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Abstract - We prove some properties of strong minimizers for functionals depending on
free discontinuities, free gradient discontinuities and second derivatives, which are related
to image segmentation.
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1. Introduction

In previous papers ([CLT3],[CLT4]) we proved the existence of minimizers for the
following functional

(1.1)
F (K0,K1, u) :=∫

Ω\(K0∪K1)

(
|D2u|2 + µ|u− g|q

)
dy + αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω) ,

where Ω ⊂ R2 is an open set, H1 denotes the length (in the sense of the one dimensional
Hausdorff measure), and α, β, µ, q ∈ R, with

(1.2) q ≥ 1 , µ > 0 , 0 < β ≤ α ≤ 2β , g ∈ L2q
loc(Ω) ∩ Lq(Ω) ,

are given; while K0, K1 ⊂ R2 are Borel sets (a priori unknown) with K0 ∪K1 closed,
u ∈ C2(Ω \ (K0 ∪K1)) and it is approximately continuous on Ω \K0.
Functional (1.1) (called thin plate surface under tension in computer vision modelling)
was proposed by Blake & Zisserman as an energy to be minimized in order to achieve
a segmentation of a monochromatic picture ([BZ]). In this context g describes the light
intensity level of the image Ω, µ is a scale parameter, α is a contrast parameter and a
measure of immunity to noise, β is a gradient-contrast parameter.
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The elements of a minimizing triplet (K0,K1, u) play respectively the role of edges, creases
and smoothly varying intensity in the region Ω \ (K0 ∪ K1) for the segmented image.
This second-order model (1.1) was introduced to overcome the over-segmentation of steep
gradients (ramp effect) and other inconvenients which occur in lower order models as in
case of Mumford & Shah functional ([MS],[DGCL]).

The energy (1.1) is a functional depending on bulk energy and a surfacic discontinuity
energy; their coupling is rather intriguing, since there is dependence on second derivatives,
while there is no bound on the first derivatives. Moreover the discontinuities take place on
the sets K0, K1 which are “a priori” unknown, hence the associated minimization problem
turns out to be essentially nonconvex, and non uniqueness of minimizers may develop for
suitable data g.

The existence of minimizers of (1.1) was proved by a suitable definition of weak solutions
([CLT3]), and hence by showing regularity properties for them ([CLT4]).

Our technique was based on the application of a new Poincaré type inequality ([CLT4])
which entails a suitable decay outside the singular set of weak solutions.

In this paper we prove additional properties of the solutions: upper and lower energy
density of the essential minimizing triplet (see Definition in Section 3); an elimination
property and a precise estimate of the Minkowski content for the segmentation set K0∪K1
(see Theorems in Section 4).

In particular the elimination property states that, when an optimal segmentation has
length, in a small ball, less than an absolute constant times the radius of the ball, then
such segmentation does not intersect the ball with half the radius. This is also a useful
information for numerical analysis of the problem, in the sense that a suitable algorithm
can eliminate such essential isolated parts of K0 ∪K1 because they are “needless energy”
for the segmentation.

The result about the Minkowski content expresses the agreement between the Hausdorff
one dimensional measure and the Minkowski content of the segmentationK0∪K1. Roughly
speaking, the theorem says that a uniform fattening of an optimal segmentation is a rea-
sonable approximation of the segmentation itself.

The assumption g ∈ L2q
loc(Ω) is sharp in the sense that for every s < 2q there exist

g ∈ Ls(Ω) such that functional (1.1) has no minimizing triplet. This is proved here by a
counterexample in section 5.

The outline of the paper is the following.

1. Introduction.

2. Notation and preliminary results.

3. Local weak minimizers and essential minimizing triplets.

4. Density estimates for essential minimizing triplets.

5. A counterexample.
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2. Notation and preliminary results

From now on we denote by Ω an open set in R2. Given two vectors a, b, we set
a · b =

∑
i aibi.

