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Abstract. We study relations between the k-Hessian energy Ek[u] =
R

Rn −u Fk[u]dx, and the

fractional Sobolev energy Ek[u] =
R

Rn

˛̨̨
(−∆)

k
k+1 u

˛̨̨k+1

dx, where Fk (k = 1, . . . , n) is the k-

Hessian operator on Rn, and u is a k-convex function vanishing at ∞. We prove that there is a
constant C > 0 such that

C−1 Ek[u] ≤ Ek[u] ≤ C Ek[u],

where the lower estimate is obtained under some additional assumptions on u. In general, we
show that there exists a function ũ such that c−1 ≤ |u/ũ| ≤ c, and C−1 Ek[ũ] ≤ Ek[u] ≤ C Ek[ũ],
where c, C are positive constants depending only on k and n.

1. Introduction

The fully nonlinear k-Hessian operator Fk (k = 1, 2, . . . , n) on Ω ⊆ Rn is defined by

(1.1) Fk[u] =
∑

1≤i1<···<ik≤n

λi1 · · ·λik ,

where λ1, . . . , λn are the eigenvalues of the Hessian matrix D2u. It is known that Fk is elliptic
on the cone of k-convex functions.

We recall that an upper semicontinuous function u : Ω → [−∞,∞) is called k-convex if
Fk[q] ≥ 0 for any quadratic polynomial q such that u − q has a local finite maximum in Ω. A
function u ∈ C2(Ω) is k-convex if and only if Fj [u] ≥ 0 for all j = 1, . . . , k. We refer to Trudinger
and Wang [TW1], [TW2] (see also [W2]) where a comprehensive theory of k-convex functions
has been developed. In particular, it is shown that, for a k-convex function u, µk[u] = Fk[u] is
a positive Borel measure in Ω (the so-called k-Hessian measure associated with u).

The k-Hessian energy is defined by

(1.2) Ek[u] =
∫

Ω
−u Fk[u] dx,

for a k-convex function u ∈ C2(Ω). For the sake of convenience, we use the same notation
for general k-convex functions u assuming that integration is performed with respect to the
k-Hessian measure Fk[u]. When k = 1, Fk[u] = ∆u, and integration by parts shows that E1[u]
coincides with the classical energy

(1.3) E[u] =
∫

Ω
|∇u|2 dx,

for u ∈ W 1,2
0 (Ω).

Following [TW2], we will denote by Φ(Ω) the cone of k-convex functions on Ω, and by Φ0(Ω)
its subcone which consists of k-convex functions with zero boundary values.
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In this paper we assume for simplicity that Ω = Rn, so that Φ0(Rn) consists of all k-convex
functions vanishing at ∞. We study relations between the Hessian energy, Ek[u], and the frac-
tional Sobolev energy

(1.4) Eα,p[u] =
∫

Rn

∣∣∣(−∆)α/2u
∣∣∣p dx,

where

(1.5) α =
2k

k + 1
and p = k + 1.

In the classical case k = 1, we have α = 1 and p = 2. When k = 2, . . . , n, it follows that
1 < α < 2 and p > 2.

For α and p given by (1.5) we will use the following notation:

(1.6) Ek[u] = E 2k
k+1

,k+1[u] =
∫

Rn

∣∣∣(−∆)
k

k+1 u
∣∣∣k+1

dx,

for the fractional Sobolev energy associated with u ∈ Φ0(Rn).
In Section 3 (Theorem 3.1) we will prove the inequality

(1.7) Ek[u] ≤ ck,nEk[u],

for all u ∈ Φ0(Rn), where ck,n is a positive constant depending only on k and n, 1 ≤ k < n
2 .

When k ≥ n
2 the Hessian energy Ek[u] is always infinite unless u = 0.

In Section 2 (Theorem 2.1), the converse inequality will be established:

(1.8) Ek[u] ≤ Ck,nEk[u],

under the additional assumption

(1.9) (−∆)α/2[−(−∆)α/2u]k ≥ 0.

To justify the last assumption we notice that it holds for the fundamental solution of the
k-Hessian equation. (See Section 4 for further discussion.) Moreover, for every u ∈ Φ0(Rn),

(1.10) −(−∆)α/2u ≥ 0.

