On the area of the graph of a singular map from the plane to the plane taking three values

Giovanni Bellettini*

Maurizio Paolini[†]

Abstract

We improve an estimate given by Acerbi and Dal Maso in 1994, concerning the area of the graph of a singular map from the disk of \mathbb{R}^2 into \mathbb{R}^2 , taking only three values, and jumping on three half-lines meeting at the origin in a triple junction.

1 Introduction and statement of the result

Given a bounded open set $\Omega \subset \mathbb{R}^2$ let us define the area functional $\mathbb{A}: L^1(\Omega; \mathbb{R}^2) \to [0, +\infty]$ as

$$\mathbb{A}(v,\Omega) := \begin{cases} \int_{\Omega} \sqrt{1 + |\nabla v_1|^2 + |\nabla v_2|^2 + \left(\frac{\partial v_1}{\partial x} \frac{\partial v_2}{\partial y} - \frac{\partial v_1}{\partial y} \frac{\partial v_2}{\partial x}\right)^2} \, dx dy & \text{if } v = (v_1, v_2) \in \mathcal{C}^1(\Omega; \mathbb{R}^2), \\ +\infty & \text{if } v \in L^1(\Omega; \mathbb{R}^2) \setminus \mathcal{C}^1(\Omega; \mathbb{R}^2), \end{cases}$$

where $\nabla v_i = (\frac{\partial v_i}{\partial x}, \frac{\partial v_i}{\partial y})$ and $|\nabla v_i|^2 = (\frac{\partial v_i}{\partial x})^2 + (\frac{\partial v_i}{\partial y})^2$, for i = 1, 2. For a function $v \in \mathcal{C}^1(\Omega; \mathbb{R}^2)$ the value $\mathbb{A}(v,\Omega)$ is the area of the graph of v on Ω , which is a two-codimensional surface embedded in \mathbb{R}^4 . As it happens in codimension one, also in codimension two it may be of interest to extend the functional \mathbb{A} to nonsmooth functions. We refer to [4] for such an extension to the BV setting in codimension one, and for applications to minimal surfaces. As discussed for instance by Acerbi and Dal Maso in [3], one rather natural way to extend $\mathbb{A}(\cdot,\Omega)$ to nonsmooth functions is to consider the $L^1(\Omega; \mathbb{R}^2)$ -lower semicontinuous envelope of $\mathbb{A}(\cdot,\Omega)$, defined as

$$\mathcal{A}(v,\Omega) := \inf \left\{ \liminf_{\varepsilon \to 0} \mathbb{A}(v^{\varepsilon},\Omega) : \{v^{\varepsilon}\} \subset \mathcal{C}^{1}(\Omega;\mathbb{R}^{2}), v^{\varepsilon} \to v \text{ in } L^{1}(\Omega;\mathbb{R}^{2}) \right\}$$
(1.1)

(for simplicity from now on we shorthand $\varepsilon = 1/h$ for $h \in \mathbb{N}$). Once one accepts (1.1) as the definition of area of the graph for a nonsmooth function, it is natural to try to describe the domain $\{v \in L^1(\Omega; \mathbb{R}^2) : \mathcal{A}(v, \Omega) < +\infty\}$ of $\mathcal{A}(\cdot, \Omega)$, and to compute the value $\mathcal{A}(v, \Omega)$ for functions v in this domain. The study of this problem was initiated in [2] in the more general case when $\Omega \subset \mathbb{R}^n$, the functions v take values in \mathbb{R}^k , and $\mathbb{A}(v,\Omega) := \int_{\Omega} f(\nabla v) dx$ is the n-dimensional area in \mathbb{R}^{n+k} of the graph of $v \in \mathcal{C}^1(\Omega; \mathbb{R}^k)$, $n, k \geq 1$. Here $f(\nabla v)$ is the euclidean norm of the vector $\mathcal{M}(\nabla v)$ whose components are the determinants of all minors of the Jacobian matrix ∇v , including the 0×0 minor whose determinant is conventionally equal to 1. Then the following properties hold [2]:

