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Introduction

We study the minimization of a linear elastic deformation energy coupled
with damage energy under various boundary conditions and/or unilateral con-
straint. The damage is due to cracks at mesoscopic scale. The presence/absence
and shape of cracks is not “a priori” prescribed but it is free and depends on a
variational principle.

In this paper we prove existence of equilibrium for an elastic body which may
undergo damage provided compatibility and safe load conditions are fulfilled.
The functional space in which we set our problems is the space SBD of vector
fields with special bounded deformations ([1],[6]), which is a suitable subspace
of BD ([22],[24]): the choice is entailed by the structure of the energies under
consideration. Our setting allows discontinuous deformations: the region of
fracture is the set where v is discontinuous.
More precisely we assume that the stored energy for an elastic body with free
cracks undergoing small deformations is described by the following functional
(see [17],[18],[19]):

(0.1)
F (v) =

∫

Ω

(
µ|E(v)|2 +

λ

2
|Tr E(v)|2

)
dx+

+ αHn−1(Jv) + γ

∫

Jv

|[v]¯ νv| dHn−1

where Ω ⊂ Rn, n = 2, 3 is the reference configuration of the body, α and γ are
strictly positive real constants, the constants λ and µ are the Lamé coefficients
of the material, µ > 0, 2µ+nλ > 0, v : Ω ⊂ Rn → Rn is a displacement vector
field with special bounded deformation, say v ∈ SBD(Ω), E(v) is the absolutely
continuous part of the linear strain tensor, E(v) = d

dLn e(v) , e(v) = sym Dv ,
Hn−1 denotes the (n − 1) dimensional Hausdorff measure, Jv is the jump set
of v (the set of points x where v has two different one sided Lebesgue limits
v+, v− with respect to a suitable direction νv = νv(x) ), while [v] = v+ − v−

and ¯ denotes the symmetric tensor product.
In (0.1) the first term (the volume integral) represents the elastic energy

in undamaged regions; the second one is a surface energy (area of material
surfaces where damage occurs); the third one describes a weak resistance of
the material to compression or crack opening (after crack process has started),
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is related to Barenblatt model of damage ([4],[5],[8]) and allows the analysis of
the model in presence of nontrivial load, even without artificial confinement of
the body. For the study of functional (0.1) with γ = 0 we refer to [14], [15], [6].
We study variational problems for the (non convex) stored energy (0.1) when
the body is subject to prescribed volume dead load f ∈ Lp(Ω,Rn), with p ≥ n

under Dirichlet or Neumann boundary conditions and/or unilateral constraint
on the deformations. Necessary conditions and sufficient conditions are shown
under mechanical compatibility of the load (balance and vanishing moments),
smallness assumptions on loads (safe load conditions) and geometric compat-
ibility between loads and obstacles. The precise conditions are given by The-
orems 2.1, 3.1, 4.1. The proofs use tools from geometric measure theory ([2])
and theory of recession functional for noncoercive problems ([3],[9]).

The result for the obstacle problem (Theorem 4.1) is new. Some particular
cases (respectively cantilever and beam with homogeneous Neumann boundary
condition) of the boundary value problems considered in Theorems 2.1, 3.1 were
studied in [18] and [19]: these cases proved useful in deriving models of elastic-
plastic plate and beam, as variational limit of functional of type (0.1) when each
term is suitably weighted with respect to the thickness of the approximating
3d body ([10],[11],[12],[18],[19],[20]).

1. Functional framework and preliminary results

The space of vector fields with bounded deformation BD is the natural
framework for the study of functionals with linear growth in the symmetrized
gradient. Obstacle problems often lead to a lack of coerciveness. In this section
we recall the basic definitions and results, about the space BD and some tools
of the theory of recession functionals ([3]).

For a given set U ⊂ Rn we denote respectively by U , ∂U , and co U the
topological closure, the topological boundary and the convex hull of U ; we
denote by H n−1(U) its (n − 1) dimensional Hausdorff measure and by Ln(U)
(or shortly |U |) its Lebesgue outer measure. Bρ(x) is the open ball {y ∈
Rn; |y − x| < ρ}, and Bρ = Bρ(0). If Ω ,Ω′ are open subsets in Rn, by
Ω ⊂⊂ Ω′ we mean that Ω is compact and Ω ⊂ Ω′.
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Assume Ω ⊂ Rn, n = 2, 3, is a Lipschitz open set. If Y is a finite dimen-
sional space, we denote by Lp(Ω;Y ) the space of p integrable functions with
respect to the Lebesgue measure with value in Y . Let M(Ω, Y ) be the space
of the bounded measures on Ω with values in Y (M(Ω) when Y = R) and let
| · |T (Ω) be the total variation of a measure in M(Ω, Y ), i.e.

|µ|T (Ω) =
∫

Ω

|µ| = sup
{ ∫

Ω

∑

ij

φijdµij : φij ∈ C0
0 (Ω),

∑

ij

φ2
ij ≤ 1, in Ω

}
.

