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1. Introduction and statements

In this paper we study minimal energy configurations of a mixture of two conductive materials in
a bounded, connected open set Ω ⊂ Rn, where the energy includes penalization of the perimeter of
the interface between the materials.

The energy we consider here is given by

(1) F(u,E) =
∫

Ω

σE(x)|∇u|2 dx+ P (E,Ω) ,

where E ⊂ Ω is a measurable set, σE(x) = αχE(x) + βχΩ\E(x), for some 0 < β < α, u ∈ W 1,2(Ω)
and P (E,Ω) denotes the perimeter of E in Ω. We are interested in the following constrained problem

(2) min {F(u,E) : u = u0 on ∂Ω, |E| = d} ,
where u0 ∈W 1,2(Ω) is a given boundary datum and 0 < d < |Ω| is prescribed.

Energies with surface terms competing with a volume term often appear in materials science as a
model for optimal design [1], phase transiction [5], liquid crystals [6] or continuum mechanics [4].

A similar functional was studied by L.Ambrosio and G.Buttazzo in [1] where they consider an
energy of the type∫

Ω

[
σE(x)|∇u|2 + χE(x)g1(x, u) + χΩ\E(x)g2(x, u)

]
dx+ P (E,Ω) ,

with u = 0 on ∂Ω, and prove that if (u,E) is a minimal configuration then u is locally Hölder
continuous in Ω and E is (equivalent to) an open set such that P (E,Ω) = Hn−1(∂E ∩ Ω).

A stronger regularity result is proved by F.H.Lin in [7] who shows that if (u,E) is a minimizer
of functional (1) in the class of all configurations such that u and ∂E are prescribed on ∂Ω, then
u ∈ C1/2(Ω) and ∂∗E is a C1,α-hypersurface away from a closed singular set Σ of Hn−1 measure zero
(by ∂∗E we denote the reduced boundary of E in the sense of De Giorgi).

A a more detailed analysis of the minimal configurations of (1) is carried on in the two dimensional
case by C.J.Larsen in [6]. However also in this case only a partial regularity of ∂E is obtained.

All minimum problems considered in these papers are unconstrained. Indeed, from the point of
view of regularity the constraint |E| = d introduces extra difficulties, since one can work only with
variations which keep the volume constant.

The main result in this paper deals precisely with this issue, stating that every minimizer of the
constrained problem (2) is also a minimizer of a suitable energy functional with a volume penalization,
but no constraints.

Theorem 1. There exists λ0 > 0 such that if (u,E) is a minimizer of the constrained problem (2),
then for all λ ≥ λ0, (u,E) is also a minimizer of the functional

(3) Fλ(v, F ) =
∫

Ω

σF (x)|∇v|2 dx+ P (F,Ω) + λ
∣∣|F | − d∣∣
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among all configurations (v, F ) such that v = u0 on ∂Ω.

Though the functional in (3) is slightly different from the ones considered in [1], [7] or [6], from
the point of view of the regularity the extra term λ

∣∣|F | − d∣∣ is a higher order, negligible perturbation,
in the sense that if x0 ∈ ∂∗E ∩ ∂Ω then |E ∩ B%(x0)| decays like %n as % → 0+ while the leading
term

∫
B%(x0)

σE |∇u|2 + P (E,B%(x0)) decays like %n−1. Therefore, as an immediate consequence of
Theorem 1, we have that the regularity results proved in above mentioned papers still hold for minimal
configurations of the constrained problem (2).

However, the full regularity of the boundary of the optimal sets E remains an open problem, even
in low dimensions. Next result gives a partial answer to this question.

Theorem 2. There exists γn > 1 such that if
α

β
< γn and (u,E) is a minimizer of problem (2),

then u ∈ C0,1/2+ε(Ω), for some 0 < ε < 1/2 depending on n, α, β, ∂∗E is a C1,ε-hypersurface and
Hs(∂E \ ∂∗E) = 0 for all s > n− 8.

We conclude with a few words on the proofs. Theorem 1 is obtained by a contradiction argument.
We show that if λ is sufficiently large and (u,E) is a minimizer of (3) with |E| 6= d, then one can
construct a suitable bi-Lipschitz map Φ : Ω → Ω such that, setting ũ = u ◦ Φ−1 and Ẽ = Φ(E), one
has Fλ(ũ, Ẽ) < Fλ(u,E). The construction of this diffeomorphism is quite delicate and uses in an
essential way the structure theorem of the reduced boundary ∂∗E due to De Giorgi.