For a given set U ⊂ R2 we denote by ∂U its topological boundary, by H1(U) its one–
dimensional Hausdorff measure and by |U | its Lebesgue outer measure; χU is the charac-
teristic function of U . We indicate by Bρ(x) the open ball {y ∈ R2; |y − x| < ρ}. If Ω,Ω′

are open subsets in R2, by Ω ⊂⊂ Ω′ we mean that Ω is compact and Ω ⊂ Ω′.
We say that a subset E of R2 is countably (H1, 1) rectifiable if it is H1 measurable and
E (up to a set of vanishing H1 measure) is the countable union of C1 images of bounded
subsets of R; if in addition H1(E) < +∞ then we say that E is (H1, 1) rectifiable.
For any Borel function v : Ω → R the approximate upper and lower limits of v are the
Borel functions v+, v− : Ω→ R = R ∪ {±∞} defined for any x ∈ Ω by

v+(x) = inf{t ∈ R : lim
ρ→0

ρ−2|{v > t} ∩Bρ(x)| = 0},

v−(x) = sup{t ∈ R : lim
ρ→0

ρ−2|{v < t} ∩Bρ(x)| = 0}.

The set
Sv = {x ∈ Ω; v−(x) < v+(x) }

is a Borel set, of negligible Lebesgue measure (see e.g. [F], 2.9.13); we say that v is
approximately continuous on Ω \ Sv and we denote by ṽ : Ω \ Sv → R̄ the function

ṽ(x) = ap lim
y→x

v(y) = v+(x) = v−(x).

Let x ∈ Ω \ Sv be such that ṽ(x) ∈ R; we say that v is approximately differentiable at x
if there exists a vector ∇v(x) ∈ R2 (the approximate gradient of v at x) such that

ap lim
y→x

|v(y)− ṽ(x)−∇v(x) · (y − x)|
|y − x|

= 0.

If v is a smooth function then∇v is the classical gradient. In the following with the notation
|∇v| we mean the euclidean norm of ∇v and we set ∇iv = (ei · ∇)v, {ei} denoting the
canonical base of R2. We recall the definition of the space of real valued functions with
bounded variation in Ω :

BV (Ω) = {v ∈ L1(Ω);Dv ∈M(Ω)}

where Dv = (D1v,D2v) denotes the distributional gradient of v and M(Ω) denotes the
space of vector–valued Radon measure with finite total variation. We denote by

∫
Ω |Dv|

the total variation of the measure Dv in Ω.
For every v ∈ BV (Ω) the following properties hold ([F]):

1) v+(x), v−(x) ∈ R for H1–almost all x ∈ Ω;
2) Sv is countably (H1, 1) rectifiable;
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3) ∇v exists a.e. in Ω and coincides with the Radon–Nikodym derivative of Dv with
respect to the Lebesgue measure;

4) for H1 almost all x ∈ Sv there exists a unique ν = νv(x) ∈ ∂B1(0) such that, setting
B+
ρ = {y ∈ Bρ(x) : (y − x) · ν > 0} and B−ρ = {y ∈ Bρ(x) : (y − x) · ν < 0}, then

lim
ρ→0

 ∫
B+
ρ

|v(y)− v+(x)|2dy +
∫
B−ρ

|v(y)− v−(x)|2dy

 = 0.

Moreover νv(x) is an approximate normal vector to Sv at x, and also∫
Ω
|Dv| ≥

∫
Ω
|∇v| dy +

∫
Sv

|v+ − v−| dH1.

We recall the definitions of some function spaces related to first derivatives which are De
Giorgi special measures, and we refer to [DGA] and [A] for their properties.

Definition 2.1 - SBV (Ω) denotes the class of functions v ∈ BV (Ω) such that∫
Ω
|Dv| =

∫
Ω
|∇v| dy +

∫
Sv

|v+ − v−| dH1.

Moreover we set
SBVloc(Ω) := {v ∈ SBV (Ω′) : ∀Ω′ ⊂⊂ Ω} ,

GSBV (Ω) :=
{
v : Ω→ R Borel function;−k ∨ v ∧ k ∈ SBVloc(Ω) ∀k ∈ N

}
.

Notice that, if v ∈ GSBV (Ω), then Sv is countably (H1, 1) rectifiable and ∇v exists a.e.
in Ω.

We recall also a function space related to second derivatives, that allows the definition of
a finite energy set of competing functions (see [CLT1,2,3,4]).