If A ⊂ Ω is an open set then |µ|T (A) is defined in the same way with φij ∈ C0
0 (A)

and we define a Borel measure |µ|, by setting for every Borel set B ⊂ Ω

|µ|(B) = |µ|T (B) = inf
{|µ|T (A); B ⊂ A, A open

}
.

For v ∈ L1(Ω,Rn) the set of Lebesgue points Ωv is the set of x ∈ Ω s.t.
there is ṽ(x) ∈ Rn with lim%→0+

∫
B%(x)

|v(y)− ṽ(y)|dy / |B%| = 0.

The Lebesgue discontinuity set Sv is the complement of Lebesgue points:
Sv = Ω \ Ωv. We say that v has one-sided limits v+(x),v−(x) at x ∈ Ω with
respect to a suitable direction νv(x) ∈ {x ∈ Rn : |x| = 1} if

lim
ρ→0+

ρ−n

∫

{y∈Bρ(x); (y−x)·ν>0}
|v(y)− v+(x)|dy = 0,

lim
ρ→0+

ρ−n

∫

{y∈Bρ(x); (y−x)·ν<0}
|v(y)− v−(x)|dy = 0.

The jump set Jv of v is the subset of points x in Sv where v has one-sided
limits v+(x),v+(x) with respect to νv(x) and v+(x) 6= v+(x).

In the framework of linearized elasticity Ω represents the unstressed ref-
erence configuration of an elastic body, we denote by v, e(v), and E(v), re-
spectively, the displacement vector field, the linearized strain tensor and its
absolutely continuous part:

v : Ω → Rn ,

e(v) =
1
2
(Dv + (Dv)T ),

E(v) =
de(v)
dLn

, ea(v) = E(v)dLn, div v = Tr E(v) = ∇ · v ,
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here Dv = {Djvi}, (i = 1, ..., k, j = 1, ..., m) denotes the distributional deriva-
tives of v; ∇v = dDv

dLn denotes its absolutely continuous part and [v] ¯ νv =
sym(v ⊗ νv).

The space of functions with bounded deformation. We say that a vector
field v : Ω → Rn has bounded deformation if v belongs to L1(Ω,Rn) and its
symmetrized distributional gradient e(v) is a Radon measure:

(1.1) BD(Ω) =
{
v ∈ L1(Ω,Rn) : e(v) ∈M(Ω,Mn,n)

}
.

The space BD is endowed with the norm

‖v‖BD(Ω) = ‖v‖L1(Ω,Rn) +
∫

Ω

|e(v)|.

We list the main properties of functions with bounded deformation.
The linear strain tensor e(v) has the following decomposition

(1.2) e(v) = ea(v) + es(v) = ea(v) + ej(v) + ec(v),

where ea(v) = E(v)dx and es(v) are, respectively, the absolutely continuous
and the singular part of e(v) with respect to Ln, while ej(v) and ec(v) are
respectively the restriction of es(v) to Jv and to its complement; ej(v) and
ec(v) are called the jump part and the Cantor part of es(v).
The jump set Jv is Ln negligible, countably (Hn−1, n− 1) rectifiable, and

(1.3) ej(v) = (v+(x)− v−(x))¯ νvHn−1 Jv Hn−1a.e. in Jv .

We denote by R the set of rigid body motions: v(x) belongs to R iff v = Ax+b
with A skew-symmetric matrix.
If φ is a continuous seminorm on BD(Ω) which is a norm on R, then

(1.4) φ(v) + |e(v)|T (Ω)

is a norm on BD(Ω) equivalent to ‖v‖BD(Ω).
For every connected Lipschitz open set Ω, and every continuous linear map
R : BD(Ω) → R which leaves fixed the elements of R, there is a constant
c1 = c1(Ω,R) such that ([22])

(1.5) ‖v −R(v)‖Ln/(n−1)(Ω) ≤ c1(Ω,R)|e(v)|T (Ω), ∀v ∈ BD(Ω).
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We make one choice of the “projection” R and we leave it unchanged along all
the paper.
For every connected Lipschitz open set Ω there is a constant c2, dependent only
on Ω s.t. ([22]) a Korn-Poincaré inequality holds:

(1.6) ‖v‖Ln/(n−1)(Ω) ≤ c2 |e(v)|T (Ω) ∀v ∈ BD(Rn) : sptv ⊂ Ω.

