetic spherical hollow nanoparticles, which lead to artificial materials with unexpected
characteristics and numerous applications ranging from logic devices to biomedicine (see,
e.g., the topical review [46] and [33]). From the mathematical point of view, the dimension
reduction problems in non-planar thin magnetic layers have been studied in [10, 17, 16, 15,
36, 37, 45].

Dimension reduction results taking into account also antisymmetric exchange interactions
have been reported in the regime of planar thin film and for bulk DMI, i.e., when in (7) one
considers Ωε ⊆ R3 of the type Ωε := ω× (−ε, ε) with ω an open subset of R2, and the classical
S2-valued magnetization m ∈ H1(Ωε,S2), see [13, Theorem 1]. The surprising consequence of
this result is that a portion of the bulk DMI energy contributes an additional shape anisotropy
term κ2 ∫

ω(m(σ) · e3)2 in the limiting energy, to enhance the shape anisotropy of the thin
film, see Subsection 4.1 for extended discussion.

In this paper, we remove the rigid conditions of m being S2-valued, the thin film being pla-
nar, and treat a general perturbation K. It allows us to treat an interesting case of anisotropic
DMI [9, 23] and other engaging physical scenarios, such as constrained Q-tensor theories of ne-
matic liquid crystals as well their Oseen-Frank counterpart in the presence of anisotropic bulk
potentials [3]. It can also be applied to various limiting Ginzburg–Landau-type models [5].

An important contribution of our result to the physics of magnetic materials comes from the
fact that it uncovers yet another effective anisotropy term (apart from one reported in [13])
coming from the interplay between a ferromagnetic layer, target manifold for magnetization
vector, and a specific form of DMI. It reveals, for example, what happens when one considers
a ferromagnet in which the temperature is not necessarily uniform or DMI is anisotropic. We
refer to Section 4 for various interesting examples in micromagnetics.
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2. Contributions of the present work

2.1. Notation and setup. The main result of this paper concerns the variational charac-
terization of the asymptotic behavior of a rescaled version of (1) in the limit for ε → 0. To
state our results in a precise way, we need to set up the framework and introduce notation.

We denote by N and M closed (i.e., compact, without boundary, and connected) hyper-
surfaces of class C2, respectively, of Rn and Rm. It is well-known that as a consequence of
the Jordan-Brouwer separation theorem, N and M are orientable [31]. The normal fields
associated with the choice of orientations of N and M will be denoted, respectively, by
nN : N → Sn−1, and nM : M → Sm−1.

To make the reading more comfortable, we consistently denote by ξ a generic point on
N and by σ a generic point on the target space M . Also, we denote by TξN and TσM ,
respectively, the tangent space to N at ξ and the tangent space to M at σ, and we use the
notation TN and TM to denote the corresponding tangent bundles.

Our hypotheses on N and M assure that they both admit a tubular neighborhood (of
uniform thickness). We recall the definition as it also allows us to fix notation. Given a closed
C2-hypersurface S ⊆ Rn (for which Jordan-Brouwer separation theorem holds), we can denote
by dS : Rn → R the signed distance from S, defined by

dS(x) =
{
d(x, S) if x ∈ S+,
−d(x, S) if x ∈ S−,

where we denoted by d(x, S) the Euclidean distance of x from S, by S+ the outer (unbounded)
component of Rn \ S, and by S− the interior one. We say that the open set

Oδ := {x ∈ Rn : dS(x) < δ}

is a tubular neighborhood of S of uniform thickness δ > 0 if the following property holds
(cf. [18]): with S := S × I, I := (−1, 1), one has that for every 0 < ε < δ, the map

ψε : (ξ, s) ∈ S 7→ ξ + εsnS(ξ) ∈ Oε (9)

is a C1-diffeomorphism of S onto Oε. In this case, the nearest point projection map

πS : Oε → S, (10)

which maps any x ∈ Oε onto the unique πS(x) ∈ S such that x = πS(x) + dS(x)nS(πS(x)), is
a map of class C1 and, therefore, so is dS(x) = (x− πS(x)) · nS(πS(x)). Moreover, one has

∇dS(πS(x)) = nS(πS(x)).

In what follows, we denote by Ωδ := {x ∈ Rn : dN (x) < δ} a tubular neighborhood of N of
thickness δ and by Oδ a tubular neighborhood of M . Also, we set N := N × I, so that, from
(9), Ωδ ≡ ψδ (N ). Moreover, to shorten the notation, for any δ > 0 we set Iδ := (−δ, δ) and
Iδ+ := (0, δ).

For every ξ ∈ N the symbols τ 1(ξ), τ 2(ξ), . . . , τ n−1(ξ) are used to denote an orthonormal
basis of TξN made by its principal directions, i.e., an orthonormal basis consisting of eigen-
vectors of the shape operator of N (cf., e.g., [18]). We then write κ1(ξ), κ2(ξ), . . . , κn−1(ξ) for
the principal curvatures at ξ ∈ N . Note that, for any x ∈ Ωδ the frame

(τ 1(ξ), τ 2(ξ), . . . , τ n−1(ξ),nN (ξ)) with ξ := πN (x) , (11)
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constitutes an orthonormal basis of TπN (x)Ωδ that depends only on N . Note that we do not
specify the symbol N in the notation related to the orthonormal basis of TξN . This creates
no confusion because we will not use orthonormal bases of TσM .

For 0 < ε < δ, we denote by
√
gε(ξ, s) the metric factor which relates the volume form on

Ωε at ξ + εsnN (ξ) to the volume form on N at (ξ, s). Also, we denote by (h1,ε (ξ, s))n−1
i=1 the

metric coefficients which connect the tangential part of the gradient at ξ + εsnN (ξ) ∈ Ωε to
the tangential gradient on N at (ξ, s).

A direct computation (see Lemma 1 in Section 3) shows that√
gε(ξ, s) := Πn−1

i=1 (1 + εsκi(ξ)), hi,ε(ξ, s) := 1
1 + εsκi(ξ)

(i = 1, 2, . . . , n− 1). (12)

In what follows, without loss of generality, we shall always assume that the thickness δ is
sufficiently small so that for every ε ∈ Iδ+ there holds

c−1
N ⩽

√
gε (ξ, s) ⩽ cN , c−1

N ⩽ hi,ε(ξ, s) ⩽ cN , (13)
for some positive constant cN > 0.

