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Abstract. Classical one-dimensional, autonomous Lagrange problems are considered. In ab-
sence of any smoothness, convexity or coercivity condition on the energy density, we prove a
DuBois-Reymond type necessary condition, expressed as a differential inclusion involving the
subdifferential of Convex Analysis. As a consequence, a non-existence result is obtained.

1. Introduction

Let I ⊆ R be a given interval, bounded or unbounded, and let α, β ∈ I be fixed.
Consider the class

Ω := {v ∈ W 1,1(a, b) : v(a) = α, v(b) = β, v(x) ∈ I}.
In this paper we address our attention to the study of the autonomous variational problem

minimize

{
F (v) =

∫ b

a
f(v(x), v′(x)) dt : v ∈ Ω

}
, (P )

where f : I × R → [0,+∞) is a lower semicontinuous non negative function satisfying
some further properties concerning the restriction f(·, 0) (see conditions (H1), (H2), (H3)).
We do not assume any smoothness, convexity or coercivity condition on the Lagrangian
f .

Recently various optimality conditions for nonconvex variational problems have been
obtained by using advanced tools of variational analysis and generalized differentiation
(see the monograph [11] for a survey and analysis of the results).

The first aim of the present paper is to obtain a DuBois-Reymond type necessary
condition (from now on simply (DBR)) which in our nonsmooth setting has the form of
a differential inclusion

f(u(x), u′(x))− c ∈ u′(x)∂f(u(x), u′(x)) a.e. in (a, b).
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A result on this matter was obtained for convex Lagrangian f : Rn × Rn → [0,+∞] by
Ambrosio-Ascenzi-Buttazzo in [1], without any regularity condition (just Borel measur-
ability), where the subdifferential is that of Convex Analysis. As it is well known, in a
convex setting it coincides with the Clarke’s one (see [4]) and its further generalizations
(see [9], [10]).

On the contrary, the Clarke’s subdifferential for nonconvex functions contains the usual

one of the Convex Analysis. For instance (e.g. f(s, z) =
√
|z|), it may happen that

the subdifferential of Convex Analysis is a singleton whereas the other ones are non-
degenerate intervals. Moreover, it has a global nature (contrary to the other ones having
a local nature). Finally, notice that the subdifferential of Convex Analysis can be empty
if f(s, ·) does not admit support straightlines; but if it is non-empty for some z0 then, as
a consequence, f(s, z0) = f ∗∗(s, z0).

Therefore, in our non-convex framework, it assumes a certain relevance to prove a
DuBois-Reymond condition involving the subdifferential of Convex Analysis, since it is
sharper than analogous ones involving other kinds of subdifferential and mainly since it
implies that f and f ∗∗ coincide along the minimizer, which is a relaxation result.
So, our first result goes in this direction: we obtain a (DBR) condition expressed by
means of the subdifferential of Convex Analysis, even if the integrand is not convex.
More precisely, we prove (see Theorem 4.4) that if (P ) is solvable then there exists a
minimizer u such that ∂f(u(x), u′(x)) 6= ∅ for a.e. x ∈ (a, b) and the (DBR) condition
holds with a constant

c ≤ min
s∈[minu,maxu]

f(s, 0).

The limitation on the constant c has a relevance too, since it allows us to derive a
non-existence result for problem (P ) (see Proposition 5.1), which states that if

ess sup
s∈[α,β]

lim inf
|z|→+∞

inf{f ∗∗(s, z)− z∂f ∗∗(s, z)} > min{f(α, 0), f(β, 0)}

then problem (P ) does not admit minimum. Such a (non-existence) condition is rather
close to the negation of a sufficient condition for the existence of the minimum obtained by
Clarke in [5] in the convex, but noncoercive, framework (see Remark 5.3 for the details).
Moreover, it assumes a particularly simple form in the case of affine-type Lagrangian
f(s, z) := φ(s) + ψ(s)h(z); in fact, for instance, when φ and ψ are increasing it becomes

φ(β) + ψ(β)` > φ(α) + ψ(α)h(0),

where ` := lim inf |z|→∞ inf (h∗∗(z)− z∂h∗∗(z)) (see Proposition 5.2). Note, moreover, that
if ` = −∞ and inf ψ > 0, then f satisfies the growth condition, weaker then superlinearity,
considered by Cellina-Ferriero in [3] for the existence of the minimum (see also [2] for a
result on Lipschitz regularity of the minimizers).

Finally, we wish just to mention that the (DBR) condition with a suitable limitation
on the constant c becomes also a sufficient condition for the existence of the minimum to
problem (P ), as we will show in a forthcoming paper (see [6]).

As regards our approach, we use a (DBR) condition (involving the sudifferential of Con-
vex Analysis) obtained by Marcelli in [8] for autonomous non-convex variational problems
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with constraints on the derivatives (v′(x) ≥ 0 a.e.). In such a framework, in [8] it was
proved that the (DBR) condition (with a suitable limitation on the constant c) is nec-
essary and sufficient for the optimality of a trajectory u (see Theorem 4.2 below for a
precise statement).

In order to apply this result, firstly we need to prove some monotonicity property of
the minimizer of the free problem (P ). More in detail, under our assumptions (H1)-(H3)
on the restriction f(·, 0), we show that if (P ) is solvable then there exists a minimizer
u which oscillates at most once (see Theorem 3.1). We will refer to u satisfying this
property saying that it satisfies a maximum/minimum principle (not to be confused with
the well known Weierstrass-Pontryagin maximum principle), since its restriction to any
subinterval of [a, b] assumes the maximum/minimum value in correspondence of one of
the endpoints.

The maximum principle for minimizers was already known (see [7]) when the La-
grangian f(s, z) is increasing with respect to s and f(s, 0) < f(s, z) for every z 6= 0.
Here we show that actually the weaker inequality f(s, 0) ≤ f(s, z) suffices (see condition
(H4) and Lemma 2.1). In this way we include situations where f(s, 0) is a non-proper
minimum for f(s, z), arising for instance when dealing with convex envelopes f ∗∗ which
are constantly null in a neighborhood of 0 (see Remarks 3.3 and 3.4 for further comments).