Embedding. BD(Ω) ⊂ Ls(Ω) for all s ∈ [1, n/(n − 1)]. The embedding is
compact if s ∈ [1, n/(n− 1)).
The space BD(Ω) is dual of a separable Banach space ([24]), hence there is a
weak∗ topology on BD(Ω), such that closed balls are sequentially compact in
the w∗ BD(Ω) topology.

Remark 1.1 - A sequence vk
w∗BD(Ω)−→ v iff

(1.7) vk → v in L1(Ω)n and

(1.8) e(vk) → e(v) w∗ in M(Ω,Rn).

Trace at the boundary. For any Lipschitz open set Ω there is a linear, contin-
uous and surjective operator Γ : BD(Ω) → L1(∂Ω,Rn) s.t. Γ(v) = v|∂Ω for all
v in BD(Ω) ∩ C(Ω)n and there is c3 = c3(Ω) such that

(1.9) ‖Γ(v)‖L1(∂Ω,Rn) ≤ c3‖v‖BD(Ω).

The trace operator Γ is continuous in the norm topology, but it is not continuous
in the weak∗ topology of BD(Ω).

Vector fields with special bounded deformation. SBD(Ω) is the subspace of
BD(Ω) where the Cantor part of e(v) is zero, i.e.:

(1.10) SBD(Ω) = {v ∈ BD(Ω), s.t. ec(v) = 0}.

Now we list some tools from the theory of recession functionals developed
in [3], [9]. For a different, but related perspective, we refer to [7].
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Definition 1.2. ([3] Remark 3.17) Given a topological vector space (X, σ) and

a functional

G : X → (−∞, +∞], the sequential recession functional G∞(x) of G is

(1.11) G∞(x) = inf
{

lim inf
k→∞

1
λk

G(x0 + λkxk); λk →∞, xk → x in σ

}
,

where x, x0 ∈ X and {λk}k, {xk}k are sequences.

The definition was introduced in [3] with the more detailed notation Gseq
∞,σ(x)

to distinguish it from the topological recession functional G∞,σ(x). Both Gseq
∞,σ

and G∞,σ are extensions of the classic recession functional G∞(x) of convex
analysis. Here we use only the sequential recession functional (and denote it
by G∞) in a non convex context with the choice σ = weak ∗BD(Ω) topology.

Definition 1.3. For any convex σ closed subset K of a topological vector space

(X, σ) we define the recession cone K∞ of K as the σ closed convex cone

K∞ = ∩
λ>0

λ−1(K − k0)

where k0 is an element of K.

Definition 1.4. For any subset K of a topological vector space (X, σ) we

define the set K∞ of sequentially unbounded directions in K:

K∞=
{

x ∈ X : ∃λk ∈ R, xk ∈ X withλk → +∞, xk
σ→x, x0 + λkxk ∈ K ∀k

}

where x0 is an element of K.

Lemma 1.5. If K ⊂ (X, σ), then (Lemma 2.11, Remark 2.17 of [3])

(χK)∞ = χK∞ ,

K∞ = K∞ ∀K convex, sequentially σ closed .

Theorem 1.6. ([3] Proposition 3.1, Remark 3.7) If G : (X, σ) → (−∞, +∞]
is a proper functional, then the inequality

(1.12) G∞(x) ≥ 0

is a necessary condition for

(1.13) inf {G(x) : x ∈ X} > −∞.
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An enforcement of the above necessary condition leads to the existence of
minimum for non coercive problems as stated below.

Theorem 1.7. ([3] Proposition 3.9) Assume X is the dual of a separable

Banach space, σ denotes the weak* topology in X and G : X →]−∞,+∞] is

a proper functional verifying:

(i) semicontinuity: G is sequentially σ -l.s.c. and proper;

(ii) compactness: for all sequences λk → +∞ and all sequences xk
σ→x, a

uniform bound G(λkxk) ≤ C < ∞ entails xk → x strongly;

(iii) compatibility: G∞(x) ≥ 0, ∀x ∈ X (necessary condition) and

∀z ∈ ker G∞ there exists µ > 0 such that G(x− µ z) ≤ G(x), ∀x ∈ X.

Then G achieves a finite minimum on X.

Eventually we recall the following theorem of compactness and lower semi-
continuity which will be used to verify the hypotheses in Theorem 1.7.

