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Abstract. A weak notion of elastic energy for (not necessarily regular) rectifiable curves in any space dimension

is proposed. Our p-energy is defined through a relaxation process, where a suitable p-rotation of inscribed polygonals

is adopted. The discrete p-rotation we choose has a geometric flavor: a polygonal is viewed as an approximation to a

smooth curve and hence its discrete curvature is spread out into a smooth density. For any exponent p greater than

one, the p-energy is finite if and only if the arc-length parameterization of the curve has a second order summability

with the same growth exponent. In that case, moreover, the energy agrees with the natural extension of the integral of

the p-th power of the scalar curvature. Finally, a comparison with other definitions of discrete curvatures is discussed.
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1 Introduction

The role played by analysis and geometry in continuum mechanics is well highlighted in the foundational
work by Leonhard Euler of 1744 concerning the most classical variational model of inextensible flexible rods.
In fact, in his Additamentum I to the monograph “ad Methodus inveniendi lineas curvas maximi minimive
proprietate gaudentes”, Euler [12] stated: “For a pertinent understanding of the older, fundamental works
on elastics, it is necessary to know the connections of the statements contained in them with the methods of
the Mechanics of Solids and the Mechanics of Continua.”

Euler’s elastica problem is briefly discussed in Sec. 2.1, and we refer e.g. to the treatises [13, 15, 22]
for more details. The literature on the subject is huge and we are aware that it is not possible to give a
satisfactory complete reference. To this purpose, we address to [11] for a study of the evolution problem of
elastic curves in RN+1, and to [17] for an analysis of the straightening problem, in terms of a perturbation
theory for the modified total squared curvature energy.

Finally, the relaxation problem for the energy
∫
∂E

(1 + Kp) ds among bounded planar sets E is treated
e.g. in [5, 6].

The aim of this paper is to give a contribution toward this direction, by proposing a weak notion of
bending energy for a wide class of irregular curves. Namely, by means of a relaxation method, for any real
exponent p > 1 we introduce a p-curvature functional on the class of rectifiable curves c in RN+1, that turns
out to be finite in presence of the expected Sobolev regularity, and that in the smooth case agrees with the
integral of the p-th power of the scalar curvature K of the curve, i.e., with the p-energy (or bending energy,
for p = 2)

Ep(c) :=

∫
c

Kp ds , p > 1 .

Referring to Secs. 3.1, 3.2, and 3.3 for the notation about total variation, length, and total curvature,
respectively, we remark that in the “plastic” case p = 1, our functional agrees with the total curvature TC(c)
introduced by Milnor [16], that is the supremum of the rotation k∗(P ), i.e., the sum of external angles (or,
better, turning angles) computed among the polygonals P of RN+1 inscribed in c, say P � c.
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More precisely, if c is a rectifiable and open curve in RN+1, we let c : IL → RN+1 denote its arc-length
parameterization, so that IL = (0, L) and L = L(c), the length of c. Since c is a Lipschitz function, by
Rademacher’s theorem (cf. [4, Thm. 2.14]) it is differentiable L1-a.e. in IL, where L1 is Lebesgue measure, so
that the tangent indicatrix (or tantrix) t = ċ exists L1-a.e. in IL. If in addition c has finite total curvature,
then its tantrix is a function of bounded variation, taking values in the Gauss hyper-sphere SN , and the
total curvature agrees with the essential variation of t when computed w.r.t. the intrinsic distance in SN ,
see (3.2), namely:

TC(c) = VarSN (t) .

In the same spirit as Lebesgue-Serrin’s relaxed functional, we introduce the p-curvature functional

Fp(c) := inf
{

lim inf
h→∞

kp(Ph) | {Ph} � c , µc(Ph)→ 0
}

p ≥ 1

of rectifiable curves c in RN+1, in any co-dimension N ≥ 1, see Sec. 4.2.
In the latter centered formula, we make use of the notion by Alexandrov-Reshetnyak [3] of modulus µc(P )

of a polygonal P inscribed in c, that is equal to the maximum of the diameter of the arcs of c determined
by the consecutive vertices in P . Therefore, when dealing with the “elastic” case p > 1, the first problem
comes from the choice of a good notion of p-rotation kp(P ) of a polygonal.

In discrete geometry, several definitions are proposed in order to give a discrete analogous to the p-energy
functional Ep(c) of smooth curves, see Sec. 2.4. Taking for simplicity a closed equilateral polygonal P with
n segments equal in length to `, and denoting by θi the turning angle at the i-th vertex vi of P , one may
e.g. choose

k∗p(P ) :=

n∑
i=1

θpi
(`/2)p−1

, p ≥ 1

so that for p = 1 one recovers the notion of rotation k∗(P ), and hence we clearly get

F1(c) = TC(c) .

Following J. M. Sullivan [21, Sec. 9], one may wish to view a polygonal as an approximation to a smooth
curve and hence spread this curvature out into a smooth density (see Figure 1). However, this is not the
case of the discrete curvature k∗p(P ). More precisely, when p > 1 it is not possible to find a piecewise smooth
curve c satisfying (first order) clamping conditions at the middle points of the edges of P in such a way that
its total curvature is equal to the total curvature of P , and its p-energy is equal to k∗p(P ), see Sec. 6.

Figure 1: A curve (green), some (blue) points on it and the poligonal given by the points. In grey the middle
points of the curve and in red where the clamping condition is applied (where the distance from the blue
point to the adiacent grey points is minimal). The arcs of circle smoothing the poligonal are shown.

As a simple smoothing, we may replace a neighborhood of each vertex of an equilateral polygonal (with
side length `) with an inscribed circular arc touching the middle points of the two consecutive segments
concurring at vi. This arc turns a total angle θi, but its curvature density is (2/`) · tan(θi/2). If e.g. Pn,` is
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a regular n-agon in the plane with edges of length `, and turning angles θi = 2π/n, for i = 1, . . . , n, then its
inscribed circle has curvature density equal to (2/`) · tan(π/n).

In this paper, we propose to define the p-rotation kp(P ) of a polygonal P as the p-energy of a suitable
piecewise smooth curve γ(P ) inscribed in P by means of a generalization of the previous approach. More
precisely, the scalar curvature of γ(P ) turns out to be piecewise constant, since γ(P ) is a piecewise smooth
curve given by the union of circular arcs connected by segments, see Definition 4.1. Again, the curve γ(P )
satisfies a clamping condition at the middle points of the segments of P , and its total curvature agrees with
the total curvature of P , see Sec. 4.1. If P has a turning angle equal to π, we let kp(P ) := +∞ for each
p > 1.

To clarify the geometric features of our construction of p-rotation of polygonals, some strictly related
minimum problems of the p-energy functional Ep(c) are discussed in Secs. 2.2 and 2.3.

By the very definition, moreover, one readily obtains that if a rectifiable c in RN+1 satisfies Fp(c) <∞
for some p > 1, then Fq(c) <∞ for all exponents 1 ≤ q < p, and

Fq(c) ≤ L(c) + Fp(c) .

In particular, c has finite total curvature, TC(c) <∞, see Proposition 4.7.

From an analytical point of view, differently from the case p = 1, when p > 1 a second order Sobolev
regularity is expected when Fp(c) <∞. For this purpose, in Sec. 3.4 we collect the main results concerning
a corresponding relaxed energy functional for Cartesian curves in RN+1 that was analyzed in [1], for the
“plastic case” p = 1, and in [2], for the “elastic case” p > 1. In fact, in codimension N = 1, as already
observed by Dal Maso et al. in [10], when p > 1, a Cartesian curve with finite relaxed “elastic” energy
cannot have corner points.