The quoted property of the minimizer allows us to associate to our original problem a
suitable constrained one having a (monotone) minimizer. Therefore applying the result
in [8], we obtain the (DBR) condition for the free problem.

2. Notations and preliminary results

As mentioned in Introduction, our approach for dealing with necessary conditions for
the optimality of problem (P ) is based on the reduction to a suitable constrained problem,
in order to apply a necessary condition proved in [8].

Our main aim is to establish a DuBois-Reymond condition (from now on briefly (DBR)),
which in our general setting of nonsmooth analysis assumes the form of a differential
inclusion:

(DBR) f(v0(x), v′0(x))− c ∈ v′0(x) ∂f(v0(x), v′0(x)) a.e. in (a, b),

where ∂f(s, z) denotes the subdifferential in the sense of convex analysis, that is

∂f(s, z) := {α ∈ R : f(s, w)− f(s, z) ≥ α(w − z) for every w ∈ R}.
As usual, f ∗∗ is the convex envelope of f with respect to the second variable, i.e. fixed

s ∈ I, f ∗∗(s, ·) is the largest convex function lower than f(s, ·). We will not assume any
coercivity or convexity condition.

Throughout the paper we will assume

• f : I × R→ [0,+∞) lower semicontinuous;
• f(·, 0) continuous;
• f(s, ·) continuous at z = 0 for every s ∈ I.
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We list here the properties to which we will refer to in the sequel.

(H1) there exists a continuous selection of ∂f ∗∗(·, 0);

(H2) f(s, 0) = f ∗∗(s, 0) for every s ∈ I;

(H3) there exists a value k ∈ [inf I, sup I] such that f(·, 0) is monotone decreasing in
(inf I, k) and monotone increasing in (k, sup I);

(H4) f(s, 0) = min
z∈R

f(s, z), for every s ∈ I.

Of course, if f(·, 0) is monotone in I then it satisfies condition (H3), in fact it suffices
to take k = inf I if it is increasing or k = sup I if it is decreasing.

As regards condition (H4), notice that it implies both (H1) and (H2), but the vice versa
is trivially false. Nevertheless, the following lemma states that when (H1) and (H2) are
assumed, then, without loss of generality, we can assume that also (H4) holds true.

Lemma 2.1. Let f : I × R → [0,+∞) satisfy (H1) and (H2). Then there exists f̃ :

I × R → [0,+∞) lower semicontinuous, with s 7→ f̃(s, 0) continuous, satisfying the
following properties

(a) f(s, 0) = f̃(s, 0) = (f̃)∗∗(s, 0) for every s ∈ I;

(b) f̃(s, 0) = min
z∈R

f̃(s, z) for every s ∈ I;

(c) v0 ∈ Ω satisfies the (DBR) condition relatively to function f if and only if it

satisfies the (DBR) condition relatively to f̃ with the same constant c, i.e.

f(v0(x), v′0(x))−c ∈ v′0(x) ∂f(v0(x), v′0(x)) ⇔ f̃(v0(x), v′0(x))−c ∈ v′0(x) ∂f̃(v0(x), v′0(x))

(d) there exists k ∈ R such that for every u ∈ Ω we get

F (u) = F̃ (u) + k.

where F̃ (u) stands for
∫ b
a f̃(u(x), u′(x)) dx.

Proof. By (H1) we define f̃ : I × R→ [0,+∞) as

f̃(s, z) := f(s, z)− g(s)z,

where g is a continuous selection of ∂f ∗∗(·, 0). Notice that since f(s, z) ≥ 0, from the

definition of g(s) and (H2) then f̃(s, z) ≥ 0 too. In fact,

f̃(s, z) = f(s, z)− g(s)z ≥ f ∗∗(s, z)− g(s)z ≥ f ∗∗(s, 0) = f(s, 0) ≥ 0. (2.1)

Moreover, the lower semicontinuity of f̃ and the continuity of f̃(·, 0) are a straightforward
consequence of the corresponding properties on f and g.

The equalities in (a) are an immediate consequence of the definition of f̃ and of the
following relation

(f̃)∗∗(s, z) = f ∗∗(s, z)− g(s)z,

whereas property (b) follows from (2.1) since f(s, 0) = f̃(s, 0). To prove (c) it suffices to
remark that

∂f̃(s, z) = ∂f(s, z)− g(s).
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As for property (d) notice that

F̃ (u) = F (u)−
∫ b

a
g(u(x))u′(x) dx = F (u)−

∫ β

α
g(s) ds

for every u ∈ Ω. �
Remark 2.2. If f ∗∗ is continuous and f ∗∗(s, ·) is differentiable at z = 0 for every s ∈ I,
then (H1) is satisfied. Indeed in this case ∂f ∗∗(s, 0) is a singleton, say {g(s)}, with g(s)
continuous. In fact, if lim inf

s→s0
g(s) < g(s0) for some s0 ∈ I, then there exists a real number

α > 0 and a sequence (sn)n converging to s0 such that g(sn) < g(s0) − α for every n.
Therefore,

f ∗∗(sn, z)− f ∗∗(sn, 0) ≥ g(sn)z > (g(s0)− α)z for every z < 0,

so by the continuity of f ∗∗ we deduce

f ∗∗(s0, z)− f ∗∗(s0, 0) ≥ (g(s0)− α)z for every z < 0.

On the other hand,

f ∗∗(s0, z)− f ∗∗(s0, 0) ≥ g(s0)z > (g(s0)− α)z for every z > 0,

then g(s0)− α ∈ ∂f ∗∗(s0, 0), in contradiction with the differentiability of f ∗∗(s0, 0). The
proof of the upper-semicontinuity of g is analogous.

Remark 2.3. Condition (H1) is trivially satisfied if the integrand has the type-affine struc-
ture f(s, z) = φ(s) + ψ(s)h(z), provided that ψ is continuous.

3. The monotonicity property of the minimizers

In this section we investigate the monotonicity property of the minimizers of problem
(P ), which is the key tool for our approach. Our goal is to show that under the as-
sumptions (H1)-(H3) if (P ) is solvable then there exists a minimizer which has at most
one oscillation, that is one can split the interval [a, b] into two subintervals (one of them
possibly degenerate) in which the minimizer is first decreasing and then increasing or vice
versa. Moreover, if the value k in condition (H3) satisfies min{α, β} ≤ k ≤ max{α, β},
then the minimizer is monotone.