Theorem 2 follows instead by proving that if α/β is not too large (and the critical ratio γn can be
explicitly estimated), then

∫
B%(x0)

|∇u|2 decays like %n−1+2ε. As already observed in [7] this estimate
easily implies that E is an area almost minimizer in the sense of F.Almgren and the regularity of ∂∗E
follows from the results on minimal surfaces proved in [3] and [8].

2. Proof of Theorem 1

This section is entirely devoted to the proof of Theorem 1. We argue by contradiction assuming
that there exist a sequence {λh}h∈N such that λh → ∞ as h → ∞ and a sequence of configurations
(uh, Eh) minimizing Fλh

under the boundary condition uh = u0 for all h such that |Eh| 6= d for all h.
Notice that

(4) Fλh
(uh, Eh) ≤ F(u0, E0) =: Λ ,

where E0 ⊂ Ω is a fixed set of finite perimeter such that |E0| = d. Therefore from (4) it follows that
the sequence uh is bounded in W 1,2(Ω), the perimeters of the sets Eh are bounded and |Eh| → d.
Therefore, with no loss of generality, we may assume, passing possibly to a subsequence, that there
exist a configuration (u,E) such that uh → u weakly in W 1,2(Ω) and χEh

→ χE a.e. in Ω. Thus
E is set of finite perimeter in Ω with |E| = d. Finally we shall assume that |Eh| < d for all h,
since if |Eh| > d the proof is similar. Our aim is to show that for h sufficiently large there exists a
configuration (ũh, Ẽh) such that Fλh

(ũh, Ẽh) < Fλh
(uh, Eh), thus proving the result by contradiction.

Proof. Step 1. We begin by taking a point x ∈ ∂∗E ∩ Ω; such a point exists since E has finite
perimeter in Ω, 0 < |E| < |Ω|, and Ω is connected. By De Giorgi structure theorem for sets of finite
perimeter (see [2, Theorem 3.59]) the sets Er = (E − x)/r converge locally in measure to the half
space H = {z · νE(x) > 0}, i.e., χEr

→ χH in L1
loc(Rn), where νE(x) is the generalized inner normal

to E at x (see [2, Definition 3.54]). Let y ∈ B1(0) \ H be the point y = −νE(x)/2. Given ε (to be
chosen at the end of the proof), since χEr → χH in L1(B1(0)) there exists r > 0 such that

|Er ∩B1/2(y)| < ε, |Er ∩B1(y)| ≥ |Er ∩B1/2(0)| > ωn
2n+2

,
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where ωn denotes the measure of the unit ball of Rn and xr = x+ ry ∈ Ω. Therefore we have

|E ∩Br/2(xr)| < εrn, |E ∩Br(xr)| >
ωnr

n

2n+2
.

Let us assume, without loss of generality, that xr = 0 and from now on let us denote the balls centered
at the origin by Br. From the convergence of Eh to E we have that for all h sufficiently large

(5) |Eh ∩Br/2| < εrn, |Eh ∩Br| >
ωnr

n

2n+2
.

Let us now define the following bi-Lipschitz map which takes Br into itself

(6) Φ(x) =


(
1− σ(2n − 1)

)
x if |x| < r

2
,

x+ σ
(

1− rn

|x|n
)
x if

r

2
≤ |x| < r,

x if |x| ≥ r ,

for some fixed 0 < σ < 1/2n such that, setting

Ẽh = Φ(Eh), ũh = uh ◦ Φ−1 ,

we have |Ẽh| < d. Let us now estimate

Fλh
(uh, Eh)−Fλh

(ũh, Ẽh) =
[∫

Br

σEh
(x)|∇uh|2 dx−

∫
Br

σ eEh
(y)|∇ũh|2 dy

]
(7)

+
(
P (Eh, Br)− P (Ẽh, Br)

)
+ λh

(
|Ẽh| − |Eh|

)
= I1,h + I2,h + I3,h .

Step 2. In order to estimate I1,h we need to estimate preliminarly the gradient and the jacobian of
Φ in the annulus Br \Br/2. If r/2 < |x| < r, we have

∂Φi
∂xj

(x) =
(

1 + σ − σrn

|x|n
)
δij + nσrn

xixj
|x|n+2

for all i, j = 1, . . . n

and thus, if η ∈ Rn, we get

(∇Φ ◦ η) · η =
(

1 + σ − σrn

|x|n
)
|η|2 + nσrn

(x · η)2

|x|n+2

from which it follows that

|∇Φ ◦ η| ≥
(

1 + σ − σrn

|x|n
)
|η| .