In a similar way, we shall prove that a rectifiable curve has finite p-curvature for some p > 1 if and only if
its tantrix t is a Sobolev map in W 1,p(IL,SN ). More precisely, with the previous notation, the Main Result
of this paper is enclosed in the following

Theorem 1.1 Let N ≥ 1 integer, and let c be a rectifiable and open curve in RN+1 parameterized in
arc-length. Then for every exponent p > 1

Fp(c) <∞ ⇐⇒ c ∈W 2,p(IL,RN+1)

see Definition 4.6, and in that case

Fp(c) =

∫ L

0

‖c̈(s)‖p ds .

Our Main Result is coherent with the physical interpretation: an elastic rod needs infinite bending energy
in order to produce a corner. Moreover, in case of smooth curves we get

Fp(c) = Ep(c) :=

∫
c

Kp ds , ∀ p > 1 .

The energy lower bound and Sobolev regularity will be proved in Sec. 5.1, and the energy upper bound in
Sec. 5.2, where we shall exploit some ideas taken from [8]. The case of closed curves will be readily obtained
in Sec. 5.3.

We expect that our notion of p-rotation kp(P ) may be useful from the point of view of numerical analysis,
as it allows one to obtain a discretization of the p-energy in terms of inscribed polygonals. In fact, Theorem 1.1
may be compared with e.g. [8, 14, 20], where Γ-convergence results are obtained for discrete p-curvatures of
polygonals converging to the given curve in the topology induced by the Fréchet distance, see Definition 3.1.

Having in mind possible numerical applications, in Sec. 6 we shall comment our definition of p-rotation
of polygonals from Sec. 4.1. More precisely, we shall see that any reasonable (from a geometric viewpoint)
different choice of definition of p-rotation of polygonals (as e.g. by taking the p-energy of the optimal piecewise
smooth curve satisfying the clamping conditions at the middle points of the segments of P ) produces the
same relaxed energy Fp(c) we have obtained in our Main Result.

In conclusion, our definition seems more fitting from a numerical viewpoint, since it is well-known that,
in general, solutions to Euler’s elastica problem with clamping conditions cannot be explicitly computed.

Funding The research of D.M. was partially supported by the GNAMPA of INDAM. The research of A.S.
was partially supported by the GNSAGA of INDAM.
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2 Physical and geometric-analytical motivations

In this preliminary section, we briefly discuss the classical Euler’s elastica problem, giving some examples that
are strictly related to our proposal of notion of p-rotation of polygonals. We then report some similar features
in the framework of discrete differential geometry, outlining some possible advantages of our approach to
applications through numerical analysis.

2.1 Euler’s elastica

Euler’s elastica problem consists in minimizing the total squared curvature, also known as bending energy,
among smooth planar curves c of fixed length subject to a clamped (i.e., first order) boundary condition.
The bending energy corresponds to the case p = 2 of the energy functional

Ep(c) :=

∫
c

Kp ds , p ≥ 1

where s denotes the arc-length parameter and K the scalar curvature of the curve c.
In his celebrated study, Euler derives ODEs for solution curves (i.e., critical points) and moreover classifies

the types of solution curves qualitatively. The solution curves are nowadays called Euler’s elastica, see [19].
More precisely, let c : IL → RN+1 denote the arc-length parameterization c = c(s) of a rectifiable curve,

so that IL = (0, L) with L = L(c), the length of c. If c is of class C2(IL,RN+1), the scalar curvature at c(s)
agrees with the norm of the curvature vector k(s) = c̈(s), whence Ep(c) agrees with the p-energy functional

Ep(c) =

∫ L

0

‖c̈(s)‖p ds (2.1)

and when p = 1 one has E1(c) = TC(c), the total curvature.
Notice that if the arc-length parameterization of a rectifiable curve c belongs to the Sobolev class

W 2,1(IL,RN+1) or, equivalently, if the tantrix t(s) := ċ(s) belongs to W 1,1(IL,SN ), where SN is the Gauss
hyper-sphere in RN+1

SN := {y ∈ RN+1 : |y| = 1}
then the p-energy functional (2.1) is well-defined, and actually Ep(c) <∞ provided that c ∈W 2,p(IL,RN+1).
In that case, the curve c has finite total curvature, TC(c) < ∞, and finally Eq(c) < ∞ for every exponent
1 < q < p. Moreover, the integral (2.1) represents the p-energy, or the total curvature when p = 1, also
when the tantrix t = ċ is continuous and piecewise C1. This corresponds to what we call here the class of
piecewise smooth curves.

We report here the result of the computation of the Euler-Lagrange equation of functionals depending on
the scalar curvature of smooth planar curves.

Proposition 2.1 For any non-negative smooth function f of the scalar curvature K of smooth curves c in

R2, the Euler equation of the functional F(c) :=

∫
c

f(K) ds reads as

f̈(K) K̈

|ċ|
+

...
f (K) K̇2

|ċ|
− f̈(K) K̇ (ċ • c̈)

|ċ|3
+ K

{
K ḟ(K)− f(K)

}
|ċ| = 0 .

By choosing arc-length parameterization, one has ‖ċ‖ = 1 and ċ • c̈ = 0, whence the above equation
reduces to the classical one

f̈(K) K̈ +
...
f (K) K̇2 + K

{
K ḟ(K)− f(K)

}
= 0

compare [13, Ch. 1, Sec. 5]. For f(K) = ε+ |K|p, where p > 1 and ε > 0, so that F(c) = ε · L(c) + Ep(c), it
takes the simpler form:

p |K|p−2 K̈ + p(p− 2) |K|p−4 K K̇2 + K |K|p − εK

(p− 1)
= 0 (2.2)

that when p = 2 reads as
2 K̈ + K3 − εK = 0 .
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Now, searching e.g. for smooth closed planar curves with constant curvature, i.e. for minimal circles of
radius R, since K ≡ R−1 we deduce that equation (2.2) is solved when R = R(ε, p) = ((p− 1)/ε)1/p.

More generally, in presence of first order boundary conditions, minimizing planar curves in general depend
on the choice of the exponent p > 1.

2.2 A minimum problem

For future use, we now consider a minimum problem for the elastic energy under a clamping condition.
Namely, for ` > 0 and θ ∈]0, π[, consider a polygonal P = P (`, θ) in R2 given by two segments of length
equal to `/2 and exterior (or turning) angle θ at the common vertex. We denote by F(`, θ) the family of
all piecewise smooth planar curves with end points equal to the end points of P (`, θ), with tangent at the
end points parallel to the tangents to the polygonal, and with total curvature equal to θ. If c denotes the
arc-length parameterization of an element in F(`, θ), then ċ is continuous and piecewise C1, and we are thus
requiring that

TC(c) =

∫ L

0

K(s) ds = θ , L = L(c) , K(s) = ‖c̈(s)‖

whereas no condition on the length L of the curve is prescribed, as it will be obtained a posteriori.
With the previous notation, one expects that the minimum of the p-energy functional (2.1) in the class

F(`, θ) is attained by a circular arc, independently of the choice of the exponent p > 1.

Proposition 2.2 We have:

inf{Ep(c) | c ∈ F(`, θ)} = θ ·
( tan(θ/2)

`/2

)p−1
∀ p > 1

and the infimum is attained by a circular arc of radius R(`, θ) := (`/2)·(tan(θ/2))−1. Moreover, ` cos(θ/2) <
L(c) < ` if c ∈ F(`, θ).

Proof: We first observe that a curve c in F(`, θ) is convex and with support contained in the triangle
given by the convex hull of the polygonal P (`, θ). Otherwise, denoting by c its arc-length parameterization,
since the first order boundary conditions read as ċ(0) • ċ(L) = arccos θ, we would obtain TC(c) > θ.