Indeed, if u ∈ Φ0(Rn), i.e., u is a k-convex function vanishing at ∞, then u is subharmonic in
the classical sense, and by the maximum principle, u ≤ 0 on Rn. Furthermore, it follows (see,
e.g., [Lan]) that u = −(−∆)−1µ = −I2µ, where µ is a positive Borel measure on Rn. Here
Iα = (−∆)−α/2 is the Riesz potential of order α ∈ (0, n) on Rn:

(1.11) Iαµ(x) = aα,n

∫
Rn

dµ(y)
|x− y|n−α

dy, x ∈ Rn,

where aα,n is a positive normalization constant, and µ is a measure on Rn. (When dµ = v dx,
we write Iαv in place of Iαµ.)

It follows that, for every u ∈ Φ0(Rn),

(1.12) −(−∆)α/2u = (−∆)α/2 (−∆)−1µ = I2−αµ ≥ 0,

by the semigroup property of (−∆)α/2 and the positivity of the Riesz kernel.
Other related inequalities involving the fractional Laplacian are discussed in Section 4. In

particular, we will use the approach of Caffarelli and Silvestre [CaS] to prove that, for 0 < α < 2,
1 ≤ p < ∞, and f ≥ 0,

(1.13) (−∆)α/2(fp) ≤ p fp−1 · (−∆)α/2f a.e.,

provided f ∈ Lp(w), where w(x) = (1 + |x|)−(n+α). (See Lemma 4.1 below.) The case α = 2 is
classical.
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For the sake of convenience, we prove some of the above inequalities under the condition that
f (or u) is a C2-function. This assumption can be relaxed using an appropriate approximation
procedure.

2. A lower bound for the Hessian energy

In this section we prove inequality (1.8) under the assumption (1.9).

Theorem 2.1. 1 ≤ k < n
2 , and let α = 2k

k+1 . Suppose u ∈ C2(Rn) is a k−convex function on
Rn vanishing at ∞. If

(i) −(−∆)α/2u ≥ 0,

(ii) (−∆)α/2[−(−∆)α/2u]k ≥ 0,

then there exists a positive constant Ck,n such that

(2.1)
∫

Rn

(
−(−∆)α/2u

)k+1
dx ≤ Ck,n

∫
Rn

−u Fk[u] dx.

Remark 2.2. As was mentioned above, −(−∆)α/2u ≥ 0, for every u ∈ Φ0(Rn), so condition (i)
in the statement of the theorem is redundant.

Proof. By duality

(2.2)
(∫

Rn

(
−(−∆)α/2u

)k+1
dx

) 1
k+1

= sup
0<‖φ‖

L
1+ 1

k
<∞

∫
Rn −(−∆)α/2uφdx

‖φ‖
L1+ 1

k

= sup
0<‖φ‖

L
1+ 1

k
<∞

|
∫

Rn(−∆)α/2(−u)φdx |
‖φ‖

L1+ 1
k

.

In what follows we may assume that φ ≥ 0 and (−∆)α/2φ ≥ 0. Indeed, the extremal function
φ in the duality relation (2.2) is φ = [−(−∆)α/2u]k. Hence φ ≥ 0, and the second inequality,
(−∆)α/2φ ≥ 0, coincides with (ii).

We set φj = Iα[χBj(0)(−∆)α/2φ], where j = 1, 2, . . ., and χBj(0) is the characteristic function
of the ball Bj(0) of radius j centered at 0. Then φj ≥ 0 is an increasing sequence such that
φ = limj→∞ φj , and (−∆)α/2φj is compactly supported. In particular, φj(x) ≤ Cj(1 + |x|)α−n.
The latter estimate ensures that φj ∈ L1+ 1

k (Rn) since k < n
2 .

Thus, it suffices to prove the inequality

(2.3)
∫

Rn

(−∆)α/2(−u) φdx ≤ Ck,n‖φ‖
L1+ 1

k
·
(∫

Rn

−u Fk[u] dx

) 1
k+1

with φj in place of φ, since passing to the limit as j →∞ yields (2.1). In other words, without
loss of generality we may assume that (−∆)α/2φ is compactly supported and 0 ≤ φ(x) ≤
Cj(1 + |x|)α−n.