From now on, we will say that a function u ∈ Ω satisfies the maximum principle if

(M) there exists x0 ∈ [a, b] such that u is decreasing in [a, x0] and increasing in [x0, b]

and the minimum principle if

(m) there exists x0 ∈ [a, b] such that u is increasing in [a, x0] and decreasing in [x0, b].

We define

ΩM = {u ∈ Ω : u satisfies (M)}, Ωm := {u ∈ Ω : u satisfies (m)}, Ω∗ := ΩM ∪ Ωm.

To justify the expression maximum principle we observe that any function in ΩM has the
remarkable property that any restriction on a subinterval of [a, b] assumes its maximum
value in correspondence of one of the endpoints.



6

Theorem 3.1. [Monotonicity property] Let f : I × R → [0,+∞) satisfy (H1) – (H3).
Then

inf
Ω
F = inf

Ω∗
F.

Moreover, if (P ) has a solution, then there exists a (possibly different) solution to (P )
belonging to Ω∗.

Finally, if min{α, β} ≤ k ≤ max{α, β}, then the class Ω∗ can be replaced by the
subclass of monotone functions.

The proof of this result needs the following lemma, whose proof is postponed at the
end of this section.

Lemma 3.2. Let u : [c, d] → R be an absolutely continuous function such that u(c) ≤
u(x) for every x ∈ [c, d]. Then, there exists an increasing absolutely continuous function
w : [c, d]→ R such that

w(x) ≤ u(x) for every x, w(c) = u(c), w(d) = u(d)

and finally

w(x) = u(x), w′(x) = u′(x) for a.e. x such that there exists w′(x) > 0.

Similarly, if u(x) ≥ u(d) for every x ∈ [c, d], there exists a decreasing absolutely
continuous function w : [c, d] → R such that w(x) ≤ u(x) for every x, w(c) = u(c),
w(d) = u(d) and finally w(x) = u(x), w′(x) = u′(x) for a.e. x such that there exists
w′(x) < 0.

Proof of Theorem 3.1. Without loss of generality we can assume that f satisfies assump-
tion (H4), too. In fact, if not, let f̃ be as in Lemma 2.1 and use (d) in Lemma 2.1.
Suppose by contradiction that infΩ F < infΩ∗ F . Then there exists u ∈ Ω \ Ω∗ such that
F (u) < infΩ∗ F .

We split the proof into various cases.

Case 1. Let k ≤ minu, which implies that f(·, 0) is increasing in [min u,+∞).

Let x0 := max{x : u(x) = min u}. By applying Lemma 3.2 in the intervals [a, x0]
and [x0, b], we deduce the existence of an absolutely continuous function w such that
w(a) = u(a), w(b) = u(b), w(x0) = u(x0), w(x) ≤ u(x) in [a, b], w is decreasing in [a, x0]
and increasing in [x0, b]. Moreover, w(x) = u(x) and w′(x) = u′(x) for a.e. x such that
there exists w′(x) 6= 0. Hence, w ∈ ΩM ⊂ Ω∗ and minw = min u. Thus, if A denotes the
set {x : w′(x) = 0}, by the monotonicity of f(·, 0) on [minw,+∞) and (H4) we get

F (w) =
∫ b

a
f(w(x), w′(x)) dx =

∫

A
f(w(x), 0) dx+

∫

[a,b]\A
f(w(x), w′(x)) dx

≤
∫

A
f(u(x), 0) dx+

∫

[a,b]\A
f(u(x), u′(x)) dx

≤
∫

A
f(u(x), u′(x)) dx+

∫

[a,b]\A
f(u(x), u′(x)) dx = F (u),
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which is an absurd.
Now, suppose that u ∈ Ω is a solution to (P ). Then, reasoning as above, we get the

existence of w ∈ ΩM ⊂ Ω∗ such that w is a solution.
Finally, we stress that w(x) ∈ [minu,max{α, β}] for every x ∈ [a, b] and if min u =

min{α, β} then w is monotone.

Case 2. Let k ≥ maxu, which implies that f(·, 0) is decreasing in [0,maxu].

We omit the proof of this step which is quite similar to that of the previous one. In fact, in
this situation it suffices to replace ΩM with Ωm and give a version of Lemma 3.2 with the
statement w(x) ≥ u(x) and define x0 := max{x : u(x) = max u}. In particular, if u ∈ Ω
is a solution to (P ) then we get the existence of w ∈ Ωm ⊂ Ω∗ such that w is a solution
satisfying w(x) ∈ [min{α, β},maxu] for every x. Moreover, if max u = max{α, β} then
w is monotone.

Case 3. Let min u < k < maxu, with k ≤ min{α, β}.
Consider the function û := max{u(x), k}. Since min{α, β} ≥ k, then û ∈ Ω. Moreover,
denoted by B := {x : û(x) > k}, then B is an open set and û′(x) = 0 for a.e. x 6∈ B. So,
being by (H3) and (H4)

f(k, 0) ≤ f(s, 0) ≤ f(s, z) for every (s, z) ∈ [0,+∞)× R,
we deduce

F (û) =
∫

B
f(u(x), u′(x)) dx+

∫

B
f(k, 0) dx ≤

∫ b

a
f(u(x), u′(x)) dx = F (u) < inf

Ω∗
F.

Therefore, since min û ≥ k, we can apply what proved in Case 1 to obtain the conclusion.

Moreover, observe that if k = min{α, β} then the function w given by the application
of Case 1 is monotone.

Case 4. Let min u < k < maxu, with max{α, β} ≤ k.

The proof of this case is quite similar to that of Case 3, (applying Case 2 instead Case 1).

Case 5. Let min u < k < maxu, with min{α, β} < k < max{α, β}.
Set

H+ := {x ∈ (a, b) : u(x) > k} and H− := {x ∈ (a, b) : u(x) < k}.
Of course, H+ and H− are non-empty open sets and there exist at most countable many
disjoint intervals (ci, di), (γj, δj), i, j = 1, 2, . . . , such that

H+ = ∪i=1,2,...(ci, di) and H− = ∪j=1,2,...(γj, δj).

