
Construction of the parallel transport in the Wasserstein space

Luigi Ambrosio∗

Scuola Normale Superiore, Pisa
Nicola Gigli†

McKinsey&Co.‡

Abstract

In this paper we study the problem of parallel transport in the Wasserstein spaces P2(R
d).

We show that the parallel transport exists along a class of curves whose velocity field is
sufficiently smooth, and that we call regular. Furthermore, we show that the class of regular
curves is dense in the class of absolutely continuous curves and discuss the problem of parallel
transport along geodesics. Most results are extracted from the PhD thesis [8].

1 Introduction

In the last few years, starting from the seminal papers [14, 4, 12, 9], the geometric and differential
properties of the space P2(R

d) of probability measures in R
d with finite quadratic moments,

endowed with the quadratic optimal transportation distance, have been deeply investigated.
Motivations for this analysis come from PDE’s, Functional Inequalities, Riemannian Geometry.
We refer to [16] for a comprehensive presentation of this wide and continuously expanding
research field.

A complete theory of the first-order differential properties of P2(R
d) has been estabilished

in [1] (starting from the heuristics developed in [14]), without any extra regularity assumption,
either on the measures involved, or on the velocity fields. These results lead to a complete
theory of gradient flows in P2(R

d) which extends, as a matter of fact, also to the case when
R

d is replaced by more general spaces (see for instance [3, 13, 15]), for instance an infinite-
dimensional Hilbert space. We recall the basic facts of the first-order theory in Section 2.

On the other hand, much less is known on the second-order properties of P2(R
d): the only

paper we are aware of is [10], where the parallel transport equation and the curvature tensor of
P(M) are computed, mostly at a formal level, when M is a compact Riemannian manifold; in
Section 7 we borrow some computations of the sectional curvature of P2(R

d) from [10].
In this paper, whose content is essentially extracted from Chapter 6 of [8], we focus on some

analytic aspects: we introduce a class of curves µt in P2(R
d) along which the parallel transport of

tangent vectors can be defined. In the case when µt = ρtL
d (L d being the Lebesgue measure),
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the PDE corresponding to the parallel transport of a gradient vector field ∇ϕt is, in accordance
with [10],

∇ ·
(

(∂t∇ϕt + ∇2ϕt · vt)ρt

)

= 0. (1.1)

Existence and uniqueness for this evolution problem can presumably studied by direct PDE
methods, although difficulties obviously are due to the degeneracy of ρt, which results in a
lack of uniform ellipticity. Moreover, additional difficulties appear if one is willing to consider
unbounded densities ρt, and even (in the same spirit of the theory in [1]) measures µt that have
a singular part with respect to L d. For these reasons, using a suitable Riemannian analogy
described in Section 3, we provide a geometric construction of solutions to (1.1). The advantage
of this construction is that it provides easily the properties that parallel transport should have.
Nevertheless, our construction still requires some regularity condition on the tangent velocity
field to µt. However, we prove in Section 6 that our class of “regular” curves is dense in the class
of all absolutely continuous curves. We discuss also in detail the problem of parallel transport
along geodesics, see Proposition 5.19 for a positive result in the case of “forward” transport, and
Example 5.20 for a counterexample in the case of “backward” transport.

Finally, in Section 7 we introduce the covariant derivative starting from the parallel transport
(in contrast with the usual procedure on manifolds) and explain why this covariant derivative
should be qualified as the Levi-Civita derivative on P2(R

d). Finally, we discuss the possibility
of defining a distance in the tangent bundle of P2(R

d).

2 First order differentiable calculus in Wasserstein spaces

In this section we recall the main features of the first order differentiable calculus in Wasserstein
spaces. We assume that the reader is already familiar with the basic facts regarding optimal
transportation and Wasserstein distance, and we shall denote by

Γ(µ, ν) :=
{

γ ∈ P(Rd × R
d) : γ(A× R

d) = µ(A), γ(Rd ×B) = ν(B)
}

the set of admissible plans between µ, ν ∈ P2(R
d), and by Γ0(µ, ν) the set of optimal plans, i.e.

γ ∈ Γ0(µ, ν) ⇐⇒ γ ∈ Γ(µ, ν) and

∫

|x− y|2dγ(x, y) = W 2
2 (µ, ν).

We shall denote by Id the identity map, and use the notation T# for the push-forward operator
from P(X) into P(Y ) induced by a Borel map T : X → Y . We also use extensively the short
notation L2

µ and ‖u‖µ for L2(µ; Rd) and ‖u‖L2(µ;Rd) respectively.
Let (E, d) be a metric space. Recall that a curve xt : [0, T ] → E is said to be absolutely

continuous if there exists g ∈ L1(0, T ) satisfying

d(x(s), x(t)) ≤
∫ t

s
g(r)dr ∀s, t ∈ [0, T ], s ≤ t.

It turns out that for absolutely continuous curves there exists a minimal function g (of course
up to Lebesgue negligible sets) with this property, the so-called metric derivative, given for a.e.
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t by (see for instance [1, 1.1.2])

|x′|(t) := lim
h→0

d(x(t+ h), x(t))

|h| .

In order to describe the differentiable structure of the Wasserstein space we start with purely
heuristic considerations, as in [14]: the continuity equation

d

dt
µt + ∇ · (vtµt) = 0 (2.1)

describes the evolution of a time-dependent mass distribution µt under the action of a velocity
field vt. In this perspective Otto suggested to consider the tangent space at µ as −∇ · (vµ),
where v runs in L2

µ; furthermore, since optimal transport maps are gradients, when looking for
“minimal” velocity fields it is natural to restrict the admissible velocities to be gradients only.
Otto suggested to endow the tangent bundle with the metric inherited from L2

µ:

〈−∇ · (vµ),−∇ · (wµ)〉µ :=

∫

〈v,w〉 dµ.

We shall consider the tangent space at µ directly as a subset of L2
µ, retaining the link with the

continuity equation. The following result, proved in [1, 8.3.1], provides a complete differential
characterization of the class of absolutely continuous curves in the Wasserstein space and makes
rigorous this picture.

Theorem 2.1 Let µt : [0, T ] → P2(R
d) be an absolutely continuous curve. Then there exists a

velocity field vt ∈ L2
µt

with ‖vt‖µt ∈ L1(0, T ) such that the continuity equation (2.1) holds and

‖vt‖µt ≤ |µ′t| for a.e. t ∈ (0, T ). (2.2)

Conversely, if (µt, vt) satisfy (2.1) and ‖vt‖µt ∈ L1(0, T ), then µt is absolutely continuous and

‖vt‖µt ≥ |µ′t| for a.e. t ∈ (0, T ). (2.3)

The previous result shows that, among all velocity fields vt compatible with µt (in the sense
that the continuity equation holds) there exists a distinguished one, of minimal L2

µt
norm. This

vector field is clearly unique (up to a negligible set of times), thanks to the linearity with respect
to vt of the continuity equation and to the strict convexity of the L2

µt
norms.

It turns out that the “optimal” vector field constructed in the proof of the first statement of
Theorem 2.1 satisfies, besides (2.2), also

vt ∈ {∇ϕ : ϕ ∈ C∞
c (Rd)}L2

µt for a.e. t ∈ (0, T ). (2.4)

This, and the previous heuristic remarks, motivate the following definition.

Definition 2.2 (Tangent bundle of P2(R
d)) Let µ ∈ P2(R

d). We define

Tanµ(P2(R
d)) := {∇ϕ : ϕ ∈ C∞

c (Rd)}L2(µ)
.
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We shall call tangent velocity field the vector field vt provided by Theorem 2.1 and we shall
denote by Pµ : L2

µ → Tanµ(P2(R
d)) the orthogonal projection.

It turns out that vt, besides the metric characterization based on (2.2), has also a differential
characterization based on (2.4).

Proposition 2.3 Let (µt, vt) be such that (2.1) holds and ‖vt‖µt ∈ L1(0, T ). Then vt is tangent
if and only if vt ∈ Tanµt(P2(R

d)) for a.e. t ∈ (0, T ).

Proof. We already said that the tangent vector field satisfies vt ∈ Tanµt(P2(R
d)) for a.e.

t ∈ (0, T ). Conversely, if this property holds and wt is the tangent velocity field, then ∇ · ((vt −
wt)µt) = 0 as a space-time distribution. This easily implies that

∇ · ((vt − wt)µt) = 0 in R
d, for a.e. t ∈ (0, T ),

so that vt − wt is orthogonal in L2(µt) to all functions ∇ϕ, ϕ ∈ C∞
c (Rd). But since vt − wt ∈

Tanµt(P2(R
d)), this proves that vt = wt. �

Having defined a tangent velocity field, a satisfactory theory of evolution problems in P2(R
d)

based on these concepts can be built on these grounds. We refer to Chapters 10 and 11 of [1]
(see also [5, 16]) and we just mention in particular the characterization of gradient flows for
convex functionals F : P2(R

d) → R ∪ {+∞}, based on the evolution variational inequalities

d

dt

1

2
W 2

2 (µt, σ) + F (µt) ≤ F (σ) in (0, T ), for all σ ∈ P2(R
d).

The link between this formulation and the most classical ones is provided by the following purely
geometric results (see [1, 8.4.6] and [1, 8.4.7]). The first result relates the tangent field to the
infinitesimal behaviour of optimal transport maps (or plans) along the curve; the second result,
which is actually a consequence of the first one, provides an explicit formula for the derivative
of the Wasserstein distance.

Theorem 2.4 Let µt be an absolutely continuous curve and let vt be its tangent velocity field.
Then:

(i) for a.e. t ∈ (0, T ), for any choice of plans γh ∈ Γ0(µt, µt+h), the rescaled transport plans

γ̃h := (x,
y − x

h
)#γh

converge in P2(R
d × R

d) to (Id× vt)#µt.

(ii) for all σ ∈ P2(R
d) and a.e. t ∈ (0, T ) we have

d

dt

1

2
W 2

2 (µt, σ) =

∫

〈vt(x), x − y〉dγ(x, y) ∀γ ∈ Γ0(µt, σ).

In the particular case when the transport plans γh are induced by transport maps Th (i.e.
(Id× Th)#µt = γh), statement (i) is equivalent to

lim
h→0

Th − Id

h
= vt in L2

µt
. (2.5)
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3 The case of a manifold embedded in R
d

Throughout this sectionM , will be a C∞ manifold embedded in R
d with the induced Riemannian

structure. We describe a possible construction of the parallel transport in M , in order to
exemplify the construction that will be performed in the Wasserstein space.

Let γ(t) : [0, 1] → M be a fixed C∞ curve and let v(t) = γ̇(t) ∈ Tγ(t)M , t ∈ [0, 1], be the
velocity vector of γ(t). We will think to the tangent space Vt := Tγ(t)M at the point γ(t) as

a linear subspace of R
d (i.e. we translate it to let the origin be included) and we denote by

Pt : R
d → Vt the orthogonal projection of R

d onto Vt.
Let u(t) : [0, 1] → Vt be a regular vector field along the curve. In this setting the Levi-Civita

derivative of u(t) along v(t) is given by:

∇v(t)u(t) := Pt

(

du

dt
(t)

)

. (3.1)

More generally, if u, v are vector fields in M and Px denotes the orthogonal projection on TxM ,
∇vu(x) can be defined as Px(ũ′(0)), where ũ(t) = u(γ(t)) and γ(t) is uniquely determined by
the conditions γ(0) = x and γ̇(t) = v(γ(t)).