By the self-adjointness of (−∆)α/2 we get

(2.4)
∫

Rn

(−∆)α/2(−u)φdx =
∫

Rn

−u(−∆)α/2φdx

Since (−∆)α/2φ ≥ 0, we can solve the equation

Fk[v] = (−∆)α/2φ,

in the viscosity sense, where v is a k-convex function vanishing at ∞ (see [TW2]).
As a consequence, we get using (2.4),

(2.5)
∫

Rn

(−∆)α/2(−u) φ dx =
∫

Rn

−u Fk[v] dx.
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We now apply the Hessian Schwarz inequality proved in [V] (Theorem 3.1):

(2.6)
∫

Rn

−u Fk[v] dx ≤
(∫

Rn

−u Fk[u] dx

) 1
k+1

·
(∫

Rn

−v Fk[v] dx

) k
k+1

.

It is known [PhV] that there exist positive constants c1, c2 depending only on k and n such
that, for any k-convex solution v vanishing at infinity to the equation ν = Fk[v], where ν ≥ 0,
v ∈ L1

loc(Rn),

(2.7) c1 W 2k
k+1

, k+1ν(x) ≤ −v(x) ≤ c2 W 2k
k+1

, k+1ν(x), x ∈ Rn.

Here Wolff’s potential Wα, pν is defined by

(2.8) Wα, pν(x) =
∫ ∞

0

[ |Bt(x)|ν
tn−αp

] 1
p−1 dt

t
, x ∈ Rn,

where α = 2k
k+1 , p = k + 1, |Bt(x)|ν =

∫
Bt(x) ν(y) dy, and Bt(x) is a ball of radius t centered at

x. With this choice of α, p, we get

(2.9) W 2k
k+1

, k+1ν(x) =
∫ ∞

0

[ |Bt(x)|ν
tn−2k

] 1
k dt

t
, x ∈ Rn,

The above estimates hold as well if ν is a positive locally finite measure on Rn. In that case,
|Bt(x)|ν =

∫
Bt(x) dν in the definition of Wolff’s potential. Note that W 2k

k+1
, k+1ν, and hence a

k-convex solution v to the equation ν = Fk[u], is finite a.e. if and only if

(2.10)
∫ ∞

1

[ |Bt(0)|ν
tn−2k

] 1
k dt

t
< ∞,

as in the classical case k = 1.
Clearly, (2.10) holds if ν is compactly supported and k < n

2 . Hence, inequalities (2.7) are
applicable with ν = (−∆)α/2φ. In particular,

0 ≤ −v(x) ≤ c2W 2k
k+1

, k+1[(−∆)α/2φ](x).

We next notice that Wolff’s potential W 2k
k+1

, k+1ν is pointwise bounded by the iterated Riesz

potential Iα(Iαν)
1
k , i.e., the Havin–Maz’ya potential (see, e.g., [AH], Sec. 2.6, Proposition 2.6.9,

and Sec. 4.5):

(2.11) W 2k
k+1

, k+1ν(x) ≤ Ck,n Iα(Iαν)
1
k (x), x ∈ Rn.

From this we obtain the following estimate of the Hessian energy Ek[v], where Fk[v] = (−∆)α/2φ:∫
Rn

−v Fk[v]dx ≤ c2

∫
Rn

(−∆)α/2φ ·W 2k
k+1

, k+1[(−∆)α/2φ] dx

≤ Ck,n

∫
Rn

(−∆)α/2φ · Iα(Iα(−∆)α/2φ)
1
k dx.

Here we used the upper estimate (2.7) in the first inequality, and (2.11) with ν = (−∆)α/2φ

in the second one. However, since Iα = (−∆)−α/2, it follows using selfadjointness and the
semigroup property,∫

Rn

(−∆)α/2φ · Iα(Iα(−∆)α/2φ)
1
k dx =

∫
Rn

φ (φ)
1
k dx = ||φ||1+

1
k

L1+ 1
k
.

Thus, ∫
Rn

−v Fk[v] dx ≤ Ck,n ||φ||
1+ 1

k

L1+ 1
k
.

Combining the preceding estimate with (2.5) and (2.6) we deduce (2.3). �
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3. An upper bound for the Hessian energy

Theorem 3.1. Let u ∈ C2(Rn) be a k−convex function vanishing at ∞. Let α = 2k
k+1 , where

1 ≤ k < n
2 . Then there exists a positive constant ck,n such that

(3.1)
∫

Rn

−u Fk[u] dx ≤ ck,n

∫
Rn

∣∣∣(−∆)
α
2 u
∣∣∣k+1

dx.