Let us define û : [a, b]→ R by

û(x) :=





k if x ∈ (ci, di) for some i, with [ci, di] ⊂ (a, b)
k if x ∈ (γj, δj) for some j, with [γj, δj] ⊂ (a, b)
u(x) otherwise.

Of course, û ∈ Ω and it satisfies F (û) ≤ F (u). Indeed, by (H3) and (H4)

f(k, 0) ≤ f(u(x), 0) ≤ f(u(x), u′(x)) for every x ∈ [a, b].
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Thus, defined B := {x : û(x) 6= u(x)}, we have
∫ b

a
f(û(x), û′(x)) dx =

∫

B
f(k, 0) dx+

∫

[a,b]\B
f(u(x), u′(x)) dx ≤ F (u).

Now let us prove the existence of a monotone function w ∈ Ω such that F (w) ≤ F (û).
To this end, we assume now α < β (the proof in the opposite case is analogous), so that
α < k < β.

We claim that there exists a point x0 ∈ (a, b) such that û(x) ≤ k for every x ≤ x0 and
û(x) ≥ k for every x ≥ x0.
Indeed, fix x0 ∈ (a, b) such that u(x0) = k. Then û(x0) = k too. If û(x) > k for some
x < x0, then by α < k we get a < x and, by definition of û, u(x) = û(x) > k. Therefore,
x ∈ H+, so that there exists i such that x ∈ (ci, di), a < ci < x < di ≤ x0 < b and
u(ci) = u(di) = k. By the very definition of û this implies û(y) = k for every y ∈ [ci, di],
which is an absurd.

Now, applying Case 2 to the function û with (a, b) replaced by (a, x0) and β replaced by
k, being maxx∈[a,x0] û(x) = max{α, k} = k, we get the existence of an increasing function
w1 : [a, x0]→ R, satisfying the boundary conditions w1(a) = α, w1(x0) = k, such that

∫ x0

a
f(w1(x), w′1(x)) dx ≤

∫ x0

a
f(û(x), û′(x)) dx.

Similarly, applying Case 1 with (a, b) replaced by (x0, b), and α replaced by k, being
minx∈[x0,b] û(x) = min{k, β} = k, we get the existence of an increasing function w2 :
[x0, b]→ R, satisfying the boundary conditions w1(x0) = k, w1(b) = β, such that

∫ b

x0

f(w2(x), w′2(x)) dx ≤
∫ b

x0

f(û(x), û′(x)) dx.

Finally, gluing the functions w1, w2 we obtain an increasing function w ∈ Ω such that
F (w) ≤ F (û) and this concludes the proof. �

Remark 3.3. In view of the proof of the previous theorem, it is immediate to see that
it holds true also for Lagrangian depending on the independent variable x too, that is
f = f(x, s, z), provided that f(x, ·, ·) satisfies (H3) for every x ∈ [a, b] and f(x, s, 0) ≤
f(x, s, z) for every z ∈ R. In this case condition (H4) has to be explicitly assumed since
Lemma 2.1 does not hold for non-autonomous problems.

Remark 3.4. If f(·, 0) is strictly monotone in (inf I, k) and in (k, sup I) or if f(s, 0) <
f(s, z) for every z 6= 0, then any possible minimizer belongs to the class Ω∗, i.e. it
satisfies either the maximum or the minimum principle.

Proof of Lemma 3.2. We write the proof in the case u(c) ≤ u(x) for every x ∈ [c, d], since
in the other case the scheme of the proof is the same.

Put

A := {v : [c, d]→ R : v is increasing, v(x) ≤ u(x) for x ∈ (c, d), v(c) = u(c), v(d) = u(d)},
and for every x ∈ [c, d] define w : [c, d]→ R,

w(x) := sup{v(x) : v ∈ A}.
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Note that the function v̂(x) :≡ u(c) for x ∈ [c, d), v̂(x) = u(d) for x = d belongs to A,
so w is well-defined. Moreover, it is immediate to verify that w is monotone increasing,
since if x1 < x2 then v(x1) ≤ v(x2) for every v ∈ A, hence w(x1) ≤ w(x2). So, w ∈ A.

From now on, the proof will proceed by steps.

Step 1. w is continuous.

Since w is increasing, then w(x−) ≤ w(x+) at every x ∈ (c, d). Assume by contradic-
tion that w(x̃−) < w(x̃+) for some x̃ ∈ (c, d). Choose an intermediate value y ∈
(w(x̃−), w(x̃+)). Since u is continuous and u(x̃) = u(x̃+) ≥ w(x̃+) > y, we get u(x) >
y > w(x) in (x̃ − ρ, x̃) for some ρ > 0 sufficiently small. So, if we consider the function
ṽ(x) :≡ y for x ∈ (x̃ − ρ, x̃) and ṽ(x) = w(x) elsewhere, we have that ṽ ∈ A with
ṽ(x) > w(x) in (x̃− ρ, x̃), in contradiction with the definition of w.

The continuity at x = d can be proved in a similar way. Finally, note that w(c) =
u(c) = u(c+) ≥ w(c+) ≥ w(c), so w is continuous at x = c too.

Step 2. If there exists w′(x) > 0 then w(x) = u(x).

In order to show this, assume by contradiction the existence of x̄ with w′(x̄) > 0 and
w(x̄) < u(x̄). Of course, x̄ ∈ (c, d) and we infer that for some δ > 0 small enough we
have w(x) < w(x̄) < u(x) in [x̄ − δ, x̄]. Hence, put v̄(x) := w(x̄) for x ∈ [x̄ − δ, x̄] and
v̄(x) = w(x) elsewhere, we have that v̄ ∈ A, but v̄(x) > w(x) in (x̄ − δ, x̄), again in
contradiction with the definition of w.

Step 3. If w(ξ) < u(ξ) there exist ξ1 < ξ < ξ2 such that w(ξ1) = u(ξ1) = w(ξ2) = u(ξ2).