Definition 2.2 - We set

GSBV 2(Ω) :=
{
v ∈ GSBV (Ω), (∇1v,∇2v) ∈ [GSBV (Ω)]2

}
.

Notice that Dv 6= ∇v in GSBV 2(Ω); moreover we set

S∇v = S∇1v ∪ S∇2v.

Eventually we define the strong and weak energy functionals.
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Definition 2.3 - (Strong formulation of Blake & Zisserman functional)
For Ω ⊂ R2 open set, A ⊂ Ω Borel set , K0,K1 ⊂ R2 Borel sets with K0 ∪K1 closed,
v ∈ C2(Ω \ (K0 ∪K1)) and approximately continuous on Ω \K0, under the assumptions
(1.2), we set

(2.1)
F (K0,K1, v, A) :=∫
A\(K0∪K1)

(
|D2v|2 + µ|v − g|q

)
dy + αH1(K0 ∩A) + βH1((K1 \K0) ∩A).

We shortly write F (K0,K1, v) when A = Ω.

The space X(Ω) := GSBV 2(Ω) ∩ Lq(Ω) is the natural space for a weak formulation of
functional (2.1).

Definition 2.4 - (Weak formulation of Blake & Zisserman functional)
For Ω ⊂ R2 open set, under the assumptions (1.2), we define F : X(Ω)→ [0,+∞] by

(2.2) F(v) :=
∫

Ω
(|∇2v|2 + µ|v − g|q) dy + αH1(Sv) + βH1(S∇v \ Sv) .

We proved the following results in [CLT3],[CLT4].

Theorem 2.5 - (Existence of weak solutions)
Let Ω ⊂ R2 be an open set and assume (1.2). Then there is v0 ∈ X(Ω) such that

F(v0) ≤ F(v) ∀v ∈ X(Ω).

We recall that assumption β ≤ α ≤ 2β is necessary for lower semicontinuity of F .

Theorem 2.6 - (Existence of strong solutions)
Let Ω ⊂ R2 be an open set. Assume (1.2). Then there is at least one triplet among
K0,K1 ⊂ R2 Borel sets with K0 ∪K1 closed and u ∈ C2(Ω \ (K0 ∪K1)) approximately
continuous on Ω\K0 minimizing the functional (1.1) with finite energy. Moreover the sets
K0 ∩ Ω and K1 ∩ Ω are (H1, 1) rectifiable.

Theorem 2.7 - Let Ω ⊂ R2 be an open set. Assume (1.2) and α = β. Then there is
at least one pair among K ⊂ R2 closed set and u ∈ C2(Ω \K) minimizing the functional∫

Ω\K

(
|D2u|2 + µ|u− g|q

)
dy + αH1(K ∩ Ω)

with finite energy. Moreover the set K ∩ Ω is (H1, 1) rectifiable.
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3. Local weak minimizers and essential minimizing triplets.

We refine the definition of solution by the concept of essential minimizing triplet, in
order to eliminate unimportant points in the segmentation set.
We start with a localization of the functional F and of the notion of weak minimizers.

Definition 3.1 - For every Borel subset A ⊂ Ω and v ∈ X(Ω) we define

F(v,A) :=
∫
A

(|∇2v|2 + µ|v − g|q) dy + αH1(Sv ∩A) + βH1((S∇v \ Sv) ∩A).

Definition 3.2 - (Local weak minimizers)
A function v ∈ X(Ω) is a local weak minimizer of F(·,Ω) if, for every compact set H ⊂ Ω,

F(v,H) = min
w∈X(Ω)

{F(w,H) : w = v a.e. in Ω \H} < +∞.

From [CLT4] we get a decay property for local weak minimizers.