Proof. Let v = Fk[u] ≥ 0 be the k-Hessian measure associated with u. By Wolff’s inequality
[HW] (see also [AH], Sec. 4.5),

(3.2) ||Iαv||1+ 1
k

L1+ 1
k (Rn)

≤ C

∫
Rn

W 2k
k+1

, k+1v · v dx,

where C depends only on k and n.
From this and the lower estimate in (2.7),

(3.3) C W 2k
k+1

, k+1v(x) ≤ −u(x),

it follows:

(3.4) ||Iαv||1+
1
k

L1+ 1
k (Rn)

≤ C

∫
Rn

−u Fk[u] dx.

By duality of fractional Sobolev spaces, it follows that, for v ≥ 0 (here we can assume that v
is a positive measure),

(3.5)
∣∣∣∣∫

Rn

u · v dx

∣∣∣∣ = ∣∣∣∣∫
Rn

(−∆)α/2u · (−∆)−α/2v dx

∣∣∣∣ ≤ ∥∥∥(−∆)α/2u
∥∥∥

Lk+1(Rn)
· ||Iαv||

L1+ 1
k (Rn)

,

where Iαv = (−∆)−α/2v is the Riesz potential of order α = 2k
k+1 defined by (1.11).

From (3.4) and (3.5) (with v = Fk[u]) we deduce:

(3.6)
∫

Rn

−u Fk[u] dx ≤ C
∥∥∥(−∆)

α
2 u
∥∥∥

Lk+1(Rn)
·
(∫

Rn

−u Fk[u] dx

) k
k+1

,

where C depends only on k and n. This proves (3.1). �

As a consequence of Theorems 2.1 and 3.1, we obtain the following corollary.

Corollary 3.2. Let u ∈ C2(Rn) be a k−convex function vanishing at ∞, where 1 ≤ k < n
2 .

Then there exists ũ such that c1 ≤ u/ũ ≤ c2, and

(3.7) C1

∫
Rn

∣∣∣(−∆)
α
2 ũ
∣∣∣k+1

dx ≤
∫

Rn

−u Fk[u] dx ≤ C2

∫
Rn

∣∣∣(−∆)
α
2 ũ
∣∣∣k+1

dx,

where the constants of equivalence ci, Ci (i = 1, 2) depend only on k and n.

To prove Corollary 3.2, one can set ũ = −Iα(Iαv)
1
k , where v = Fk[u] is the k-Hessian measure

associated with u, and apply Theorems 2.1 and 3.1.

4. Fractional Laplacian inequalities

It is well known and easy to prove that, if p ≥ 1 and f ∈ C2 is a positive function, then

∆fp(x) ≥ pfp−1(x) ·∆f(x).

The following lemma provides an extension of this useful inequality to the fractional Laplacian
(−∆)α/2, 0 < α < 2, with a simple proof which relies on the approach of [CaS].

Let a = 1 − α. Following [CaS], consider an extension of f to the upper half-space Rn+1
+ so

that u(x, 0) = f(x), and

(4.1) ∆xu +
a

y
uy + uyy = 0 in Rn+1

+ .



6 F. FERRARI, B. FRANCHI, AND I. E. VERBITSKY

Let Pa(x, y) denote the corresponding Poisson kernel

(4.2) Pa(x, y) = c
y1−a

(|x|2 + y2)(n+1−a)/2
, x ∈ Rn, y > 0,

where c is a positive constant depending on a and n, and making Pa(x, y)dx a probability
measure for all y > 0. Then u = Pa ? f ≥ 0 if f ≥ 0. In particular, if a = 0 then P0(x, y) is the
classical Poisson kernel of Rn+1

+ , and u = P0 ? f is the harmonic extension of f .
Similarly, by v we denote an extension of fp to Rn+1

+ , v = Pa ? (fp). Both u and v are well
defined by our assumption on f . Note that, for a normalization constant c > 0 depending on a
and n we get, see [CaS]:

(4.3) −c(−∆)α/2f(x) = lim
y→0

u(x, y)− u(x, 0)
y1−a

,

(4.4) −c(−∆)α/2fp(x) = lim
y→0

v(x, y)− v(x, 0)
y1−a

.