Therefore, its length L = L(c) is greater than the distance between the end points of the polygonal
P (`, θ), i.e., L > 2 cos(θ/2), and lower than the length ` of the polygonal itself. Moreover, by Jensen’s
inequality ( 1

L

∫ L

0

K(s) ds
)p
≤ 1

L

∫ L

0

K(s)p ds (2.3)

so that ∫
c

K(s)p ds ≥ L1−p θp .

On the other hand, equality holds in (2.3) if and only if K(s) is constant, so that K(s) = R(`, θ)−1, whence
L = R(`, θ) · θ and ∫

c

K(s)p ds = θ ·R(`, θ)1−p = θ ·
( tan(θ/2)

`/2

)p−1
,

as required. �

Remark 2.3 If we modify the polygonal P by requiring that the two segments have different length `1/2
and `2/2, where e.g. `1 < `2, when p > 1 the energy minimum among piecewise smooth curves satisfying
the previous clamping boundary conditions and with total curvature θ, is attained by a convex and smooth
curve with non-constant curvature.

More precisely, one may take among the competitors the circular arc with radius R(`1/2, θ) attached to
a segment of positive length (`2 − `1)/2. Now, for any choice of p > 1 one can always find a convex curve
c satisfying the clamping boundary conditions and with p-energy strictly smaller than the energy given by
piecewise smooth curve previously described. When `1 < `2, finding the energy minimum is a non-trivial
problem, even in the case p = 2 of the so called bending energy. However, one expects that for small turning
angles θ the energy minimum is comparable to the energy of the circular arc with radius R(`1/2, θ).
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These formal arguments may justify our choice of p-rotation of polygonal curves P , see Figure 1 on page
2 and Definition 4.3 below, that is given by the p-energy of the “optimal” inscribed piecewise smooth curve
given by the union of suitable circular arcs. Moreover, our example in the next section may clarify the
situation.

2.3 Another minimum problem

Consider now for any θ ∈]0, π[ a closed polygonal given by a rhombus Pθ with segments of length one and
two opposite external angles equal to θ, and let G(θ) denote the class of piecewise smooth and closed curves
c inscribed in Pθ. We wish to minimize the p-energy functional (2.1) in the class G(θ).

Without loss of generality, we may and do assume c convex. Moreover, by a symmetry argument it
turns out that c is tangent to the polygonal Pθ at four points, whose distance from the nearest between the
vertices with external angle θ is equal to λ, for some λ ∈]0, 1[.

Proposition 2.4 For every p > 1 and θ ∈]0, π[, the infimum of the problem

inf{Ep(c) | c ∈ G(θ)}

is attained by a curve c = c(θ, p) given by the union of four circular arcs. More precisely, the distance λ(θ, p)
of the tangential points of c(θ, p) from the nearest between the vertices with external angle θ is equal to

λ(θ, p) =
(

1 +
(Fp(π − θ)

Fp(θ)

)1/p)−1
(2.4)

where
Fp(α) := α · tan(α/2)p−1 , 0 < α < π .

Proof: On account of Proposition 2.2, given the four points in the segments of Pθ whose distance from the
nearest between the vertices with external angle θ is equal to λ, the energy minimizing closed curved c(λ)
among the ones which are tangential to Pθ at those fixed four points is given by the union of four circular
arcs, two with curvature radius equal to λ/ tan(θ/2) and total curvature θ, and two with curvature radius
equal to (1− λ)/ tan((π − θ)/2) and total curvature π − θ. Therefore, one has∫

c(λ)

Kp ds = 2
(
Fp(θ) · λ1−p + Fp(π − θ) · (1− λ)1−p

)
=: f(λ) .

For each θ ∈]0, π[ and p > 1 we have:

f ′(λ) = 2
(
Fp(θ) · (1− p)λ−p − Fp(π − θ) · (1− p) (1− λ)−p

)
whence

f ′(λ) = 0 ⇐⇒ Fp(θ) · λ−p = Fp(π − θ) · (1− λ)−p ⇐⇒
(1− λ

λ

)p
=
Fp(π − θ)
Fp(θ)

which yields to λ = λ(θ, p) given by (2.4), as required. �

Remark 2.5 A part from the case of a square, i.e., when θ = π/2, it turns out that the minimal curve
is attained in correspondence to tangential points which are not the middle points of the segments of the
polygonal, in order to balance the curvature radius of the two couples of inscribed circular arcs.

Actually, the energy of the piecewise smooth curve given by four circular arcs tangent to the middle points
of the segments of the rhombus Pθ, i.e., the choice of λ = 1/2 in the proof of Proposition 2.4, corresponds
to our notion of p-rotation kp(Pθ) of the closed polygonal Pθ. More precisely, on account of Definition 4.3
we get

kp(Pθ) = 2p
(
θ · (tan(θ/2))p−1 + (π − θ) · (tan((π − θ)/2))p−1

)
for every p > 1 and θ ∈]0, π[, so that when θ 6= π/2 clearly

inf{Ep(c) | c ∈ G(θ)} < kp(Pθ) ∀ p > 1 .
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2.4 Discrete elastica

In discrete geometry, several definitions are proposed in order to give a discrete analogous to the energy
functional Ep(c) of smooth curves. Taking for simplicity a closed equilateral polygonal P with n segments
equal in length to `, and denoting by θi the turning angle at the i-th vertex vi of P , i.e., the exterior angle
between the consecutive segments concurring at vi, one may take e.g.

k∗p(P ) :=

n∑
i=1

θpi
(`/2)p−1

, p ≥ 1 (2.5)

so that for p = 1 one recovers the rotation k∗(P ) of the polygonal, i.e., the sum of the turning angles.

Remark 2.6 Coming back to Proposition 2.2, we point out that since tan(θ/2) > θ/2, then

inf{Ep(c) | c ∈ F(`, θ)} > θp

`p−1

for every θ ∈]0, π[ and p > 1, whereas comparing with (2.5)

inf{Ep(c) | c ∈ F(`, θ)} < θp

(`/2)p−1

provided that tan(θ/2) < θ, i.e., for θ sufficiently small.

In all reasonable definitions of discrete p-curvature available in literature, see e.g. [8, 9, 14, 18, 20], when
p > 1 the term corresponding to vi depends on the length of the two consecutive segments concurring at vi,
and the corresponding curvature measure is concentrated at the edge points.

As we already mentioned in the introduction, in our definition of p-rotation from Sec. 4.1 we view a
polygonal as an approximation to a smooth curve and hence spread this curvature out evenly into a smooth
density.

3 Background material and preliminary results

In this section, we collect some notation and well-known results.

3.1 Total variation

We refer to Secs. 3.1 and 3.2 of [4] for the following well-known facts.
Let I = (a, b) ⊂ R be a bounded open interval, and N ∈ N+. A vector-valued summable function

u : I → RN+1 is said to be of bounded variation if its distributional derivative Du is a finite RN+1-valued
measure in I.

The total variation |Du|(I) of a function u ∈ BV(I,RN+1) is given by

|Du|(I) := sup
{∫

I

ϕ′(s)u(s) ds | ϕ ∈ C∞c (I,RN+1) , ‖ϕ‖∞ ≤ 1
}

and hence it does not depend on the choice of the representative in the equivalence class of the functions
that agree L1-a.e. in I with u, where L1 is the Lebesgue measure.

We say that a sequence {uh} ⊂ BV(I,RN+1) converges to u ∈ BV(I,RN+1) weakly-∗ in BV if uh
converges to u strongly in L1(I,RN+1) and suph |Duh|(I) < ∞. In this case, the lower semicontinuity
inequality holds:

|Du|(I) ≤ lim inf
h→∞

|Duh|(I) .