From this inequality we easily deduce an estimate on the norm of ∇Φ−1∥∥∇Φ−1
(
Φ(x)

)∥∥ = max
|η|=1

∣∣∣∣∇Φ−1 ◦
( ∇Φ ◦ η
|∇Φ ◦ η|

)∣∣∣∣ = max
|η|=1

1
|∇Φ ◦ η|

(8)

≤
(

1 + σ − σrn

|x|n
)−1

≤
(
1− (2n − 1)σ

)−1 for all x ∈ Br \Br/2 .

Concerning the jacobian, it is convenient to write, for x ∈ Br \Br/2,

(9) Φ(x) = ϕ(|x|) x
|x|

,

where

ϕ(t) = t
(

1 + σ − σrn

tn

)
, for all t ∈ [r/2, r] .



4 L.ESPOSITO AND N. FUSCO

Let I denote the identity map in Rn. Recalling that if A = I + a ⊗ a for some vector a ∈ Rn then
detA = 1 + |a|2, a straightforward calculation gives for all x ∈ Br \Br/2

(10) JΦ(x) = ϕ′(|x|)
(ϕ(|x|)
|x|

)n−1

=
(

1 + σ +
(n− 1)σrn

|x|n
)(

1 + σ − σrn

|x|n
)n−1

≥ 1 + C1(n)σ ,

for some positive constant C1(n) depending only on n. On the other hand, from (10) we get also

(11) JΦ(x) ≤ 1 + 2nnσ .

Let us now turn to the estimate of I1,h. Performing the change of variable y = Φ(x) in the second
integral defining I1,h, and observing that σ eEh

(Φ(x)) = σEh
(x), we get

I1,h =
∫
Br

σEh
(x)
[
|∇uh(x)|2 −

∣∣∇uh(x) ◦ ∇Φ−1
(
Φ(x)

)∣∣2JΦ(x)
]
dx = A1,h +A2,h ,

where A1,h stands for the above integral evaluated on Br/2 and A2,h for the same integral evaluated
on Br \Br/2. Recalling the definition of Φ in (6) we get

A1,h =
∫
Br/2

σEh
(x)
[
|∇uh(x)|2 −

∣∣∇uh(x) ◦
(
1− σ(2n − 1)

)−1
I
∣∣2(1− σ(2n − 1)

)n]
dx

=
∫
Br/2

σEh
(x)|∇uh(x)|2

[
1−

(
1− σ(2n − 1)

)n−2]
dx ≥ 0 .

Recalling (8), (11) and (4) we have

A2,h =
∫
Br\Br/2

σEh
(x)
[
|∇uh(x)|2 −

∣∣∇uh(x) ◦ ∇Φ−1
(
Φ(x)

)∣∣2JΦ(x)
]
dx

≥
∫
Br\Br/2

σEh
(x)|∇uh(x)|2

[
1−

(
1− (2n − 1)σ

)−2(1 + 2nnσ
)]
dx

≥ −C2(n)σ
∫
Br\Br/2

σEh
(x)|∇uh(x)|2 dx ≥ −C2(n)Λσ ,

for some C2(n) > 0, depending only on n. Thus, from the above estimates we may conclude that

(12) I1,h ≥ −C2(n)Λσ .

Step 3. To estimate I2,h we shall make use of the area formula for maps between rectifiable sets. To
this aim let us denote for all x ∈ ∂∗Eh by Th,x : πh,x → Rn the tangential differential at x of Φ along
the approximate tangent space πh,x to ∂∗Eh, which is defined by Th,x(τ) = ∇Φ(x) ◦ τ for all τ ∈ πh,x.
We recall (see [2, Definition 2.68]) that the (n− 1)-dimensional jacobian of Th,x is given by

Jn−1Th,x =
√

det
(
T ∗h,x ◦ Th,x

)
,

where T ∗h,x is the adjoint of the map Th,x. To estimate Jn−1Th,x let us fix x ∈ ∂∗Eh∩ (Br \Br/2). Let
us denote by {τ1, . . . , τn−1} an orthonormal base for πh,x and by L the n× (n−1) matrix representing
Th,x with respect to the fixed base in πh,x and the standard base {e1, . . . , en} in Rn. From (9) we
have

Lij = ∇Φi · τj =
ϕ(|x|)
|x|

ei · τj +
(
ϕ′(|x|)− ϕ(|x|)

|x|

) xi
|x|

x · τj
|x|

, i = 1, . . . , n, j = 1, . . . , n− 1 .