Indeed, note that for every x ∈ (c, d) such that w(x) < u(x) we have that w is constant
in a left neighborhood of x (it suffices to repeat the same argument of Step 2). So, fixed
ξ ∈ (c, d) such that w(ξ) < u(ξ), set

ξ1 := inf{x : w(t) < u(t) for every t ∈ [x, ξ]}, ξ2 := sup{x : w(t) < u(t) for every t ∈ [ξ, x]}.
Of course w(ξ1) = u(ξ1) and w(ξ2) = u(ξ2) (since w(c) = u(c) and w(d) = u(d)). More-
over, by virtue of what just observed, w(x) is constant in a left neighborhood of every
point x ∈ (ξ1, ξ2). Hence, by the continuity of w we infer that w is constant in [ξ1, ξ2].

Step 4. For every [α, β] ⊂ [c, d] there exists [α′, β′] ⊂ [α, β] such that w(β) − w(α) =
|u(β′)− u(α′)|.
In order to show this, let us consider the nontrivial case w(β) > w(α). Note that if
w(α) < u(α) then by virtue of Step 3 there exists α′ > α such that w is constant in
[α, α′] and w(α′) = u(α′). Since w(β) > w(α), we get α′ < β. Similarly, if w(β) < u(β)
there exists β′ < β such that w is constant in [β′, β] with u(β′) = w(β′). Of course, since
w(β) > w(α), we get α′ < β′. Therefore, if we denote again by α′ the value α in the
case w(α) = u(α) and similarly for β′, we obtain 0 < w(β) − w(α) = u(β′) − u(α′) =
|u(β′)− u(α′)|.
Step 5. w is absolutely continuous.
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Since u is absolutely continuous, for every ε > 0 there exists a positive real δ = δ(ε) > 0
such that for every finite collection {(xk, yk), k = 1, . . . , n} of nonoverlapping intervals

with
n∑

k=1

(yk − xk) < δ, we have
n∑

k=1

|u(yk)− u(xk)| < ε.

Fixed a family {(αk, βk), k = 1, . . . , n} of nonoverlapping intervals with
n∑

k=1

(βk − αk) < δ,

by what proved in Step 4 we have

n∑

k=1

|w(βk)− w(αk)| =
n∑

k=1

|u(β′k)− u(α′k)| < ε

since
n∑

k=1

(β′k − α′k) ≤
n∑

k=1

(βk − αk) < δ, then w is absolutely continuous.

Step 6. w′(x) = u′(x) for a.e. x such that w′(x) > 0.

Let us fix a point x ∈ [c, d] such that there exist u′(x), w′(x) and w′(x) > 0. Then, by
Step 2 we have w(x) = u(x) and so

u′(x) = lim
ξ→x+

u(ξ)− u(x)

ξ − x = lim
ξ→x+

u(ξ)− w(x)

ξ − x ≥ lim
ξ→x+

w(ξ)− w(x)

ξ − x = w′(x),

u′(x) = lim
ξ→x−

u(ξ)− u(x)

ξ − x = lim
ξ→x−

u(ξ)− w(x)

ξ − x ≤ lim
ξ→x−

w(ξ)− w(x)

ξ − x = w′(x)

hence w′(x) = u′(x) and this concludes the proof. �

4. DuBois-Reymond necessary condition

The main result in this section is the following DuBois-Reymond necessary condition
for minimizers of problem (P ), expressed by a differential inclusion involving the subdif-
ferential of Convex Analysis.

Theorem 4.1. Let f : I × R → [0,+∞) satisfy (H4). Let u ∈ Ω∗ be a solution to (P ).
Then ∂f(u(x), u′(x)) 6= ∅ for a.e. x ∈ (a, b) and there exists a constant c ≤ µ such that

f(u(x), u′(x))− c ∈ u′(x) ∂f(u(x), u′(x)) a.e. in (a, b),

where

µ = min
s∈[minu,max{α,β}]

f(s, 0) if u ∈ ΩM

and

µ = min
s∈[min{α,β},maxu]

f(s, 0) if u ∈ Ωm.

Moreover, if u′(x) = 0 in a set of positive measure, then c = µ.
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To prove the above theorem, we use an analogous result obtained in [8] for constrained
variational problems, which asserts that in the presence of constraints on the derivatives
the (DBR) condition is necessary and sufficient for the optimality of a trajectory u0.

In its statement we adopt the following notation: for any function h : [0,+∞)→ R
∂+h(z0) := {k ∈ R : h(z)− h(z0) ≥ k(z − z0) for every z > 0} , z0 ≥ 0.

Theorem 4.2. ([8, Theorem 7]). Let α ≤ β and let f : I × [0,+∞) → [0,+∞) be
lower-semicontinuous. Consider the minimization problem

(P+) minimize
∫ b

a
f(u(x), u′(x)) dx , for u ∈ Ω+

with

Ω+ := {u ∈ W 1,1(a, b) : u(a) = α, u(b) = β, u′(x) ≥ 0 for a.e. x ∈ (a, b)}.
Then u0 ∈ Ω+ is a minimizer of (P+) if and only if the following two properties hold:

(i) ∂+f(u0(x), u′0(x)) 6= ∅ for a.e. x ∈ (a, b) satisfying u′0(x) > 0;
(ii) there exists a constant c ≤ ν, ν := min

s∈[α,β]
f(s, 0), such that

f(u0(x), u′0(x))− c ∈ u′0(x)∂+f(u0(x), u′0(x)) a.e. in (a, b). (4.1)

Moreover, if (4.1) holds true and u′0(x) = 0 in a set having positive measure, then c = ν
(with the position 0 · ∅ = 0).

To link the (DBR) conditions for constrained and non-constrained problems, first we
need to establish a relation between ∂f(s, ·) and ∂+f(s, ·). The following lemma answers
to this question.

Lemma 4.3. Let h : R → R be a continuous function at 0 such that h(0) = minh(z).
Then, for every z0 > 0 we have

∂+h(z0) = ∂h(z0).

Similarly, for every z0 < 0 we have

∂−h(z0) = ∂h(z0),

where
∂−h(z) := {k ∈ R : h(z)− h(z0) ≥ k(z − z0) for every z < 0}.