Also, we shall denote by H1(N ,Rm) the Sobolev space of vector-valued functions defined
on N (see, e.g., [49]) endowed with the norm

∥u∥2
H1(N ,M) :=

∫
N

|u(ξ, s)|2 dξds+
∫

N
|∇ξu(ξ, s)|2 + |∂su(ξ, s)|2 dξds. (14)

Here, ∇ξ is the tangential gradient of u on N , and |∇ξu(ξ, s)|2 =
∑n−1

i=1
∣∣∂τ i(ξ)u(ξ, s)

∣∣2.

We write H1(N ,M) for the subset of H1(N ,Rm) made by vector-valued functions with
values in M , and we use the notation H1(N , TM) when we want to emphasize that the target
manifold is the tangent bundle of M .

2.2. The chiral Dirichlet energy. Let N and M be closed and smooth (C2) hypersurfaces
of Rn and Rm, respectively. For every 0 < ε < δ we consider the (n-dimensional) tubu-
lar neighborhood Ωε = {x ∈ Rn : dN (x) < ε}, and consider the family of energy functionals
defined for every v ∈ H1(Ωε,M) by

Gε (v) = 1
2ε

∫
Ωε

|Dv(x) + K (v(x))|2 dx, (15)

with | · | being the Euclidean norm on Rm×n (m rows, n columns) and where
K : σ ∈ M 7→ K(σ) ∈ Rm×n

is a Lipschitz continuous function, i.e., there exists cK > 0 such that
|K(σ1) − K(σ2)|n×m ⩽ cK|σ1 − σ2|m ∀σ1, σ2 ∈ M. (16)

Remark 1. Since we are assuming M to be bounded, (16) implies that for any σ0 ∈ M there
holds |K(σ)| ⩽ |K(σ0)| + cK diam(M), i.e., that the image of K is bounded. In what follows,
to simplify the constants, we will assume that a Lipschitz constant cK is chosen big enough
so that there holds

|K(σ)| ⩽ cK ∀σ ∈ M. (17)

For any ε ∈ Iδ+, the existence of at least a minimizer for Gε in H1(Ωε,M) is a simple appli-
cation of the direct method of the calculus of variations. We are interested in the asymptotic
behavior of the family of minimizers of (Gε)ε∈Iδ+ as ε → 0.
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Let us introduce the following functional defined on H1(N ,M), which can be thought of
as the pull-back of Gε on the product manifold N := N × I, I := (−1, 1):

Eε
N (uε) := 1

2

∫
N

n−1∑
i=1

∣∣hi,ε(ξ, s)∂τ i(ξ)uε(ξ, s) + K (uε(ξ, s)) τ i(ξ)
∣∣2 √

gε(ξ, s)dξds

+ 1
2

∫
N

∣∣∣∣1
ε
∂suε(ξ, s) + K (uε(ξ, s)) nN (ξ)

∣∣∣∣2 √
gε(ξ, s)dξds. (18)

Our main result is stated in the following statement.

Theorem 1. For any ε ∈ Iδ+, the minimization problem for Gε in H1(Ωε,M) is equivalent
to the minimization in H1(N ,M) of the functional Eε

N defined by (18) in the sense that a
configuration vε ∈ H1(Ωε,M) minimizes Gε if and only if uε := vε◦ψε ∈ H1(N ,M) minimizes
Eε

N .
The family (Eε

N )ε∈Iδ+ is equicoercive in the weak topology of H1(N ,M) and the Γ-limit
EN := Γ- limε→0 Eε

N is defined for every u ∈ H1(N ,M) by

EN (u) =



n−1∑
i=1

∫
N

∣∣∂τ i(ξ)u(ξ) + K(u(ξ)) τ i(ξ)
∣∣2

+
∫

N
(K (u(ξ)) nN (ξ) · nM (u(ξ)))2 dξ if ∂su = 0,

+∞ otherwise.

(19)

Moreover,
min

H1(Ωε,M)
Gε = min

H1(N ,M)
Eε

N = min
H1(N ,M)

EN + o(1) , (20)

and if (uε)ε∈Iδ+ is a minimizing family for (Eε
N )ε∈Iδ+ then (uε)ε∈Iδ+ converges, strongly in

H1(N ,M), to a minimizer of EN .

Remark 2. The arguments we present to prove Theorem 1 extend with minor modifications
to the analysis of chiral Dirichlet energies of the form

G̃ε (v) := 1
2ε

∫
Ωε

|A(x)Dv(x) + K (x,v(x))|2 dx, (21)

in which the operator K in (15) depends on x ∈ Ωε as well as σ ∈ M , (16) and (17) are
assumed to hold uniformly in x ∈ Ωε, and with the tensor A ∈ L∞ (Ωε, Rm×m)) uniformly
elliptic, i.e., such that for every x ∈ Ωε and every y ∈ Rm \ {0}, there holds

ΛA|y|2 ⩾ A(x)y · y ⩾ λA · |y|2, (22)
for positive constants ΛA, λA > 0 that do not depend on x ∈ Ωε. For that, one also assumes
that both K (·,v) and A(·) are uniformly continuous in the normal direction, i.e., in terms of
a modulus of continuity ϖK and ϖA, such that |K(x, σ) − K (πN (x), σ)| ⩽ ϖK (|x− πN (x)|)
and |A(x) −A (πN (x))| ⩽ ϖA (|x− πN (x)|) for every x ∈ Ωε. To make the reading more
comfortable, we give the proof by focusing on the energy Gε in Theorem 1. Nevertheless, the
generalized energy (21) can be important in applications; therefore, we give details about the
curved thin-film limit in this case. In stating the result, we will denote by Ẽε

N the pull-back
of G̃ε from H1(Ωε,M) to H1(N ,M) that one can obtain following the same steps that led to
the pull-back (18).

Theorem 2. For any ε ∈ Iδ+, the minimization problem for G̃ε in H1(Ωε,M) is equivalent
to the minimization in H1(N ,M) of its pull-back Ẽε

N , in the sense that a configuration vε ∈
H1(Ωε,M) minimizes G̃ε if and only if uε := vε ◦ ψε ∈ H1(N ,M) minimizes Ẽε

N .
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The family (Ẽε
N )ε∈Iδ+ is equicoercive in the weak topology of H1(N ,M) and the Γ-limit

ẼN := Γ- limε→0 Ẽε
N is defined for every u ∈ H1(N ,M) by

ẼN (u) =



n−1∑
i=1

∫
N

∣∣A(ξ)∂τ i(ξ)u(ξ) + K (ξ,u(ξ)) τ i(ξ)
∣∣2 dξ

+
∫

N

(
A−1(ξ)K (ξ,u(ξ)) nN (ξ) · nM (u(ξ))

A−1(ξ)nM (u(ξ)) · nM (u(ξ))

)2
dξ if ∂su = 0,

+∞ otherwise.
(23)

Moreover, if (uε)ε∈Iδ+ is a minimizing family for (Ẽε
N )ε∈Iδ+ then (uε)ε∈Iδ+ converges, strongly

in H1(N ,M), to a minimizer of ẼN .