Recall that this covariant derivative is uniquely identified, among the other connections, by
the following two properties, called compatibility with the metric and torsion free identity :

d

dt
〈u1(γ(t)), u2(γ(t))〉

γ(t) = 〈∇v(t)u
1(γ(t)), u2(γ(t))〉

γ(t) + 〈u1(γ(t)),∇v(t)u
2(γ(t))〉

γ(t), (3.2a)

∇u1u2 −∇u2u1 = [u1, u2], (3.2b)

where u1, u2 are tangent vector fields. The fact that there is at most one connection ∇vu for
which the previous equations are satisfied is a consequence of the Koszul formula:

2〈∇vu,w〉 = v(〈u,w〉) + u(〈v,w〉) − w(〈u, v〉) + 〈[u, v], w〉 − 〈[u,w], v〉 − 〈[v,w], u〉,

valid for any vector fields u, v, w defined on the whole of M , and any connection ∇vu satisfying
equations (3.2). Given that the formula expresses the covariant derivative in terms of the
Riemannian metric and the Lie bracket only, the uniqueness follows.

The vector field u(t) is said to be the parallel transport of the vector u(0) along γ(t) if

Pt

(

du

dt
(t)

)

= 0. (3.3)

Observe that it is easy to prove the uniqueness of the solution of this equation: indeed by
linearity it is sufficient to show that the norm is preserved in time, and this follows by:

d

dt
|u(t)|2 = 2〈 d

dt
u(t), u(t)〉 = 2〈Pt

( d

dt
u(t)

)

, u(t)〉 = 0.

Therefore the problem is to show the existence of a solution of (3.3) for a given initial datum
u(0). This is usually done by using coordinates and solving an appropriate system of differential
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equations. However, this technique cannot be applied to the space P2(R
d) (we have neither

Christoffel symbols, nor coordinates). Here we are going to show how the parallel transport can
be constructed using tools which have a Wasserstein analogous.

Let us start with a useful concept.

Definition 3.1 (Angle between subspaces) Let V0, V1 ⊂ R
d be two given subspaces, and let

Pi, i = 0, 1, be the orthogonal projections of R
n onto Vi. Then the angle θ(V0, V1) ∈ [0, π/2] is

defined by:
cos θ(V0, V1) = inf

v0∈V0
|v0|=1

|P1(v0)|.

It is not difficult to see that, letting V ⊥
i , i = 0, 1, be the orthogonal complement of Vi, it

holds

sin θ(V0, V1) = sup
v0∈V0
|v0|=1

|v0 − P1(v0)| = ‖P⊥
1 |V0

‖

= sup
v0∈V0, |v0|=1

v⊥
1

∈V ⊥
1

, |v⊥
1

|=1

〈v0, v⊥1 〉 = sin θ(V ⊥
1 , V

⊥
0 ),

where P⊥
i , i = 0, 1, is the projection onto V ⊥

i .
In general θ(V0, V1) = θ(V1, V0) does not hold: for instance, if V0 ⊂ V1 we have θ(V0, V1) = 0,

while θ(V1, V0) = π/2 if the inclusion is strict. By applying this concept to a smooth curve
on M , we clearly have that both functions (t, s) 7→ θ(Vt, Vs), (t, s) 7→ θ(Vs, Vt) are Lipschitz.
Therefore, for some constant C depending on γ, we have:

|u− Ps(u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] and u ∈ Vt, (3.4a)

|Ps(u
⊥)| ≤ C|u⊥||s− t|, ∀t, s ∈ [0, 1] and u⊥ ∈ V ⊥

t . (3.4b)

The idea of the construction is based on the identity:

∇v(0)Pt(u) = 0, ∀u ∈ V0. (3.5)

That is: the vectors Pt(u) are a first order approximation at t = 0 of the parallel transport.
Taking (3.1) into account, (3.5) is equivalent to

|P0(u− Pt(u))| = o(t), u ∈ V0. (3.6)

Equation (3.6) follows by applying inequalities (3.4) (note that u− Pt(u) ∈ V ⊥
t ):

|P0(u− Pt(u))| ≤ Ct|u− Pt(u)| ≤ C2t2|u|.

Now, let P be the direct set of all the partitions of [0, 1], where, for P, Q ∈ P, P ≥ Q if P is a
refinement of Q. For P = {0 = t0 < t1 < · · · < tN = 1} ∈ P and u ∈ V0 define P(u) ∈ V1 as:

P(u) := PtN (PtN−1
(· · · (Pt0(u))).
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Our first goal is to prove that the limit P(u) for P ∈ P exists. This will naturally define a curve
t→ ut ∈ Vt by taking partitions of [0, t] instead of [0, 1]: the final goal is to show that this curve
is actually the parallel transport of u along the curve γ.

The proof is based on the following lemma.

Lemma 3.2 Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1 be given numbers. Then it holds:

∣

∣Ps3(u) − Ps3(Ps2(u))
∣

∣ ≤ C2|u||s1 − s2||s2 − s3|, ∀u ∈ Vs1 .

Proof. Since Ps3(u)−Ps3(Ps2(u)) = (Ps3(Id−Ps2))(u), the proof is a straightforward application
of inequalities (3.4). �

From this lemma, an easy induction shows that for any 0 ≤ s1 < · · · < sN ≤ 1 and u ∈ Vs1

we have

∣

∣PsN
(u) − PsN

(PsN−1
(· · · (Ps2(u)))

∣

∣

≤
∣

∣PsN
(u) − PsN

(PsN−1
(u))

∣

∣ +
∣

∣PsN−1
(u) − (PsN−1

(· · · (Ps2(u)))
∣

∣

≤ · · ·

≤ C2|u|
N−1
∑

i=2

|s1 − si||si − si+1| ≤ C2|u||s1 − sN |2. (3.7)

With this result, we can prove existence of the limit of P (u) as P varies in P.

Theorem 3.3 For any u ∈ V0 there exists the limit of P(u) as P varies in P.

Proof. We have to prove that, given ε > 0, there exists a partition P such that

|P(u) −Q(u)| ≤ |u|ε, ∀Q ≥ P. (3.8)

In order to do so, it is sufficient to find 0 = t0 < t1 < · · · < tN = 1 such that
∑

i |ti+1 − ti|2 ≤
ε/C2, and repeatedly apply equation (3.7) to all partitions induced by Q in the intervals (ti, ti+1)
(see Section 5 for a more detailed proof in the Wasserstein setting). �

Now, for s ≤ t we can introduce the maps T t
s : Vs → Vt which associate to the vector u ∈ Vs

the limit of the process just described (taking into account partitions of [s, t]).

Theorem 3.4 For any t1 ≤ t2 ≤ t3 ∈ [0, 1] it holds

T t3
t2

◦ T t2
t1

= T t3
t1
. (3.9)

Moreover, for any u ∈ V0 the curve t → ut := T t
0(u) ∈ Vt is the parallel transport of u along γ.

Proof. We consider those partitions of [t1, t3] which contain t2 and pass to the limit first on
[t1, t2] and then on [t2, t3]. To prove the second part of the statement, observe that due to (3.9)
it is sufficient to check that the covariant derivative vanishes at 0. Note that from (3.7) it follows
that |Pt(u) − ut| ≤ C2t2, therefore the thesis follows from (3.5). �
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4 Angle between tangent spaces in P2(R
d)

The construction we did on regular manifolds embedded in R
d shows that the key step which

allows to prove the existence of the parallel transport is the Lipschitz property of the angle
between tangent spaces. In this section we introduce the analogous notion of angle for the space
P2(R

d) and analyze its properties.
An important difference with the case of a manifold embedded in R

d is that the two spaces
Tanµ(P2(R

d)) and Tanν(P2(R
d)) are not (affine) subspaces of a larger Hilbert space, therefore

we cannot directly imitate the definition of angle given in the previous section. However, a
natural way to embed L2

ν into L2
µ is given by the composition with a map T pushing µ into ν.

Thus, we give the following general definition.

Definition 4.1 (Translation of vectors through a map) For any pair of measures µ, ν ∈
P2(R

d) and any transport map T between µ and ν we define the translation τT of a vector
f ∈ L2

ν into the vector τT (f) ∈ L2
µ as the map τT (f) := f ◦ T .

Clearly the translation through a map T is an isometry from L2
µ to L2

ν . The definition of
angle comes out naturally.

Definition 4.2 (Angle between tangent spaces through a map) Let µ, ν ∈ P2(R
d) and

let T be a transport map from µ to ν. Then the angle θT (µ, ν) ∈ [0, π/2] between the tangent
spaces at µ and ν through the map T is given by

cos θT (µ, ν) := inf ‖Pµ(v ◦ T )‖µ,

where the infimum is taken among all v ∈ Tanν(P2(R
d)) such that ‖v‖ν = 1.

It is important to note that the angle between the tangent spaces at two measures, strongly
depends on the transport maps used. Observe also that, even if we assume that the transport
map T is invertible, the angle θT (µ, ν) is in general not equal to the angle θT−1(ν, µ): this
corresponds to the fact that there exist two angles between subspaces V1 and V2 of R

d, depending
on whether we are considering projections from V1 onto V2 or from V2 to V1.

The fundamental bound on the angle we are going to use in the sequel is given by the
following proposition: the key requirement is the Lipschitz property of the transport map, while
there is no regularity assumption on the measures involved.

Proposition 4.3 Let µ, ν ∈ P2(R
d) and let T ∈ L2

µ be a transport map from µ to ν. Suppose
that T is Lipschitz. Then it holds

sin θT (µ, ν) ≤ Lip(T − Id). (4.1)

Proof. The statement is equivalent to

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ‖ν Lip(T − Id), ∀ϕ ∈ C∞
c (Rd). (4.2)
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Let us suppose first that T − Id ∈ C∞
c (Rd). In this case the map ϕ ◦ T is in C∞

c (Rd), too, and
therefore ∇(ϕ ◦ T ) = ∇T · (∇ϕ) ◦ T belongs to Tanµ(P2(R

d)). From the minimality properties
of the projection we get:

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇T · (∇ϕ) ◦ T‖µ

=

(
∫

|(I −∇T (x)) · ∇ϕ(T (x))|2dµ(x)

)1/2

≤
(
∫

|∇ϕ(T (x))|2‖∇(Id− T )(x)‖2
opdµ(x)

)1/2

≤ ‖∇ϕ‖ν Lip(T − Id),

where I is the identity matrix and ‖∇(Id−T )(x)‖op is the operator norm of the linear functional
from R

d to R
d given by v 7→ ∇(Id− T )(x) · v.