Proof. Of course, ∂h(z0) ⊆ ∂+h(z0); so let us prove the reversed inclusion. To this aim,
first note that by the continuity of h at 0 we get

h(0)− h(z0) ≥ −kz0 for every k ∈ ∂+h(z0).

Hence, by h(0) = minh(z) we have

h(0) ≥ h(z0)− kz0 ≥ h(0)− kz0

implying k ≥ 0 since z0 > 0. Thus, for every z ≤ 0 we have

h(z)− h(z0) ≥ h(0)− h(z0) ≥ −kz0 ≥ k(z − z0) for every k ∈ ∂+h(z0)
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that is ∂+h(z0) ⊆ ∂h(z0).
The proof for the case z0 < 0 is analogous. �

We turn now to prove our main result.

Proof of Theorem 4.1. We only give the proof for u ∈ ΩM , the case u ∈ Ωm being similar.

Set

x0 := max{x ∈ [a, b] : u(x) = min u}.
Of course, u is decreasing in [a, x0] and increasing in [x0, b]. Put

Ω̂ := {w ∈W 1,1(a, b) : w(a) = α, w(b) = β + 2(α− u(x0)), w′(x) ≥ 0 a.e. in (a, b)}
and define the function f̂ : [α, β + 2(α− u(x0))]× [0,+∞)→ [0,+∞) by

f̂(s, z) :=





f(2α− s,−z) if α ≤ s < 2α− u(x0)

f(s− 2(α− u(x0)), z) if 2α− u(x0) < s ≤ β + 2(α− u(x0))
(4.2)

and extended by lower semicontinuity at (2α− u(x0), z), i.e.

f̂(2α− u(x0), z) = min{ lim inf
(s,ζ)→((2α−u(x0))−,z)

f̂(s, ζ) , lim inf
(s,ζ)→((2α−u(x0))+,z)

f̂(s, ζ)}.

By the lower semicontinuity of f , f̂ is lower semicontinuous too.
We claim that f̂(·, 0) is continuous. To prove this it is enough to prove that

f̂(2α− u(x0), 0) = f(u(x0), 0), (4.3)

and the claim immediately follows by (4.2) and the continuity of f(·, 0).

The definition of f̂ and the lower semicontinuity of f easily imply

f̂(2α− u(x0), 0) ≥ f(u(x0), 0).

To obtain the reverse inequality use the continuity of f(2α − s, z) and of f(s − 2(α −
u(x0)), z) at z = 0 and the continuity of f(·, 0) so that

f̂(2α− u(x0), 0) ≤
≤ min{ lim inf

s→(2α−u(x0))−
f(2α− s, 0) , lim inf

s→(2α−u(x0))+
f(s− 2(α− u(x0)), 0)} = f(u(x0), 0).

Let us now consider the function û : [a, b]→ [α, β + 2(α− u(x0))],

û(x) :=





2α− u(x) if a ≤ x ≤ x0

u(x) + 2(α− u(x0)) if x0 < x ≤ b.
(4.4)

It is easy to see that û ∈ Ω̂.
Now, we split the proof into three steps.

Step 1. Let us prove that

f̂(û(x), û′(x)) = f(u(x), u′(x)) for a.e. x ∈ [a, b]. (4.5)
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To this end, first note that (4.5) holds for a.e. x 6∈ [x1, x0], where x1 := min{x : u(x) =
minu}. Indeed, if x ∈ [a, x1) then u(x) ∈ (u(x0), α] and hence û(x) = 2α − u(x) ∈
[α, 2α− u(x0)). Thus we get

f̂(û(x), û′(x)) = f̂(2α− u(x),−u′(x)) = f(u(x), u′(x)) for a.e.x ∈ [a, x1).

Analogously, if x ∈ (x0, b] then u(x) ∈ (u(x0), β] and so û(x) = u(x) + 2(α − u(x0)) ∈
(2α− u(x0), β + 2(α− u(x0))]. Thus we have

f̂(û(x), û′(x)) = f̂(u(x) + 2(α− u(x0)), u′(x)) = f(u(x), u′(x)) for a.e.x ∈ (x0, b].

Then, if x1 = x0 (4.5) holds. If instead x1 < x0, since u ∈ ΩM then u(x) = u(x0) for
each x ∈ (x1, x0). Therefore, for such values of x we get û(x) = 2α−u(x0) and û′(x) = 0.
Thus, by (4.3) we get that

f̂(û(x), û′(x)) = f̂(2α− u(x0), 0) = f(u(x0), 0) = f(u(x), u′(x)) for every x ∈ (x1, x0)

and (4.5) follows.

Step 2. The function û is a solution to the problem

minimize

{∫ b

a
f̂(v(x), v′(x)) dx : v ∈ Ω̂

}
. (P̂ )

Indeed, for every w ∈ Ω̂, let us consider the function vw ∈ Ω defined by

vw(x) :=





2α− w(x) if a ≤ x ≤ y0
w

w(x)− 2(α− u(x0)) if y0
w < x ≤ b,

with y0
w = max{x ∈ [a, b] : w(x) = 2α − u(x0)}. Note that vû = u, indeed from the

definition of x0 it follows y0
û = x0.

Let us prove that

f̂(w(x), w′(x)) = f(vw(x), v′w(x)) for every w ∈ Ω̂ and for a.e. x. (4.6)

In fact, since w is increasing, then vw is decreasing in [a, y0
w] and increasing in [y0

w, b].
Moreover, define

y1
w = min{x ∈ [a, b] : w(x) = 2α− u(x0)}.

Recalling that vw(x) = u(x0) for every x ∈ [y1
w, y

0
w], if x ∈ [a, y1

w) then w(x) = 2α−vw(x) ∈
[α, 2α− u(x0)) and so

f̂(w(x), w′(x)) = f(2α− w(x),−w′(x)) = f(vw(x), v′w(x)) for a.e. x ∈ [a, y1
w);

and if x ∈ (y0
w, b] then w(x) = vw(x) + 2(α− u(x0)) ∈ (2α− u(x0), β + 2(α− u(x0))] and

so

f̂(w(x), w′(x)) = f(w(x)− 2(α− u(x0)), w′(x)) = f(vw(x), v′w(x)) for a.e. x ∈ (y0
w, b].