Remark 3. To make the analysis more pleasant to read, we assumed N and M to be closed
hypersurface of class C2. However, as it will be transparent from the proofs, all the results
hold as soon as N and M are bounded hypersurfaces (without boundary) of class C2 that
admit a tubular neighborhood (of uniform thickness). Therefore, the range of hypersurfaces
N and M included in our analysis is broad. Indeed, since any closed hypersurface of class
C2 admits a tubular neighborhood (of uniform thickness) [18, Prop. 1, p. 113], our analysis
holds for classical convex surfaces like spheres, ellipsoids, planar surfaces, as well as for non-
convex ones like the torus. The analysis also extends to the class of bounded surfaces that are
diffeomorphic to an open subset of a compact surface; typical examples are the finite cylinder
and the graph of a C2 function.

The proof of Theorem 1 is subdivided into four steps. In Subsection 3.1, we show that for
any ε ∈ Iδ+ and any vε ∈ H1(Ωε,M) the equality Gε (vε) = Eε

N (vε ◦ ψε) holds, where ψε

stands for the diffeomorphism of N onto Ωε given by (9). In Subsection 3.2, we show that the
family (Eε

N )ε∈Iδ+
is equicoercive in the weak topology of H1(N ,M). The identification of the

Γ-limit EN is given in Subsection 3.3. Finally, in Section 4, we consider several instances of our
main result and remark on the importance they can have in the micromagnetic community,
both as a source of new mathematical problems and new models of interest for the physical
community.

3. The curved thin-film limit: proof of Theorem 1

3.1. The equivalence of Gε and Eε
N . In this section, we prove the first part of Theorem 1,

namely that once introduced, for any ε ∈ Iδ, the diffeomorphism of N onto Ωε given by
ψε : (ξ, s) ∈ N 7→ ξ + εsnN (ξ) ∈ Ωε, one has Gε (vε) = Eε

N (vε ◦ ψε) for any vε ∈ H1(Ωε,M)
and, therefore, vε minimizes Gε if and only if uε(ξ, s) := vε (ψε(ξ, s)) minimizes Eε

N . For that,
we need the following result.

Lemma 1. Let 0 < ε < δ and s ∈ I. Set Nεs := {x ∈ Ωε : d (x,N) = εs}. The following
assertions hold:

i. The metric factor which relates the volume form on Nεs to the volume form on N is given
by √

gε(ξ, s) := Πn−1
i=1 (1 + εsκi(ξ)) . (24)

In particular, when n = 3, one has√
gε(ξ, s) :=

∣∣∣1 + 2 (εs)H(ξ) + (εs)2G(ξ)
∣∣∣ , (25)
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where H(ξ) and G(ξ) are, respectively, the mean and Gaussian curvature at ξ ∈ N .
ii. The metric coefficients h1,ε (ξ, s) , h2,ε(ξ, s), . . . , hn−1,ε(ξ, s) which connect the tangential

gradient on Nεs to the tangential gradient on N are given by

hi,ε(ξ, s) := 1
1 + εsκi(ξ)

(i = 1, 2, . . . , n− 1). (26)

In other words, if uε(ξ, s) := vε (ψε(ξ, s)), then for every i = 1, . . . , n− 1, there holds(
∂τ i(ξ)vε

)
◦ ψε(ξ, s) = hi,ε(ξ, s)∂τ i(ξ)uε(ξ, s).

iii. The metric coefficient hn(ξ, s), which connects the normal derivative on Nεs to the s-
derivative on I is given by hn,ε (ξ, s) = 1/ε. In other words, if uε(ξ, s) := vε (ψε(ξ, s))
then (

∂nN (ξ)vε
)

◦ ψε(ξ, s) := 1
ε
∂suε (ξ, s) . (27)

Proof. We use the language of differential forms as it simplifies the argument.
i. For every ε ∈ Iδ the n-dimensional thin domain Ωε is diffeomorphic to the product manifold
N × I via the (positively oriented) map ψε : (ξ, s) ∈ N × I 7→ ξ+ εsnN (ξ) ∈ Ωε. The tangent
map dψε(ξ, s) at the point (ξ, s) is the linear map from T(ξ,s) (N × I) ≈ TξN ⊕ R into Rm

defined for every µ := (τ , t) ∈ TξN ⊕ R by

dψε(ξ, s)µ = (τ + εs∂τ nN (ξ)) + εtnN (ξ). (28)

Now, consider the orthonormal basis of TξN ⊕ R given by

(µ1, . . . ,µn) = (τ 1 ⊕ 0, . . . , τ n−1 ⊕ 0,0 ⊕ 1) , (29)

where the unit tangent vectors (τ i)n
i=1 are along the principal directions of N at ξ, so that

∂τ in(ξ) = κi(ξ)τ i(ξ) for i = 1, . . . , n− 1, (30)

with κi the i-th principal curvatures of N at ξ. We then have

dψε(ξ, s)µi = (1 + εsκi) τ i for i = 1, . . . , n− 1, (31)
dψε(ξ, s)µn = εnN . (32)

We denote by dx := dx1 ∧ · · · ∧ dxn the volume form on Rn and by (dµi)n
i=1 the basis of

(TξN ⊕ R)∗ dual to (µi)
n
i=1. Given that both dx and dµ1 ∧ · · · ∧ dµn are forms of maximal

degree n, there exists a function λ (ξ, s) such that (ψ∗
εdx) (ξ, s) = λ(ξ, s)(dµ1 ∧ · · · ∧ dµn). A

simple computation then gives

λ = (ψ∗
εdx) (µ1, . . . ,µn) (33)

= (dx) ((1 + εsκ1) τ 1, . . . , (1 + εsκn−1) τ n−1, εnN ) (34)
= εΠn−1

i=1 |1 + εsκn−1| , (35)

and we can always assume that ε is sufficiently small so that

εΠn−1
i=1 |1 + εsκn−1| = εΠn−1

i=1 (1 + εsκn−1). (36)

Overall we get that
1
ε

(ψ∗
εdx) (ξ, s) =

√
gε(ξ, s)(dµ1 ∧ · · · ∧ dµn) (37)

with
√
gε(ξ, s) given by (24). This proves i.
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(ii) The expression of the metric coefficients hi,ε is a simple application of chain rule and (31).
Indeed, for every i = 1, . . . , n− 1we have

duε(ξ, s) (µi) = dvε (ψε(ξ, s)) dψε(ξ, s)µi = (1 + εsκi) dvε (ψε(ξ, s)) τ i (38)

from which the relations in (26) follow.
(iii) To compute the metric coefficients hn,ε, we proceed as in ii using (32). We have

duε(ξ, s) (µn) = εdvε(ψε(ξ, s))nN (39)

from which (27) follows. □

The previous Lemma 1 allows us to fix the domain of integration and gives an equivalent
representation of Gε from an integral functional defined on Ωε to an integral functional on
N = N × I.