If in addition |Duh|(I)→ |Du|(I), we say that {uh} strictly converges to u.
The weak-∗ compactness theorem yields that if {uh} ⊂ BV(I,RN+1) converges L1-a.e. on I to a function

u, and if suph |Duh|(I) <∞, then u ∈ BV(I,RN+1) and a subsequence of {uh} weakly-∗ converges to u.
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Let u ∈ BV(I,RN+1). Since each component of u is the difference of two monotone functions, it turns
out that u is continuous outside an at most countable set, and that both the left and right limits u(s±) :=
limt→s± u(t) exist for every s ∈ I. Also, u is an L∞ function that is differentiable L1-a.e. on I, with
derivative u̇ in L1(I,RN+1).

The total variation of u agrees with the essential variation VarRN+1(u), which is equal to the pointwise
variation of any good representative of u in its equivalence class. A good (or precise) representative is e.g.
given by choosing u(s) = (u(s+) + u(s−))/2 at the discontinuity points. Letting u±(s) := u(s±) for every
s ∈ I, both the left- and right-continuous functions u± are good representatives.

If u ∈ BV(I,RN+1), the decomposition into the absolutely continuous, Jump, and Cantor parts holds:

Du = Dau+DJu+DCu , |Du|(I) = |Dau|(I) + |DJu|(I) + |DCu|(I) .

More precisely, one splits Du = Dau+Dsu into the absolutely continuous and singular parts w.r.t. Lebesgue
measure L1. The Jump set Ju being the (at most countable) set of discontinuity points of any good repre-
sentative of u, and δs denoting the unit Dirac mass at s ∈ I, one has:

Dau = u̇L1 , DJu =
∑
s∈Ju

[u(s+)− u(s−)] δs , DCu = Dsu (I \ Ju) .

Also, any u ∈ BV(I,RN+1) can be represented by u = ua + uJ + uC , where ua is a Sobolev function in
W 1,1(I,RN+1), uJ is a Jump function, and uC is a Cantor function, so that

|Dau|(I) = |Dua|(I) , |DJu|(I) = |DuJ |(I) , |DCu|(I) = |DuC |(I) .

As a consequence, u ∈W 1,1(I,RN+1) provided that DJu = 0 and DCu = 0.

3.2 Length

Consider a curve c in the Euclidean space RN+1 parameterized by the continuous map c : I → RN+1, where
I = [a, b]. Any polygonal curve P inscribed in c, say P � c, is obtained by choosing a finite partition
D := {a = t0 < t1 < . . . < tn−1 < tn = b} of I, say P = P (D), and letting P : [a, b] → RN+1 such that
P (ti) = c(ti) for i = 0, . . . , n, and P (t) affine on each interval [ti−1, ti]. Setting vi := c(ti) − c(ti−1) and
`i := ‖vi‖, where ‖ · ‖ is the Euclidean norm in RN+1, the length of the polygonal P is L(P ) =

∑n
i=1 `i. We

also denote
meshD := sup

1≤i≤n
(ti − ti−1) , meshP := sup

1≤i≤n
`i .

The length L(c) of the curve c is defined by

L(c) := sup{L(P ) | P � c}

and c is said to be rectifiable if L(c) <∞.
By uniform continuity, for each ε > 0 we can find δ > 0 such that meshP < ε if meshD < δ and

P = P (D). As a consequence, taking Ph = P (Dh), where {Dh} is any sequence of partitions of I such that
meshDh → 0, we get meshPh → 0 and hence the convergence L(Ph)→ L(c) of the length functional.

The curve c is rectifiable if and only if c ∈ BV(I,RN+1), and in that case

L(c) = VarRN+1(c) = |Dc|(I) .

Therefore, if c ∈ C1([a, b],RN+1) we get L(c) =
∫ b
a
‖ċ(t)‖ dt <∞.

Definition 3.1 The Fréchet distance d(c1, c2) between two rectifiable curves is the infimum, over all strictly
monotonic reparameterizations, of the maximum pointwise distance.

Therefore, if d(c1, c2) = 0, the two curves are equivalent in the following sense: homeomorphic reparameter-
izations that approach the infimal value zero will limit to the more general reparameterization that might
eliminate or introduce intervals of constancy, compare [21].

Moreover, if {ch} is a sequence of rectifiable curves in RN+1 such that d(ch, c)→ 0 as h→∞ for some
rectifiable curve c, then by lower semicontinuity

L(c) ≤ lim inf
h→∞

L(ch) . (3.1)
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3.3 Total curvature

We call rotation k∗(P ) of a polygonal curve P in RN+1 the sum of the turning angles (i.e., the exterior
angles) θi between consecutive (and non degenerate) segments vi and vi+1. More precisely, with the previous
notation

k∗(P ) =

n−1∑
i=1

θi , θi := arccos
(vi • vi+1

`i · `i+1

)
if `i > 0 for i = 1, . . . , n and the polygonal is open, • denoting the scalar product in RN+1. If P is closed,
the turning angle between vn and v1 is added.

Following Milnor [16], the total curvature TC(c) of a curve c in RN+1 is defined by

TC(c) := sup{k∗(P ) | P � c} .

Then TC(P ) = k∗(P ) for each polygonal P . Moreover, if a curve c has compact support and finite total
curvature, TC(c) <∞, then it is a rectifiable curve.

Assume now that a rectifiable curve c is parameterized by arc-length, so that c = c(s), with s ∈ [0, L] =

IL, where IL := (0, L) and L = L(c). If c is smooth and regular, one has TC(c) =
∫ L
0
‖k(s)‖ ds, where

k(s) := c̈(s) is the curvature vector. More generally, since c is a Lipschitz function, by Rademacher’s theorem
(cf. [4, Thm. 2.14]) it is differentiable L1-a.e. in IL. Denoting by ḟ := d

dsf the derivative w.r.t. arc-length
parameter s, the tantrix t = ċ exists a.e., and actually t : IL → RN+1 is a function of bounded variation.
Since moreover t(s) ∈ SN for a.e. s, where SN is the Gauss hyper-sphere, we shall write t ∈ BV(IL,SN ). The
essential variation VarSN (t) of t in SN differs from VarRN+1(t), as its definition involves the geodesic distance
dSN in SN instead of the Euclidean distance in RN+1. Therefore, VarRN+1(t) ≤ VarSN (t), and equality holds
if and only if t has a continuous representative. More precisely, by decomposing t = ta + tJ + tC , one
obtains:

VarSN (t) =

∫ L

0

|ṫ| ds+
∑
s∈Jt

dSN (t(s+), t(s−)) + |DCt|(IL) . (3.2)

Notice also that in the formula for VarRN+1(t), that is equal to |Dt|(IL), one has to replace in (3.2) the
geodesic distance with the Euclidean distance ‖t(s+)− t(s−)‖ in RN+1 at each Jump point s ∈ Jt.

Notice moreover that the Cantor component DCt is non-trivial, in general.

Example 3.2 Let e.g. cu : I → R2, where I = (0, 1), denote the Cartesian curve cu(t) := (t, u(t)) in R2

given by the graph of the primitive u(t) :=
∫ t
0
v(λ) dλ of the classical Cantor-Vitali function v : I → R

associated to the “middle thirds” Cantor set. It turns out that t = (1 + v2)−1/2(1, v), whence t is a Cantor
function, i.e., Dat = DJt = 0, and

Dt(I) = DCt(I) =

∫
I

1

(1 + v2)3/2
(−v, 1) dDCv .