Thus, if y1
w = y0

w then (4.6) holds true. If instead y1
w < y0

w then

f̂(w(x), w′(x)) = f̂(2α− u(x0), 0) = f(u(x0), 0) = f(vw(x), v′w(x)) for a.e.x ∈ [y1
w, y

0
w]
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and (4.6) follows. Therefore, from (4.5), (4.6) and the optimality of u, for every w ∈ Ω̂
we have ∫ b

a
f̂(û(x), û′(x)) dx =

∫ b

a
f(u(x), u′(x)) dx

≤
∫ b

a
f(vw(x), v′w(x)) dx =

∫ b

a
f̂(w(x), w′(x)) dx, (4.7)

i.e. û is a solution to (P̂ ).

Step 3. In this step we conclude the proof. Let

µ∗ = min
s∈[α,β+2α−u(x0)]

f̂(s, 0).

Such a constant is well-defined, since s 7→ f̂(s, 0) is continuous.
Put A := {x ∈ [a, b] : û′(x) > 0} and B := {x ∈ [a, b] : û′(x) = 0}. From Step 2 we

may apply Theorem 4.2 to f̂ and û (which is increasing). We get that ∂+f̂(û(x), û′(x)) 6= ∅
for a.e. x ∈ A and there exists a constant c ≤ µ∗ such that

f̂(û(x), û′(x))− c ∈ û′(x)∂+f̂(û(x), û′(x)) a.e. in A. (4.8)

Moreover, when |B| > 0 we have c = µ∗ and f̂(û(x), 0) = µ∗ for a.e. x ∈ B.
Now observe that for a.e. x ∈ A we have

∂+f̂(û(x), û′(x)) =





−∂−f(2α− û(x),−û′(x)) if û(x) ∈ [α, 2α− u(x0))

∂+f(û(x)− 2(α− u(x0)), û′(x)) if û(x) ∈ (2α− u(x0), β + 2(α− u(x0))]

that is by (4.4),

∂+f̂(û(x), û′(x)) =





−∂−f(u(x), u′(x)) if x ∈ [a, x1)

∂+f(u(x), u′(x)) if x ∈ (x0, b],

with x1 := min{x : u(x) = min u}.
Therefore, recalling that u is decreasing in [a, x0] and increasing in [x0, b], by virtue of

Lemma 4.3, we get

∂+f̂(û(x), û′(x)) = sgn(u′(x)) ∂f(u(x), u′(x)) whenever u′(x) 6= 0, a.e.

then û′(x) ∂+f̂(û(x), û′(x)) = u′(x) ∂f(u(x), u′(x)) for a.e. x ∈ A.
Moreover, since by (H4) 0 ∈ ∂f(s, 0) for every s ∈ I, from (4.5) and (4.8) we deduce

f(u(x), u′(x))− c ∈ u′(x)∂f(u(x), u′(x)) for a.e. x ∈ [a, b],

with c = µ∗ if |B| > 0. Moreover notice that since 0 ∈ ∂f(s, 0) for every s ≥ 0, then
∂f(u(x), u′(x)) 6= ∅ for a.e. x ∈ (a, b).

Finally, since

µ∗ = min{ min
s∈[α,2α−u(x0)]

f̂(s, 0), min
s∈[2α−u(x0),β+2(α−u(x0))]

f̂(s, 0)} =

= min{ min
s∈[u(x0),α]

f(s, 0), min
s∈[u(x0),β]

f(s, 0)} = µ,

the conclusion follows. �
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As a consequence of Lemma 2.1, Theorem 3.1 and Theorem 4.1, the following necessary
condition holds.

Theorem 4.4. Let f : I × R → [0,+∞) satisfy (H1) – (H3). If (P ) is solvable then
there exists a solution u ∈ Ω∗ such that ∂f(u(x), u′(x)) 6= ∅ for a.e. x ∈ (a, b) and the
following DuBois-Reymond condition holds

f(u(x), u′(x))− c ∈ u′(x) ∂f(u(x), u′(x)) a.e. in (a, b)

for some constant c ≤ min
s∈[minu,maxu]

f(s, 0).

Moreover, if u′(x) = 0 in a set having positive measure then c = min
s∈[minu,maxu]

f(s, 0).

Remark 4.5. It is easy to check that the limitation of the constant c in condition (DBR)
is

c ≤ f(minu, 0) if k ≤ minu
c ≤ f(max u, 0) if k ≥ maxu
c ≤ f(k, 0) if min u < k < maxu,

where k is as in (H3).

Remark 4.6. According to Remark 3.4, if f(s, 0) < f(s, z) for every z 6= 0 or f(·, 0) is
strictly monotone in (inf I, k) and in (k, sup I) then the (DBR) condition holds for any
possible minimizer to problem (P ).

As an immediate consequence of condition (DBR) the following result holds.

Corollary 4.7. Let f : I × R → [0,+∞) satisfy (H1)–(H3) and assume that (P ) is
solvable. Then there exists a minimizer u ∈ Ω∗ satisfying condition (DBR) and such that

(a) f(u(x), u′(x)) = f ∗∗(u(x), u′(x)), for a.e. x in (a, b),
(b) ∂f(u(x), u′(x)) = ∂f ∗∗(u(x), u′(x)) for a.e. x in (a, b).

In particular,

f ∗∗(u(x), u′(x))− c ∈ u′(x) ∂f ∗∗(u(x), u′(x)) for a.e. x ∈ (a, b),

for some constant c ≤ min
s∈[minu,maxu]

f(s, 0).

5. Non-existence results

In this section we emphasize the importance of the limitation on the constant c in the
(DBR) necessary condition, by deriving some non-existence result for problem (P ). For
the sake of simplicity, in the sequel we take α ≤ β (in the opposite case, it suffices to
invert α and β in all the statements).