By coarea formula and (24) from Lemma 1 we get that

Gε (vε) = 1
2ε

∫
Ωε

|Dvε(x) + K (vε(x))|2 dx (40)

= 1
2ε

∫
I

∫
Nεs

|Dvε(y) + K (vε(y))|2 dHn−1(y)ds

= 1
2

∫
N

|Dvε ◦ ψε(ξ, s) + K ((vε ◦ ψε) (ξ, s))|2
√
gε (ξ, s)dHn−1(ξ)ds. (41)

Next, projecting the gradient onto the orthonormal (moving) frame induced by N , i.e., on

(τ 1(ξ), τ 2(ξ), . . . , τ n−1(ξ),nN (ξ)) (42)

we get that for any x ∈ Ωε there holds

|Dvε(x) + K (vε(x))|2 =
n−1∑
i=1

∣∣∂τ i(ξ)vε(x) + K (vε(x)) τ i(ξ)
∣∣2 (43)

+
∣∣∂nN (ξ)vε(x) + K (vε(x)) nN (ξ)

∣∣2 , (44)

with ξ = πN (x) the nearest point projection of x on N defined by (10). Therefore, from (26)
and (27) we have that

|Dvε ◦ ψε(ξ, s) + K ((vε ◦ ψε) (ξ, s))|2 =
n−1∑
i=1

∣∣hi,ε(ξ, s)∂τ i(ξ)uε(ξ, s) + K (uε(ξ, s)) τ i(ξ)
∣∣2

+
∣∣∣∣1
ε
∂suε(ξ, s) + K (uε(ξ, s)) nN (ξ)

∣∣∣∣2 . (45)

Combining (41) and (45), we infer the equality of Gε (vε) and Eε
N (uε). Note that the previous

computation also shows that vε ∈ H1(Ωε,M) if, and only if, uε ∈ H1(N ,M). Finally, since
the superposition operator vε ∈ H1(Ωε,M) 7→ (vε ◦ψε) ∈ H1(N ,M) is surjective, we get that

inf
vε∈H1(Ωε,M)

Gε (vε) = inf
uε∈H1(N ,M)

Eε
N (uε) . (46)

This concludes the proof of the first part of Theorem 1.
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3.2. Compactness. We now show that the family (Eε
N )ε∈Iδ+ is equicoercive in the weak

topology of H1(N ,M). This means, by definition, that there exists a nonempty and weakly
compact set K ⊆ H1(N ,M) such that

min
H1(N ,M)

Eε
N = min

K
Eε

N ∀ε ∈ Iδ+. (47)

The equicoercivity of (Eε
N )ε∈Iδ+ will assure that we can rely on the fundamental theorem of

Γ-convergence concerning the variational convergence of minimum problems (see, e.g., [12]).
To show (47), we observe that for any constant in space σ ∈ H1(N ,M) we have

min
u∈H1(N ,M)

Eε
N (u) ⩽ Eε

N (σ) = 1
2

∫
N

|K(σ)|2
√
gε (ξ, s)dξds. (48)

Taking into account (13) and (17), we end up with

min
u∈H1(N ,M)

Eε
N (u) ⩽

c2
K
2

∫
N

√
gε (ξ, s)dξds ⩽ c2

K · cN · |N | , (49)

Therefore, for every ε ∈ Iδ+, the minimizers of (Eε
N )ε∈Iδ+

are in

K(N ,M) :=
⋃

ε∈Iδ+

{
u ∈ H1(N ,M) : Eε

N (u) ⩽ c2
K · cN · |N |

}
. (50)

Also, since the principal curvatures κ1, . . . , κn−1 are bounded on N , whenever the radius δ ∈
R+ of the tubular neighborhood Ωδ is sufficiently small, we have that inf(ξ,s)∈N hi,ε (ξ, s) ⩾ cN
for every ε ∈ Iδ+ (cf. (13)). Therefore, from Young inequality, we get∣∣hi,ε(ξ, s)∂τ i(ξ)uε(ξ, s) + K (uε(ξ, s)) τ i(ξ)

∣∣2 ⩾
1

2c2
N

∣∣∂τ i(ξ)uε(ξ, s)
∣∣2 − |K (uε(ξ, s)) τ i(ξ)|2 ,

(51)
and ∣∣∣∣1

ε
∂suε (ξ, s) + K (uε(ξ, s)) nN (ξ)

∣∣∣∣2 ⩾
1

2ε2 |∂suε (ξ, s)|2 − |K (uε (ξ, s)) nN (ξ)|2 . (52)

Therefore
n−1∑
i=1

1
2c2

N
|∂τ iuε|2 + 1

2ε2 |∂suε|2 ⩽ +cN

n−1∑
i=1

|hi,ε∂τ iuε + K (uε) τ i|2
√
gε

+ cN

∣∣∣∣1
ε
∂suε + K (uε) nN

∣∣∣∣2 √
gε + cN c

2
K. (53)

It follows that if u ∈ K(N ,M), then
1

2c2
N

∫
N

|∇ξuε(ξ, s)|2 dξds+ 1
2ε2

∫
N

|∂suε (ξ, s)|2 dξds ⩽ 2cN Eε
N (u) + cN c

2
K

⩽ c2
K

(
2c2

N |N | + cN
)
, (54)

and, in particular,
∥u∥2

H1(N ,M) ⩽ c2
K,N (55)

for some positive constant cK,N that does not depend on ε. In other words, the set K(N ,M)
is contained in the bounded subset H1

b (N ,M) of H1(N ,Rm) given by the intersection of
H1(N ,M) with the ball of H1(N ,Rm) centered at the origin and of radius cK,N . Thus, for
any ε ∈ Iδ+

min
u∈H1(N ,M)

Eε
N (u) = min

u∈H1
b

(N ,M)
Eε

N (u). (56)
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To prove that H1
b (N ,M) is weakly compact, it is sufficient to show that the set H1

b (N ,M) is
weakly closed. To this end, we simply observe that if (un)n∈N is a sequence in H1

b (N ,M) such
that un ⇀ u0 weakly in H1(N ,Rm), by Rellich-Kondrachov theorem, un ⇀ u0 strongly in
L2(N ,Rm), and therefore, up to the extraction of an a.e. pointwise converging subsequence,
we get that the u0 still takes values in M . Indeed, the distance function from the boundary is a
continuous function and, therefore, if dM (un) = 0, then also dM (u0) = 0. Thus u0(ξ, s) ∈ M
for a.e. (ξ, s) ∈ N and this concludes the equicoerciveness proof.