Theorem 3.3 - (Decay Theorem)
Let Ω ⊂ R2 be an open set and assume (1.2). Then there is an absolute positive constant
c2,q (depending only on the dimension and the exponent) such that for every k > 2,
η, σ ∈ (0, 1) with ησ < 1

c2,q
, there is ε0 > 0 such that for every ε ∈ (0, ε0] and Bρ(x) ⊂ Ω,

if u ∈ GSBV 2(Ω) is a local weak minimizer of F(·,Ω) with

ρ ≤ εk,
∫
Bρ(x)

|g|2qdy ≤ εk

and
αH1(Su ∩Bρ(x)) + βH1((S∇u \ Su) ∩Bρ(x)

)
≤ ερ,

then
F(u,Bηρ(x)) ≤ η2−σF(u,Bρ(x)).

Definition 3.4 - (Strong minimizing triplet)
A triplet (T0, T1, v) such that, T0, T1 ⊂ R2 are Borel sets, T0 ∪ T1 is a closed set, v ∈
C2
(
Ω \ (T0 ∪ T1)

)
and approximately continuous in Ω \ T0, is a strong minimizing triplet

of the functional (1.1) if
(T0, T1, v) ∈ argminF .

Remark 3.5 - Notice that, if (T0, T1, v) is a strong minimizing triplet then v is a weak
minimizer and F (T0, T1, v) = F(v) = minF (see [CLT4], Lemma 3.2 and section 6).
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Definition 3.6 - (Essential minimizing triplet)
Given a strong minimizing triplet (T0, T1, v) of the functional (1.1), there is another triplet
(K0,K1, u) , called essential minimizing triplet, uniquely defined by

K0 = T0 ∩K \ (S∇v \ Sv)

K1 = T1 ∩K \ Sv

u = ṽ

where K is the smallest closed subset of T0 ∪ T1 such that ṽ ∈ C2(Ω \K).

Remark 3.7 - For every v ∈ X(Ω) that is a weak minimizer of F , we set

Ω0 =
{
x ∈ Ω : lim

%→0+
%−1 F (v,B%(x)) = 0

}
.

By the argument of section 6 in [CLT4], we get that Ω0 is an open set. Moreover

Ω0 ∩ (Sv ∪ S∇v) = ∅,

H1 (Ω ∩ ((Sv ∪ S∇v) \ (Sv ∪ S∇v)
))

= 0.

4. Density estimates for essential minimizing triplets.

In this section we state and prove the main results.
We enphasize that in all the statements of this section it is assumed that the open set Ω
is contained in R2 and the assumptions (1.2) are always understood.

Theorem 4.1 - (Density upper bound for the functional F )
Let (K0,K1, u) be a strong minimizing triplet for the functional (1.1) with g ∈ L2q

loc(Ω).
Then for every 0 < ρ ≤ 1 and for every x ∈ Ω such that Bρ(x) ⊂ Ω we have

F (K0,K1, u, Bρ(x)) ≤ c0ρ

where c0 = π
1
2µ‖g‖qL2q(Bρ(x)) + 2πα.

If q = 2 and g ∈ L∞(Ω), then c0 = πµ‖g‖2L∞(Ω) + 2πα.

Proof - By minimality of (K0,K1, u) for F we get

F (K0,K1, u) ≤ F (Q0, Q1, w) ,
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where

w = uχΩ\Bρ(x), Q0 =
(
K0 \Bρ(x)

)
∪ ∂Bρ(x), Q1 = K1.

Taking into account β ≤ α, by subtraction we obtain

∫
Bρ(x)\(K0∪K1)

(
|D2u|2 + µ|u− g|q

)
dy

+ αH1(K0 ∩Bρ(x)) + βH1((K1 \K0) ∩Bρ(x)
)

≤ µ

∫
Bρ(x)

|g|q dy + αH1(∂Bρ(x))

≤ µ‖g‖qL2q(Bρ(x))(πρ
2)

1
2 + 2παρ,

hence we achieve the proof.

Theorem 4.2 - (Density lower bound for the functional F )
Let (K0,K1, u) be an essential minimizing triplet for the functional (1.1) with g ∈ L2q(Ω).
Then there exist ε0 > 0, %0 > 0 such that

F (K0,K1, u, B%(x)) ≥ ε0% ∀x ∈ K0 ∪K1, ∀% ≤ %0.