Notice that the angle ω between the unit vectors (1, 0) and t satisfies ω = arctan v ∈ BV(I). Therefore,
Dω(I) = DCω(I) =

∫
I

1
1+v2 dD

Cv, which yields

|Dω|(I) =

∫
I

1

1 + v2
d|DCv| = |Dt|(I) = TC(cu) =

π

4
.

The following facts hold:

i) if P and P ′ are inscribed polygonals to c and P ′ is obtained by adding a vertex in c to the vertices of
P , then k∗(P ) ≤ k∗(P ′) ;

ii) if c has finite total curvature, for each point v in c, small open arcs of c with an end point equal to v
have small total curvature.

As a consequence, compare [21], it turns out that TC(c) = VarSN (t), see (3.2), and that the total
curvature of c is equal to the limit of k∗(Ph) for any sequence {Ph} of polygonals in RN+1 inscribed in c
and such that meshPh → 0. More precisely, if th is the tantrix of Ph, then VarSN (th)→ VarSN (t).
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3.4 Relaxed energies of Cartesian curves

A corresponding relaxed energy functional for Cartesian curves cu(t) = (t, u(t)) in RN+1 was analyzed in
[1], for the “plastic case” p = 1, and in [2], for the “elastic case” p > 1. Namely, for u ∈ C2(I,RN ), denote

Ep(u) := L(cu) + Ep(cu) , Ep(cu) :=

∫
cu

Ku
p ds

where Ku is the scalar curvature of cu. A crucial role is played by the Gauss map τu : I → SN

τu =
ċu
‖ċu‖

, ċu = (1, u̇1, . . . , u̇N ) . (3.3)

In fact, using that ‖ċu‖Ku = ‖τ̇u‖, by the area formula we get

Ep(cu) =

∫
I

‖ċu‖1−p ‖τ̇u‖p dt , p ≥ 1 .

For any summable function u ∈ L1(I,RN ), the relaxed energy is defined by

Ep(u) := inf{lim inf
h→∞

Ep(uh) | {uh} ⊂ C2(I,RN ) , uh → u in L1(I,RN )}

and clearly if Ep(u) <∞ for some p > 1, then E1(u) <∞.
Let now u be a continuous functions u ∈ C0(I,RN ), so that cu is a compactly supported Cartesian curve.
Condition E1(u) <∞ yields that cu is rectifiable, whence the Gauss map τu is well-defined L1-a.e. in I

by (3.3), but in terms of the approximate gradient of u. In addition, τu is a function of bounded variation
in BV(I, SN ), the total variation of τu agrees with the total curvature of the Cartesian curve, and

E1(u) = L(cu) + TC(cu) , TC(cu) = |Dτu|(I) .

If Ep(u) < ∞ for some exponent p > 1, then τu is a special function of bounded variation, i.e., DCτu =
0. Therefore, the planar curve from Example 3.2 satisfies Ep(u) = ∞ for each p > 1, whereas L(c) =∫ 1

0

√
1 + v2 dt and with t = τu we get TC(cu) = π/4.

Moreover, in codimension N = 1, it turns out that a Cartesian curve cu with finite relaxed elastic energy,
i.e., Ep(u) < ∞ for some p > 1, cannot have corner points, compare [10]. In fact, DJτu = 0 and hence
τu ∈W 1,1(I, S1). Most importantly, if Ep(u) <∞ the arc-length parameterization c : IL → R2 of the curve
cu is a Sobolev map in W 2,p(IL,R2), and actually

Ep(u) =

∫ L

0

(
1 + ‖c̈(s)‖p

)
ds <∞ . (3.4)

In high codimension N ≥ 2, corner points may appear. However, roughly speaking, the relaxation process
generates a rectifiable curve c for which formula (3.4) continues to hold.

4 p-curvature of non-smooth curves

In this section, we introduce our notion of p-rotation of polygonals and of p-curvature of non-smooth curves,
outlining its main properties.

4.1 p-rotation of a polygonal

Let P be an open polygonal in RN+1 given by n non-degenerate and consecutive segments vi of length
L(vi) = `i > 0, for i = 1, . . . , n. Assume that the turning angle θi between the consecutive segments vi and
vi+1 concurring at the vertex vi is lower than π, for i = 1, . . . , n− 1.

Let ri := min{`i, `i+1} and denote by t−i and t+i the points in the segments vi and vi+1, respectively,
whose distance to vi is equal to ri/2.
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Also, if θi > 0, we let γi denote the oriented circular arc with initial point t−i , final point t+i , and with
tangent parallel to vi and vi+1 at t−i and t+i , respectively. When θi = 0, then γi is the segment between t−i
and t+i , a degenerate “circular arc” with zero curvature.

See Figure 1 on page 2 for reference on this construction.

Definition 4.1 With the previous notation, we denote by γ(P ) the piecewise smooth curve that parame-
terizes consecutively the arc γ1, the segment between t+1 and t−2 , the arc γ2, the segment between t+2 and t−3 ,
and so on until we get to the final arc γn−1.

Remark 4.2 If the polygonal P is closed, the definition is modified in a straightforward way by also con-
sidering the angle at the end points vn = v0, so that γ(P ) becomes a piecewise smooth and closed curve.

It is readily seen that the curve γ(P ) is rectifiable and with length L(γ(P )) lower than the length of
P . Moreover, the arc-length parameterization c(P ) : [0,L(γ(P ))] → RN+1 of γ(P ) is a piecewise smooth
function. The scalar curvature Kc(P ) of c(P ) is equal to zero in correspondence to the segments, and equal
to the reciprocal of the radius of the circle completing γi, at the points inside γi.

Definition 4.3 With the previous notation, for every p ≥ 1 we call p-rotation of P the number

kp(P ) :=

∫
c(P )

Kc(P )
p ds =

∫ L(γ(P ))

0

(Kc(P )(s))
p ds .

When p = 1, it is readily checked that k1(P ) is equal to the rotation k∗(P ) of the polygonal. In addition,
if a turning angle of P is equal to π, we let kp(P ) := +∞ for each p > 1.

Example 4.4 If P is an equilateral closed polygonal P with n segments of length equal to `, denoting by
θi the turning angle at the i-th vertex vi, we obtain

kp(P ) =

n∑
i=1

θi ·
( tan(θi/2)

`/2

)p−1
=

1

(`/2)p−1

n∑
i=1

θi · (tan(θi/2))p−1

and hence, comparing with (2.5), since θi > 0 for some i, in general we get

k∗p(P ) < kp(P ) .

In particular, if P = Pn,` is a regular n-agon in the plane with edges of length `, then γ(Pn,`) is its
inscribed circle, and one gets

kp(Pn,`) = 2π
(

(2/`) · tan(π/n)
)p−1

p ≥ 1 .

Notice that if the circle γ(Pn,`) is assumed to have perimeter equal to one, then ` = `n = π−1 tan(π/n) and
for each n ≥ 3 we get kp(Pn,`n) = (2π)p → +∞ if p→ +∞.

Now, if P and P ′ are two polygonals inscribed to a curve c, and P ′ is obtained by adding a vertex in
c to the vertices of P , differently from the case p = 1, where k1(P ) is the rotation k∗(P ) of the polygonal,
when p > 1 in general one cannot compare the p-rotation kp(P ) of P with the p-rotation kp(P

′) of P ′.

Example 4.5 If P is obtained by four collinear and consecutive vertices vi, i = 1, . . . , 4, and P ′ by adding
a fifth non-collinear vertex w between v2 and v3, clearly 0 = kp(P ) < kp(P

′) for all p ≥ 1. Instead, if P is
the edge of a square with side length equal to two, then kp(P ) = 2π for every p ≥ 1. Adding an external
vertex w to the square in such a way that the triangle with vertices v1, w, v2 is equilateral (where v1 and v2
are the nearest vertices of P to w) we obtain a polygonal P ′ such that kp(P ) = 3π/2 + π (tan(π/8))p−1/2,
whence kp(P ) > kp(P

′) for every p > 1.