3.3. The identification of the Γ-limit. In this section, we compute EN := Γ- limε→0 Eε
N .

We first establish a compactness result (cf. Proposition 1). Afterward, in Proposition 2,
we prove the Γ-limsup inequality, i.e., the existence of a recovery sequence, and the Γ-
lim inf inequality for (Eε

N )ε∈Iδ+
, i.e., that for any family (uε)ε∈Iδ+ weakly convergent to some

u0 ∈ H1(N ,M) we have EN (u0) ⩽ lim infε→0 Eε
N (uε). With no loss of generality, for the

computation of Γ-lim inf we can assume that lim infε→0 Eε
N (uε) < +∞.

Proposition 1. Assume that (uε)ε∈Iδ+
is a family in H1(N ,M) such that

lim inf
ε→0

Eε
N (uε) < +∞.

Then there exist elements u0 ∈ H1(N ,M) and d0 ∈ L2(N ,Rm) such that

uε → u0 weakly in H1(N ,M), (57)
1
ε
∂suε (ξ, s) → d0 weakly in L2(N ,Rm). (58)

Moreover, u0 is 0-homogeneous along the normal to N , i.e., it is an element u0 of the form

u0(ξ, s) = ũ0(ξ), for a.e. (ξ, s) ∈ N (59)

for some ũ0 ∈ H1(N,M), and d0 is tangent to M at u0, i.e.,

d0(ξ, s) · nM (u0(ξ)) = 0 for a.e. (ξ, s) ∈ N . (60)

Proof. Using (13), (18), and (52), we obtain

+∞ > lim inf
ε→0

Eε
N (uε) ⩾ lim inf

ε→0

1
2

∫
N

∣∣∣∣1
ε
∂suε(ξ, s) + K (uε(ξ, s)) nN (ξ)

∣∣∣∣2 √
gε(ξ, s)dξds,

⩾ lim inf
ε→0

c−1
N

4ε2

∫
N

|∂suε(ξ, s)|2 dξds− 1
2c

−1
N c2

K. (61)

From the previous estimate, (57) and (58) immediately follows. Also, by the lower semicon-
tinuity of the norm, we get that 0 = limε→0 ∥∂suε∥L2(N ) = ∥∂su0∥L2(N ). Since we also have
∂suε ⇀ ∂su0 in D′(N ), overall, we get that

∂suε → ∂su0 (ξ, s) strongly in L2(N ,Rm), ∂su0(ξ, s) = 0 a.e. in N . (62)

This proves (59).
To show (60), we denote by dM the signed distance from M , which in our hypotheses on

M is such that ∇dM (σ) = nM (σ). We then have 0 = ∂s (dM (uε)) = nM (uε) · ∂suε with
ε−1∂suε ⇀ d0 weakly in L2(N ,Rm) and nM (uε) → nM (u0) strongly in L2 (M,Rm). This
shows (60). □
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Proposition 2. The family (Eε
N )ε∈Iδ+ of exchange energy on N , Γ-converges, with respect to

the weak topology of H1(N ,M), to the functional (19), i.e., to the functional EN defined on
H1(N ,M) by

EN (u) =
∫

N
|∇ξu(ξ) + Kξ(u(ξ))|2 + (K(u(ξ))nN (ξ) · nM (u(ξ)))2 dξ (63)

if u does not depend on the s-variable, and EN (u) = +∞ otherwise.

Proof. We split the proof into two steps. We start by addressing the Γ-lim inf inequality for
(Eε

N )ε∈Iδ+
.

Step 1 [Γ-liminf inequality]. By Proposition 1, we have that for the identification of the Γ-
limit of (Eε

N )ε∈Iδ
it is sufficient to consider those families of H1(N ,M) functions that weakly

converge to a 0-homogeneous element u0 ∈ H1(N ,M), i.e., to an element u0 of the form
u0(ξ, s) = χI (s) ũ0(ξ) for some ũ0 ∈ H1(N,M), i.e., not depending on the s variable. In the
following, with a slight abuse of notation, we write u0(ξ) instead of ũ0(ξ).

Taking into account the lower semicontinuity of the norm, for any uε ⇀ u0 in H1(N ,M),
with u0 of the type (59), we get (cf. (18))

lim inf
ε→0

Eε
N (uε) ⩾

n−1∑
i=1

∫
N

∣∣∂τ i(ξ)u0(ξ) + K (u0(ξ)) τ i(ξ)
∣∣2 dξ

+ 1
2

∫
N×I

|d0(ξ, s) + K (u0(ξ)) nN (ξ)|2 dξds.

To shorten the notation, it is convenient to introduce the following notation. For every σ ∈ M
we denote by Kξ(σ) the restriction of K(σ) to the tangent space of N at ξ represented by the
matrix Kξ(σ) = (K(σ) τ 1(ξ), . . . ,K(σ) τ n−1(ξ)) ∈ R(n−1)×m. The previous estimate then reads
as

lim inf
ε→0

Eε
N (uε) ⩾

∫
N

|∇ξu0(ξ) + Kξ (u0(ξ))|2 dξ + R[d0] (64)

with
R[d0] := 1

2

∫
N×I

|d0(ξ, s) + K (u0(ξ)) nN (ξ)|2 dξds. (65)

Next, we minimize (pointwise) the integrand of R[d0] under the constraint that d0(ξ, s) ·
nM (u0(ξ)) = 0, i.e., we look for

min
d0·nM (u0)=0

|d0 + K(u0)nN |2 . (66)

This leads to the Euler–Lagrange equation d0 + K(u0)nN = (K(u0)nN · nM (u0)) nM (u0)
which, in particular, shows that for every (ξ, s) ∈ N the minimal vector d0(ξ, s) does not
depend on the s variable and is given by

d0(ξ) := ([nM (u0) ⊗ nM (u0)] − I) K(u0)nN , (67)

with I denoting the identity operator.
The previous relation leads to the following expression of the minimal energy density

|d0(ξ, s) + K(u0(ξ))nN (ξ)|2 =
((

K⊤(u0(ξ))nM (u0(ξ))
)

· nN (ξ)
)2

(68)
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and, therefore, from (64), we infer that

lim inf
ε→0

Eε
N (uε) ⩾

∫
N

|∇ξu0(ξ) + Kξ (u0(ξ))|2 dξ +
∫

N
(K (u0(ξ)) nN (ξ) · nM (u0(ξ)))2 dξ.