Proof - By Remark 3.5 u is a weak minimizer and F (K0,K1, u, Bρ(x)) = F(u,Bρ(x))
for every Bρ(x) ⊂ Ω. Let k, η, σ and ε0 be as in the Decay Theorem 3.3. Let ρ0 > 0 such
that ρ0 ≤ εk0 ,

∫
Bρ0 (x) |g|

2qdy ≤ εk0 for every x ∈ Ω. Assume, by contradiction, that the
thesis is false. In such case, there exist x ∈ K0 ∪K1 and 0 < ρ ≤ ρ0 such that

F (K0,K1, u, Bρ(x)) < ε0ρ.

Then, by Theorem 3.3, for every h ∈ N,

F (K0,K1, u, Bηhρ(x)) < ηh(2−σ)ε0ρ

so that

lim
%→0+

%−1 F (K0,K1, u, B%(x)) = 0,

hence x ∈ Ω0. Since Ω0 is open, then u is a C2 function in a neighbourhood of x and this
contradicts the assumption that the minimizing triplet is an essential one.
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Theorem 4.3 - (Density lower bound for the segmentation length)
Let (K0,K1, u) be an essential minimizing triplet for the functional (1.1) with g ∈ L2q(Ω).
Then there exist ε1 > 0, %1 > 0 such that

H1 ((K0 ∪K1) ∩B%(x)) ≥ ε1% ∀x ∈ K0 ∪K1, ∀% ≤ %1.

Proof - Let k, η, σ and ε0, ρ0 be as in Theorem 4.2. We can fix h0 ∈ N such that
ηh0(1−σ)c0 < ε0, where c0 is given in Theorem 4.1. Define ε1 = ε0

α η
h0−1 and ρ1 =

min{ρ0, 1}. If we assume, by contradiction, that there exist x ∈ K0 ∪K1 and ρ ≤ ρ1 such
that

H1((K0 ∪K1) ∩Bρ(x)) < ε1ρ,

then we can use Theorem 3.3 h0 times until we get

F (K0,K1, u, Bηh0ρ(x)) ≤ ηh0(2−σ)F (K0,K1, u, Bρ(x)) ≤ ηh0(1−σ)c0η
h0ρ < ε0(ηh0ρ)

which contradicts Theorem 4.2.

Theorem 4.4 - (Elimination Property)
Let (K0,K1, u) be an essential minimizing triple for the functional (1.1) with g ∈ L2q(Ω)
and let ε1 > 0, %1 > 0 as in Theorem 4.3 and ρ ≤ ρ1. If x ∈ Ω and

H1 ((K0 ∪K1) ∩B%(x)) <
ε1

2
ρ

then
(K0 ∪K1) ∩Bρ/2(x) = ∅.

Proof - Assume, by contradiction, that there exists y ∈ (K0 ∪ K1) ∩ Bρ/2(x). Then
Bρ/2(y) ⊂ Bρ(x), hence

H1 ((K0 ∪K1) ∩B%/2(y)
)
≤ H1 ((K0 ∪K1) ∩B%(x)) < ε1

(ρ
2

)
,

therefore y 6∈ K0 ∪K1 by Theorem 4.3.

Theorem 4.5 - (Minkowski content of the segmentation)
Let (K0,K1, u) be an essential minimizing triplet for the functional (1.1) with g ∈ L2q(Ω).
Then
(i) K0 ∪K1 is (H1, 1) rectifiable;
(ii) for every Ω′ ⊂⊂ Ω the following equality holds

lim
ρ→0

|{x ∈ Ω ; dist(x, (K0 ∪K1) ∩ Ω′) < ρ }|
2ρ

= H1 ((K0 ∪K1) ∩ Ω′) .
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Proof - By Remark 3.5 the function u is a weak minimizer of F , so that Su ∪ S∇u is
(H1, 1) rectifiable and H1

(
(K0 ∪K1) ∩Ω \ (Su ∪ S∇u)

)
= 0. Hence (i) follows. The result

(ii) is achieved with the same argument as in [AT] and in [CL], by using the previous
Theorem 4.3.

We enphasize that the various constants c0, ε0, ε1, ρ0, ρ1 depend on the data α, β, µ, g.

