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ABSTRACT. In this paper we establish a Hardy inequality for Laplace operators with Robin
boundary conditions. For convex domains, in particular, we show explicitly how the corre-
sponding Hardy weight depends on the coefficient of the Robin boundary conditions. We
also study several extensions to non-convex and unbounded domains.
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1. INTRODUCTION

The classical Hardy inequality states that if n ≥ 3 then for any function u such that
∇u ∈ L2(Rn) it holds∫

Rn
|∇u(x)|2 dx ≥

(n− 2

2

)2
∫
Rn

|u(x)|2

|x|2
dx. (1.1)

It is well known that the constant (n−2)2/4 in (1.1) is sharp but not achieved. The literature
concerning different versions of Hardy’s inequalities and their applications is extensive and
we are not able to cover it in this paper. We just mention the classical paper of M.Sh.Birman
[B] and the books of E.B.Davies [D1, D3] and V.Maz’ya [M].

A version of Hardy inequalities was considered by E.B. Davies (see for example [D2] or
[D3, Sect.5.3.]) who, in particular, proved that for convex domains Ω ⊂ Rn, n ≥ 2∫

Ω

|∇u(x)|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx, u ∈ H1

0 (Ω), (1.2)

where δ is the distance function to the boundary ∂Ω,

δ(x) = dist (x, ∂Ω) = min
y∈∂Ω
|x− y|. (1.3)

The Lp version of inequality (1.2), for p > 1, with the sharp constant was proven in [MS]
for n = 2 and later in [MMP] for any n.

In the paper [BM] H.Brezis and M. Marcus showed that if Ω ⊂ Rn, n ≥ 2 is convex, then
the inequality (1.2) could be improved to include the L2-norm:∫

Ω

|∇u|2 dx ≥ 1

4

∫
Ω

|u|2

δ2(x)
dx+ C(Ω)

∫
Ω

|u|2dx, (1.4)

where C(Ω) = c(diam Ω)−2 with some c > 0. They also conjectured that C(Ω) should
depend on the Lebesgue measure of Ω. This conjecture was justified in [HHL] where it was
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proved that in (1.4) C(Ω) could be chosen as c|Ω|−2/n with some c > 0 independent of Ω.
This result was later generalised to Lp-type inequalities in [T].
If Ω is not convex then generally speaking the constant in front of the first integral in the
right hand side of (1.4) could be less then 1/4. In 1986 A. Ancona [A] showed using the
Koebe one-quarter Theorem, that for a simply-connected planar domain the constant in the
Hardy inequality with the distance to the boundary is greater than or equal to 1/16. In [LS]
the authors have considered classes of domains for which there is a stronger version of the
Koebe Theorem and which in turns implies better estimates for the constant appearing in
the Hardy inequality (1.2).

In [FMT] S. Filippas, V.G. Maz’ya and A. Tertikas (see also F.G. Avkhadiev [A]) have
obtained that for convex domains Ω the constant C(Ω) in (1.4) could be expressed in terms
of the inradius of Ω. Namely if

Rin := sup{δ(x) : x ∈ Ω},

then C(Ω) = c2
0R
−2
in with some c0 > 0. Recently F.G. Avkhadiev and K.-J. Wirths [AW]

have shown that the best possible constant c0 equals the first positive zero of the function

J0(t)− 2tJ1(t) = J0(t) + 2tJ ′0(t)

where J0 and J1 are the Bessel functions of order 0 and 1 respectively. Note, however, that
the results obtained in the papers [FMT], [A] and [AW] do not cover the case of non-convex
domains whereas it has been showed in [HHL] that the remainder term c|Ω|−2/d survives
even for non-convex domains.

In this paper we are not going to consider the classical Dirichlet-Laplacian, but the so-
called Robin-Laplacian generated by the quadratic form

Qσ[u] =

∫
Ω

|∇u(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y), (1.5)

where dν denotes the surface measure on ∂Ω and σ is a measurable function which defines
the boundary conditions. If σ ∈ L∞(∂Ω) is non-negative and such that σ > 0 on a part
of the boundary of non-zero surface measure and if Ω is bounded and regular enough, see
section 2, then Qσ[·] is positive definite on H1(Ω) and therefore must satisfy some Hardy
type inequality with a positive integral weight.