(69)
This concludes the proof of the Γ-lim inf inequality.
Step 2 [Γ-limsup inequality]. We now address the existence of a recovery sequence, i.e.,
that the lower bound (69) is indeed optimal. To this end, it is sufficient to show that if
u0 ∈ H1(N ,M) is independent of the s-variable, then there exists a sequence (u∗

ε)ε∈Iδ+
of

functions in H1(N ,M) such that u∗
ε → u0 strongly in H1(N ,M). Indeed, if this is the case,

then
lim
ε→0

Eε
N (u∗

ε) = EN (u0). (70)

For u0 ∈ H1(N ,M) and independent of the s-variable, we claim that

u∗
ε(ξ, s) := πM (u0(ξ) + εsd0(ξ)) (71)

with d0 defined by (67), gives the recovery sequence. Here πM is the nearest point projection
on M defined in (10) and, therefore u∗

ε (ξ, s) is the projection on M of a suitable (and small)
perturbation of u0 along the tangent space of M at u0(ξ).

We point out that u∗
ε is well-defined because for almost every (ξ, s) ∈ N we have that

|dM (u0(ξ) + εsd0(ξ))| = |d(u0(ξ) + εsd0(ξ),M)|
⩽ |d (u0(ξ) + εsd0(ξ),u0(ξ))|
⩽ ε|d0(ξ)|, (72)

with |d0(ξ)| bounded, uniformly in ξ ∈ N , by some constant which depends only on cK.
Therefore, for ε sufficiently small, u0(ξ) + εsd0(ξ) is in a tubular neighborhood of N where
the unique nearest point projection π is defined.

To evaluate Du∗
ε we proceed as follows. For any y in a tubular neighborhood Oδ of M we

have
y = πM (y) + dM (y) (nM ◦ πM ) (y). (73)

Therefore, if we set ñM (y) := (nM ◦ πM ) (y), given that ñM = ñM ◦ πM , passing to the
tangent maps in the previous relation, we have that I = DπM (y) + ñM (y) ⊗ ñM (y) +
dM (y)DñM (y)DπM (y) with I the identity operator. Hence, the following relation holds

I − ñM (y) ⊗ ñM (y) = [I + dM (y)DñM (y)] DπM (y), (74)

from which we get that

DπM (y) = [I + dM (y)DñM (y)]−1 [I − ñM (y) ⊗ ñM (y)] (75)

which is continuous in y ∈ Oδ because of dM (y) being small. Therefore, with ηε (ξ, s) :=
u0(ξ) + εsd0(ξ), we have that

∂τ i(ξ)u
∗
ε(ξ, s) = DπM (ηε (ξ, s)) ∂τ i(ξ)ηε(ξ, s), (76)

∂su∗
ε(ξ, s) = εDπM (ηε(ξ, s)) d0(ξ). (77)
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But then, since for every σ ∈ M the map DπM (σ) acts as the identity on the tangent space
TσM of M at σ, taking into account (75), we get the following relations

u∗
ε(ξ, s) → u0(ξ) strongly in L2(N ,M), (78)

∇ξu∗
ε(ξ, s) → ∇ξu0(ξ) strongly in L2(N ,

(
TM)n−1)

, (79)
∂su∗

ε(ξ, s) → 0 strongly in L2(N , TM), (80)
ε−1∂su∗

ε (ξ, s) → d0(ξ) strongly in L2(N , TM). (81)

In particular, we have that u∗
ε (ξ, s) → u0(ξ) strongly in H1(N ,M) and, therefore, (70)

holds. □

3.4. Strong convergence of minimizers. Assertion (20), as well as the weak convergence
in H1(N ,M) of a minimizing family for (Eε

N )ε∈Iδ+ to a minimum point of EN , is nothing but
the fundamental theorem of Γ-convergence concerning the variational convergence of mini-
mum problems (cf. [12]), which holds under the equicoercivity result we proved in Subsection
3.2. Therefore, it remains to prove that the convergence is (up to a subsequence) strong in
H1(N ,M).

To this end, we observe that, by assumptions, there exists u0 ∈ H1(N ,M), not depend-
ing on the s-variable, such that uε ⇀ u0 weakly in H1(N ,M) and ∂suε → 0 strongly in
L2(N , TM). By the Γ-liminf inequality, the strong convergence of uε → u0 in L2(N ,M), and
the minimality of uε, we get that

EN (u0) ⩽ lim inf
ε→0

Eε
N (uε) ⩽ lim sup

ε→0
Eε

N (uε) ⩽ lim
ε→0

Eε
N (u∗

ε) = EN (u0) , (82)

where (u∗
ε)ε∈Iδ+

is the family built from u0 as in (71). Therefore, we conclude that if (uε)ε∈Iδ+

is a minimizing family associated with (Eε
N )ε∈Iδ+

, then uε ⇀ u0 weakly in H1(N ,M) for some
u0 which does not depend on the s-variable and, moreover, limε→0 Eε

N (uε) = EN (u0). But
this last relation, in expanded form, is equivalent to the relation

1
2

∫
N

|∇ξu0(ξ) + Kξ (u0(ξ))|2 dξds = lim
ε→0

1
2

∫
N

|∇ξuε(ξ, s) + Kξ (u0(ξ))|2 dξds. (83)

From (83) we deduce the convergence of the norms ∥uε∥H1(N ,M) → ∥u0∥H1(N ,M) which to-
gether with the weak convergence uε ⇀ u0 in H1(N ,M), assures strong convergence in
H1(N ,M).