^{*}Dipartimento di Matematica, Università di Roma Tor Vergata, via della Ricerca Scientifica 00133 Roma, Italy, and INFN Laboratori Nazionali di Frascati, Frascati, Italy. E-mail: Giovanni.Bellettini@lnf.infn.it

[†]Dipartimento di Matematica, Università Cattolica "Sacro Cuore", via Trieste 17, 25121 Brescia, Italy E-mail: paolini@dmf.unicatt.it

- $\mathcal{A}(v,\Omega) = \mathbb{A}(v,\Omega) = \int_{\Omega} f(\nabla v) dx$ for any $v \in \mathcal{C}^1(\Omega;\mathbb{R}^k) \cap L^1(\Omega;\mathbb{R}^k)$, namely $\mathbb{A}(\cdot,\Omega)$ is $L^1(\Omega;\mathbb{R}^k)$ lower semicontinuous on $\mathcal{C}^1(\Omega;\mathbb{R}^k) \cap L^1(\Omega;\mathbb{R}^k)$, and moreover $\mathcal{A}(v,\Omega) = \int_{\Omega} f(\nabla v) dx$ for any $v \in W^{1,p}(\Omega;\mathbb{R}^k)$, $p \geq \min\{n,k\}$;
- $\{v \in L^1(\Omega; \mathbb{R}^k) : \mathcal{A}(v, \Omega) < +\infty\} \subset BV(\Omega; \mathbb{R}^k)$, and

$$\mathcal{A}(v,\Omega) \ge \int_{\Omega} f(\nabla v) \ d\mathbf{x} + |D^{s}v|(\Omega), \qquad v \in BV(\Omega; \mathbb{R}^{k}), \tag{1.2}$$

where $Dv = \nabla v + D^s v$ is the decomposition of the measure Dv into its absolutely continuous and singular parts with respect to the Lebesgue measure, and $|D^s v|(\Omega)$ is the total variation in Ω of the (matrix-valued) measure $D^s v$ [1];

- if $k \geq 2$ there exists $u \in BV_{loc}(\mathbb{R}^n; \mathbb{R}^k)$ such that the function $\Omega \to \mathcal{A}(u, \Omega)$ is not subadditive (see (1.7) below). In particular, $\mathcal{A}(\cdot, \Omega)$ cannot be written as an integral on the whole of $BV(\Omega; \mathbb{R}^k)$.

The last property distinguishes the case k=2 from the case k=1 where, instead, the functional $\mathcal{A}(\cdot,\Omega)$ can be written in integral form on $BV(\Omega)$. The example of u exhibited in [2] and suggested in [3], concerns the case n=k=2, and is the following. Take three open non-overlapping angular regions A, B, C of the plane \mathbb{R}^2 as in Figure 1 (a); the origin is a so-called triple junction, with the three radii meeting at 120 degrees. Let moreover α, β, γ be the vertices of an equilateral triangle in the target space \mathbb{R}^2 having center at the origin of the coordinates. Then $u: \mathbb{R}^2 \to \{\alpha, \beta, \gamma\}$ is the discontinuous $BV_{\text{loc}}(\mathbb{R}^2; \mathbb{R}^2)$ function defined as

$$u(x,y) := \begin{cases} \alpha & \text{if } (x,y) \in A, \\ \beta & \text{if } (x,y) \in B, \\ \gamma & \text{if } (x,y) \in C. \end{cases}$$
 (1.3)

In [2] the following properties are proven: denoting by |E| the Lebesgue measure of the measurable set $E \subseteq \mathbb{R}^2$, by $B_r(0) = B_r \subset \mathbb{R}^2$ the open disk of radius r > 0 centered at the origin, and by \overline{B}_r the closure of B_r ,

- for any r > 0, $\rho > 0$ with $\rho \in (0, r)$ we have

$$\mathcal{A}(u, B_r \setminus \overline{B_\rho}) = |B_r \setminus B_\rho| + 3(r - \rho)\ell, \tag{1.4}$$

where $\ell := |\beta - \alpha|$ is the side of the triangle having vertices α, β, γ (see Figure 1 (b)). Since $|D^s u|(B_r \setminus \overline{B_\rho}) = 3(r - \rho)\ell$, formula (1.4) shows that, if we exclude a disk around the triple point, we get equality in the lower bound (1.2);