Theorem 1.8. (Theorems 2.1, 2.2 [18], Lemma 2.3 [19]) Assume Ω ⊂ Rn is

a connected Lipschitz open set, n ≥ 2, Q a positive definite quadratic form

on Mn,n (symmetric square matrices), a > 0, b > 0 and {zk}k a sequence in

SBD(Ω) such that

(1.14) sup
k∈N

{ ∫

Ω

Q(E(zk)) dx +
∫

Jzk

(a + b|(z+
k − z−k )¯ νzk

|) dHn−1
}

< +∞,

(1.15) R(zk) = 0 ∀k.

Then there is a function z ∈ SBD(Ω) with R(z) = 0 and a subsequence such

that, without relabelling,

(1.16) zk → z, strongly in L1(Ω,Rn),

(1.17) E(zk) ⇀ E(z), weakly in L1(Ω,Mn,n),

(1.18) ej(zk) ⇀ ej(z), weakly∗ in M(Ω,Mn,n),

(1.19) Hn−1(Jz) ≤ lim inf
k

Hn−1(Jzk
),
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(1.20)
∫

Ω

Q(E(z)) dx ≤ lim inf
k

∫

Ω

Q(E(zk)) dx,

(1.21)
∫

Jz

|(z+ − z−)¯ νz| dHn−1 ≤ lim inf
k

∫

Jzk

|(z+
k − z−k )¯ νzk

| dHn−1.

The hypothesis (1.15) can be dropped by replacing (1.14) with

(1.22)
sup
k∈N

{ ∫

Ω

Q(E(zk)) dx +
∫

Jzk

(a + b|(z+
k − z−k )¯ νzk

|) dHn−1+

+
∫

∂Ω

|zk| dHn−1
}

< ∞.

In the case n = 3 the relation R(zk) = 0, ∀k can be replaced by

(1.23)
∫

Ω

zk dx =
∫

Ω

zk×(x−P) dx = 0, for a fixed P independent of k.

2. Neumann problem in linear elasticity with free cracks

Let us consider an elastic body whose reference configuration is Ω s.t.

(2.1) Ω ⊂ Rn, n = 2, 3, non empty connected Lipschitz open set.

The body may undergo small deformation and damage: say the deformations
may be discontinuous. We assume that the stored energy due to a displacement
field v in SBD(Ω) is given by

(2.2)
F (v) =

∫

Ω

(
µ|E(v)|2 +

λ

2
|Tr E(v)|2

)
dx+

+ αHn−1(Jv) + γ

∫

Jv

|[v]¯ νv| dHn−1

where E(v) = d
dLn e(v) , e(v) = sym Dv, and λ, µ are the Lamé constants of

the material, with

(2.3) µ > 0, 2µ + nλ > 0, α > 0, γ > 0.

The body is loaded by a dead force field L, with volume density f such that

(2.4) f ∈ Lp(Ω,Rn), p ≥ n,
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then the load energy associated to the displacement v is expressed by

(2.5) L(v) =
∫

Ω

f · v dx.

The total energy GN associated to the displacement field v is

(2.6) GN (v) = F (v)− L(v) ∀v ∈ SBD(Ω).

We want to minimize energy GN over v in SBD(Ω).

Theorem 2.1. Assume (2.1)-(2.6) and

(2.7) L(z) = 0 ∀z ∈ R (compatibility)

(2.8) ‖f‖Lp(Ω) <
γ

c1 |Ω|
1
n− 1

p

(safe load)

where c1 = c1(Ω, R) is defined in (1.5) and R denotes the rigid body motions.

Then the functional GN (v) achieves a finite minimum over v in SBD(Ω).
The compatibility condition (2.7) is a necessary condition for finiteness of

infimum of GN over SBD(Ω) .

Proof – Theorem 1.6 entails that property (2.7) is a necessary condition
since

GN (z) = −L(z) ∀z ∈ R .

We show that functional (2.6) achieves a finite minimum under assumptions
(2.1)-(2.8). By Hölder inequality and (1.5) we get

(2.9)
|L(v)| = |L(v − Rv)| ≤ ‖f‖Lp(Ω) ‖v −Rv‖Lp′ (Ω)

≤ ‖f‖Lp |Ω| 1
p′− 1

n′ c1(Ω,R) |e(v)|T (Ω).