Now turn to the general case. Find a sequence (Tn − Id) ⊂ C∞
c (Rd) such that Tn → T

uniformly on compact sets and limn Lip(Tn − Id) ≤ Lip(T − Id). It is clear that for such a
sequence it holds ‖T − Tn‖µ → 0, and we have

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇(ϕ ◦ Tn)‖µ

≤ ‖∇ϕ ◦ T −∇ϕ ◦ Tn‖µ + ‖∇ϕ ◦ Tn −∇(ϕ ◦ Tn)‖µ

≤ Lip(∇ϕ)‖T − Tn‖µ + ‖∇ϕ ◦ Tn‖µ Lip(Tn − Id).

Letting n→ +∞ we get the thesis. �

5 Regular curves and parallel transport along them

In this section we introduce a class of sufficiently regular curves in the Wasserstein space along
which a parallel transport can be defined.

Having the Riemannian analogy in mind (see in particular (3.6)), we would like to say that
ut ∈ Tanµt(P2(R

d)) is a parallel transport if ‖P h
t (u(t + h)) − u(t)‖µt = o(h), where P h

t are
suitable projections from Tanµt+h

(P2(R
d)) to Tanµt(P2(R

d)) induced by maps pushing µt to
µt+h, as in Definition 4.1. It is natural to relate these maps to the tangent vector of the curve,
see also Remark 5.15.

We know from the classical Cauchy-Lipschitz theory that, if the tangent vector vt of µt

satisfies
∫ 1
0 Lip(vt)dt < +∞, then the flow maps exist and are Lipschitz functions of the space

variable. More precisely, there exists a unique family of maps T(s, t, x) : [0, T ] × R
d → R

d,
which we call the flow of the curve µt, absolutely continuous with respect to t and Lipschitz
with respect to x, satisfying



























T(s, s, x) = x,

d

dτ
T(s, τ, x)|τ=t

= vt(T(s, t, x)),

T(t, r,T(s, t, x)) = T(s, r, x),

T(s, t, ·)#µs = µt.

(5.1)
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Here all the equations except the second one hold for all x ∈ R
d and s, t ∈ [0, 1]. The second

one holds, given x ∈ R
d and s ∈ [0, 1], for a.e. t; it can be written in a pointwise way, including

also the first one, as T(s, t, x) − x =
∫ t
s vτT(s, τ, x)dτ .

Definition 5.1 (Regular curves) Let µt : [0, 1] → P2(R
d) be an absolutely continuous curve

and let vt ∈ L2
µt

be its tangent velocity field. We say that µt is regular if
∫ T

0
Lip(vt)dt < +∞.

Observe that we are making no regularity assumption on the measures µt. Strictly speaking,
in the definition of regularity we mean that vt has, for almost every t, a Lipschitz continuous
version, and that the (smallest) Lipschitz constant of this version is integrable in time (recall
that vt are uniquely determined only up to µt-negligible sets).

In the following we will always assume (this is not really restrictive, up to a reparameteriza-
tion) that the regular curve is parameterized in [0, 1].

The key property of regular curves needed to prove the existence of the parallel transport is
the following bound on the Lipschitz constant of T(s, t, ·) − Id:

Lip(T(s, t, ·) − Id) ≤ exp

(
∣

∣

∣

∣

∫ s

t
Lip(vr)dr

∣

∣

∣

∣

)

− 1, t, s ∈ [0, 1]. (5.2)

This inequality is a simple consequence of equations (5.1), and we recall its proof for the sake
of completeness.

Proposition 5.2 Let T(s, t, ·) be the flow maps of a regular curve µt. Then:

Lip(T(s, t, ·)) ≤ exp

(
∣

∣

∣

∣

∫ s

t
Lip(vr)dr

∣

∣

∣

∣

)

, t, s ∈ [0, 1],

Lip(T(s, t, ·) − Id) ≤ exp

(
∣

∣

∣

∣

∫ s

t
Lip(vr)dr

∣

∣

∣

∣

)

− 1, t, s ∈ [0, 1].

Proof. The first equation follows by a direct application of Gronwall lemma to the differential
inequality

d

dt
|T(s, t, x) − T(s, t, y)|2 =2〈T(s, t, x) − T(s, t, y), vt(T(s, t, x)) − vt(T(s, t, y))〉

≤2|T(s, t, x) −T(s, t, y)|2 Lip(vt).

For the second one, observe that

d

dt
|T(s, t, x) − x−T(s, t, y) + y|2

≤ 2〈T(s, t, x) − x− T(s, t, y) + y, vt(T(s, t, x)) − vt(T(s, t, y))〉
≤ 2|T(s, t, x) − x− T(s, t, y) + y||x− y|Lip(vt) Lip(T(s, t, ·)),

therefore the conclusion follows by integrating from s to t the inequality

d

dt
|T(s, t, x) − x− T(s, t, y) + y| ≤ |x− y|Lip(vt) exp

(
∣

∣

∣

∣

∫ s

t
Lip(vr)dr

∣

∣

∣

∣

)

.

�
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Definition 5.3 (Absolutely continuous vector fields) Let µt be a regular curve and let
ut ∈ L2

µt
be a vector field along it. We say that ut is absolutely continuous if the maps

ut ◦ T(s, t, ·) ∈ L2
µs

are absolutely continuous for any s ∈ [0, 1], where T(s, t, ·) are the flow
maps of µt.

For an absolutely continuous vector field ut, we will write d
dtut ∈ L2

µt
for its derivative,

defined by:

d

dt
ut := lim

h→0

ut+h ◦ T(t, t+ h, ·) − ut

h
=

d

dr
(ur ◦ T(s, r, ·))|r=t

◦ T(t, s, ·), ∀s ∈ [0, 1]. (5.3)

Given that the right composition with T(s, t, ·) is an isometry from L2
µt

to L2
µs

, it is clear
that a vector field ut is absolutely continuous if and only if for some s ∈ [0, 1] the curve
t 7→ ut ◦ T(s, t, ·) ∈ L2

µs
is absolutely continuous. Using the second identity in (5.3) one can

easily prove the chain rules

d

dt
〈u1

t , u
2
t 〉µt = 〈 d

dt
u1

t , u
2
t 〉µt + 〈u1

t ,
d

dt
u2

t 〉µt , (5.4)

d

dt
〈∇η, ut〉µt = 〈∇2η · vt, ut〉µt + 〈∇η, d

dt
ut〉µt ∀η ∈ C∞

c (Rd). (5.5)

for a.e. t ∈ (0, 1), whenever u1, u2, u are absolutely continuous. Notice also that t 7→ ‖ut‖µt is
absolutely continuous whenever ut is absolutely continuous.

It is important to underline that the definition of derivative of an absolutely continuous
vector field allows us to take derivative of a function ut whose range belongs to different L2

spaces as t varies: actually these spaces can be quite different from each other, if the support of
µt does depend on time.

In the following we will use, without explicit mention, the fact that for any ϕ ∈ C∞
c (Rd) the

vector field t 7→ ∇ϕ ∈ L2
µt

is tangent and absolutely continuous. Its derivative in the sense of
the above definition is easily seen to be equal to ∇2ϕ · vt.

We now give a precise definition of parallel transport along a regular curve.

Definition 5.4 (Parallel transport along regular curves) Let µt be a regular curve and
let ut ∈ Tanµt(P2(R

d)) a vector field defined along the curve. We say that ut is a parallel
transport if it is absolutely continuous and

Pµt

(

d

dt
ut

)

= 0 for a.e. t ∈ (0, 1). (5.6)

Equation (5.6) may be equivalently written as:

lim
h→0

Pµt

(

ut+h ◦ T(t, t+ h, ·) − ut

h

)

= 0 in L2
µt

, for a.e. t ∈ (0, 1). (5.7)

Another equivalent characterization, thanks to (5.5), is:

d

dt
〈∇η, ut〉µt = 〈∇2η · vt, ut〉µt for a.e. t ∈ (0, 1), for all η ∈ C∞

c (Rd). (5.8)

11



Observe that this equations makes sense even if the underlying curve µt is not regular, but only
absolutely continuous. We will come back to this point at the end of section 7.

It is also easy to check that also the concept of parallel transport is invariant under repa-
rameterization: if µt is a regular curve, ut is a parallel transport along it and r : [0, R] → [0, 1]
is a Lipschitz reparameterization of [0, 1], then µ̃s := µr(s) is regular in [0, R] and ũs := ur(s) is
a parallel transport along it.

Proposition 5.5 (Linearity and conservation of norm) Let ut, u
1
t , u

2
t be parallel transports

along a regular curve µt and let λ1, λ2 ∈ R. Then ‖ut‖µt is constant and λ1u1
t +λ2u2

t is a parallel
transport.

Proof. The claim on λ1u1
t + λ2u2

t follows directly by the linearity of equation (5.6). To prove
that the norm is constant, just recall that t 7→ ‖ut‖2

µt
is absolutely continuous and that, thanks

to (5.4), its derivative is given by

d

dt
‖ut‖2

µt
= 2〈ut,

d

dt
ut〉µt

= 2〈ut, Pµt

(

d

dt
ut

)

〉µt
= 0.

�

As a direct consequence we get the uniqueness of the parallel transport and the conservation
of the scalar product.

Corollary 5.6 (Uniqueness of parallel transport) Let µt be a regular curve and let u0 ∈
Tanµ0(P2(R

d)). Then there exists at most one parallel transport ut along µt such that u0 = u.

Corollary 5.7 (Conservation of scalar product) Let u1
t , u

2
t be parallel transports along the

regular curve µt. Then t 7→ 〈u1
t , u

2
t 〉µt

is constant.

Observe that for parallel transports we have an explicit bound on the norm of d
dtut which

depends only on the Lipschitz constant of the vectors vt.

Proposition 5.8 Let µt be a regular curve and let ut be a parallel transport along it. Then
∥

∥

∥

∥

d

dt
ut

∥

∥

∥

∥

µt

≤ ‖u0‖µ0 Lip(vt) for a.e. t ∈ (0, 1). (5.9)

Proof. We will prove that equation (5.9) is fulfilled at any Lebesgue point t of the function
s→ Lip(vs). Fix such t and observe that

‖us ◦T(t, s, ·) − ut‖µt ≤ ‖Pµt(us ◦ T(t, s, ·)) − ut‖µt + ‖P⊥
µt

(us ◦ T(t, s, ·))‖µt .

Dividing by |s− t| and letting s→ t we have that the first term goes to 0 by definition of parallel
transport, while for the second one we have the following estimate, based on Proposition 4.3
and Proposition 5.2:

lim sup
s→t+

‖P⊥
µt

(us ◦ T(t, s, ·))‖µt

s− t
≤ lim sup

s→t+

1

s− t
‖ut‖µt Lip(T(t, s, ·) − Id)

≤ lim sup
s→t+

‖u0‖µ0

e
R s

t
Lip(vr)dr − 1

s− t
= ‖u0‖µ0 Lip(vt).

The case s→ t− is analogous. �

12



Now we turn to the proof of the existence of the parallel transport: µt will be a fixed regular
curve, vt its tangent vector field and T(t, s, x) its flow. In order to enlighten the notation we
define

D(t, s) := e
R s

t
Lip(vr)dr − 1, 0 ≤ t ≤ s ≤ 1,

D(t, s) := D(s, t) 0 ≤ s ≤ t ≤ 1.