4. Applications to Micromagnetics

Because of the growing interest in spintronics applications, magnetic skyrmions are cur-
rently the focus of considerable research activity ranging from mathematics to physics and
materials science. These chiral structures can be found in a wide range of experimental
conditions. This section demonstrates how our curved thin film analysis can account for vari-
ous situations that might arise when ferromagnetic crystals lack inversion symmetry, and the
Dzyaloshinskii-Moriya interaction (DMI) can twist the otherwise uniform ferromagnetic state.

Generally speaking, due to material defects or anisotropy in saturation magnetization [47],
the loss of the S2-valued constraint is possible. As we show below (cf. (86)), even in the planar
setting, extra contributions to those reported in [13] must be taken into consideration every
time the magnetization vector is not precisely S2-valued. A specific instance of our findings
provides a model for curved thin films in the presence of bulk DMI.
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In addition, we analyze the curved thin-film limit associated with interfacial DMI. This
effect occurs when two ferromagnetic materials with different crystal structures are separated
by an interface.

Finally, we consider the case when the temperature of the ferromagnet is not uniform
and, as a result, the (temperature-dependent) saturation magnetization cannot be assumed
constant. We show how to use Theorem 2 to cover this situation.

4.1. Isotropic Bulk DMI. Isotropic bulk DMI arises when Dzyaloshinskii vectors (di)3
i=1 in

(6) are the elements of the standard basis (ei)3
i=1 of R3. In this circumstance, the perturbation

K takes the form K (m) = κ (• × m), κ ∈ R. Theorem 1 from [13] is about this setting in
the particular case where N is a planar surface and M = S2. More generally, when M,N are
two-dimensional surfaces in R3, the energy functional (1) associated with the isotropic bulk
DMI reads as

Gε (m) := 1
2ε

3∑
i=1

∫
Ωε

|dim(x)|2 dx, (84)

and is defined for every m ∈ H1(Ωε,M). Here, for i = 1, 2, 3, the quantities dim := ∂im +
κ(ei×m) are usually referred to as helical derivatives. The curved thin-film limit, as identified
in Theorem 1, is given by

EN (m) :=
∫

N
|∇ξm(ξ) + Kξ(m(ξ))|2 + (K(m(ξ))nN (ξ) · nM (m(ξ)))2 dξ

=
2∑

i=1

∫
N

∣∣∂τ i(ξ)m(ξ) + κ (τ i(ξ) × m(ξ))
∣∣2 dξ

+ κ2
∫

N
((nM (m(ξ)) × m(ξ)) · nN (ξ))2 dξ. (85)

When N ⊆ R2 × {0} is a planar surface (cf. Remark 3), one has nN (ξ) = e3 and taking the
tangential derivatives in the direction of the standard basis of R2, one obtains from (85) that

EN (m) =
2∑

i=1

∫
N

|dim(ξ) |2 dξ + κ2
∫

N
((m(ξ) × nM (m(ξ))) · e3)2 dξ. (86)

Compared to Theorem 1 from [13], we observe here that if m is S2-valued, i.e., if M = S2,
then m(ξ) × nS2 (m(ξ)) = m(ξ) × m(ξ) = 0, and the limiting energy, as we already know,
reduces to

EN (m) =
2∑

i=1

∫
N

|dim(ξ) |2 dξ. (87)

In other words, the second term in (86) vanishes for S2-valued vector fields defined on a
planar surface. Actually, the second term in (86) also vanishes when m is defined on a
closed surface N provided that m is still S2-valued. However, and this is an important point,
when for physical reasons m cannot be considered S2-valued (e.g., because of anisotropy in the
saturation magnetization), then a correction must be taken into account, and this is expressed
by the second term in (86).

4.2. Isotropic interfacial DMI. Let M,N be two-dimensional surfaces in R3. We are
interested in the case where the interfacial DMI occurs in the direction of the normal to N .
For that, we observe that in terms of the moving frame

(τ 1(ξ), τ 2(ξ), τ 3(ξ) := nN (ξ)) , (88)
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the expression of HDM in (6) can be written under the form

HDM (m) =
3∑

i=1

∫
Ω
∂τi(ξ)m(x) · (di(ξ) × m(x)) dx (89)

with ξ := πN (x) and the Dzyaloshinskii vectors (di(ξ))3
i=1 depending on ξ. Hence, up to an

additive term, uninfluential for our purposes, the expression in (7) can be rewritten under the
form

HΩ (m) = 1
2

3∑
i=1

∫
Ω

|∂τi(ξ)m(x) + di(ξ) × m(x)|2dx (90)

= 1
2

3∑
i=1

∫
Ω

|Dm(x)T (ξ) + M (ξ,m(x)) |2dx , (91)

with T (ξ) the orthogonal operator mapping the standard basis of R3 into the moving frame
(τ 1(ξ), τ 2(ξ), τ 3(ξ) := nN (ξ)) and M (ξ,m) = (d1(ξ) × m,d2(ξ) × m,d3(ξ) × m). In the
presence of curved interfacial DMI, the Dzyaloshinskii vectors have the form

di(ξ) := κ (nN (ξ) × τ i(ξ)) (92)

so that (note that d3(ξ) = 0) for i = 1, 2, there holds

di(ξ) × m(x) = κ [(m(x) · nN (ξ)) τ i(ξ) − (m(x) · τ i(ξ))nN (ξ)] . (93)

Equivalently, we have M (ξ,m) = K (ξ,m) ◦ T (ξ) with K (ξ,m) being the matrix-valued
function

K (ξ,m) := κ [(• ⊗ nN (ξ)) − (nN (ξ) ⊗ •)] m. (94)
Overall, from (91) and (94) and the invariance of the norm under the orthogonal group, we
get that

HΩ (m) = 1
2

3∑
i=1

∫
Ω

|Dm(x) + K (ξ,m) |2dx. (95)

Coming back to the notation used for our asymptotic regime, the energy functional of interest
has the form (ξ = πN (x))

G̃ε (m) := 1
2ε

3∑
i=1

∫
Ωε

|Dm(x) + K (ξ,m) |2dx (96)

and, again, it is defined for every m ∈ H1(Ωε,M). Note that now K (ξ,m) depends also on ξ,
but the analysis we performed to establish Theorem 1 extends to this setting (see Remark 2
and Theorem 2). The curved thin-film limit, as identified in Theorem 2, reads as

ẼN (m) =
2∑

i=1

∫
N

∣∣∂τ i(ξ)m(ξ) + K (ξ,m(ξ)) τ i(ξ)
∣∣2 dξ

+
∫

N
(K (ξ,m(ξ)) nN (ξ) · nM (m(ξ)))2 dξ (97)