By setting

(2.10) Q(A) = µ|A|2 +
λ

2
(TrA)2 ,

inequality (2.3) entails

(2.11) Q(A) ≥ q|A|2 where q = qn(λ, µ) = min(µ, µ+
n

2
λ) > 0, n = 2, 3.
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Then, by Schwarz inequality and t2 ≥ δst − δ2s2/4 for t, s ∈ R, δ > 0, by
choosing s = |Ω|, we get

(2.12)

∫

Ω

Q(E(v)) dx ≥ q

∫

Ω

|E(v)|2 dx ≥ q |Ω|−1

(∫

Ω

|E(v)| dx
)2

≥ δ q

∫

Ω

|E(v)| dx − δ2 q |Ω|
4

by summarizing, with any choice δ ≥ γ/q ,

(2.13)

GN (v) ≥
≥ δ q

∫

Ω

|E(v)| dx + γ

∫

Jv

|[v]¯ νv| dH n−1 − L(v) − γ2 |Ω|
4q

≥

≥
(
γ − c1|Ω|

1
n− 1

p ‖f‖Lp(Ω)

)
|e(v)|T (Ω) −

γ2 |Ω|
4q

hence, by (2.8), GN is bounded from below and, if {vk}k∈N is a minimizing
sequence and uk = vk − Rvk, then GN (vk) = GN (uk), ‖uk‖BD(Ω) ≤ C.

Thanks to Theorem 1.8 with (1.14),(1.15) we get, up to subsequences,

uk
w∗BD
⇀ u ∈ SBD(Ω) ,

E(uk) w L2

⇀ E(u) ,

uk → u strongly Ls(Ω) ∀s ∈ [ 1, n/(n− 1) ) ,

uk ⇀ u weakly in Ln/(n−1)(Ω) ,

Γ(uk) ⇀ Γ(u) weak∗ in M(Ω),
L(uk) → L(u),

lim inf
k

∫

Ω

Q(E(uk) dx ≥
∫

Ω

Q(E(u) dx .

Then we get

−∞ < GN (u) ≤ lim inf
k

GN (uk)

so that u minimize GN .

Remark 2.2 - Any minimizer v of the functional GN over the whole space
SBD(Ω), with regular jump set Jv is a variational (weak) solution of the Neu-

mann problem for the system of linear elasticity with free cracks:
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{
−µ∆v − (λ + µ)D (divv) = f Ω \ Jv

λ(div v) ν + 2 µ e(v)ν = 0 ∂Ω ∪ Jv ,

where ν denotes the outward normal on ∂Ω and νv on Jv.

3. Dirichlet problem in linear elasticity with free cracks

Let us consider an elastic body, with reference configuration Ω, which un-
dergoes a prescribed displacement w at the boundary ∂Ω, with

(3.1) Ω ⊂⊂ BR(x) ⊂ Rn, n = 2, 3, non empty connected Lipschitz open set.

As usual in problems with linear growth, we prescribe the non homogeneous
Dirichlet boundary condition by imposing the coincidence of the admissible

displacements (defined in the whole set A
def= BR(x)) with the datum outside

Ω. We assume that the Dirichlet datum w verifies

(3.2) w ∈ SBD(A)

and we restrict the admissible deformations in Ω to the ones having an SBD(A)
extension coincident with w in A \ Ω.

The body may undergo small deformation and damage: say the deformations
may be discontinuous. We assume that the stored energy due to a displacement
v in SBD(Ω) is given by

(3.3)
EΩ(v) =

∫

Ω

(
µ|E(v)|2 +

λ

2
|Tr E(v)|2

)
dx+

+ αHn−1(Jv ∩ Ω) + γ

∫

Jv∩Ω

|[v]¯ νv| dHn−1

where E(v) = d
dLn e(v) , e(v) = sym Dv, and λ, µ are the Lamé constants of

the material, with

(3.4) µ > 0, 2µ + nλ > 0, α > 0, γ > 0.

The body is loaded by a dead force field f such that

(3.5) f ∈ Lp(Ω,Rn), p ≥ n,
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then the load energy associated to the displacement v is

(3.6) L =
∫

Ω

f · v dx .

The total energy associated to the displacement field v ∈ SBD(Ω) is

(3.7) EΩ(v)− L(v).

By setting, for any v ∈ SBD(A):

(3.8)
EA(v) =

∫

A

(
µ|E(v)|2 +

λ

2
|Tr E(v)|2

)
dx+

+ αHn−1(Jv) + γ

∫

Jv

|[v]¯ νv| dHn−1,

(3.9) LA(v) =
∫

A

f̃ · v dx , where f̃ = f in Ω, f̃ = 0 in A \ Ω,

(3.10) GD(v) = EA(v)− LA(v) ∀v ∈ SBD(Ω),

we are led to the problem

(3.11) minimize GD(v) among v ∈ SBD(A) : v = w in A \ Ω.