The lack of validity of a monotonicity formula justifies our approach in the definition of a p-curvature
functional.
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4.2 The p-curvature functional

Due to the drawback outlined by Example 4.5, differently to the case p = 1, one cannot introduce a notion
of p-curvature for non-smooth curves in terms of supremum of the p-rotation of inscribed polygonals. We
thus follow the classical approach that goes back to Lebesgue-Serrin definition of relaxed functional, and
make use of the notion of modulus by Alexandrov-Reshetnyak [3].

In the sequel, we always assume that c is a rectifiable curve in RN+1 parameterized in arc-length. The
modulus µc(P ) of a polygonal P inscribed in c, say P � c, is the maximum of the diameter of the arcs of
c determined by the consecutive vertices in P .

Definition 4.6 We call p-curvature Fp(c) of a rectifiable curve c in RN+1 the number

Fp(c) := inf
{

lim inf
h→∞

kp(Ph) | {Ph} � c , µc(Ph)→ 0
}

where kp(P ) is the p-rotation of P , see Definition 4.3.

Notice that if p = 1, we get
F1(c) = TC(c) (4.1)

so that if c is a polygonal curve itself, we get F1(P ) = k∗(P ) <∞.
However, for a polygonal curve P with positive rotation, k∗(P ) > 0, we clearly have

Fp(P ) = +∞ ∀ p > 1 .

In fact, if P has a positive turning angle θ ∈]0, π[ at a vertex v, for each ε > 0 sufficiently small, we can define
an inscribed polygonal Pε containing the consecutive vertices u, v, w, where u and w lie at a distance 2ε from
v on the edges concurring at p. The contribution to the p-rotation of Pε near the vertex v is comparable to
ε1−p · θ (tan(θ/2))p−1, whence it diverges to +∞ as ε→ 0+.

With a similar computation, it turns out that Fp(c) = +∞ for every p > 1, if c is any piecewise smooth
curve with at least one corner point. This is coherent with the physical interpretation: an elastic rod needs
infinite bending energy in order to produce a corner.

Moreover, we have:

Proposition 4.7 Let c be a rectifiable curve in RN+1 such that Fp(c) <∞ for some p > 1. Then Fq(c) <∞
for all 1 ≤ q < p, and

Fq(c) ≤ L(c) + Fp(c) .

In particular, c has finite total curvature, TC(c) <∞.

Proof: If 1 ≤ q < p, then tq ≤ 1 + tp for every t > 0. For every polygonal curve P inscribed in c, according
to Definition 4.3, and recalling that L(γ(P )) ≤ L(P ) we thus get

kq(P ) ≤ L(P ) + kp(P )

where k1(P ) = k∗(P ). Since L(P ) ≤ L(c), the claim follows on account of Definition 4.6. �

5 Main results

Let c be a rectifiable and open curve in RN+1, and let c : IL → RN+1 denote its arc-length parameterization,
so that IL = (0, L) and L = L(c). We have noticed that for p = 1, our p-curvature functional from
Definition 4.6 agrees with the total curvature, see (4.1). On the other hand, it is well-known that c has finite
total curvature if and only if the tantrix t = ċ is a function of bounded variation, t ∈ BV(IL,SN ), and in
that case TC(c) = VarSN (c), compare (3.2). Therefore, if in particular t is a Sobolev map in W 1,1(IL,SN )

we get TC(c) =
∫ L
0
‖c̈(s)‖ ds.

A completely different situation occurs when p > 1. In accordance with the phenomena observed in the
relaxation process for Cartesian curves, we shall prove that a rectifiable and open curve has finite p-curvature
for some p > 1 if and only if its tantrix t is a Sobolev map in W 1,p(IL,SN ). More precisely, we have:
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Theorem 5.1 Let c be a rectifiable and open curve in RN+1 parameterized in arc-length. Then for every
exponent p > 1

Fp(c) <∞ ⇐⇒ c ∈W 2,p(IL,RN+1)

see Definition 4.6, and in that case

Fp(c) =

∫ L

0

‖c̈(s)‖p ds .

Our Main Result is a direct consequence of Theorems 5.2 and 5.3 below. In the first one, we obtain the
energy lower bound and the membership of the tantrix t to the Sobolev class W 1,p(IL,SN ). In the second
one, we obtain the energy upper bound. We then consider the case of closed curves, see Corollary 5.5.

5.1 Energy lower bound and Sobolev regularity

In this section, we prove the following:

Theorem 5.2 Let c be a rectifiable and open curve in RN+1 parameterized in arc-length such that Fp(c) <∞
for some p > 1. Then c ∈W 2,p(IL,RN+1) and∫ L

0

‖c̈(s)‖p ds ≤ Fp(c) <∞ . (5.1)

Proof: Let {Ph} denote an optimal sequence of polygonal curves inscribed in c, i.e., satisfying µc(Ph)→ 0
and kp(Ph) → Fp(c). For each h, let c(Ph) : [0, Lh] → RN+1 denote the arc-length parameterization
of the curve γ(Ph) from Definition 4.3, where Lh := L(γ(Ph)), and let γh : [0, L] → RN+1 given by
γh(s) := c(Ph)(Lhs/L), where L := L(c). By piecewise smoothness, a part from a finite set of points one
has Kc(Ph)(λ) = ‖c̈(Ph)(λ)‖ for λ ∈ [0, Lh] and γ̈h(s) = (Lh/L)2 · c̈(Ph)(λ) for s ∈ [0, L], with λ = Lhs/L.
Therefore,

kp(Ph) =

∫ L(γ(P ))

0

(Kc(P )(λ))p dλ =
( L
Lh

)2p−1 ∫ L

0

‖γ̈h(s)‖p ds . (5.2)

Now, we have d(γ(Ph), Ph) ≤ µc(Ph) for every h, whereas d(Ph, c) → 0, see Definition 3.1. Since
µc(Ph)→ 0, we get d(γ(Ph), c)→ 0, whence by (3.1) we infer that

L(c) ≤ lim inf
h→∞

L(γ(Ph)) .

Using that L(γ(Ph)) ≤ L(Ph) ≤ L(c) for every h, we deduce that Lh → L.
As a consequence, recalling that kp(Ph)→ Fp(c), by (5.2) we obtain:

lim
h→∞

∫ L

0

‖γ̈h(s)‖p ds = Fp(c) . (5.3)

Since p > 1, the sequence {γ̇h} strongly converges in W 1,1 to some function v ∈ W 1,1(IL,RN+1). Using
that γh converges to the Lipschitz function c strongly in L1(IL,RN+1), we get v = ċ a.e., whence possibly
passing to a (not relabeled) subsequence, {γ̇h} converges to ċ weakly in W 1,p(IL,RN+1). In particular,
ċ ∈W 1,p(IL,SN ) and by lower semicontinuity∫ L

0

‖c̈(s)‖p ds ≤ lim inf
h→∞

∫ L

0

‖γ̈h(s)‖p ds

so that by (5.3) we get (5.1), as required. �
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5.2 Energy upper bound

Using some ideas taken from [8], we now obtain the energy upper bound.

Theorem 5.3 Let c be a rectifiable and open curve in RN+1, parameterized in arc-length. If c belongs to
W 2,p(IL,RN+1) for some p > 1, there exists a sequence {Ph} of polygonal curves inscribed in c such that
µc(Ph)→ 0 and

lim inf
h→∞

kp(Ph) ≤
∫ L

0

‖c̈(s)‖p ds <∞ . (5.4)

In particular, by Definition 4.6 we have:

Fp(c) ≤
∫ L

0

‖c̈(s)‖p ds .