Our aim is to find out how such a Hardy inequality depends on the function σ and on the
geometry of Ω. We will deal with several types of domains in Rn. For convex domains we
establish a Hardy inequality with an explicit expression for the associated integral weight,
Theorem 3.1. A generalisation to non-convex domains is discussed in section 4, see The-
orem 4.2 and Corolary 4.3. In the closing section 5 we treat an example of an unbounded
non-convex domain.

2. PRELIMINARIES

Let Ω ⊂ Rn be an open domain. We will need the following hypothesis.
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Assumption 2.1. Ω satisfies the strong local Lipschitz condition. This means that each point
y ∈ ∂Ω has a neighbourhood Uy such that Uy ∩ ∂Ω is the graph of a Lipschitz continuous
function with the Lipschitz constant independent of y, see [Ad, Chap.4].

If in addition to Assumption 2.1 we suppose that Ω is bounded and that σ ∈ L∞(∂Ω), then
in view of the trace inequality, see e.g. [Ad, Sect.7.5], it follows that

Qσ[u] ≤ c ‖u‖H1(Ω) (2.1)

for some c and all u ∈ H1(Ω). Hence the quadratic form Qσ[u] defined on H1(Ω) is
closed. The unique self-adjoint operator generated byQσ is then the Robin-Laplacian which
formally satisfies the boundary conditions

∂u

∂ηy
(y) + σ(y)u(y) = 0, y ∈ ∂Ω,

where ηy denotes the unit outer normal vector at y ∈ ∂Ω.
Finally, let us denote by S ⊂ Ω the subset of points in Ω for which there exist at least two

points y1, y2 ∈ ∂Ω where the minimum in (1.3) is achieved. Usually this set is called the
singular set of Ω and it is known that its Lebesgue measure is zero (see for example [LN]).
We introduce the projection p : Ω \ S → ∂Ω by

p(x) := y ∈ ∂Ω : δ(x) = |x− y|, x ∈ Ω \ S. (2.2)

3. CONVEX DOMAINS

3.1. Bounded convex domains. Our main result is the following

Theorem 3.1. Let Ω ⊂ Rn be open bounded and convex. Then for any 0 ≤ σ ∈ L∞(∂Ω)

and all u ∈ H1(Ω) it holds∫
Ω

|∇u(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y) ≥ 1

4

∫
Ω

(
δ(x) +

1

2σ(p(x))

)−2

|u(x)|2 dx+

(3.1)

+
1

4

∫
Ω

(
Rin +

1

2σ(p(x))

)−2

|u(x)|2 dx+
1

2

∫
∂Ω

(
Rin +

1

2σ(y)

)−1

|u(y)|2 dν(y).

Proof of Theorem 3.1 is given after Lemma 3.8.

Remark 3.2. Note that p(x) is defined on Ω \ S and therefore almost everywhere in Ω.

Remark 3.3. Assumption 2.1 is satisfied for all bounded convex domains.

Remark 3.4. Let us discuss the optimality of the first term on the right hand side of inequal-
ity (3.1). Assume that∫

Ω

|∇u|2 dx+ σ

∫
∂Ω

u2 dν ≥ c

∫
Ω

|u|2

(δ + 1
2σ

)2
dx. (3.2)
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holds true for a constant σ > 0 and some c. Let Ω ⊂ Rn be a ball of radius R centered in
the origin and consider the function

u(x) =
(
R +

1

2σ
− |x|

)1/2

, x ∈ Ω.

By inserting u into (3.2) and letting R→∞ we get

(1− 4c) Rn−1 log(1 + 2σR) +O(Rn−1) ≥ 0, R→∞.

This shows that c ≤ 1/4 and hence the constant 1/4 on the firs line of (3.1) is sharp. Another
way to see this is to look at the limit σ →∞, cf. Corollary 3.6 below, in which we recover
the classical Hardy inequality where the constant 1/4 is optimal.

However, it turns out that for a fixed convex domain Ω and certain values of σ, with σ
being equal to a constant, it is possible to obtain a better weight than the one given by the
first term in (3.1), see Remark 3.9 for more detail.