Lemma 4.1. Let 0 < α < 2, a = 1 − α, and 1 ≤ p < ∞. Suppose f ∈ C2(Rn) ∩ Lp(w) where
w(x) = (1 + |x|)−(n+α). Let u and v be respectively the Caffarelli-Silvestre extensions of f and
fp to the upper half-space Rn+1

+ . If f ≥ 0, or p is an even integer, then

(4.5)
1

1− a
lim
y→0

ya(vy(x, y)− (up)y(x, y)) = p fp−1 · (−∆)α/2f − (−∆)α/2(fp) ≥ 0 a.e.

Consequently, if f ≥ 0, then

(4.6) (−∆)α/2(fp) ≤ p fp−1 · (−∆)α/2f a.e.

Remark 4.2. Notice that inequality (4.6) for the fractional Laplacian is in line with the stability
property of a nonnegative subharmonic function f with respect to raising to a power p ≥ 1.
More precisely, it is well known that if f is nonnegative and subharmonic, then fp, p ≥ 1, is
still subharmonic. An analogue of this property for the fractional Laplacian is an immediate
consequence of (4.6): if f ≥ 0 and −(−∆)α/2f ≥ 0 then −(−∆)α/2(fp) ≥ 0.

Remark 4.3. Lemma 4.1 remains valid whenever we consider a convex function φ composed with
u in place of up. In particular, the following generalization of inequality (4.6) holds:

(4.7) (−∆)α/2 (φ(f)) ≤ φ′(f) · (−∆)α/2f a.e.,

where f ∈ C2(Rn) and
∫

Rn
φ(f) dx

(1+|x|)n+α < ∞.

Proof. Consider an extension of f to the upper half-space Rn+1
+ so that u(x, 0) = f(x), and

(4.8) ∆xu +
a

y
uy + uyy = 0 in Rn+1

+ .

Let Pa(x, y) denote the corresponding Poisson kernel. Then u = Pa ? f and if f ≥ 0, then
Pa ?f ≥ 0. Similarly, by v we denote an extension of fp to Rn+1

+ , v = Pa ?(fp). Both u and v are
well defined by our assumption on f . Note that, for a normalization constant c > 0 depending
on a and n:

(4.9) −c(−∆)α/2f(x) = lim
y→0

u(x, y)− u(x, 0)
y1−a

,

(4.10) −c(−∆)α/2fp(x) = lim
y→0

v(x, y)− v(x, 0)
y1−a

.

By Jensen’s inequality, we get that for every p ≥ 1,

0 ≤ up = (Pa ? f)p ≤ Pa ? fp = v,
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whenever p is an even integer, or u is positive.
Hence,

(4.11)

−c(−∆)α/2(fp)(x) = lim
y→0

v(x, y)− v(x, 0)
y1−a

= lim
y→0

up(x, y)− v(x, 0)
y1−a

+ lim
y→0

v(x, y)− up(x, y)
y1−a

= lim
y→0

up(x, y)− fp(x)
y1−a

+ lim
y→0

v(x, y)− up(x, y)
y1−a

=pfp−1(x) lim
y→0

u(x, y)− f(x)
y1−a

+ lim
y→0

v(x, y)− up(x, y)
y1−a

≥ −pc((−∆)α/2f(x)) · f(x)p−1,

since limy→0 u(x, y) = f(x) a.e. and v ≥ up. This proves inequality (4.6).
Notice moreover that

(4.12)

−c(−∆)α/2(fp)(x) =− pc((−∆)α/2f(x)) · f(x)p−1 + lim
y→0

v(x, y)− up(x, y)
y1−a

= −pc((−∆)α/2f(x)) · f(x)p−1 +
1

1− a
lim
y→0

ya(vy(x, y)− (up)y(x, y)).