Theorem 3.1. Assume (3.1)-(3.10) and

(3.12) ‖f‖Lp(Ω) <
γ

c2 |Ω|
1
n− 1

p

(safe load) ,

where c2 = c2(Ω) is the constant in the Korn-Poincaré inequality (1.6).

Then the functional

GD(v) = EA(v)− LA(v)

achieves a finite minimum over

W = {v ∈ SBD(A) : spt(v −w) ⊂ Ω}.

Proof – We set
G(v) = GD(v) + χW (v)
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where χW (v) = 0 if v ∈ W and χW (v) = +∞ if v 6∈ W . We apply the
sequential recession functionals theory (see Definitions 1.2, 1.3, 1.4), and test
the assumptions of Theorem 1.7 on the functional GD.
We show that G∞ is nonnegative and its kernel is trivial, that is:

G∞(v) ≥ 0, ker(G∞) = {0} .

Once established these properties, the compatibility (iii) of Theorem 1.7 follows.
More precisely, by adding and subtracting w, using (1.6) and Hölder inequality,
we get

(3.13)

|L(v)| ≤ |L(v −w)|+ |L(w)| ≤
≤ ‖f‖Lp(Ω)

(
‖v −w‖Lp′ (Ω) + ‖w‖Lp′ (Ω)

)
≤

≤‖f‖Lp(Ω)|Ω|
1
p′− 1

n′ c2 |e(v −w)|T (Ω) + ‖f‖Lp(Ω) ‖w‖Lp′ (Ω) ≤
≤‖f‖Lp(Ω)|Ω|

1
n− 1

p c2

(
|e(v)|T (Ω)+|e(w)|T (Ω)

)
+‖f‖Lp(Ω)‖w‖Lp′ (Ω).

As like as in (2.11),(2.12) with the notation (2.10) we get

(3.14)
∫

A

Q(E(v)) dx ≥ δ q

∫

A

|E(v)| dx − γ2 |A|
4 q

.

By summarizing, with any choice δ ≥ γ/q , we obtain

(3.15)

GD(v) ≥
≥ δ q

∫

A

|E(v)|dx + γ

∫

Jv

|[v]¯ νv|dH n−1 − L(v) − γ2 |A|
4 q

≥

≥
(

γ − c2 |Ω|
1
n− 1

p ‖f‖Lp

)
|e(v)|T (A) +

−
(

γ2 |A|
4 q

+ ‖f‖Lp(Ω) ‖w‖Lp′ (Ω) + c2|Ω|
1
n− 1

p ‖f‖Lp |e(w)|T (A)

)
.

To evaluate exactly the sequential recession functional in the homogeneous
case, we make a choice of the norm: it is not restrictive to assume that spt w ⊂
⊂ A, since the minimization takes into account only the behavior of w near
∂Ω . In such case an equivalent norm in BD(A) is given by the seminorm
|e(v)|T (A). This does not affect the constant c2 in (1.6). With the choice
‖v‖BD(Ω) = |e(v)|T (A), by comparison of the recession functionals of the right
and left hand-side in the inequality (3.15) and taking into account (3.12), we
get

GD∞(v) ≥ γ − |Ω| 1n− 1
p c2 ‖f‖Lp > 0 ∀v ∈ W \R.
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The Dirichlet condition makes W an affine space and W is convex and sequen-
tially w∗BD closed. Then, by Lemma 1.5, we obtain (χW )∞ = χW∞ = χW∞

and
W∞ ∩R = {0} ,

G∞(z) = +∞ ∀ z ∈ R \ {0}
and

G∞(v) ≥ γ − |Ω| 1n− 1
p c2 ‖f‖Lp > 0 ∀v ∈ W \ {0}

hence, by summarizing,

ker(G∞) = {0}, G∞(v) ≥ 0 ∀v ∈ W.

Then GD satisfies the compatibility (iii).
Since R is finite dimensional, the compactness (ii) of Theorem 1.7 is fulfilled.
By arguing as for GN in Section 2 and applying Theorem 1.8 with (1.22), GD

is w∗BD(A) seq. l.s.c.. Hence , taking into account that W is seq. w∗ closed
convex subset of BD(Ω), both functionals χW and GD are seq. l.s.c. with
respect to the w∗BD topology, say assumption (i) is fulfilled too.

Remark 3.2 - We underline that the main difference about assumptions in The-
orems 2.1 and 3.1 (the absence of a condition similar to (2.7) which was a nec-
essary condition in the Neumann problem), relies on the fact that W∞ contains
no nontrivial rigid body motion.