Theorem 3.1 can be applied also in situations with Dirichlet boundary condition on some
part of the boundary. In order to formulate the corresponding statement, we introduce the
space

C1
0,Γ(Ω) :=

{
u ∈ C1(Ω) : u|Γ = 0, Γ ⊂ ∂Ω

}
.

We then have

Corollary 3.5. Let Ω be as in Theorem 3.1 and let Γ ⊂ ∂Ω be closed. Then for all u ∈
C1

0,Γ(Ω) and any σ̃ ∈ L∞(∂Ω \ Γ) inequality (3.1) holds true with

σ(y) =

{
σ̃(y) if y ∈ ∂Ω \ Γ,

+∞ if y ∈ Γ.

Proof. Let u ∈ C1
0,Γ(Ω) and define the sequence of functions σn : ∂Ω→ R+ by

σn(y) =

{
σ̃(y) if y ∈ ∂Ω \ Γ,

n if y ∈ Γ
n ∈ N.

Then σn ∈ L∞(∂Ω) for each n ∈ N and therefore we can apply Theorem 3.1. The statement
then follows from the monotone convergence theorem by letting n→∞. �

When Γ = ∂Ω, then the above Corollary yields an improvement of the classical Hardy
inequality (1.2) for Dirichlet Laplacians, see [A1, A2, AW, BM, FMT, HHL] for more
results in this direction.

Corollary 3.6. Let Ω be as in Theorem 3.1. Then for all u ∈ H1
0 (Ω) it holds∫

Ω

|∇u(x)|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx+

1

4R2
in

∫
Ω

|u(x)|2 dx. (3.3)

Remark 3.7. In [BM] and [HHL] the constant in front of the second term on the right hand
side is expressed in terms of the diameter and volume of Ω respectively. A sharp constant
involving the inradius Rin is due to [AW].
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The key idea of the proof of Theorem 3.1 is to establish inequality (3.1) first for convex
polytops, and then to approximate the domain Ω by a sequence of such polytops. We start
with a one-dimensional result.

Lemma 3.8. Let b > 0 and assume that u belongs to AC[0, b], the space of absolutely
continuous functions on [0, b]. Then for any σ ≥ 0 we have∫ b

0

|u′(t)|2 dt+ σ |u(0)|2 ≥ 1

4

∫ b

0

((
t+

1

2σ

)−2

+
(
b+

1

2σ

)−2)
|u(t)|2 dt

+
1

2

(
b+

1

2σ

)−1

|u(0)|2. (3.4)

Proof. The inequality is trivial for σ = 0. Hence we may assume that σ > 0. Let f ∈
C1[0, b]. Integration by parts and Cauchy-Schwartz inequality show that(∫ b

0

(f(t)− f(b))′ |u|2 dt−(f(b)− f(0))|u(0)|2
)2

=
(∫ b

0

(f(b)− f(t)) (u′ū+ u ū′) dt
)2

≤ 4
(∫ b

0

|u′|2 dt
)(∫ b

0

(f(b)− f(t))2 |u|2 dt
)
.

This together with the inequality

A2

B
≥ 2A−B, B > 0,

gives∫ b

0

|u′(t)|2 dt+
f(b)− f(0)

2
|u(0)|2 ≥ 1

2

∫ b

0

f
′
(t)|u|2 dt− 1

4

∫ b

0

(f(b)− f(t))2|u|2 dt.
(3.5)

By inserting

f(t) = −
(
t+

1

2σ

)−1

into (3.5) and using the fact that(
t+

1

2σ

)−1(
b+

1

2σ

)−1

≥
(
b+

1

2σ

)−2

, 0 ≤ t ≤ b,

we arrive at (3.4). �

Remark 3.9. Although the right hand side of (3.4) is optimal in the limit σ → ∞, the
weight in the first term might be improved for σ large enough, depending on b, but finite.
This follows from the proof of [BM, Lemma A.1] applied to a test function v(t) = (t +

2/σ)−1/2u(t) with u ∈ C1[0, b].

Proof of Theorem 3.1. We start by proving the statement for u ∈ C1(Ω). Assume first that
σ is continuous. Since ∂Ω is closed in Rn, by Tietze’s extension Theorem there exists a
continuous function Σ : Ω→ R whose restriction to ∂Ω coincides with σ.