The latter limit exists since

(4.13) − 1
1− a

lim
y→0

ya vy(x, y) = lim
y→0

v(x, 0)− v(x, y)
y1−a

= c(−∆)α/2(fp)(x),

which is a consequence of the corresponding fact established in [CaS] (see the displayed formula
at the bottom of page 1246). In this regard it is worth mentioning that there is a typo in the
second equality where 1− a should be replaced by −(1− a)−1. �

Remark 4.4. Notice that, in this particular case, a comparison principle holds, although a weak
maximum principle in general does not. For example we recall the case of the Laplace operator
in Rn+1

+ . Both q1 = y and q2 = 2y are positive and harmonic, q2 − q1 is harmonic and moreover
q1 = q2 on y = 0, nevertheless q2 > q1. Moreover, we remark that up is a subsolution of the
equation ∆xwp + a

(wp)y

y + (wp)yy = 0. Indeed

∆xup + a
(up)y

y
+ (up)yy

= p(p− 1)up−2 | ∇xu |2 +pup−1∆xu + apup−1 uy

y
+ p(p− 1)up−2(uy)2 + pup−1uyy

= pup−1(∆xu +
a

y
uy + uyy) + p(p− 1)(up−2 | ∇xu |2 +up−2(uy)2) = p(p− 1)up−2 | ∇u |2≥ 0.

(4.14)

Thus up is a subsolution of v whenever p ≥ 1 is even. Moreover

∆x(up − v) + a
(up − v)y

y
+ (up − v)yy ≥ 0.

Thus, applying the strong maximum principle (see [GT]), we deduce that either up − v is
constant or up − v does not achieve any maximum in the interior of Rn+1

+ . If the second case
occurs then either maxRn+1

+
(up−v) ≥ 0, or up−v does not attain any maximum in Rn+1

+ . Notice
that here we cannot use a weak maximum principle because the domain is unbounded.

Remark 4.5. Applying Lemma 4.1 with f = −(−∆)α/2u and p = k we arrive at the following
inequality for the iterated fractional Laplacian which appears in condition (1.9):

(4.15) (−∆)α/2
[
−(−∆)α/2u

]k
≤ k

(
−(−∆)α/2u

)k−1
· (−(−∆)αu) .
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It would be interesting to know in relation to Theorem 2.1, under which assumptions the converse
inequality may hold (with a possibly different positive constant in place of k) when α = 2k

k+1 ,
and u is k-convex. This would help verify condition (ii) in Theorem 2.1.

The following corollary of Lemma 4.1 is useful in applications to weighted norm inequalities
and some classes of nonlinear partial differential equations (see [KV]).

Corollary 4.6. Let 1 ≤ p < ∞ and 0 < α ≤ 2. Suppose µ is a positive Borel measure on Rn.
Let Iαµ = (−∆)−α/2µ be the Riesz potential of µ defined by (1.11). Then

(4.16) (Iαµ)p ≤ p Iα[(Iαµ)p−1 dµ].

Remark 4.7. The “integration by parts” inequality (4.16) is known to hold for all α ∈ (0, n),
but with a constant C(α, p, n) in place of p. (See [VW], and also [KV] where such an inequality
is used for general quasimetric kernels.)

Proof. Without loss of generality we may assume that µ is compactly supported, and that the
right-hand side of (4.16) is finite. Let f = Iαµ. Then (−∆)α/2f = µ in the sense of distributions.
Denote by µε a mollification of µ so that µε = (−∆)α/2fε. By Lemma 4.1 with fε in place of f ,

(−∆)α/2(Iαµε)p ≤ p (Iαµε)p−1µε.

Applying Iα to both sides of the preceding inequality we obtain

(Iαµε)p ≤ p Iα[(Iαµε)p−1µε].

Passing to the limit as ε → 0 completes the proof. �

The following corollary concerns certain two-weight inequalities with explicit constants. They
are deduced from Corollary 4.6 using the method developed in [VW], [KV], where applications
are given for semilinear equations of the type

(4.17) (−∆)α/2u = µuq + ω on Rn,

where q > 1, and µ, ω are arbitrary positive measurable functions (or measures) on Rn.

Corollary 4.8. Let 1 ≤ p < ∞ and 0 < α ≤ 2. Suppose ω and µ are positive Borel measure on
Rn. Let dν = (Iαµ)qdµ, where 1

p + 1
q = 1. Suppose there exists a positive constant C such that

(4.18) Iα[(Iαω)qdµ](x) ≤ C Iαω(x) < +∞ dµ a.e.

Then the following two inequalities hold:

(4.19) ‖Iα(fdµ)‖Lp(dω) ≤ p C
1− 1

p ‖f‖Lp(dµ),

(4.20) ‖Iα(fdµ)‖Lp(dν) ≤ p C ‖f‖Lp(dµ),

for all f ∈ Lp(dµ).