Thus, we have that for j, l = 1, . . . , n− 1

(L∗ ◦ L)jl =
ϕ2(|x|)
|x|2

n∑
i=1

(ei · τj)(ei · τl) +
(
ϕ′2(|x|)− ϕ2(|x|)

|x|2
) (x · τj)(x · τl)

|x|2
.
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Since Jn−1Th,x is invariant by rotation, in order to evaluate det(L∗ ◦ L) we may assume without loss
of generality that τj = ej , for all j = 1, . . . , n− 1. Then, from the equality above we have

L∗ ◦ L =
ϕ2(|x|)
|x|2

I(n−1) +
(
ϕ′2(|x|)− ϕ2(|x|)

|x|2
)x′ ⊗ x′
|x|2

,

where I(n−1) denotes the identity map on Rn−1 and x′ = (x1, . . . , xn−1). With a calculation similar
to the one performed to obtain (10), from the equality above we easily get that

det(L∗ ◦ L) =
(ϕ2(|x|)
|x|2

)n−1[
1 +

|x|2

ϕ2(|x|)

(
ϕ′2(|x|)− ϕ2(|x|)

|x|2
) |x′|2
|x|2

]
and thus, using (9) we can estimate for x ∈ ∂∗Eh ∩ (Br \Br/2)

Jn−1Th,x =
√

det(L∗ ◦ L) =
(ϕ(|x|)
|x|

)n−1

√
1 +

|x|2
ϕ2(|x|)

(
ϕ′2(|x|)− ϕ2(|x|)

|x|2
) |x′|2
|x|2

(13)

≤
(ϕ(|x|)
|x|

)n−2

ϕ′(|x|) ≤ ϕ′(|x|) ≤ 1 + σ + 2n(n− 1)σ .

To estimate I2,h, we use the area formula for maps between rectifiable sets ([2, Theorem 2.91]), thus
getting

I2,h = P (Eh, Br)− P (Ẽh, Br) =
∫
∂∗Eh∩Br

dHn−1 −
∫
∂∗Eh∩Br

Jn−1Th,x dHn−1

=
∫
∂∗Eh∩Br\Br/2

(1− Jn−1Th,x) dHn−1 +
∫
∂∗Eh∩Br/2

(1− Jn−1Th,x) dHn−1 .

Notice that the last integral in the above formula is nonnegative since Φ is a contraction in Br/2,
hence Jn−1Th,x < 1 in Br/2, while from (13) and (4) we have∫

∂∗Eh∩Br\Br/2

(1− Jn−1Th,x) dHn−1 ≥ −2nnP (Eh, Br)σ ≥ −2nnΛσ ,

thus concluding that

(14) I2,h ≥ −2nnΛσ .

Step 4. To estimate I3,h we recall (5), (6), (10), thus getting

I3,h = λh

∫
Eh∩Br\Br/2

(JΦ(x)− 1) dx+ λh

∫
Eh∩Br/2

(JΦ(x)− 1) dx

≥ λhC1(n)
( ωn

2n+2
− ε
)
σrn − λh

[
1−

(
1− (2n − 1)σ

)n]
εrn

≥ λhσr
n
[
C1(n)

ωn
2n+2

− C1(n)ε− (2n − 1)nε
]
.

Therefore, if we choose 0 < ε < ε(n), with ε(n) depending only on the dimension, we have that

I3,h ≥ λhC3(n)σrn ,

for some positive C3(n). From this inequality, recalling (7), (12) and (14) we obtain

Fλh
(uh, Eh)−Fλh

(ũh, Ẽh) ≥ σ
(
λhC3r

n − Λ(C2 + 2nn)
)
> 0

if λh is sufficiently large. This contradicts the minimality of (uh, Eh), thus concluding the proof. �
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3. Proof of Theorem 2

In this section we are going to prove Theorem 2. To this aim, given a set E ⊂ Ω of finite perimeter
in Ω for every ball Br(x) ⊂⊂ Ω we measure how far E is from being an area minimizer in the ball by
setting

ψ(E,Br(x)) = P (E,Br(x))−min {P (F,Br(x)) : F∆E ⊂⊂ Br(x)} .
The following regularity result due to I.Tamanini ([8]), shows that if ψ(E,Br(x)) decays fast enough
when r → 0, then E has essentially the same regularity properties of an area minimizing set.

Theorem 3. Let Ω be an open subset of Rn and let E be a set of finite perimeter satisfying for
δ ∈ (0, 1/2)

ψ(E,Br(x)) ≤ crn−1+2δ

for every x ∈ Ω and every r ∈ (0, r0), with c, r0 > 0. Then ∂∗E is a C1,δ-hypersurface in Ω and
Hs ((∂E \ ∂∗E) ∩ Ω)) = 0 for all s > n− 8.