Proposition 5.1. Let f : I × R → [0,+∞) satisfy conditions (H1)-(H3). Moreover
assume that

ess sup
s∈[α,β]

lim inf
|z|→+∞

inf{f ∗∗(s, z)− z∂f ∗∗(s, z)} > min{f(α, 0), f(β, 0)}. (5.1)

Then, problem (P ) does not admit solution.
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Proof. By Lemma 2.1 we assume (H4) without loss of generality. First observe that by
the convexity of f ∗∗ we have that the function gs(z) := inf{f ∗∗(s, z) − z∂f ∗∗(s, z)} is
increasing in (−∞, 0) and decreasing in (0,+∞), for every s ∈ I. Hence,

lim inf
|z|→+∞

gs(z) = inf
z∈R

gs(z).

So, by (5.1) there exists a set H ⊂ [α, β] having positive measure such that

inf{f ∗∗(s, z)− z∂f ∗∗(s, z)} > min{f(α, 0), f(β, 0)} for every s ∈ H, z ∈ R. (5.2)

Assume by contradiction that (P ) admits a solution. Then, by Theorem 4.4 and Corollary
4.7 there exists an optimal trajectory u satisfying the (DBR) condition relatively to f ∗∗

for some constant c ≤ mins∈[minu,maxu] f(s, 0) ≤ min{f(α, 0), f(β, 0)}. Put A := {x ∈
[a, b] : u(x) ∈ H}, we have meas(A) > 0 since u is absolutely continuous. Hence

c ∈ f ∗∗(u(x), u′(x))− u′(x)∂f ∗∗(u(x), u′(x)) for some x ∈ A
and this implies

inf{f ∗∗(u(x), u′(x))− u′(x)∂f ∗∗(u(x), u′(x))} ≤ min{f(α, 0), f(β, 0)} for some x ∈ A
in contradiction with (5.2). �

The previous result finds simple immediate applications to the case of integrands having
the affine structure

f(s, z) = φ(s) + ψ(s)h(z).

Set

` := lim inf
|z|→+∞

inf{h∗∗(z)− z∂h∗∗(z)}.

The following result holds.

Proposition 5.2. Let φ, ψ : I → [0,+∞) be continuous and increasing functions. Let
h : R→ R be lower semicontinuous, continuous at 0, non-negative and such that h(0) =
h∗∗(0). Suppose moreover that ` > −∞.

Then, if

φ(β) + ψ(β)` > φ(α) + ψ(α)h(0) (5.3)

problem (P ) has no solution.

Proof. First note that assumptions (H1)–(H3) are trivially satisfied (see also Remark 2.3).

If (5.3) holds, by the continuity of φ and ψ we have φ(s) + `ψ(s) > φ(α) + ψ(α)h(0)
for every s in a neighborhood of β. Then since ` = inf

z∈R
inf{h∗∗(z)− z∂h∗∗(z)},

inf
z∈R

inf{f ∗∗(s, z)− z∂f ∗∗(s, z)} = φ(s) + ψ(s) inf
z∈R

inf{h∗∗(z)− z∂h∗∗(z)}
= φ(s) + `ψ(s)

we have that (5.1) holds and by Proposition 5.1 we deduce the conclusion. �
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Remark 5.3. The reverse of inequality (5.1) is quite close to the formula appearing in
the last of the two assumptions used by F.H. Clarke to prove the existence of Lipschitz
minimizers of convex, non-coercive variational problems, see assumption (H2), formula (∗)
in [5]. In fact, for instance, in the case of type-affine Lagrangian with the same notations
and properties of Proposition 5.2, (∗) can be rewritten as

A := lim
M→+∞

sup
s∈I,|z|>M

{φ(s) + ψ(s)(h∗∗(z)− z∂h∗∗(z))} <

< inf
s∈I,|z|<k

{φ(s) + ψ(s)(h∗∗(z)− z∂h∗∗(z))} =: B

for a suitable positive k.
Now, B ≤ φ(α) + ψ(α)h(0) and

A ≥ lim
M→+∞

sup
|z|>M

{φ(β) + ψ(β)(h∗∗(z)− z∂h∗∗(z))} ≥ φ(β) + ψ(β)`.

So, if (5.3) is satisfied, then Clarke’s sufficient condition (∗) does not hold. Conversely, if
condition (∗) holds, then assumption (5.3) is not satisfied.

Example 1. Let f(s, z) := ψ(s)
(√

1 + z2 + k
)
, with ψ continuous, increasing and

non-negative. In this case it is easy to check that ` = k, so if kψ(β) > (k + 1)ψ(α),
problem (P ) does not admit solution.

Example 2. Let f(s, z) := φ(s) + ψ(s)|z|, with φ, ψ continuous, increasing and
φ(s), ψ(s) ≥ 0. In this case ` = h(0) = 0, so if φ is not constant then problem (P ) has no
solution.

Of course, the previous examples can be reviewed taking a generic function h(z) whose
convex envelope h∗∗(z) coincides with one of the functions appearing in the definition of
f .

Proposition 5.2 can be extended in the following way.

Proposition 5.4. Let φ, ψ, h be as in Proposition 5.2 and let ` > −∞. If a constant
m0 ∈ [0, α] satisfies

φ(m0) + h(0)ψ(m0) < φ(β) + `ψ(β)

and (P ) admits a solution u, then minu > m0.

Proof. Assume by contradiction that u ∈ Ω is a minimizer to (P ) with min u ≤ m0. Then
by Theorem 3.1 there exists a (possibly different) minimizer, say v, which satisfies the
maximum principle and the (DBR) condition for some constant c. Moreover, by the proof
of Theorem 3.1 we may choose v in such a way that min v ≤ minu. Thus, we have that

c ≤ f(min v, 0) ≤ f(m0, 0) = φ(m0) + h(0)ψ(m0) < φ(β) + `ψ(β).

By the continuity of φ, ψ we get

c < φ(s) + `ψ(s) ≤ φ(s) + ψ(s) inf{h∗∗(z)− z∂h∗∗(z)} for every z ∈ R and s close to β

in contradiction with (DBR). �
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Remark 5.5. Analogous non-existence results can be stated assuming φ, ψ decreasing
instead of increasing. Indeed, in this case is suffices to replace α with β in condition (5.3).
Moreover, in Proposition 5.4 we have to take m0 ≥ β and the condition min u > m0 has
to be replaced by max u < m0.
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