Then we denote by τ s
t be the linear isometry from L2

µt
to L2

µs
given by the right composition

with T(s, t, ·). Note that from the group property of T(s, t, ·) it follows

τ r
t = τ r

s ◦ τ s
t , ∀t, s, r ∈ [0, 1]. (5.10)

Moreover we define
P

s
t (u) := Pµs

(

τ s
t (u)

)

.

Observe that the maps Ps
t are non-expansive and that, by inequality (5.2) and Proposition 4.3

we get:

‖Pt
s(w)‖µt ≤‖w‖µsD(t, s), t, s ∈ [0, 1], w ∈ Tan⊥

µs
(P2(R

d)), (5.11a)

‖τ s
t (u) − P

s
t (u)‖µs ≤‖u‖µtD(t, s), t, s ∈ [0, 1], u ∈ Tanµt(P2(R

d)). (5.11b)

To prove the existence of the transport we proceed as in the first section: let P be the direct
set of all partitions of [0, 1], where, for P, Q ∈ P, Q ≥ P if Q is a refinement of P. For
P = {0 = t0 < t1 < · · · < tN = 1} ∈ P and u ∈ Tanµ0(P2(R

d)) define P(u) ∈ Tanµ1(P2(R
d))

as:
P(u) := P

1
tN−1

(P
tN−1

tN−2
(· · · (Pt1

0 (u)))).

Finally, we set D2(P) :=
∑

iD
2(ti, ti+1).

We will prove first that there exists a unique limit T 1
0 (u) ∈ Tanµ1(P2(R

d)) of P(u) as P
varies in P; then we will define a curve ut with ut = T t

0 (u) ∈ Tanµt(P2(R
d)) by considering

partitions of [0, t], and finally prove that this curve is the parallel transport of u along the curve
µt.

Lemma 5.9 It holds

D(t1, s1) ≤ D(t2, s2), ∀[t1, s1] ⊂ [t2, s2] ⊂ [0, 1], (5.12a)

n−1
∑

i=1

D(ti, tt+1) ≤ D(t, s), t = t1 < . . . < tn = s, (5.12b)

lim
s→t

D2(t, s)

|s− t| = 0 for a.e. t ∈ [0, 1], (5.12c)

lim
P∈P

D2(P) = 0. (5.12d)
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Proof. Equation (5.12a) is clear. For (5.12b) we need to prove that ea − 1 + eb − 1 ≤ ea+b − 1
for positive a, b, which is obvious.

The convexity of c→ ec − 1 in [0,
∫ 1
0 Lip(vr)dr] gives

D(t, s) ≤
(

e
R 1
0 Lip(vr)dr − 1
∫ 1
0 Lip(vr)dr

)

∫ s

t
Lip(vr)dr, (5.13)

from which, taking the integrability of Lip(vt) into account, (5.12c) follows at every Lebesgue
point of t 7→ Lip(vt). Finally, from (5.13) we get

N−1
∑

i=0

D2(ti+1, ti) ≤ C

N−1
∑

i=0

(
∫ ti+1

ti

Lip(vr)dr

)2

≤ Cmax
i

{
∫ ti+1

ti

Lip(vr) dr

}
∫ 1

0
Lip(vr) dr,

from which (5.12d) follows, taking the absolute continuity property of the integral into account.
�

The following lemma corresponds to Lemma 3.2:

Lemma 5.10 Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1 and let u ∈ Tanµs1
(P2(R

d)). Then:

∥

∥P
s3
s1

(u) − P
s3
s2

(Ps2
s1

(u))
∥

∥

µs3
≤ ‖u‖µs1

D(s1, s2)D(s2, s3). (5.14)

Proof. Observe that, thanks to the semigroup property (5.10), we have

P
s3
s1

(u) − P
s3
s2

(Ps2
s1

(u)) = P
s3
s2

(τ s2
s1

(u) − P
s2
s1

(u)),

and that τ s2
s1

(u)−Ps2
s1

(u) ∈ Tan⊥
µs2

(P2(R
d)). Therefore the thesis follows by a direct application

of inequalities (5.11). �

Corollary 5.11 Let P = {t = t0 < t1 < · · · < tn = s} be a partition of [t, s] ⊂ [0, 1] and let Q
be a refinement of P. Then:

‖P(u) −Q(u)‖µs ≤ ‖u‖µtD
2(P) for every u ∈ Tanµt(P2(R

d)). (5.15)

Proof. Without loss of generality we may assume [t, s] = [0, 1]. Fix i < n such that (ti, ti+1)
contains some element of Q and write Q ∩ [ti, ti+1] = {ti = si,0 < si,1 < · · · < si,k(i) = ti+1} for
some k(i) ≥ 1. Now, we claim that

‖Psi,k(i)
si,0 (uti) − P

si,ki
si,ki−1(P

si,ki−1
si,ki−2 (· · · (Psi,1

si,0 (uti))))‖µti+1
≤ ‖uti‖µti

D2(ti, ti+1) (5.16)
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for all uti ∈ Tanµti
(P2(R

d)). Indeed, the right hand side of (5.16) can be estimated by

‖Psi,k(i)
si,0 (uti) − P

sik(i)
si,k(i)−1

(P
si,k(i)−1
si,0 (uti))‖µti+1

+ ‖Psi,k(i)
si,k(i)−1

(P
si,k(i)−1
si,0 (uti)) − P

si,k(i)
si,k(i)−1

(P
si,k(i)−1
si,k(i)−2

(· · · (Psi,1
si,0 (uti))))‖µti+1

≤ ‖uti‖µti
D(si,0, si,k(i)−1)D(si,k(i)−1, si,k(i))

+ ‖Psi,k(i)−1
si,0 (uti) − P

si,k(i)−1
si,k(i)−2

(P
si,k(i)−2
si,k(i)−3

(· · · (Psi,0

ti
(uti))))‖µti+1

≤ · · ·

≤ ‖uti‖µti

k(i)−1
∑

j=0

D(si,0, si,j)D(si,j, si,j+1) ≤ ‖uti‖µti
D(ti, ti+1)

k(i)−1
∑

j=0

D(si,j, si,j+1)

≤ ‖uti‖µti
D2(ti, ti+1).

Now, let us assume that (t0, t1) contains some element of Q and let P ′ = [t1, 1]∩P, Q′ = [t1, 1]∩Q,
u ∈ Tanµ0(P2(R

d)) and v,w ∈ Tanµt1
(P2(R

d)) be such that P(u) = P ′(v) and Q(u) = Q′(w).
Then, the inequality (5.16) with i = 0 reads

‖v − w‖µt1
≤ ‖u‖t0D

2(t0, t1),

(the estimate is trivial if Q′ ∩ (t0, t1) = ∅, because v = w) so that

‖P(u) −Q(u)|µtn
≤ ‖P ′(v) −Q′(v)‖µtn

+ ‖Q′(v) −Q′(w)‖µtn

≤ ‖P ′(v) −Q′(v)‖µtn
+ ‖u‖t0D

2(t0, t1).

Since ‖v‖t1 ≤ ‖u‖t0 we can apply repeatedly (5.16) in the intervals (ti, ti+1) to obtain ‖P(u) −
Q(u)‖µ1 ≤ ‖u‖µ0D

2(P). �

The following result follows directly from the previous corollary and from (5.12d).

Theorem 5.12 (Existence of the limit of P(u0)) Let µt be a regular curve and let u0 ∈
Tanµ0(P2(R

d)). Then limP∈PP(u0) exists.

Define T 1
0 (u0) as the vector obtained by the limit process described above and observe that,

by repeating the arguments to the restriction of µt to the interval [t, s], we can define a map
T s

t : Tanµt(P2(R
d)) → Tanµs(P2(R

d)) whenever t ≤ s. Furthermore, by considering the curve
t→ µ1−t, we can define the maps T s

t even for t > s.

Proposition 5.13 (Group property) Let µt be a regular curve and let T s
t : Tanµt(P2(R

d)) →
Tanµs(P2(R

d)) be defined as above. Then

T s
t ◦ T t

r = T s
r , ∀r, s, t ∈ [0, 1]. (5.17)

Proof. Let us first assume r ≤ t ≤ s. In this case it is sufficient to observe that, by definition
of limit over a direct set, the limit over all partitions coincides with the limit over all partitions
which contain the point t. The thesis then follows easily. For the general case it is sufficient to
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prove that T s
t = (T t

s )−1, or, without loss of generality, that T 1
0 = (T 0

1 )−1. The latter equation
will follow if we show that

lim
P∈P

‖u−P−1(P(u))‖µ0 = 0 ∀u ∈ Tanµ0(P2(R
d)), (5.18)

where P−1 : Tanµ1(P2(R
d)) → Tanµ0(P2(R

d)) is defined by

P−1(u) := P
0
t1(P

t1
t2 (· · ·Ptn−1

1 (u)))

for the partition P = {0 = t0 < t1 < · · · < tn = 1} (and, in particular, it is not the functional in-
verse of u→ P(u)). Observe that for any u ∈ Tanµti

(P2(R
d)) the identities u = P

ti
ti+1

(τ
ti+1
ti

(u))

and P
ti+1

ti
(u) − τ

ti+1

ti
(u) ∈ Tan⊥

µti+1
(P2(R

d)), in conjunction with inequalities (5.11), yield

‖Pti
ti+1

(P
ti+1
ti

(u)) − u‖µti
=‖Pti

ti+1
(P

ti+1
ti

(u) − τ
ti+1
ti

(u))‖µti

≤‖Pti+1
ti

(u) − τ
ti+1
ti

(u)‖µti
D(ti, ti+1)

≤‖u‖µti
D2(ti, ti+1).

For any u ∈ Tanµ0(P2(R
d)) we obtain

‖u− P
0
t1(· · · (P

tn−1

1 (P(u)))‖µ0

≤ ‖u− P
0
t1(P

t1
0 (u))‖µ0 + ‖P0

t1(P
t1
0 (u)) − P

0
t1(· · · (P

tn−1

1 (P(u))))‖µ0

≤ ‖u‖µ0D
2(0, t1) + ‖v − P

t1
t2 (· · · (P1

tn−1
(P ′(v))))‖µt1

,

where v = P
t1
0 (u) and P ′ = {t1 < · · · < tn} (so that P ′(v) = P(u)). Since ‖v‖µt1

≤ ‖u‖µ0 we
can continue in this way, to arrive at

‖u− P
0
t1(· · · (P

tn−1

1 (P(u))))‖µ0 ≤ ‖u‖µ0D
2(P)

and this, taking (5.12d) into account, leads to (5.18). �

Theorem 5.14 (Existence of the parallel transport) Let µt be a regular curve, let u0 ∈
Tanµ0(P2(R

d)) and let T s
t be the maps defined as above. Then the vector field ut := T t

0 (u0) is
the parallel transport of u0 along the curve.