5. A counterexample

In this section we show that the functional (1.1) does not achieve the infimum when
g has not enough summability. This fact holds true in any dimension: in this section Ω
denotes an open set in Rn, for any integer n ≥ 2.
We use in the n dimensional case the notation introduced in section 2 and we set ωn =
|B1(0)|.
We show that for any s < nq there is a function g ∈ Ls(Ω)∩Lq(Ω) such that there are no
minimizing triplets of the following functional

(5.1)
G(K0,K1, u) =

∫
Ω\(K0∪K1)

(
|D2u|p + µ|u− g|q

)
dy

+ αH n−1(K0 ∩ Ω) + βH n−1((K1 \K0) ∩ Ω)

where Ω ⊂ Rn is an open set, n ∈ N, n ≥ 2, H n−1 denotes the (n − 1) dimensional
Hausdorff measure and α, β, µ, p, q ∈ R, with

(5.2) p > 1, q ≥ 1 , µ > 0 , 0 < β ≤ α ≤ 2β ,

are given; while K0, K1 ⊂ Rn are Borel sets (a priori unknown) with K0 ∪K1 closed,
u ∈ C2(Ω \ (K0 ∪K1)) and it is approximately continuous on Ω \K0.
Notice that (5.1) reduces to (1.1) if n = p = 2.

Let b >

(
nα

µ

) 1
q

, a > 1 , rh = a−h for every h ∈ N , and {xn}n∈N a dense sequence

in Ω. Setting Ah = Brh(xh), we define

g = b

∞∑
h=1

rh
− 1
q χAh .

Then for every s < nq we have g ∈ Ls(Ω) , but g 6∈ Lnq(Ω). In fact, if s < nq

∞∑
h=1

‖rh−
1
q χAh‖Ls(Ω) =

∞∑
h=1

rh
− 1
q |Ah|

1
s = ωn

1
s

∞∑
h=1

rh
n
s−

1
q < +∞,
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while∫
Ω

∣∣∣∣∣
∞∑
h=1

rh
− 1
q χAh

∣∣∣∣∣
nq

dy ≥
∫

Ω

∞∑
h=1

∣∣∣rh− 1
q χAh

∣∣∣nq dy = ωn

∞∑
h=1

1 = +∞ .

Assume by contradiction that (K0,K1, u) is a minimizing triplet for G.
Let B̄ ⊂ Ω \ (K0 ∪K1) a closed ball. Taking into account that u ∈ C2(B̄) and rh → 0 ,
we choose k0 ∈ N such that Ak0 ⊂ B̄ and

brk0
− 1
q ≥ max

B̄
u.

Let k1 > k0 be an index such that Ak1 ⊂ Ak0 and set

Q0 = (K0 \Ak1) ∪ ∂Ak1 Q1 = K1

v = max
{
u , b

(
rk0
− 1
q + rk1

− 1
q

)
χAk1

}
.

Now (Q0, Q1, v) is an admissible triplet for the functional G. Since g ≥ v ≥ u+ b (rk1)−
1
q

in Ak1 we get 0 ≤ g − v ≤ g − u− b (rk1)−
1
q in Ak1 and∫

Ω\(Q0∪Q1)
|v − g|q dy =

∫
Ω\(K0∪K1∪Ak1 )

|u− g|q dy +
∫
Ak1

|v − g|q dy

≤
∫

Ω\(K0∪K1)
|u− g|q dy −

∫
Ak1

bq (rk1)−1 dy

<

∫
Ω\(K0∪K1)

|u− g|q dy − α

µ
nωn (rk1)n−1.

Moreover we get easily∫
Ω\(Q0∪Q1)

|D2v|p dy ≤
∫

Ω\(K0∪K1)
|D2u|p dy,

H n−1(Q0 ∩ Ω) ≤ H n−1(K0 ∩ Ω) + nωn (rk1)n−1,

H n−1((Q1 \Q0) ∩ Ω) ≤ H n−1((K1 \K0) ∩ Ω).

Hence G(Q0, Q1, v) < G(K0,K1, u) , which contradicts the minimality of (K0,K1, u).

We remark that also in the lower order model (Mumford & Shah functional) the infimum
is not achieved for a poorly summable datum g (see [L]).
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