Let Q ⊂ Ω be an open convex polytop in Rn with N sides Γj , j = 1, . . . N . Clearly
we have u ∈ C1(Q̄). Denote by nj the unit inner normal vector to Γj . For each side Γj
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we consider the domain Pj attached to Γj by including all the points from Q for which the
distance to the boundary ∂Q is achieved at a point belonging to Γj . More precisely,

Pj =
{
x ∈ Q : ∃ y ∈ Γj : dist(x, ∂Q) = |x− y|

}
.

Then Q = ∪jP j and the singular set of Q is given by S = ∪Nj=1(∂Pj \ Γj). The inradius of
Ω obviously satisfies

Rin ≥ max
j

max
x∈Pj

dist (x,Γj). (3.6)

Moreover, for each y ∈ Γj there is a unique point xy ∈ S and ty such that

xy = y + ty nj. (3.7)

Denote by pQ the projection on ∂Q defined in the same way as p in (2.2) with Ω replaced
by Q. We apply Lemma 3.8 along the normal vector nj and, taking into account (3.6), we
obtain∫ ty

0

|∂tu(y + t nj)|2 dt+ ΣQ(y) |u(y)|2

≥ 1

4

∫ ty

0

((
t+

1

2ΣQ(y)

)−2

+
(
Rin +

1

2ΣQ(y)

)−2)
|u(y + t nj)|2 dt

+
1

2

(
Rin +

1

2ΣQ(y)

)−1

|u(y)|2,

where ΣQ is the restriction of Σ on ∂Q. Next we note that

t = δ(y + t nj) ∀ y ∈ Γj, ∀ t ∈ (0, ty).

Hence, integrating over variables orthogonal to nj and using the invariance of the Laplacian
with respect to rotations we arrive at∫

Pj

|∇u(x)|2 dx+

∫
Γj

ΣQ(y) |u(y)|2 dy ≥ 1

4

∫
Pj

((
δ(x) +

1

2 ΣQ(pQ(x))

)−2

(3.8)

+
(
Rin +

1

2 ΣQ(pQ(x))

)−2)
|u(x)|2 dx+

1

2

∫
Γj

(
Rin +

1

2ΣQ(y)

)−1

|u(y)|2 dy,

where dy denotes the (n − 1)−dimensional Lebesgue measure on Γj . Summation of (3.8)
over j gives us inequality (3.1) for any convex polytop Q ⊂ Ω with σ replaced by ΣQ and p
replaced by pQ.

Since Ω is convex, there exists a sequence of n−dimensional convex polytops Qm ⊂
Ω, m ∈ N, which approximates Ω. More precisely, for every ε there exists an mε such that
the Hausdorf distance between Ω and Qmε satisfies dH(Ω, Qmε) < ε, see [Ha, §9]. Since
Qm approximates Ω also in the surface measure, [Ha, §14], from the continuity of u and Σ

it follows that
ΣQm(pQm(x)) → σ(p(x)) a. e. x ∈ Ω,

and ∫
∂Qm

ΣQm(y) |u(y)|2 dy →
∫
∂Ω

σ(y) |u(y)|2 dν(y)
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as m→∞. Hence, by the dominated convergence we can pass to the limit to get∫
Ω

|∇u(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y) ≥ 1

4

∫
Ω

((
δ(x) +

1

2σ(p(x))

)−2

(3.9)

+
(
Rin +

1

2σ(p(x))

)−2)
|u(x)|2 dx+

1

2

∫
∂Ω

(
Rin +

1

2σ(y)

)−1

|u(y)|2 dν(y).

for all u ∈ C1(Ω) and any σ continuous.
Next we note that if σ ∈ L∞(∂Ω), then in view of the regularity of ∂Ω there exists a

sequence of continuous functions σk on ∂Ω which converges to σ in L1(∂Ω) as k → ∞.
Then σk admits a subsequence, which we still denote by σk, such that σk → σ almost
everywhere on ∂Ω. Hence σk(p(x)) → σ(p(x)) for almost every x ∈ Ω. From inequality
(3.9) it follows that (3.1) holds for all σk. Since u|∂Ω ∈ L∞(∂Ω), we can pass to the
limit as k → ∞ and using the dominated convergence we obtain inequality (3.1) for any
σ ∈ L∞(∂Ω) and all u ∈ C1(Ω).