Proof. Consider any interval [t, s] ⊂ [0, 1], its trivial partition P = {t, s} and any (finer)
partition Q. Applying inequality (5.15) and passing to the limit on Q we get

‖Ps
t (u) − T s

t (u)‖µs ≤ ‖u‖µtD
2(t, s) ∀u ∈ Tanµt(P2(R

d)). (5.19)

Coupling this equation with inequality (5.11b) we get

‖τ s
t (u) − T s

t (u)‖µs ≤‖τ s
t (u) − P

s
t (u)‖µs + ‖Ps

t (u) − T s
t (u)‖µs

≤‖u‖µtD(t, s) (1 +D(0, 1)) ∀u ∈ Tanµt(P2(R
d)),
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which gives the absolute continuity of t 7→ T t
0 (u0).

Now, pick a Lebesgue point t of the function t 7→ Lip(vt) and observe that inequality (5.19)
gives

lim
s→t

‖Ps
t (u) − T s

t (u)‖µs

|s− t| = 0 for all u ∈ Tanµt(P2(R
d)).

In particular, choosing u = T t
0 (u0), we obtain ‖Ps

t (u)−us‖µs = o(s− t). Therefore, to conclude
it is sufficient to prove that

lim
s→t

Pµt

(

τ t
s(P

s
t (u)) − u

s− t

)

= 0 ∀u ∈ Tanµt(P2(R
d)).

Observe that Ps
t (u) − τ s

t (u) ∈ Tan⊥
µs

(P2(R
d)), therefore from inequalities (5.11) we get

‖Pµt(τ
t
s(P

s
t (u)) − u)‖µt = ‖Pt

s(P
s
t (u) − τ s

t (u))‖µt

≤ ‖Ps
t (u) − τ s

t (u)‖µtD(t, s) ≤ ‖u‖µtD
2(t, s).

�

Remark 5.15 (Parallel transport along a flow) Observe that the approximation argument
presented in Section 5 to build the parallel transport, works as well if, instead of assuming that
the curve µt is regular, we assume the existence of a family of maps X(t, s, x) having the group
property X(t, s,X(r, t, x)) = X(r, s, x), satisfying X(t, s, ·)#µt = µs and such that the Lipschitz
constant of X(t, s, ·)− Id is bounded by a function D(t, s) having the properties (5.12). In other
words, we drop the requirement that X is the flow of the tangent vector field, but just choose a
vector field ṽt with

∫ 1
0 Lip(ṽt) dt <∞ for which the continuity equation holds. Recall also that

−∇ · (vtµt) =
d

dt
µt = −∇ · (ṽtµt) in the sense of distributions in (0, 1) × R

d

implies ∇ · ((ṽt − vt)µt) = 0 for a.e. t, i.e. Pµt(ṽt) = vt for a.e. t ∈ (0, 1).
Using X we would obtain tangent fields ũt ∈ Tanµt(P2(R

d)), which we call parallel transport
along the flow X, such that t 7→ ut ◦X(s, t, ·) ∈ L2

µs
is absolutely continuous for every s ∈ [0, 1]

and satisfying

Pµt

(

lim
h→0

ut+h ◦X(t, t+ h, ·) − ut

h

)

= 0 for a.e. t ∈ (0, 1)

and
d

dt
〈∇η, ut〉µt = 〈∇2η · ṽt, ut〉µt + 〈∇η, d

dt
ut〉µt ∀η ∈ C∞

c (Rd) (5.20)

for a.e. t ∈ (0, 1). However, we shall prove in Section 7 that the choice of the tangent vector
field is more natural.

In the rest of the section we analyze some simple examples of parallel transport.

17



Example 5.16 (Equation in the smooth case) Assume that ut(x) = ∇ϕt(x) for some smooth
functions ϕt smoothly varying in time. Then it is easy to see that equation (5.6) becomes:

∇ ·
(

(∂t∇ϕt + ∇2ϕt · vt)µt

)

= 0. (5.21)

Equivalently

∫ 1

0

∫

〈∂t∇ϕt + ∇2ϕt · vt,∇η〉dµtdt = 0 ∀η ∈ C∞
c ((0, 1) × R

d). (5.22)

Example 5.17 (Constant vector fields) Let µt be a regular curve, let v ∈ R
d and let Cv

be the function on R
d constantly equal to v. Define u0 := Cv ∈ Tanµ0(P2(R

d)). The parallel
transport ut of u0 along µt is given by ut = Cv, for all t ∈ [0, 1]. The proof is immediate: it is
sufficient to observe that ut(x) = ∇ϕ(t, x), where ϕ(t, x) = 〈x, v〉 and to verify that ϕ satisfies
equation (5.21).

Example 5.18 (Geodesics) Consider a geodesic µt defined on the interval [0, 1]: we want
to prove that in any interval of the form [ε, 1 − ε] with ε > 0 the geodesic is regular. Fix
t ∈ (0, 1); it is well-known (see [1, 7.2.1] for instance) that there exists only one optimal plan
between µt and µ1 and that this plan is induced by a Lipschitz map Tt with Lipschitz constant
bounded by t−1. We know also [1, 7.2.2] that for s ∈ [t, 1] it holds µs = (Id+ s−t

1−t(Tt − Id))#µt,
the transport map Tt being optimal. Computing the velocity vector vt as limit of the optimal
transport maps as in (2.5), we get vt = (1 − t)−1(Tt − Id), therefore its Lipschitz constant is
bounded by (1+ t)(t(1− t))−1. Our claim on the regularity of µt in all intervals [ε, 1−ε] follows.

Now assume that the geodesic [0, 1] ∋ t 7→ µt is regular. Such a µt must be induced by a
Lipschitz optimal map T . In this case its flow is given by

T(t, s, ·) = (Id+ s(T (·) − Id)) ◦ (Id+ t(T (·) − Id))−1,

and the velocity vectors satisfy

v0 = T − Id,

vs = vt ◦ T (t, s, ·),

therefore a direct calculation shows that vt is a parallel transport.

Let us consider now a locally regular curve in (0, T ], i.e. a curve µt such that the function
Lip(vt) belongs to L1

loc((0, T ]): for instance, this is the case of constant speed geodesics in [0, 1],
that are locally regular in (0, T ] for all T ∈ (0, 1). In the following proposition we show how
existence of the “forward” parallel transport can still be achieved along locally regular curves.

Proposition 5.19 (Forward parallel transport along locally regular curves) Let µt be
an absolutely continuous curve in [0, T ], locally regular in (0, T ], and let u0 ∈ Tanµ0(P2(R

d)).
Then the parallel transport of u0 along µt exists, i.e. a locally absolutely continuous vector field
ut ∈ Tanµt(P2(R

d)) in (0, T ] which is a parallel transport in (0, T ] and satisfies utµt ⇀ u0µ0

As t ↓ 0 and ‖ut‖µt = ‖u0‖µ0 .
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Proof. We will use the inequality

‖T s
t (∇ϕ) −∇ϕ‖µs ≤ Lip(∇ϕ)Ls

t (µr), (5.23)

where Ls
t (µr) is the length of µr restricted to the interval [t, s]. This inequality is a consequence

of the fact that s 7→ T s
t (∇ϕ) −∇ϕ ∈ Tanµs(P2(R

d)) is an absolutely continuous vector field in
[t, T ] and of the differential inequality

d

ds
‖T s

t (∇ϕ) −∇ϕ‖2
µs

= 2〈T s
t (∇ϕ) −∇ϕ, d

ds

(

T s
t (∇ϕ) −∇ϕ

)

〉µs

= 2〈T s
t (∇ϕ) −∇ϕ, d

ds

(

T s
t (∇ϕ)

)

−∇2ϕ · vs〉µs

= 2〈T s
t (∇ϕ) −∇ϕ,Pµs

( d

ds
(T s

t (∇ϕ)) −∇2ϕ · vs

)

〉µs

= −2〈T s
t (∇ϕ) −∇ϕ,Pµs(∇2ϕ · vs)〉µt

= −2〈T s
t (∇ϕ) −∇ϕ,∇2ϕ · vs〉µt

≤ 2‖T s
t (∇ϕ) −∇ϕ‖µs Lip(∇ϕ)‖vs‖µs .

Given that the parallel transport maps are isometries, by a density argument we may assume
that u0 is the gradient of ϕ ∈ C∞

c (Rd): indeed, the property of being a parallel transport is
stable, passing to the limit in (5.8) and using the uniform bound of Proposition 5.8 to prove the
absolute continuity property of the limit vector field.

Fix ε > 0, think ∇ϕ as a vector in Tanµε(P2(R
d)) and define the vectors uε

t := T t
ε (∇ϕ) for

any t ∈ [ε, T ], so that we have uε
ε = ∇ϕ. From

‖uε′
t − uε

t‖µt = ‖uε′
ε − uε

ε‖µε = ‖T ε
ε′(∇ϕ) −∇ϕ‖µε ≤ Lip(∇ϕ)ω(ε) 0 < ε′ ≤ ε ≤ t ≤ T,

with ω(ε) := Lε
0(µr), we get that for any t, the family {uε

t} converges in Tanµt(P2(R
d)), as

ε → 0, to a vector ut satisfying ‖uε
t − ut‖µt ≤ Lip(∇ϕ)ω(ε). The limit vector field ut is easily

seen to be a parallel transport in the interval (0, T ] by the same stability argument outlined
above.

From
‖ut‖µt = lim

ε
‖uε

t‖µt = lim
ε

‖uε
ε‖µε = lim

ε
‖∇ϕ‖µε

we get that the norm of ut is constant, and equal to ‖∇ϕ‖µ0 . Finally it holds

〈uε, η〉µε
= 〈uε − uε

ε, η〉µε
+ 〈uε

ε, η〉µε
= Rε + 〈∇ϕ, η〉µε

∀η ∈ C∞
c (Rd,Rd),

where the term Rε is bounded by ‖ut −uε
t‖µt sup |η| ≤ ω(ε) Lip(∇ϕ) sup |η|. The thesis follows.

�

Now we give an example of a geodesic along which a parallel transport does not exist globally:
we proved in Proposition 5.19 that the forward parallel transport exists in [0, 1) for all constant
speed geodesics µt : [0, 1] → P2(R

d). We will see, on the other hand, that for T ∈ (0, 1)
the backward problem of a transporting uT ∈ TanµT

(P2(R
d)) to some u0 ∈ Tanµ0(P2(R

d))
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does not have solution in general. The obstruction to the construction we made of the parallel
transport is the fact that supp(µ0) is not necessarily homeomorphic to supp(µt) for t > 0. This
change of topology cannot happen along a regular curve: indeed, the flow maps T(t, s, ·) are
(actually, can be extended to) bi-Lipschitz homeomorphisms of R

d into itself. Therefore, since
supp(µs) = T(t, s, supp(µt)), the supports of µt, as t varies, are all homeomorphic. We will see
that, in this situation, not only the parallel transport can’t be built with flow maps, but also
that it may happen that the parallel transport does not exist.

Example 5.20 Let Q = [0, 1]×[0, 1] be the unit square in R
2 and let Ti, i = 1, 2, 3, 4, be the four

open triangles in which Q is divided by its diagonals. Let µ0 := χQL 2 and define the function
v : Q → R

2 as the gradient of the convex map max{|x|, |y|}, as in the figure. Set also w = v⊥,
the rotation by π/2 of v, in Q and w = 0 out of Q. Notice that w is a divergence-free vector
field in the whole of R

2.
Set µt := (Id + tv)#µ0 and observe that, for positive t, the support Qt of µt is made of 4

connected components, each one the translation of one of the sets Ti, and that µt = χQtL
2.