Remark 4.9. Condition (4.18) is necessary and sufficient (with another constant) for the existence
of nonnegative solutions to equation (4.17) which vanish at infinity (see [BC], [KV]).

Proof. Suppose (4.18) holds. Without loss of generality we may assume that f ≥ 0 is bounded
and has compact support. Then applying Corollary 4.6 with fdµ in place of µ, together with
Fubini’s theorem and Hölder’s inequality, we obtain

(4.21)
∫

Rn

[Iα(fdµ)]p dω ≤ p

∫
Rn

Iα[(Iα(fdµ))p−1f dµ] dω = p

∫
Rn

(Iα(fdµ))p−1(Iαω) f dµ

≤ p ‖f‖Lp(dµ) ‖Iα(fdµ)‖p−1
Lp(dν).
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Using the preceding inequality with dν in place of dω, we deduce

(4.22)
∫

Rn

[Iα(fdµ)]p dν ≤ p

∫
Rn

Iα[(Iαf)p−1f dµ] dν = p

∫
Rn

(Iαf)p−1(Iαν) f dµ

≤ p ‖f‖Lp(dµ) ‖Iα(fdµ)‖p−1
Lp(dν1),

where dν1 = (Iαν)qdµ. Notice that by (4.18), it follows that dν1 ≤ Cq dν, and hence

‖Iα(fdµ)‖Lp(dν1) ≤ C
1

p−1 ‖Iα(fdµ)‖Lp(dν).

Thus,

(4.23)
∫

Rn

[Iα(fdµ)]p dν ≤ p C ‖f‖Lp(dµ) ‖Iα(fdµ)‖p−1
Lp(dν).

From this it follows

(4.24) ‖Iα(fdµ)‖Lp(dν) ≤ p C ‖f‖Lp(dµ),

which proves (4.19). Estimating the right-hand side of (4.21) by employing the preceding esti-
mate, we deduce (4.20). �

5. A Liouville theorem for α-subharmonic functions

In this section we prove a Liouville type theorem for the fractional Laplacian as an application
of the results of the previous section. Our idea originates in the following proof of the Liouville
theorem for subharmonic functions.

Proposition 5.1. Let f ∈ C2(Rn) be a nonnegative subharmonic function such that for some
p ∈ N, p > 1,

lim
R→∞

∫
∂BR(0)

fp−1〈∇f, n〉 dHn−1 = 0.

Then f has to be constant.

Proof. Step 1. For every p ≥ 1, and for every x ∈ Rn,

∆fp = p(p− 1)fp−2 | ∇f |2 +pfp−1∆f ≥ 0.

Moreover we get also that∫
BR(0)

∆fpdx =
∫

BR(0)

(
p(p− 1)fp−2 | ∇f |2 +pfp−1∆f

)
dx

= p(p− 1)
∫

BR(0)
fp−2 | ∇f |2 −p(p− 1)

∫
BR(0)

fp−2 | ∇f |2 dx

+p

∫
∂BR(0)

fp−1〈∇f, n〉dHn−1.

(5.1)

Hence ∫
BR(0)

∆fpdx = p

∫
∂BR(0)

fp−1〈∇f, n〉dHn−1,

and ∫
Rn

∆fpdx = lim
R→∞

p

∫
∂BR(0)

fp−1〈∇f, n〉dHn−1 = 0.

It is worth noting that the first step holds without any assumption on the sign of f whenever

Dγf ∈ Lq(Rn), | γ |= 2, q ≥ 1 and f ∈ L
q(p−1)

q−1 (Rn).
Step 2. We know, by hypotheses, that p > 1, f ≥ 0 and ∆f ≥ 0. Thus∫

BR(0)
∆fpdx =

∫
BR(0)

(
p(p− 1)fp−2 | ∇f |2 +pfp−1∆f

)
dx ≥ 0(5.2)
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As a consequence, recalling Step 1, we get:

0 =
∫

Rn

∆fpdx ≥
∫

Rn

(p(p− 1)fp−2 | ∇f |2 +pfp−1∆f)dx ≥ 0,

i.e. ∫
Rn

fp−1∆fdx = 0,

and ∫
Rn

fp−2 | ∇f |2 dx = 0.