Finally, if u ∈ H1(Ω), then by density there exists a sequence uj ∈ C1(Ω) such that
‖u − uj‖H1(Ω) → 0 as j → ∞. By the regularity of Ω it follows that H1(Ω) ↪→ L2(∂Ω),
[Ad, Sect.7.5]. Hence, after applying inequality (3.9) to uj and letting j →∞ we conclude
that (3.1) holds for all u ∈ H1(Ω). �

3.2. Unbounded convex domains. For unbounded domains we need to impose some de-
cay conditions on the test functions. Let ρ > 0 and define

Ċ1(Bρ) =
{
u ∈ C1(Rn) : u(x) = 0 ∀x : |x| ≥ ρ

}
, (3.10)

where Bρ = {x ∈ Rn : |x| < ρ}. We have

Theorem 3.10. Let Ω be open and convex and let 0 ≤ σ ∈ L∞(∂Ω). Let ρ > 0. Then
inequality (3.1) holds for all u ∈ Ċ1(Bρ).

Proof. Let u ∈ Ċ1(Bρ). Define Ωρ = Ω∩Bρ. Then Ωρ is convex and bounded. Now define
σ̂ : ∂Ωρ → R+ by

σ̂(y) =

{
σ(y) if y ∈ ∂Ω \ ∂Bρ,

+∞ elsewhere.
Let pρ be the projection on ∂Ωρ defined in the same way as p in (2.2) with Ω replaced by
Ωρ. Accordingly, let δρ(x) =dist(x, ∂Ωρ). Then

σ̂(pρ(x)) ≥ σ(p(x)), δρ(x) ≤ δ(x) for a. e. x ∈ Ωρ.

Moreover, the inradius of Ωρ is less or equal to the inradius Rin of Ω. Since u|Ωρ ∈ H1(Ωρ)

we can apply Theorem 3.1 to Ωρ with σ̂ defined as above. This gives the result. �

4. GENERAL BOUNDED DOMAINS

In this section we will establish a version of the Hardy inequality on general open domains
Ω ⊂ Rn satisfying Assumption 2.1. We will follow the approach of [D1, Sec.1.5], see also
[D2]. As in the case of convex domains we start with an auxiliary one-dimensional result.
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Lemma 4.1. Let u ∈ AC[0, b]. Then for any σ1 ≥ 0 and σ2 ≥ 0 we have∫ b

0

|u′(t)|2 dt+ σ1 |u(0)|2 + σ2 |u(b)|2 ≥ 1

4

∫ b/2

0

(
t+

1

2σ1

)−2

|u(t)|2 dt (4.1)

+
1

4

∫ b

b/2

(
b− t+

1

2σ2

)−2

|u(t)|2 dt.

Proof. This follows immediately from inequality (3.4). �

Given x ∈ Ω and some e ∈ Rn with ‖e‖n = 1, we introduce

de(x) = min
{
|s| : s ∈ R : x+ s e /∈ Ω

}
(4.2)

Hence, de(x) is the distance from x to the boundary of Ω in the direction of the vector e.
Denote by m(e, x) the set on which the minimum in (4.2) is achieved. Clearly, m(e, x)

contains either one or two elements. Let us define

σe(x) := max
s∈m(e,x)

σ(x+ se), x ∈ Ω. (4.3)

Finally, let dL be the normalized surface measure on the unit sphere in Rn and define

µσ(x) :=

∫
e: ‖e‖=1

(
de(x) +

1

2σe(x)

)−2

dL(e). (4.4)

We have

Theorem 4.2. Let Ω ⊂ Rn be a bounded domain satisfying Assumption 2.1. Then for all
u ∈ H1(Ω) and any σ ∈ L∞(∂Ω) it holds∫

Ω

|∇u(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y) ≥ 1

4

∫
Ω

|u(x)|2 µσ(x) dx. (4.5)

Proof. By Assumption 2.1 and [Ad, Thm.3.22] it suffices to prove inequality (4.5) for u ∈
C1(Ω). We denote by ∂e the partial differentiation in direction e. From Lemma 4.1 we find
out that