Let us now prove Theorem 2.

Proof. Step 1. Let us first prove that u ∈ C0,1/2+ε for some ε if the the ratio α/β < γn for some
γn > 1 depending only on the dimension. Let us fix a ball Br(x) ⊂⊂ Ω and assume, with no loss of
generality that x = 0. Let us denote by v the harmonic function in Br coinciding with u on ∂Br. We
then have

(15)
∫
Br

σE(x)∇u · ∇ϕdx = 0,
∫
Br

∇v · ∇ϕdx = 0 ,

for all ϕ ∈ W 1,2
0 (Br). Multiplying the second equation in (15) by α and subtracting from the first

equation, we obtain

(16) α

∫
Br

(∇u−∇v) · ∇ϕdx+ (β − α)
∫
Br\E

∇u · ∇ϕdx = 0 .

Similarly, if we multiply the second equation in (15) by β and subtract from the first equation, we
obtain

β

∫
Br

(∇u−∇v) · ∇ϕdx+ (α− β)
∫
Br∩E

∇u · ∇ϕdx = 0 .

Choosing in this equation and in (16) ϕ = u− v and adding the resulting equalities, we easily get

(α+ β)
∫
Br

|∇u−∇v|2 dx ≤ (α− β)
(∫

Br

|∇u|2 dx
)1/2(∫

Br

|∇u−∇v|2 dx
)1/2

,

hence

(17)
∫
Br

|∇u−∇v|2 dx ≤ (α− β)2

(α+ β)2

∫
Br

|∇u|2 dx .

Since v is harmonic, we have for 0 < % < r∫
B%

|∇v|2 dx ≤
(%
r

)n ∫
Br

|∇v|2 dx .

From this inequality and (17) we easily get(∫
B%

|∇u|2 dx
)1/2

≤
(∫

B%

|∇u−∇v|2 dx
)1/2

+
(∫

B%

|∇v|2 dx
)1/2

≤ α− β
α+ β

(∫
Br

|∇u|2 dx
)1/2

+
(%
r

)n/2(∫
Br

|∇v|2 dx
)1/2
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≤
[
α− β
α+ β

+
(%
r

)n/2](∫
Br

|∇u|2 dx
)1/2

and thus, for all 0 < % < r

(18)
∫
B%

|∇u|2 dx ≤
[
α− β
α+ β

+
(%
r

)n/2]2 ∫
Br

|∇u|2 dx .

Let us now find the largest χn < 1 such that there exists ϑn < 1 for which

(19)
(
χn + ϑn/2n

)2 = ϑn−1
n .

This equality is equivalent to
χn = ϑ(n−1)/2

n − ϑn/2n .

Since
max
ϑ∈[0,1]

(
ϑ(n−1)/2 − ϑn/2

)
=
(n− 1

n

)n−1

−
(n− 1

n

)n
,

we have that

(20) χn =
(n− 1

n

)n−1

−
(n− 1

n

)n
.

Assume now that

(21)
α− β
α+ β

< χn .

From (18), (19) and (21) it follows that there exists ε > 0, depending on α, β, n such that∫
Bϑnr

|∇u|2 dx ≤ ϑn−1+2ε
n

∫
Br

|∇u|2 dx .

From this estimate, a standard iteration argument yields that for all 0 < % < r∫
B%

|∇u|2 dx ≤ c(n)
(%
r

)n−1+2ε
∫
Br

|∇u|2 dx

and this inequality implies that u ∈ C0,1/2+ε(Ω) whenever (see (21))
α

β
< γn :=

1 + χn
1− χn

.

Step 2. Let us now fix r0 and a point x ∈ Ω such that dist(x, ∂Ω) > 2r0. Let us take 0 < r < r0 and
denote by F any set of finite perimeter such that E∆F ⊂⊂ Br(x). From Theorem 1 we have that

Fλ0(u,E) ≤ Fλ0(u, F ) .

From this inequality and from what we have just proved in Step 1, we obtain that

P (E,Br(x))− P (F,Br(x)) ≤
∫
Br

σE(x)|∇u|2 dx+ λ0

∣∣|F | − |E|∣∣ ≤ crn−1+2ε + crn .

The assertion then follows immediately from Theorem 3. �

Remark. Notice that (20) and (21) give an explicit value for γn. One gets, for instance, γ2 = 5/3
and γ3 = 31/23. Moreover,

n(γn − 1)→ 2
e

as n → ∞. We do not know if Theorem 2 still holds with a larger bound on the ratio α/β or even
with no bound at all.
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