Proof: We divide the proof in three steps. Firstly, we choose the inscribed polygonals Pε, for ε > 0
small. Secondly, we make use of some estimates from [8] in order to obtain a lower bound of the integral∫ L
0
‖c̈(s)‖p ds in terms of the p-rotation kp(Pε). Finally, we prove the angle estimate from Lemma 5.4 below.

Step 1: Let c : [0, L]→ RN+1 be the arc-length parameterization of the curve. By absolute continuity, for
each η > 0 small there exists δ = δ(η) > 0 such that if I ⊂ [0, L] is an interval with length |I| < δ, then∫
I
‖c̈‖ dt < η. Therefore, if 0 < α < β < L and β − α < δ, it turns out that ‖ċ(β) − ċ(α)‖ ≤ η and hence

the angle θ between the unit vectors ċ(α) and ċ(β) is smaller than 2 arcsin(η/2).
We also notice that if c(β) − c(α) = `, then any curve with end points c(α) and c(β) and with total

curvature θ has length ˜̀ lower than ` · (cos(θ/2))−1. In particular, we have:

θ ≤ 2 arcsin(η/2) =⇒ ˜̀≤ η√
1− (η/2)2

.

We now fix 0 < ε < 1 small and in correspondence we choose η1 = η1(ε) > 0 so that

η1√
1− (η1/2)2

≤ ε .

In addition, we choose η2 = η2(ε) > 0 small in such a way that

0 ≤ 2θ ≤ 2 arcsin(η2/2) =⇒
{

2 tan(θ/2) ≤ (1 + ε) · θ
2(1− cos θ) ≥ (1− ε) · θ2 .

Finally, we let η(ε) := min{η1(ε), η2(ε)} and define δε = δ(η(ε)) as above.
We now may and do choose the greatest number ` with ` ≤ δε such that we can find an equilateral

poligonal Pε inscribed in c and with edge length equal to `.
More precisely, there exists n ∈ N+ and 0 = t0 < t1 < · · · < tn−1 < tn = L such that

ti = min{t ∈ [ti−1, L] : ‖c(t)− c(ti−1)‖ = `} ∀ i = 1, . . . , n

and also, by the previous construction,

` ≤ (ti − ti−1) ≤ ` · (1 + ε) ∀ i = 1, . . . , n . (5.5)

We then denote by Pε the equilateral polygonal inscribed in c and with consecutive vertices c(ti), for
i = 0, . . . , n. Letting vi := c(ti)− c(ti−1), we have ‖vi‖ = ` for i = 1, . . . , n, and L(Pε) = n `. Moreover, by
Definition 4.3 the p-rotation of the equilateral polygonal Pε is

Kp(Pε) = (`/2)1−p
n−1∑
i=1

θi ·
(

tan
θi
2

)p−1
where θi is the turning angle of Pε at the vertex c(ti).
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Since by our construction

tan
θi
2
≤ (1 + ε)

θi
2

∀ i = 1, . . . , n− 1

we can estimate the p-rotation of Pε as follows:

kp(Pε) ≤ (1 + ε)p−1
n−1∑
i=1

θpi
`p−1

. (5.6)

Finally, we have also obtained the uniform lower bound:

2(1− cos θi) ≥ (1− ε) θi2 ∀ i = 1, . . . , n− 1 . (5.7)

Step 2: Let now Pε(s) : [0, n `] → RN+1 denote the arc-length parameterization of Pε, so that if si = ` · i,
then Pε(si) = c(ti) for i = 0, . . . , n.

Following the lines of the proof of Lemma 7 in Appendix 2 of [8], we consider the piecewise linear
homeomorphism ψ : [0, n `]→ [0, L] such that ψ(si) = ti for i = 0, . . . , n and ψ|[si−1,si] is affine for i ≥ 1.

One clearly has ∫ L

0

‖c̈(t)‖p dt ≥
n−1∑
i=1

1

`

∫ `

0

(∫ ψ(si+a)

ψ(si−1+a)

‖c̈(t)‖p dt
)
da

where for i = 1, . . . , n− 1 by Jensen’s inequality one obtains the estimate

1

`

∫ `

0

(∫ ψ(si+a)

ψ(si−1+a)

‖c̈(t)‖p dt
)
da ≥

(
max{ti+1 − ti, ti − ti−1}

)1−p · ∥∥∥ vi+1

ti+1 − ti
− vi
ti − ti−1

∥∥∥p .
Assuming e.g. ti+1 − ti ≥ ti − ti−1, one gets

1

`

∫ `

0

(∫ ψ(si+a)

ψ(si−1+a)

‖c̈(t)‖p dt
)
da ≥ `p

(ti+1 − ti)2p−1
·
∥∥∥vi+1

`
− vi

`
+

vi
`

(
1− ti+1 − ti

ti − ti−1

)∥∥∥p .
Now, by using (5.5) we obtain the lower bound for the first term:

`p

(ti+1 − ti)2p−1
≥ `1−p

(1 + ε)2p−1
.

Moreover, the following angle estimate for the second term holds true:

Lemma 5.4 With the previous notation, for i = 1, . . . , n− 1∥∥∥vi+1

`
− vi

`
+

vi
`

(
1− ti+1 − ti

ti − ti−1

)∥∥∥2 ≥ 2(1− cos θi)

where, we recall, θi is the turning angle of Pε at the vertex c(ti).

Since the proof of a similar estimate in [8] is omitted, we will demonstrate Lemma 5.4 in Step 3 below.
By Lemma 5.4 and the uniform lower bound (5.7), we obtain∥∥∥vi+1

`
− vi

`
+

vi
`

(
1− ti+1 − ti

ti − ti−1

)∥∥∥p ≥ (1− ε)p/2 · θpi ∀ i = 1, . . . , n− 1 .

As a consequence, putting the terms together we find∫ L

0

‖c̈(t)‖p dt ≥
n−1∑
i=1

`1−p

(1 + ε)2p−1
· (1− ε)p/2 · θpi

so that by (5.6) we get

kp(Pε) ≤
(1 + ε)3p−2

(1− ε)p/2
·
∫ L

0

‖c̈(t)‖p dt

15



and hence the assertion readily follows by letting Ph := Pεh for a suitable decreasing sequence εh ↘ 0.

Step 3: It remains to prove the angle estimate in Lemma 5.4.
By (5.5), and recalling that we assumed ti+1 − ti ≥ ti − ti−1, we have:(

1− ti+1 − ti
ti − ti−1

)
= −σ

for some 0 ≤ σ ≤ ε, whence we can write

d :=
∥∥∥vi+1

`
− vi

`
+

vi
`

(
1− ti+1 − ti

ti − ti−1

)∥∥∥ =
∥∥∥vi+1

`
− vi

`
· (1 + σ)

∥∥∥ .
We now apply Carnot’s theorem to the triangle with sides of length d, L+ and L−, where

L+ :=
∥∥∥vi+1

`

∥∥∥ , L− :=
∥∥∥vi
`
· (1 + σ)

∥∥∥
so that the opposite angle to the side of length d is equal to θi, obtaining:

d2 = L2
+ + L2

− − 2L+L− cos θi .