Remark 3.3 - The minimization (3.11) solves the non homogeneous Dirichlet

problem for the system of linear elasticity with free cracks in the sense that
the boundary condition is either assumed or penalized: if a minimizer u has
a non empty intersection Ju ∩ ∂Ω, then the stored energy EΩ will include the
following amount for crack appearing at the boundary ∂Ω

αHn−1(Ju ∩ ∂Ω) + γ

∫

Ju∩∂Ω

|[w − Γ(u)]¯ νu| dHn−1.

Any minimizer u verifies:
{
−µ∆u− (λ + µ)D(divu) = f Ω \ Ju

u = w ∂Ω \ Ju.
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4. Obstacle problem in linear elasticity with free cracks

Let us consider an elastic body whose reference configuration is Ω s.t.

(4.1) Ω ⊂ R3, non empty connected Lipschitz open set.

The body is free at the boundary. The admissible deformations are constrained
to stay in a given rigid box; the contact with the obstacle (boundary of the
box) is assumed frictionless. For simplicity we assume that the reference con-
figuration is contained in the upper half-space:

(4.2) Ω ⊂ {x ∈ R3 : x3 ≥ 0},

and that the unilateral constraint is expressed by

(4.3) x3 + v3(x) ≥ 0 a.e. x ∈ Ω,

i.e. the body is simply supported by the rigid plane x3 = 0.
In (4.2),(4.3) and in the following of this section we set x = (x1,x2,x3) ,
u1,u2,u3 denote the canonical basis of R3, and the indexes denote the com-
ponents of a vector (not the label of a sequence).
The body may undergo small deformation and damage (say the deformations
may be discontinuous): we assume that the stored energy due to a displacement
v in SBD(Ω) is given by

(4.4)
F (v) =

∫

Ω

(
µ|E(v)|2 +

λ

2
|Tr E(v)|2

)
dx+

+ αHn−1(Jv) + γ

∫

Jv

|[v]¯ νv| dHn−1

where E(v) = d
dLn e(v) , e(v) = sym Dv, and λ, µ are the Lamé constants of

the material, with

(4.5) µ > 0, 2µ + 3λ > 0, α > 0, γ > 0.

The body is loaded by a dead force field with density f such that

(4.6) f ∈ Lp(Ω,R3), p ≥ 3,
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then the load energy associated to the displacement v is expressed by

(4.7) L(v) =
∫

Ω

f · v dx.

The total energy GN associated to the displacement field v is

(4.8) GN (v) = F (v)− L(v) ∀v ∈ SBD(Ω).

To take into account the “box constraint” we set

(4.9) K =
{
v ∈ SBD(Ω) : x + v(x) ∈ {x ∈ R3 : x3 ≥ 0} a.e.x ∈ Ω

}
.

We look for minimizers of the functional

(4.10) GS(v) = F (v)−L(v) + χK(v) = GN (v) + χK(v) ∀v ∈ SBD(Ω),

where χK(v) = 0 if v ∈ K and χK(v) = +∞ if v 6∈ K.

Theorem 4.1. Assume (4.1)-(4.10),

(4.11) ‖f‖Lp(Ω) <
γ

c1 |Ω|
1
3− 1

p

(safe load)

where c1 = c1(Ω) is given by (1.5),

(4.12)
∫

Ω

f1 dx =
∫

Ω

f2 dx = 0,

∫

Ω

f3 dx < 0, (resultant compatibility),

and there is P in coΩ such that

(4.13)
∫

Ω

f × (x−P) dx = 0 (torque compatibility).

Then the functional GN (v) achieves a finite minimum over v in K.

Proof – We apply the theory of recession functionals by verifying that
GS = GN + χK fulfills the assumptions of Theorem 1.7. We endow SBD(Ω)
with the equivalent norm (see (1.4))

(4.14) |e(v)|T (Ω) + ‖R(v)‖
L

n
n−1 (Ω)

.

This choice does not affect the constant c1 in (1.5).
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Then we choose σ = w∗ topology of BD(Ω).
The functional GN is seq. w∗ l.s.c. by Theorem 1.8 with (1.14),(1.23). The
set K is closed convex and seq. w∗ closed. Then χK , GN and GS are seq. w∗

l.s.c. and K∞ is seq. w∗ closed convex cone. Lemma 1.5 gives

(4.15) K 6= K∞ = K∞ = {v : v3(x) ≥ 0 a.e. Ω} ,

(4.16) χK∞ = χK∞ .