It is immediate to check that µt is a geodesic in [0,∞), so that from Example 5.18 we know
that the restriction of µt to any interval [ε, 1] with ε > 0 is regular. Fix ε > 0 and note that, by
construction, the flow maps of µt in [ε, 1] are given by

T(t, s, ·) = (Id+ sv) ◦ (Id+ tv)−1, ∀t, s ∈ [ε, 1].

Now, set wt := w ◦ T(t, 0, ·) and notice that wt is tangent at µt, because wt is constant in
the connected components of the support of µt. Since wt+h ◦ T(t, t + h, ·) = wt, from (5.7)
we obtain that wt is a parallel transport in [ε, 1]. Furthermore, since ∇ · (wµ0) = 0, we have
w0 = w /∈ Tanµ0(P2(R

2)). Therefore there is no way to extend wt to a continuous tangent
vector field on the whole [0, 1].
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6 Density of regular curves

Aim of this section is the proof of a density result for regular curves. It is well-known that the
set

P
a
2 (Rd) :=

{

µ ∈ P2(R
d) : µ≪ L

d
}

is a geodesic subspace of P2(R
d) (i.e. any geodesic between two points in Pa

2 (Rd) is entirely
contained in Pa

2 (Rd)) and the same is true for the subsets {µ = ρL d : ‖ρ‖∞ ≤ C}. Our
approximation will be obtained with measures in this class, and preserves these upper bounds
on the densities, if any.

The delicate point in our approximation result is due to the fact that regularity imposes
a Lipschitz condition on the tangent velocity field. The typical approximation schemes for
solutions to the continuity equation, on the other hand, produce a regularized vector field that
is compatible with the regularized density, but it is not tangent in general. Therefore a further
projection of the regularized velocity on the tangent space is needed.

The following lemma will be used in the reduction to compactly supported measures.

Lemma 6.1 (Monotone approximation) Let µt : [0, 1] → P2(R
d) be absolutely continuous

and let vt be its tangent velocity field. Then there exist absolutely continuous curves µn
t : [0, 1] →

P2(R
d) and zn ↑ 1 satisfying:

(i) znµ
n
t ↑ µt for all t ∈ [0, 1] and suptW2(µ

n
t , µt) → 0 as n→ ∞;

(ii) the tangent velocity field of µn
t is vt, and there exists a closed ball Bn such that suppµn

t ⊂
Bn for all t ∈ [0, 1].

Proof. Let Ω be the Banach space of continuous maps from [0, 1] to R
d and let et : Ω → R

d be
the evaluation maps at time t, i.e. et(ω) = ω(t). According to [1, 8.2.1], we can represent µt as
the law under et of a suitable probability measure η in Ω, concentrated in the set of absolutely
continuous solutions of the equation ω̇ = vt(ω).

Let

Ωn :=

{

ω ∈ Ω : ω is absolutely continuous, |ω(0)| ≤ n,

∫ 1

0
|ω̇|dt ≤ n

}

and set ηn = χΩnη, zn = η(Ωn) = ηn(Ω) and µn
t = z−1

n (et)#ηn. It is easy to check condition
(i), and that the support of µn

t is contained in the ball B2n(0). Since also ηn is concentrated
on curves solving the ODE ω̇ = vt(ω), it turns out that vt is an admissible velocity field for
µn

t (i.e. the continuity equation holds, see again [1, 8.2.1] for instance). We conclude that vt is
the tangent velocity fields noticing that, because of condition (i), vt ∈ Tanµt(P2(R

d)) implies
vt ∈ Tanµn

t
(P2(R

d)). �

We can now state our approximation result.

Theorem 6.2 (Approximation by regular curves) Let µt : [0, 1] → P2(R
d) be an abso-

lutely continuous curve. Then there exist regular curves µn
t : [0, 1] → P2(R

d) satisfying:

(i) suptW2(µ
n
t , µt) → 0 as n→ +∞;
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(ii) µn
t = ρn

t L n, supt ‖ρn
t ‖∞ < +∞, ρn

t are smooth, the smooth tangent velocity fields vn
t are

gradients of smooth maps ϕn
t : R

d → R satisfying supt Lip(vn
t ) < ∞ and {ρn

t > 0} is a
bounded open set with a smooth boundary;

(iii) if vt ∈ L2
µt

is the tangent field of µt, we have that vn
t µ

n
t weakly converge to vtµt and

lim
n→∞

∫

|vn
t |2dµn

t =

∫

|vt|2dµt.

Proof. Step 1. Regularization of 1-periodic solutions.
By Lemma 6.1 and a diagonal argument we can assume that the supports of µt are contained

in a fixed compact set. By a scaling argument, we can also assume with no loss of generality
that the union of these supports is a compact subset K of (0, 1)d. We consider the 1-periodic
extension µper

t of µt, still solving the continuity equation with the 1-periodic extension vper
t of

vt, and the regularized densities
̺n

t := µper
t ∗ χn,

still 1-periodic. Here χn is a family of smooth and symmetric w.r.t. 0, convolution kernels
converging to δ0 whose support has a diameter equal to 2

√
d. With this choice of χn, we have

inft inf ̺n
t > 0, and standard properties of convolution yield

sup ̺n
t ≤ sup

t
µper

t ([−1, 2]d) supχn = 3d supχn.

Analogous bounds hold, of course, for all higher order derivatives of ̺n
t . Passing to the velocity

fields, we consider as in [7, 1] this regularization:

wn
t :=

(vper
t µper

t ) ∗ χn

̺n
t

which satisfies, thanks to the lower bound on ̺n
t , supt Lip(wn

t ) < ∞ (and the same holds for
higher order derivatives) and preserves the validity of the continuity equation. Eventually we
consider the projection vn

t = ∇ϕn
t of wn

t on periodic gradients by solving the PDE

∇ · (∇ϕn
t ̺

n
t ) = ∇ · (wn

t ̺
n
t ).

From the variational formulation of the PDE we obtain
∫

(0,1)d

|vt
n|2̺n

t dx ≤
∫

(0,1)d

|wn|2̺n
t dx. (6.1)

We can use standard elliptic regularity theory to obtain that supt Lip(vn
t ) <∞. Moreover, using

Jensen’s inequality as in [1, 8.1.10], we have the local estimate

∫

(0,1)d

|wn
t |2̺n

t dx ≤
∫ ∫

(0,1)d

|vt|2(y)χn(x− y)dxdµper
t (y). (6.2)

Step 2. Construction of the approximating sequence.
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We build µn
t = ρn

t L d ∈ Pa
2 (Rd), with the same velocity field vn

t , from the periodic measures
̺n

t L d. To this aim, we shall first consider ̺n
t as measures in the flat d-dimensional torus

T
d ∼ (0, 1)d, with velocity field vn

t . We denote by P the Lebesgue measure on T
d, by Xn(t, x) :

[0, 1]×T
d → T

d the smooth flow of vn
t (starting from s = 0), and by ηn the probability measure

in C([0, 1]; Td) defined by
ηn := Xn(t, ·)#(̺n

0 P).

Equivalently, ηn is the law of the random variable x 7→ Xn(·, x) ∈ C([0, 1]; Td) under ̺n
0P.

Classical representation results for solutions to the continuity equation with a Lipschitz vector
field ensure that ̺n

t P = Xn(t, ·)#(̺n
0P), and since et ◦ Xn(·, x) = Xn(t, x) we obtain

(et)#ηn = ̺n
t P ∀t ∈ [0, 1], n ∈ N. (6.3)

From (6.1) and (6.2) we get

sup
n

∫ 1

0

∫

Td

|vn
t |2̺n

t dP(x)dt <∞

and this, using Prokhorov theorem as in [2, 11], gives that (ηn) is a relatively compact sequence
in P(C([0, 1]; Td)). It is not restrictive, extracting if necessary a subsequence, to assume that
(ηn) weakly converges, in the duality with continuous and bounded functions in C([0, 1]; Td), to
some probability measure η. Passing to the limit as n→ ∞ in (6.3) we obtain that (et)#η = µper

t

for all t ∈ [0, 1], and this means that η-almost all the paths ω are contained in K̃ (here we denote
by K̃ the image of K in T

d and we consider µper
t as probability measures in T

d).
Now, let δ < 1 be such that K is contained in the interior of [δ, 1 − δ]d and define η̃n :=

z−1
n χΩ(δ)ηn, where

Ω(δ) :=
{

ω ∈ C([0, 1]; Td) : ω(t)mod(1) ∈ (δ, 1 − δ)d ∀t ∈ [0, 1]
}

, zn := ηn(Ω(δ))

(in other words, we remove the trajectories that cross ∂(δ, 1 − δ)d). Since η is supported on
paths contained in K̃, we have that zn → 1 and still η̃n weakly converge to χΩ(δ)η = η. We
define

µn
t := (ẽt)#η̃n

where ẽt(ω(t)) = ωt mod(1) ∈ [0, 1)d. The measures µn
t can also be represented by

µn
t = z−1

n Yn(t, ·)#(χEn(δ)̺
n
0L

d), (6.4)

where Yn(t, x) = Xn(t, x)mod(1) and En(δ) = {x ∈ (0, 1)d : Xn(·, x) ∈ Ω(δ)}.
By construction µn

t are probability measures in R
d concentrated on [δ, 1−δ]d. It is immediate

to check that the tangent field to µn
t is vn

t (because ηn is concentrated on solutions to the ODE
ω̇ = vn

t (ω) in T
d, and vn

t are gradients). In particular µn
t are regular curves and the convergence

of µn
t to µt follows at once from the convergence of η̃n to η, using the evaluation map ẽt. Notice

also that the inequality znη̃n ≤ ηn and the fact that the mass of their difference is infinitesimal
imply

znµ
n
t ≤ ̺n

t L
d and lim

n→∞
(̺n

t L
d − znµ

n
t )((0, 1)d) = 0. (6.5)
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Step 3. Convergence of velocity fields.
Notice first that (6.1) and (6.2) give

lim sup
n→∞

∫

|vn
t |2dµn

t ≤ lim sup
n→∞

∫

|vn
t (et(ω))|2dηn(ω) = lim sup

n→∞

∫

|vn
t |2̺n

t dP

≤ lim sup
n→∞

∫

|wn
t |2̺n

t dP

≤ lim sup
n→∞

∫ ∫

(0,1)d

|vt|2(y)χn(x− y)dxdµper
t (y) =

∫

|vt|2dµt.