By the estimate (5.5), and recalling that 0 ≤ σ ≤ ε < 1, we have:

1 ≤ L+ ≤ (1 + ε) , 1 + σ ≤ L− ≤ (1 + ε) · (1 + σ) < (1 + 3ε)

so that
L+ = 1 + σ+ , L− = 1 + σ−

with 0 ≤ σ+ ≤ ε and 0 ≤ σ− ≤ 3ε, whence we re-write

d2 = (1 + σ+)2 + (1 + σ−)2 − 2 (1 + σ+)(1 + σ−) cos θi
= 2(1 + σ+ + σ−) + (σ2

+ + σ2
−)− 2 (1 + σ+ + σ− + σ+σ−) cos θi

= 2(1 + σ+ + σ−) (1− cos θi) +
(
σ2
+ + σ2

− − 2σ+σ− cos θi
)
.

Since σ+ ≥ 0, σ− ≥ 0, and (
σ2
+ + σ2

− − 2σ+σ− cos θi
)
≥ (σ+ − σ−)2 ≥ 0

we get
d2 ≥ 2 (1− cos θi)

and the proof is complete. �

5.3 The case of closed curves

For closed curves, we readily obtain the following

Corollary 5.5 Let c be a rectifiable and closed curve in RN+1 parameterized in arc-length. Then for every
exponent p > 1

Fp(c) <∞ ⇐⇒ c ∈W 2,p(IL,RN+1) and ċ(0) = ċ(L)

and in that case

Fp(c) =

∫ L

0

‖c̈(s)‖p ds .

Proof: Coming back to the proof of Theorem 5.2, for closed rectifiable curves c, so that c(0) = c(L),
the definition of p-rotation of inscribed polygonals is modified on account of Remark 4.2. Therefore, by
condition Fp(c) < ∞ we obtain again the energy lower bound (5.1), the membership of c to the Sobolev
space W 2,p(IL,RN+1) and, in addition, that the left limit of ċ at s = 0 agrees with the right limit at s = L,
so that by the Hölder continuity of ċ we obtain condition ċ(0) = ċ(L). In fact, if ċ(0) 6= ċ(L) we get
Fp(c) = +∞ for any p > 1.

In a similar way, arguing as in Theorem 5.3 we obtain that if c belongs to W 2,p(IL,RN+1) for some p > 1
and ċ(0) = ċ(L), then this time we can find a sequence {Ph} of closed polygonal curves inscribed in c such
that µc(Ph)→ 0 and inequality (5.4) holds. Therefore, the assertion readily follows. �
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6 On the definition of p-rotation

In this final section, we briefly discuss whether alternative definitions of p-rotation of inscribed polygonals
yield to a notion of p-energy for which Theorems 5.2 and 5.3 continue to hold.

Since in all reasonable situations we have in mind we shall obtain the same p-energy, we thus conclude
that our choice seems to be the more fitting one, at least from the point of view of numerical applications.

Coming back to the beginning of Section 4.1, we recall that t−i and t+i are the points in the segments
vi and vi+1, respectively, whose distance to vi is equal to ri/2, where ri := min{`i, `i+1} and `i = |vi|.
Also, when the turning angle θi at vi is in ]0, π[, we chose by γi the circular arc with end points t±i and
with tangent parallel to vi and vi+1 at t−i and t+i , respectively (refer to Figure 1 on page 2). On account
of Definition 4.3, its p-energy, that is equal to (ri/2)1−p θi (tan(θi/2))p−1, gives the local contribution to the
p-rotation of the polygonal.

By a scaling argument, we e.g. may alternatively choose a term of the form r1−pi fp(θi) for some angle
function θ 7→ fp(θ) depending on the exponent p. This yields to a different notion of p-rotation w.r.t. our
choice for kp(P ), where fp(θ) = θ (tan(θ/2))p−1. For example, with f∗p (θ) := 21−pθp one obtains a discrete
p-curvature k∗p(P ) that for equilateral polygonals agrees with formula (2.5).

On the one hand, Theorem 5.3 continues to hold if

lim
θ→0+

fp(θ)

θ (tan(θ/2))p−1
= 1

that is the case of e.g. f∗p (θ) = 2p−1θp. More generally, one can take

fp,α(θ) := 2α θ1−α · tan(θ/2)p−1+α , α ≥ 1− p

so that for α = 1− p one gets f∗p (θ) and for α = 0 our energy density for kp(P ).
On the other hand, if one wishes that the assertion in Theorem 5.2 continues to hold, one needs that

fp(θ) is equal to
∫
c
Kp ds, where K is the scalar curvature of a curve c with total curvature θ and satisfying

the same first order boundary condition as the ones of a circular arc of radius one and total curvature θ.
Actually, by Proposition 2.2, with `/2 = 1, it turns out that this is the case for fp,α(θ) provided that α ≥ 0,
but not when α < 0, as e.g. for f∗p (θ). In fact, for 1 − p ≤ α < 0, it is possible to find a curve c satisfying
the given clamping conditions and such that

∫
c
Kp ds = (`/2)p−1 · fp,α(θ), by describing a great arc c with

very small curvature radius, but in that case the total curvature of c would be at least 2π − θ, and hence
greater than the turning angle of the polygonal θ, when θ ∈]0, π[.

As a consequence, the argument in the proof of Theorem 5.2 fails to hold when 1 − p ≤ α < 0. In fact,
on account of the lower semicontinuity inequality (3.1), its validity depends on the existence of curves near
c whose distance goes to zero and whose p-energy is defined in correspondence to fp,α(θ).

Therefore, denoting by kp,α(P ) the p-rotation of a polygonal P in terms of the density fp,α(θ), and letting

Fp,α(c) := inf
{

lim inf
h→∞

kp,α(Ph) | {Ph} � c , µc(Ph)→ 0
}

according to Definition 4.6, it turns out that when α ≥ 0, both Theorems 5.2 and 5.3 continue to hold, and
we actually obtain the same p-energy functional. In fact, similarly to Theorem 5.1 we obtain:

Corollary 6.1 Let c be a rectifiable and open curve in RN+1 parameterized in arc-length, and let α ≥ 0.
Then for every exponent p > 1

Fp,α(c) <∞ ⇐⇒ c ∈W 2,p(IL,RN+1)

and in that case

Fp,α(c) =

∫ L

0

‖c̈(s)‖p ds .

Of course, all previous choices are not the optimal one in terms of energy minimizing inscribed curves,
see Proposition 2.4 and Remark 2.5. The optimal choice among curves with total curvature equal to θi, and
with first order conditions at the middle points of the consecutive segments vi and vi+1 concurring at the
vertex vi, would be obtained by taking as γi the energy minimizer of

∫
c
Kp ds under the clamping conditions.
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Denoting by kopt
p (P ) the optimal p-rotation of a polygonal P in terms of the latter choice, and

Fopt
p (c) := inf

{
lim inf
h→∞

kopt
p (Ph) | {Ph} � c , µc(Ph)→ 0

}
it turns out that the lower semicontinuity argument in the proof of Theorem 5.2 continues to hold, and we
thus readily obtain:

Corollary 6.2 Let c be a rectifiable and open curve in RN+1 parameterized in arc-length such that Fopt
p (c) <

∞ for some p > 1. Then c ∈W 2,p(IL,RN+1) and∫ L

0

‖c̈(s)‖p ds ≤ Fopt
p (c) <∞ .

Therefore, since Fopt
p (c) ≤ Fp(c), by Theorem 5.3 we readily infer:

Theorem 6.3 Let c be a rectifiable and open curve in RN+1 parameterized in arc-length. Then for every
exponent p > 1

Fopt
p (c) <∞ ⇐⇒ c ∈W 2,p(IL,RN+1)

and in that case

Fopt
p (c) =

∫ L

0

‖c̈(s)‖p ds .

Again, the p-curvature functional we obtain is exactly the same. However, apart from the case when
‖vi‖ = ‖vi+1‖, for which we refer to Proposition 2.2, it is not known in general how to compute the optimal
curve, and hence the exact value of kopt

p (P ), see Remark 2.3.
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