We show that GS∞(v) ≥ 0 for any v ∈ SBD(Ω). We emphasize that now GS∞
has a non trivial kernel. By the same computations made in (2.9)-(2.13), we
get

(4.17) |L(v)| ≤ c1|Ω|
1
3− 1

p ‖f‖Lp(Ω) |e(v)|T (Ω) ∀v ∈ SBD(Ω)

(4.18) GN (v) ≥
(
γ − c1|Ω|

1
3− 1

p ‖f‖Lp(Ω)

)
|e(v)|T (Ω) −

γ2 |Ω|
4q

, ∀v ∈ SBD(Ω).

By taking into account the choice (4.14) of the norm, we find

(4.19) GN∞(v) ≥ γ − c1|Ω|
1
n− 1

p ‖f‖Lp(Ω) > 0 ∀v ∈ SBD(Ω) \R .

Since R is finite dimensional, (4.19) entails the compactness (ii) of Theorem 1.7.
Since GS∞ ≥ GN∞ + χK∞ we have to test the compatibility (iii) of Theorem
1.7 only in the set R ∩K∞.

Though R∩K∞= R∩{v :v3 ≥ 0}, then R∩K∞ is a seq. w∗ closed convex cone.
Then (4.12),(4.13) entail GS∞(v) ≥ 0 for any v ∈ SBD(Ω) and

(4.20) ker(GS∞) = R ∩ kerL ∩K∞ = R ∩ kerL ∩ {v : v3 ≥ 0}.

So the compatibility (iii) will follow if we show that ker (GS∞) is a linear space.
We know that v ∈ ker(GS∞) entails v3(x) ≥ 0, a.e x ∈ Ω, and, hence, also
v3(x) ≥ 0, a.e x ∈ coΩ.

Any v ∈ ker(GS∞) is a rigid body motion v, so it has the representation
v(x) = a× (x−P) + b, for suitable vectors a,b ∈ R3.

Then (4.12),(4.13) and v ∈ ker(GS∞) imply b3 = 0.
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Otherwise: b3 < 0 contradicts the facts: P ∈ coΩ and v3(x) ≥ 0 for a.e x in
coΩ ; while b3 > 0 together with (4.12) contradicts v ∈ kerL.

Since P belongs to the open set co Ω, there is % > 0 s.t. B%(P) ⊂ co Ω.

Let v ∈ ker (GS∞), then v(x) = a× (x−P)+b for some a,b ∈ R3 , v(B%(P))
is a 2d flat disk of radius |a| % , centered at b, orthogonal to a and

(4.21) v(B%(P)) ⊂ {x3 ≥ 0}.

All the above requirements on v(B%(P)) impose b3 ≥ 0, but v ∈ kerL together
with (4.12) exclude b3 > 0.

Then b3 = 0, and (4.21) entail a = tu3 for some t ∈ R. So that

v(x) = (b1,b2, 0) + tu3 × (x−P)

−v ∈ R ∩ ker L ∩ {v : v3 ≥ 0} = ker(GS∞) .

Remark 4.2 - The physical meaning of assumptions (4.12),(4.13) is that the
load has a non vanishing resultant pointing downward, the torque with respect
to the central axis is null and the central axis crosses the interior of the convex
hull of Ω.

Remark 4.3 - In [6] the case of a bounded box was studied with γ = 0. The
Signorini problem in Hencky plasticity was studied in [21],[23]. In [13] second
order functional with free gradient discontinuity are studied.

Remark 4.4 - Any minimizer (with regular jump set Jv) of the functional GD

is a weak solution of the Signorini problem for the system of linear elasticity

with free cracks ([16]).

Remark 4.5 - The method of the proof for Theorem 4.1 can be extended to
the case of deformations forced to stay in any convex or non convex box Σ.

More precisely: given any Σ ⊂ R3 s.t. Ω ⊂ Σ, impose the constraint v ∈ K =
{v : x + v(x) ∈ Σ, a.e. x ∈ Ω, }. Then Theorem 4.1 holds true with (4.12)
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substituted by

(4.22)





∫

Ω

f · b dx ≤ 0, ∀b ∈ Σ∞

{
b ∈ Σ∞ , L(b) = 0

} ⇒ q + tb ∈ Σ ∀q ∈ Σ, ∀t ∈ R .

where Σ∞ is the set of sequentially unbounded directions of Σ with respect to
the euclidian topology of R3.

Remark 4.6 - As it is clear from the proofs, the Theorems 2.1, 3.1 and 4.1 hold
true if the quadratic form Q (defined in (2.11) and to be evaluated in E(v))
is substituted by any quadratic form which is positive definite on symmetric
matrices.
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