In particular we deduce fp−1∆f = 0 in Rn, and fp−2 | ∇f |2= 0 in all of Rn. Hence either
f = 0 or∇f = 0, and this implies that∇f = 0 in all of Rn. In particular f has to be constant. �

Remark 5.2. Roughly speaking, Proposition 5.1 says, for example, that if a subharmonic function
f ≥ 0 vanishes at infinity, and the gradient is not too large, then f has to be zero. On the other
hand, if the gradient of f vanishes at infinity and f is not too large then f has to be constant.

We are now in a position to treat the case of the fractional Laplace operator.

Theorem 5.3. Let 0 < α < 2 and q > 1. Let f ∈ C2(Rn) ∩ L
q(p−1)

q−1 ((1+ | x |)−(n+α))(Rn), and
Dγf ∈ C2(Rn) ∩ Lq((1+ | x |)−(n−2+α))(Rn), | γ |= 2, for some p ∈ N, p ≥ 1, and q(p−1)

q−1 ≥ 1.

Suppose that f ≥ 0 and −(−∆)α/2f ≥ 0 in Rn. If

lim
R→∞

∫
∂BR(0)

fp−1〈∇f, n〉 dHn−1 = 0,

then f is constant.

Proof. It is enough to prove that our hypotheses force ∆fp = 0. Then by the usual Liouville
theorem it follows that f has to be constant. Indeed, we will prove that −(−∆)α/2fp = 0 in all
of Rn, which yields ∆fp = 0 for α ≤ 2.

Let us recall that

−(−∆)α/2f(x) = cn,α

∫
Rn

∆f(y)
| x− y |n−2+α

dy.

For every s,R > 0 we get from Fubini’s theorem that

cn,α

∫
Bs(0)

(∫
BR(x)\Bε(x)

∆fp

| x− y |n−2+α
dy

)
dx = cn,α

∫
Bs(0)

(∫
BR(0)\Bε(0)

∆fp(x− z)
| z |n−2+α

dz

)
dx

= cn,α

∫
BR(0)\Bε(0)

1
| z |n−2+α

(∫
Bs(0)

∆fp(x− z)dx

)
dz.

(5.3)

Hence

cn,α

∫
BR(0)\Bε(0)

1
| z |n−2+α

(∫
Rn

∆fp(x− z)dx

)
dz = 0.

Thus recalling Step 1 of the previous Proposition 5.1 we conclude, taking in account our hy-
potheses, that

cn,α

∫
Rn

∫
BR(x)\Bε(x)

∆fp

| x− y |n−2+α
dydx = 0.

Letting ε → 0, and R →∞, we deduce using the dominated convergence theorem that∫
Rn

(−∆)α/2(fp)(x) dx = 0.
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Assume now that f ≥ 0,

−
∫

Rn

(−∆)α/2(fp)(x) dx = 0,

and
−(−∆)α/2f(x) ≥ 0.

Then (4.11) and (4.12), together with our assumptions on f , force

(5.4) −
∫

Rn

p (−∆)α/2f(x) f(x)p−1 dx = 0,

and

(5.5)
∫

Rn

lim
y→0

ya(vy(x, y)− (up)y(x, y)) dx = 0.

Thus, from (5.4) it follows
−p fp−1(x) (−∆)α/2f(x) = 0.

Then either (−∆)α/2f(x) = 0 in {f > 0} or f = 0 whenever (−∆)α/2f(x) > 0. Moreover we
get from (5.5) that

lim
y→0

ya(vy(x, y)− (up)y(x, y)) = 0.

As a consequence

−(−∆)α/2fp(x) = lim
y→0

ya(up)y(x, y) = −pfp−1(−∆)α/2f(x) = 0,

and this yields the result because −(−∆)α/2fp(x) = 0. �

Remark 5.4. It is worth remarking that such a result reinforces, in a sense, the validity of the
assumption (ii) in Theorem 2.1. Indeed, if we were dealing with functions such that

(−∆)α/2[−(−∆)α/2u]k ≤ 0,

(i.e. condition (ii) is never verified, namely −(−∆)α/2[−(−∆)α/2u]k ≥ 0), then, for example
considering k = 1, recalling that −(−∆)α/2u ≥ 0, and making the finite energy assumption,
from our Liouville type theorem we deduce that −(−∆)α/2u = 0 so that u itself should be zero.
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