Now, recall (see for instance [1, 9.4.3]) that the functional

G(ν, µ) :=







∫

|f |2dµ if ν = fµ with f ∈ L2(µ; Rd),

+∞ otherwise

is jointly lower semicontinuous in P2(R
d) × P2(R

d) with respect to weak convergence in the
duality with Cb(R

d), to obtain that any weak limit point σ of vn
t µ

n
t as n → ∞ has the form

ṽµt for some ṽ ∈ L2
µt

with ‖ṽ‖µt ≤ ‖vt‖µt . On the other hand, passing to the limit in ∇ ·
((wn

t − vn
t )̺n

t ) = 0 and taking into account the weak convergence in the duality with Cc(R
d) of

wn
t ̺

n
t = (vper

t µper
t )∗χn to vper

t µper
t and the convergence to 0 in (0, 1)d of ̺n

t L d−µn
t (ensured, even

in the strong sense, by (6.5)) we get ∇ · ((ṽ− vt)µt) = 0. Since vt is tangent and ‖ṽ‖µt ≤ ‖vt‖µt ,
it must be ṽ = vt. This proves the weak convergence of velocity fields that provides also, thanks
to the lower semicontinuity of G, the lim inf inequality

lim inf
n→∞

∫

|vn
t |2dµn

t ≥
∫

|vt|2dµt.

Step 4. Eventually we can regularize the characteristic function of the set En(δ) in (6.4), by
smooth functions χn such that {χn̺

n
0 > 0} is smooth and bounded, to approximate the curve

µn
t by curves with the same velocity field and smooth densities with respect to L d, with smooth

supports. �

7 Additional remarks and extensions

In this section we describe in a more informal way, referring to [8] for more details, some addi-
tional construction made possible by the existence of the parallel transport along a sufficiently
large class of curves.

7.1 Covariant derivative and curvature operator

It is well known that, in the classical Riemannian setting, the definition of parallel transport
leads to the one of covariant derivative via the formula

∇γ̇(t)u(t) := lim
s→t

T t
s(u(s)) − u(t)

s− t
, (7.1)
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where γ(t) is a smooth curve, u(t) ∈ Tγ(t)M is a smooth vector field and T t
s , for any s, t, is the

parallel transport map from Tγ(s)M to Tγ(t)M along γ.
The same construction may be used in the Wasserstein setting:

Definition 7.1 (Covariant derivative) Let µt be a regular curve, let vt ∈ Tanµt(P2(R
d)) be

its velocity vector and let ut ∈ Tanµt(P2(R
d)) be an absolutely continuous vector field along µt.

The covariant derivative of ut along vt is:

∇vtut := lim
s→t

T t
s (us) − ut

s− t
,

where T t
s are the parallel transport maps along µt and the derivative takes place in L2

µt
.

Using the definition of absolutely continuous vector field, it is not difficult to check that the
covariant derivative exists for a.e. t and that the function t 7→ ‖∇vtut‖µt is integrable. Indeed,
inequality (5.19) implies that the covariant derivative satisfies:

∇vtut = lim
s→t

Pt
s(us) − ut

s− t
= Pµt

(

lim
s→t

us ◦ T(t, s, ·) − ut

s− t

)

. (7.2)

If the vector field ut is given by the gradient of smooth functions, i.e. if ut = ∇xϕt(x) for
some ϕt ∈ C∞

c (Rd) smoothly varying in time, the previous equation reads as

∇vtut = Pµt

(

∂t∇ϕt + ∇2
xϕt · vt

)

. (7.3)

Equation (7.3) and the analogous one (5.21) were first given in [10], although from a formal
viewpoint and under stronger assumptions on the measures µt.

Having defined the covariant derivative, our first goal is to prove that it is the Levi-Civita
connection on (P2(R

d),W2). Recalling the discussion made for the classical case of Rieman-
niann manifolds, we need to prove that it is compatible with the metric and torsion-free. The
compatibility with the metric is a simple consequence of the definition: indeed, for a given couple
of absolutely continuous vector fields u1

t , u
2
t ∈ Tanµt(P2(R

d)) along the regular curve µt, we
have:

d

dt
〈u1

t , u
2
t 〉µt

= 〈 d
dt
u1

t , u
2
t 〉µt

+ 〈u1
t ,
d

dt
u2

t 〉µt

= 〈Pµt

(

d

dt
u1

t

)

, u2
t 〉µt

+ 〈u1
t , Pµt

(

d

dt
u2

t

)

〉µt

= 〈∇vtu
1
t , u

2
t 〉µt

+ 〈u1
t ,∇vtu

2
t 〉µt

,

(7.4)

having used the Leibnitz rule (5.4) and the fact that both vector fields are tangent.
To prove the torsion-free identity, we need first to understand how to calculate the Lie

bracket of two vector fields. To this aim, let µi
t, i = 1, 2, be two regular curves such that

µ1
0 = µ2

0 =: µ and let ui
t ∈ Tanµi

t
(P2(R

d)) be two absolutely continuous vector fields satisfying

u1
0 = v2

0 , u
2
0 = v1

0, where vi
t are the tangent fields of µi

t. We assume that the velocity fields vi
t of µi

t
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are continuous in time (for instance with respect to the convergence considered in Section 7.2),
to be sure that (5.5) holds for all t with u = ui and the initial condition makes sense.

Let us consider vector fields as derivations, and the functional µ 7→ Fη(µ) :=
∫

ηdµ, for η ∈
C∞

c (Rd) fixed. By the continuity equation, the derivative of Fη along u2
t is equal to 〈∇η, u2

t 〉µ2
t
,

therefore (5.5) gives:

u1(u2(Fη))(µ) =
d

dt
〈∇η, u2

t 〉µ2
t |t=0

= 〈∇2η · v2
0, u

2
0〉µ + 〈∇η, d

dt
u2

t |t=0
〉µ

= 〈∇2η · u1
0, u

2
0〉µ + 〈∇η,∇v2

0
u2

t 〉µ.

Subtracting the analogous term u2(u1(Fη))(µ) and using the symmetry of ∇2η and the identities
ui

0 = v1−i
0 , i = 0, 1, we get

[u1, u2](Fη)(µ) = 〈∇η,∇u1
0
u2

t −∇u2
0
u1

t 〉µ.

Given that the set {∇η}η∈C∞
c

is dense in Tanµ(P2(R
d)), the above equation characterizes [u1, u2]

as:
[u1, u2] = ∇u1

0
u2

t −∇u2
0
u1

t , (7.5)

which proves the torsion-free identity for the covariant derivative.
In the case of the parallel transport along a flow, considered in Remark 5.15, given that the

right composition with X(t, s, ·) is an isometry from L2
µt

to L2
µs

, it holds

〈u1
s, u

2
s〉µs

= 〈u1
s ◦X(t, s, ·), u2

s ◦X(t, s, ·)〉µt
,

subtracting 〈u1
t , u

2
t 〉µt

, dividing both terms by s − t and letting s → t we get that the Leibnitz
rule holds even using the maps X(t, s, ·):

d

dt
〈u1

t , u
2
t 〉µt

= 〈 d
ds
u1

s ◦X(t, s, ·)|s=t
, u2

t 〉µt
+ 〈u1

t ,
d

ds
u2

s ◦X(t, s, ·)|s=t
〉µt
,
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for any couple of vector fields ui
t such that t 7→ ui

t ◦X(s, t, ·) is absolutely continuous for i = 1, 2.
From this formula it follows that the parallel transport along any flow X compatible with µt

preserves the scalar product.
Of course, different parallel transports define different covariant derivatives ∇̃vtut via (7.2):

they are expressed by

∇̃vtut := Pµt

(

d

ds
us ◦X(t, s, ·)|s=t

)

.

Denoting by ṽt the velocity field of X, we get that the covariant derivative of the vector field
ut := ∇ϕ, ϕ ∈ C∞

c (Rd), is given by ∇̃vt∇ϕ = Pµt(∇2ϕ · ṽt). It is easy to check that a generic
covariant derivative is not torsion-free. Indeed, assume that it is and observe that in this case
the two following equations hold:

〈∇∇ϕ1∇ϕ2,∇ϕ3〉µ + 〈∇ϕ2,∇∇ϕ1∇ϕ3〉µ = 〈∇̃∇ϕ1∇ϕ2,∇ϕ3〉µ + 〈∇ϕ2, ∇̃∇ϕ1∇ϕ3〉µ,
∇∇ϕ1∇ϕ2 −∇∇ϕ2∇ϕ1 = ∇̃∇ϕ1∇ϕ2 − ∇̃∇ϕ2∇ϕ1,

for any ϕi ∈ C∞
c (Rd), i = 1, 2, 3. From these equalities, with some algebraic manipulations

(more explicitely, by following the calculations indicated in the Koszul formula), it follows that
〈∇∇ϕ1∇ϕ2,∇ϕ3〉µ = 〈∇̃∇ϕ1∇ϕ2,∇ϕ3〉µ, so that the two covariant derivatives coincide. Fur-
thermore, we can consider in the identity

Pµt

(

∇2ϕ · (ṽt − vt)
)

= 0 ∀ϕ ∈ C∞
c (Rd)

test functions ϕ ∈ C2(Rd) with uniformly bounded second derivatives (by a simple approxima-
tion argument based on the finiteness of the second moments of µt). Choosing ϕ(x) = |〈x, ξ〉|2
gives

∫

∂η

∂ξ
〈ṽt − vt, ξ〉dµt = 0 ∀η ∈ C∞

c (Rd), ξ ∈ R
d.

This means the symmetric part of the distributional derivative of the vector-valued distribution
(ṽt − vt)µt vanishes; Korn’s inequality gives that the distribution is equivalent to a constant. By
integrability, this constant must be 0, i.e. ṽt = vt µt-a.e. in R

d.
The definition of covariant derivative allows us to define the curvature tensor and to check,

at least formally, that (P2(R
d),W2) is positively curved by proving that its sectional curvatures

are always non-negative. The spirit of the foregoing discussion and the calculations we do, are
basically borrowed from Lott’s work [10].

Given four vector fields µ 7→ ∇ϕi
µ ∈ Tanµ(P2(R

d)), i = 1, . . . , 4, the curvature tensor R
calculated on them is defined as:

〈R(∇ϕ1
µ,∇ϕ2

µ)(∇ϕ3
µ),∇ϕ4

µ〉µ : = 〈∇∇ϕ1
µ
(∇∇ϕ2

µ
∇ϕ3

µ),∇ϕ4
µ〉µ

− 〈∇∇ϕ2
µ
(∇∇ϕ1

µ
∇ϕ3

µ),∇ϕ4
µ〉µ

− 〈∇[∇ϕ1
µ,∇ϕ2

µ]∇ϕ3
µ,∇ϕ4

µ〉µ.

With the same calculation used in the classical Riemannian case, it is easy to check that R is
actually a tensor, i.e. that its value at the measure µ depends only on the value of the four
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vector fields at µ. Therefore in order to evaluate it, we can consider the simpler vector fields
µ 7→ ∇ϕi ∈ Tanµ(P2(R

d)), i = 1, . . . , 4, where the functions ϕi do not depend on the base
measure µ. This will simplify the calculations. Under this assumption we have

∇v∇ϕ = Pµ(∇2ϕ · v) ∀v ∈ Tanµ(P2(R
d)). (7.6)

In order to give an explicit formula for R, it is useful to introduce the function ξµ(ϕ1, ϕ2) ∈ L2
µ

as
ξµ(ϕ1, ϕ2) := P⊥

µ (∇2ϕ1 · ∇ϕ2) = ∇2ϕ1 · ∇ϕ2 −∇∇ϕ2∇ϕ1(µ).