1

4

∫
Ω

(
de(x) +

1

2σe(x)

)−2

|u(x)|2 dx ≤
∫

Ω

|∂eu(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y) (4.6)

holds for all e with ‖e‖ = 1. The result then follows by integrating the last inequality with
respect to e over the unit sphere. �

Corollary 4.3. Let Ω satisfy conditions of Theorem 4.2. Assume that σ(y) = σ > 0 is
constant. Then there exists a constant K = K(Ω, n), independent of σ, such that for all
u ∈ H1(Ω) it holds∫

Ω

|∇u(x)|2 dx+ σ

∫
∂Ω

|u(y)|2 dν(y) ≥ K

∫
Ω

|u(x)|2

(δ(x) + 1
4σ

)2
dx. (4.7)
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Proof. Denote by ωn the surface area of the unit ball in Rn. Let x ∈ Ω and let a ∈ ∂Ω be
such that r := δ(x) = |x− a|. Define

Λx =
{
e ∈ Rn : ‖e‖ = 1 ∧ ∃ s > 0 such that x+ s e /∈ Ω and |x+ s e− a| < r

}
.

By the triangle inequality we have s < 2r. It follows that the region {y /∈ Ω : |y−a| < r} is
contained in the n−dimensional cone of radius 2r with the opening angleL(Λx)ωn centered
in x. Hence

cn L(Λx) r
n ≥ Vol

(
{y /∈ Ω : |y − a| < r}

)
, (4.8)

for some constant cn which depends only on n. On the other hand, from Assumption 2.1 it
follows that there exits α > 0 such that

Vol
(
{y /∈ Ω : |y − a| < r}

)
≥ α rn ∀ a ∈ ∂Ω, ∀ r > 0.

This together with (4.8) implies that L(Λx) ≥ c−1
n α for every x ∈ Ω. We thus get

µσ(x) =

∫
e: ‖e‖=1

(
de(x) +

1

2σ

)−2

dL(e) ≥
∫

Λx

(
de(x) +

1

2σ

)−2

dL(e)

≥
(

2 δ(x) +
1

2σ

)−2

L(Λx) ≥
(

2 δ(x) +
1

2σ

)−2 α

cn
,

since for every e ∈ Λx we have de(x) ≤ s ≤ 2 δ(x). Inequality (4.7) now follows from
Theorem 4.2. �

4.1. The case of sign changing σ. Note that the assumption σ ≥ 0 is crucial for the results
given in Theorems 3.1 and 4.2. When σ is negative on some part of ∂Ω, then a simple test
function argument shows that the resulting Robin-Laplacian may have a negative eigenvalue
even if ∫

∂Ω

σ dν > 0,

provided σ is chosen in a suitable way. This tells us that if σ changes sign, then no Hardy
inequality with positive integral weight can hold unless some further restrictions are made.

In order to give an example of a Hardy inequality with a sign changing weight, we con-
sider a class of domains characterized as follows. Suppose that f : Rn−1 → R is continuous
and that there exists an open set A ⊂ Rn−1 such that f > 0 in A and f = 0 on ∂A. We then
define

Ω = {x := (x′, t) ∈ Rn : x′ ∈ A , 0 < t < f(x′)}. (4.9)

Let σ ∈ L∞(∂Ω) be such that σ = 0 on ∂Ω \A and denote by A± ⊂ A the sets on which σ
is positive respectively negative. Let χA± be the related characteristic functions. We have

Proposition 4.4. Let Ω and σ be given as above. Then for any u ∈ H1(Ω) it holds∫
Ω

|∇u(x)|2 dx+

∫
∂Ω

σ(y) |u(y)|2 dν(y) ≥
∫

Ω

ρ(x) |u(x)|2 dx+ (4.10)

+
1

2

∫
A+

(
f(x′) +

1

2σ(x′)

)−1

|u(x′, 0)|2 dx′,
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where

ρ(x) = ρ(x′, t) =
1

2

(
f(x′) +

1

2σ(x′)

)−2
χA+(x′) + µ(x′)χA−(x′),

and −µ(x′) is the first positive solution to the implicit equation

−σ(x′) =
√
−µ(x′) tanh

(
f(x′)