=
2∑

i=1

∫
N

∣∣∂τ i(ξ)m(ξ) + κ [(τ i(ξ) ⊗ nN (ξ)) − (nN (ξ) ⊗ τ i(ξ) )] m(ξ)
∣∣2 dξ. (98)

In fact, the second term in (97) vanishes because of K (ξ,m(ξ)) nN (ξ) = 0.
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When N ⊆ R2 × {0} is a flat surface (cf. Remark 3), one has nN (ξ) = e3. By taking the
tangential derivatives in the direction of the standard basis of R2, we infer from (98) that

ẼN (m) =
2∑

i=1

∫
N

|∂im(ξ) + κ [(ei ⊗ e3) − (e3 ⊗ ei )] m |2 dξ

=
∫

N
|∇ξm |2 dξ + 2κ

∫
N
m3 divξ m − m · ∇ξm3 dξ + κ2

∫
N

1 +m2
3(ξ) dξ. (99)

The above formula is the classical expression for the interfacial DMI, which is used in the
analysis of magnetic skyrmions in planar thin films [41]. We deduced (99) from (98) and,
therefore, from Theorem 2. It should be noted, however, that in the planar setting, invoking
Theorem 1 directly rather than its generalized counterpart stated in Theorem 2 is sufficient
to determine the thin-film limit. In fact, when the surface is flat, the perturbation K does not
depend on ξ.

4.3. Anisotropic DMI. For completeness, we report the general case of anisotropic DMI
where the Dzyaloshinskii vectors (di)3

i=1 are in general position. With M,N being two-
dimensional surfaces in R3, the energy functional we are interested in reads as

Gε (m) = 1
2ε

∫
Ωε

|Dm(x) + K (m(x))|2 dx = 1
2ε

3∑
i=1

∫
Ωε

|∂im(x) + di × m(x)|2 dx, (100)

with K (m) = M (m) J. Here, as in (8), J represents the linear operator that maps the
standard basis (ei)3

i=1 into the vectors (di)3
i=1, while M (m) := • × m represents the m-

dependent antisymmetric linear operator acting as the cross-product with m.
By Theorem 1, we infer that in the curved thin-film limit, anisotropic DMI contributions

result in the limiting energy functional

ẼN (m) =
2∑

i=1

∫
N

∣∣∂τ i(ξ)m(ξ) + d̃i(ξ) × m(ξ)
∣∣2 +

∫
N

(K (m(ξ)) nN (ξ) · nM (m(ξ)))2 dξ (101)

with d̃i(ξ) := Jτ i(ξ). Observe that when M = S2, the second term in (101) vanishes. Indeed,
we have

K(m(ξ))nN (ξ) · nM (m(ξ)) = [M (m) J] nN (ξ) · m(ξ) = 0, (102)
because the image of M (m) J is orthogonal to m.

4.4. The nonuniform temperature setting. We discuss here the case when the tem-
perature of the ferromagnet is not uniform and, as a result, the (temperature-dependent)
saturation magnetization cannot be assumed constant. To that purpose, we recall that in the
variational theory of micromagnetism (cf. [30, 8]), systemized by Brown in the 60s, exchange
interactions are described through the order parameter M , called the magnetization vector .
The magnetization vector M of a rigid ferromagnetic body, filling a domain Ω ⊆ R3, is a
vector field satisfying the so-called saturation constraint, that is, |M | = Ms in Ω for a positive
constant Ms ⩾ 0. The saturation magnetization Ms := Ms(T ) is temperature dependent and
vanishes when T exceeds the so-called Curie temperature Tc, whose specific value depends on
the crystal type. Mean field theory predicts that the value of Ms can be considered almost
constant in Ω when T ≪ Tc (see [25, 29]). As a result, it is customary to express the magne-
tization in the form M := Msm, where m : Ω → S2 is now a vector field taking values in the
unit sphere S2 of R3; we did the same when introducing the micromagnetic energy functionals
in (2) and (7).
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Returning to our asymptotic regime, letM,N be two-dimensional surfaces in R3. In general,
when the prescribed temperature profile is not uniform in Ωε, Ms is a function defined on Ωε,
and the family of energy functionals we are interested in has the form (cf. with (21))

G̃ε (m) = 1
2ε

3∑
i=1

∫
Ωε

|∂i (Ms(x)m(x)) +Ms(x)di × m(x)|2 dx. (103)

In what follows, we assume that Ms is 0-homogeneous along the normal direction, i.e., that
Ms(x) = Ms(ξ), ξ := πN (x), and that Ms is regular enough. We can rearrange G in the
following way, which is compatible with Theorem 2 (see also (21)):

G̃ε (m) = 1
2ε

∫
Ωε

|Ms(x)∂im(x) + ∂iMs(x)m(x) + di × m(x)|2

= 1
2ε

∫
Ωε

|A(x)Dm(x) + K (x,m(x))|2 dx (104)

with A(x) = Ms(x)I and K (x,m) = m ⊗ ∇Ms(x) + M (m) J. Here, as in (8), J represents
the linear operator that maps the standard basis (ei)3

i=1 into the vectors (di)3
i=1, whereas

M (m) := • × m represents the m-dependent antisymmetric linear operator acting as the
cross-product with m. More explicitly, in matrix form, we have

K (x,m) = (∂1Ms(x)m, ∂2Ms(x)m, ∂3Ms(x)m) + (d1 × m,d2 × m,d3 × m) . (105)

Invoking Theorem 2, we infer that the curved thin-film limit reads as

ẼN (m) =
2∑

i=1

∫
N

∣∣Ms(ξ)∂τ i(ξ)m(ξ) + K (ξ,m(ξ)) τ i(ξ)
∣∣2 dξ

+
∫

N
(K (ξ,m(ξ)) nN (ξ) · nM (m(ξ)))2 dξ (106)

Observe that when M = S2, we have

K (ξ,m(ξ)) nN (ξ) · nM (m(ξ)) = [m ⊗ ∇ξMs(ξ) + M (m) J] nN (ξ) · m(ξ) = 0, (107)

because the image of M (m) J is orthogonal to m and ∇ξMs(ξ) is tangent at ξ ∈ N . Hence,
in the classical micromagnetic setting (M = S2), we get that the limiting model reads as

ẼN (m) =
2∑

i=1

∫
N

∣∣∂τ i(ξ) (Ms(ξ)m(ξ)) + d̃i(ξ) × m(ξ)
∣∣2 dξ, (108)

with d̃i(ξ) := Jτ i(ξ).
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