Observe that from ∇2ϕ1 · ∇ϕ2 + ∇2ϕ2 · ∇ϕ1 = ∇(〈∇ϕ1,∇ϕ2〉) ∈ Tanµ(P2(R
d)) we get

ξµ(ϕ1, ϕ2) = −ξµ(ϕ2, ϕ1).

Proposition 7.2 The curvature tensor is given by

〈R(∇ϕ1,∇ϕ2)(∇ϕ3),∇ϕ4〉µ =〈ξµ(ϕ1, ϕ4), ξµ(ϕ2, ϕ3)〉µ − 〈ξµ(ϕ1, ϕ3), ξµ(ϕ2, ϕ4)〉µ
− 2〈ξµ(ϕ1, ϕ2), ξµ(ϕ3, ϕ4)〉µ.

Proof. Define µt := (Id+ t∇ϕ1)#µ and F (ν) :=
∫

ηdν with η := 〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉. Evaluate
the derivative at t = 0 of F (µt) to get

d

dt
F (µt)|t=0

=
d

dt

∫

η ◦ (Id+ t∇ϕ1)dµ|t=0
= 〈∇η,∇ϕ1〉µ.

On the other hand, using equations (7.6) and (7.4) we have

d

dt
F (µt)|t=0

=
d

dt
〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉µt |t=0

=
d

dt
〈∇∇ϕ2∇ϕ3(µt),∇ϕ4〉µt |t=0

= 〈∇∇ϕ1(∇∇ϕ2∇ϕ3),∇ϕ4〉µ + 〈∇∇ϕ2∇ϕ3,∇∇ϕ1∇ϕ4〉µ.

Coupling the last two equations and then using the trivial identity 〈Pµ(v), Pµ(w)〉µ = 〈v,w〉µ −
〈P⊥

µ (v), P⊥
µ (w)〉µ, valid for any v, w ∈ L2

µ, we obtain the equality

〈∇∇ϕ1(∇∇ϕ2∇ϕ3),∇ϕ4〉µ = 〈∇
(

〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉
)

,∇ϕ1〉µ − 〈∇∇ϕ2∇ϕ3,∇∇ϕ1∇ϕ4〉µ
= 〈∇

(

〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉
)

,∇ϕ1〉µ − 〈∇2ϕ3 · ∇ϕ2,∇2ϕ4 · ∇ϕ1〉µ
+ 〈ξµ(ϕ3, ϕ2), ξµ(ϕ4, ϕ1)〉µ.

The computation of the gradient of 〈∇2ϕ3 · ∇ϕ2,∇ϕ4〉 gives

〈∇∇ϕ1(∇∇ϕ2∇ϕ3),∇ϕ4〉µ =

∫

∇3ϕ3(∇ϕ2,∇ϕ4,∇ϕ1)dµ+ 〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1〉µ
+ 〈ξµ(ϕ3, ϕ2), ξµ(ϕ4, ϕ1)〉µ.

(7.7)
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Analogously, it holds:

〈∇∇ϕ2(∇∇ϕ1∇ϕ3),∇ϕ4〉µ =

∫

∇3ϕ3(∇ϕ1,∇ϕ4,∇ϕ2)dµ+ 〈∇2ϕ3 · ∇ϕ4,∇2ϕ1 · ∇ϕ2〉µ
+ 〈ξµ(ϕ3, ϕ1), ξµ(ϕ4, ϕ2)〉µ,

(7.8)

so that, subtracting (7.8) from (7.7), the symmetry of ∇3ϕ3 gives

〈∇∇ϕ1(∇∇ϕ2∇ϕ3),∇ϕ4〉µ − 〈∇∇ϕ2(∇∇ϕ1∇ϕ3),∇ϕ4〉µ
= 〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1〉µ − 〈∇2ϕ3 · ∇ϕ4,∇2ϕ1 · ∇ϕ2〉µ
+ 〈ξµ(ϕ3, ϕ2), ξµ(ϕ4, ϕ1)〉µ − 〈ξµ(ϕ3, ϕ1), ξµ(ϕ4, ϕ2)〉µ.

(7.9)

Recalling equation (7.5) we get

〈∇[∇ϕ1,∇ϕ2]∇ϕ3,∇ϕ4〉µ = 〈∇2ϕ3 · Pµ(∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2),∇ϕ4〉µ
= 〈Pµ(∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2),∇2ϕ3 · ∇ϕ4〉µ
= 〈∇2ϕ3 · ∇ϕ4,∇2ϕ2 · ∇ϕ1 −∇2ϕ1 · ∇ϕ2〉µ
− 〈ξµ(ϕ2, ϕ1), ξµ(ϕ3, ϕ4)〉µ + 〈ξµ(ϕ1, ϕ2), ξµ(ϕ3, ϕ4)〉µ.

Subtracting the last equations from (7.9), all the terms except those involving the functions ξµ
cancel, and the thesis follows. �

From the representation formula of the curvature tensor, it follows immediately that the
sectional curvatures of P2(R

d) are non-negative (for the definition see [6], Chapter 4, section
3). Indeed, it holds:

K(∇ϕ,∇ψ)(µ) =
〈R(∇ϕ,∇ψ)∇ψ,∇ϕ〉µ

‖∇ϕ‖2
µ‖∇ψ‖2

µ − 〈∇ϕ,∇ψ〉2µ
=

3‖ξµ(ϕ1, ϕ2)‖2
µ

||∇ϕ||2µ‖∇ψ‖2
µ − 〈∇ϕ,∇ψ〉2µ

≥ 0.

7.2 A distance on the tangent bundle

Recall that, for a Riemannian manifold M , it is possible to endow the tangent bundle TM with
a natural Riemannian metric, the so-called Sasaki metric, in the following way (see also [6],
Chapter 3, exercise 2).

Fix a point (p, u) ∈ TM and choose two regular curves [0, 1] ∋ t → αi(t) ∈ TM , i = 1, 2,
such that α1(0) = α2(0) = (p, u). Let (pi(t), ui(t)) := αi(t) and vi(t) := (pi(t))′, i = 1, 2. Clearly
V i := (αi)′(0) ∈ T(p,u)(TM), i = 1, 2. The scalar product 〈·, ·〉∗ between V 1 and V 2 is defined
as

〈V 1, V 2〉∗ := 〈v1(0), v2(0)〉 + 〈∇v1u1(0),∇v2u2(0)〉.
It is possible to show that this is a good definition, that is, it depends only on V 1, V 2 and not
on the particular curves α1(t), α2(t) chosen, therefore it defines a metric tensor on TM . It is
then easy to see that the distance d on TM induced by this metric tensor is given by

d2
(

(p1, u1), (p2, u2)
)

= inf
γ

(

L(γ)
)2

+ |T (u1) − u2|2, (7.10)
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where the infimum is taken among all the smooth curves γ(t) in M connecting p1 to p2, L(γ) is
the length of γ and T (u1) is the parallel transport of u1 along γ to the point p2.

Now turn back to the space (P2(R
d),W2). Define the tangent bundle as

Tan (P2(R
d)) :=

{

(µ, u) : µ ∈ P2(R
d), u ∈ Tanµ(P2(R

d))
}

,

and say that a sequence (µn, un) converges to (µ, u) if:

lim
n→∞

W (µn, µ) = 0,

lim
n→∞

‖un‖µn = ‖u‖µ,

lim
n→∞

〈un,∇ϕ〉µn
= 〈u,∇ϕ〉µ ∀ϕ ∈ C∞

c (Rd).

(7.11)

Even if we do not have a differential structure on the tangent bundle, and therefore we
cannot mimick directly the definition of the Riemannian distance on it, equation (7.10) suggests
the introduction of the following function on [Tan (P2(R

d))]2:

d2
(

(µ, u), (ν, v)
)

:= inf
µt

{

(L(µt))
2 + ‖v − T 1

0 (u)‖2
ν

}

,

where the infimum is taken on the set of regular curves µt : [0, 1] → P2(R
d) such that µ0 = µ

and µ1 = ν, L(µt) is the length of µt and T s
t are the parallel transport maps along µt. In

particular we define d((µ, u), (ν, v)) := +∞ if there is no regular curve connecting µ to ν.
The function d behaves like a distance on Tan (P2(R

d)), the only problem being that it is
not real valued. Given that regular curves are dense in the set of absolutely continuous curves,
a natural candidate for a relaxation of d is its lower semicontinuous envelope d∗, defined by:

d∗
(

(µ, u), (ν, v)
)

:= inf

{

lim inf
n→∞

d
(

(µn, un), (νn, vn)
)

: (µn, un) → (µ, u), (νn, vn) → (ν, v)

}

.

However, it is not clear to us whether the function d∗ is sufficienly well-behaved, for instance,whether
the triangle inequality holds. Therefore we modify a bit the definition, and we introduce the
function D as:

D
(

(µ, u), (ν, v)
)

:= inf
{

d∗
(

(µ,∇ϕ), (ν,∇ψ)
)

+ ‖u−∇ϕ‖µ + ‖v −∇ψ‖ν : ϕ, ψ ∈ C∞
c (Rd)

}

.

With the introduction of D we are allowed to regularize the vectors u, v, provided we pay the
L2 difference between the regularizations and the vectors themselves.

The following result is proved in Chapter 6 of [8].

Proposition 7.3 D is a distance and metrizes the convergence in Tan (P2(R
d)) in the sense

of equations (7.11). Furthermore, for any absolutely continuous curve (µt, ut) in Tan (P2(R
d))

the curve µt is absolutely continuous in (P2(R
d),W2) and:

lim
s→t

D
(

(µs, us), (µt, ut)
)

|s− t| ≥ ‖vt‖µt for a.e. t, (7.12)
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where vt is the tangent field of µt.
Conversely, if µt is a regular curve and ut is a parallel transport along it, the map (µt, ut) is
absolutely continuous in (Tan (P2(R

d)),D) and equality holds a.e. in (7.12).

This proposition suggests a definition of weak parallel transport along an absolutely contin-
uous curve µt: ut ∈ Tanµt(P2(R

d)) is a weak parallel transport along µt if equality in (7.12)
holds for a.e. t. For a weak parallel transport it is possible to show that the map t 7→ 〈ut,∇η〉µt

is absolutely continuous and that its derivative is given by (5.8).
However, it is not clear to the authors whether the weak parallel transport preserves the scalar

product, or whether the parallel transport is unique. Furthermore, the density of regular curves is
not enough to gain existence of weak parallel transport through an approximation argument. The
key problem is that the space (Tan (P2(R

d)),D) is not complete, as it may happen for a sequence
((µn, un)) ⊂ Tan (P2(R

d)) to converge to some (µ, u) with u /∈ Tanµ(P2(R
d)): precisely, it

may happen that W (µn, µ) → 0, unµn → uµ in duality with Cc(R
d) and ‖vn‖µn → ‖v‖µ.

Example 5.20 shows that it might be impossible to extend a (weak) parallel transport “backward”
to the initial point of a geodesic.
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[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in spaces
of probability measures, Birkäuser, 2005.
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