√
−µ(x′)

)
, x′ ∈ A−. (4.11)

Proof. Let x′ ∈ A−. A straightforward calculation shows that µ(x′) defined by (4.11) is the
lowest eigenvalues of the Laplace operator on interval (0, f(x′)) with Neumann boundary
condition at f(x′) and Robin boundary condition with coefficient σ(x′) at 0. Therefore we
have∫ f(x′)

0

|∂tu(x′, t)|2 dt+ σ(x′) |u(x′, 0)|2 ≥ µ(x′)

∫ f(x′)

0

|u(x′, t)|2 dt ∀ x′ ∈ A−.

On the other hand, from Lemma 3.8 we easily deduce that∫ f(x′)

0

|∂tu(x′, t)|2 dt+ σ(x′) |u(x′, 0)|2 ≥ 1

2

(
f(x′) +

1

2σ(x′)

)−2
∫ f(x′)

0

|u(x′, t)|2 dt

+
1

2

(
f(x′) +

1

2σ(x′)

)−1 |u(x′, 0)|2 (4.12)

for all x′ ∈ A+. �

5. UNBOUNDED NON-CONVEX DOMAINS: AN EXAMPLE

In this section we give an example of a Hardy inequality on a particular type of an un-
bounded non-convex domain. Namely, on the complement of a ball.

Theorem 5.1. Let BR = {x ∈ Rn : |x| < R} and let Bc
r = Rn \ BR be its complement.

Then for any constant σ ≥ 0 the inequality∫
BcR

|∇u(x)|2 dx+ σ

∫
∂BR

|u(y)|2 dν(y) ≥ 1

4

∫
BcR

(
|x| −R +

1

2σ

)−2

|u(x)|2 dx+

(5.1)

+
(n− 1)(n− 3)

4

∫
BcR

|u(x)|2

|x|2
dx.

holds true for all u ∈ H1(Bc
R).

Proof. Without loss of generality we may assume that u is real-valued. Consider first the
case σ > 0. Let δ(x) = |x| − R. We have |∇δ(x)| = 1 and ∆δ(x) = n−1

|x| . Integration by
parts then gives∫

BcR

u(x)∇u(x) · ∇δ(x)

δ(x) + 1
2σ

dx =
1

2

∫
BcR

(
1

(δ(x) + 1
2σ

)2
− n− 1

|x|(δ(x) + 1
2σ

)

)
|u(x)|2 dx

− σ
∫
∂BR

|u(y)|2 dν(y), (5.2)
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and ∫
BcR

u(x)∇u(x) · x
|x|2

dx = − 1

2R

∫
∂BR

|u(y)|2 dν(y)− (n− 2)

2

∫
BcR

|u(x)|2

|x|2
dx. (5.3)

Since∇δ(x) · x = |x|, using (5.2), (5.3) and a straightforward calculation we obtain∫
BcR

∣∣∣∇u(x)− ∇δ(x)

2δ(x) + 1
σ

u(x) +
(n− 1)u(x)x

2|x|2
∣∣∣2 dx ≤ ∫

BcR

|∇u(x)|2 dx+

σ

∫
∂BR

|u(y)|2 dν(y)− 1

4

∫
BcR

(
δ(x) +

1

2σ

)−2

|u(x)|2 dx− (n− 1)(n− 3)

4

∫
BcR

|u(x)|2

|x|2
dx.

This proves the Theorem for σ > 0. The case σ = 0 then follows from (5.1) by monotone
convergence. �
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[AW] F. G. Avkhadiev, K.-J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for con-
vex domains, Z. Angew. Math. Mech. 87 (2007), 632–642.

[B] M. Sh. Birman, On the spectrum of singular boundary-value problems (in Russian) Mat. Sb. 55 (1961),
125–174; English transl. in Amer. Math. Soc. Trans., 53 (1966), 23–80.

[BM] H. Brezis and M. Marcus, Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2 (1998), 217–237.

[D1] E.B.Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge 1989.
[D2] E.B.Davies, A review of Hardy inequalities. The Maz’ya anniversary collection, Vol. 2, Oper. Theory
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