- for any r > 0

$$\mathcal{A}(u, B_r) \le |B_r| + 4r\ell; \tag{1.5}$$

- for any r > 0 we have

$$\mathcal{A}(u, B_r) > |B_r| + 3r\ell, \tag{1.6}$$

and moreover there exist $\rho > 0$ and s > 0 with $0 < \rho < r < s$ such that

$$\mathcal{A}(u, B_r) > \mathcal{A}(u, B_\rho) + \mathcal{A}(u, B_s \setminus \overline{B_{\rho/2}}).$$
 (1.7)

Figure 1: (a): $A = \{\lambda b + \mu c : \lambda, \mu > 0\}$, $B = \{\lambda c + \mu a : \lambda, \mu > 0\}$, $C = \{\lambda a + \mu b : \lambda, \mu > 0\}$. The triple junction inside the disk of radius r, in the source space \mathbb{R}^2 , has the three angles at 120 degrees. (b): the three vectors α, β, γ are the vertices of an equilateral triangle of side ℓ , in the target space \mathbb{R}^2 . The unit vectors ξ and η (see step 6 in the proof of Theorem 1.1). The bold segments (of length $\frac{\ell}{\sqrt{3}}$) form the Steiner graph, i.e., the shortest graph connecting α, β , and γ .

Figure 2: The rectangle $R = \{(s,t) : s \in [0,\ell], t \in [0,r]\}$ is the domain of the minimizer m. The Dirichlet datum φ is assigned on $\partial_D R$, which consists of the sides of R but the frontal one; φ is zero on $\{0\} \times [0,r]$ and $\{\ell\} \times [0,r]$; on the side $[0,\ell] \times \{0\}$ the graph of φ is depicted in the figure. The triangle \mathcal{T} corresponds to the triangle with vertices $\alpha, 0, \beta$ in Figure 1 (b).

Inequality (1.5) is an estimate of the area of the graph of u restricted to the disk B_r , which implies that

$$\lim_{r \to 0^+} \mathcal{A}(u, B_r) = 0, \tag{1.8}$$

while (1.7) implies the asserted nonsubadditivity of $\mathcal{A}(u,\cdot)$.

The aim of this paper is to prove a more refined estimate from above of $\mathcal{A}(u, B_r)$ with respect to (1.5), see inequality (1.11) below. Such an estimate requires a better understanding of what we could call the singular part of \mathcal{A} , defined in general on an open set $\Omega \subseteq \mathbb{R}^2$ and for a function $v \in BV(\Omega; \mathbb{R}^2)$ as $\mathcal{A}(v,\Omega) - \int_{\Omega} f(\nabla v) dx$. Our estimate is based on a suitable area-minimizing function m defined on the rectangle

$$\mathbf{R} := [0, \ell] \times [0, r],$$

where the minimization is taken among all functions having a Dirichlet condition on three of the four sides of R (see Figure 2, and Figure 3 for a schematic picture of the graph of m). More precisely, the result is the following. Set

$$\partial_N \mathbf{R} := [0, \ell] \times \{r\}, \qquad \partial_D \mathbf{R} := \partial \mathbf{R} \setminus \partial_N \mathbf{R}.$$

Figure 3: The graph of m, which is a minimal surface satisfying the Neumann condition on the frontal side $\partial_N \mathbf{R} = [0, \ell] \times \{r\}$ of \mathbf{R} and Dirichlet conditions on the remaining three sides.

Let us define the function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ as

$$\varphi(s,t) := \frac{1}{2\sqrt{3}} (\ell - |2s - \ell|), \qquad (s,t) \in \mathbb{R}^2.$$
(1.9)

The function φ is Lipschitz, piecewise affine, it is independent of t, it is nonnegative on R and vanishes on the two parallel sides $\{0\} \times [0, r]$, $\{\ell\} \times [0, r]$ of $\partial_D R$, and its graph on the last side $[0, \ell] \times \{r\}$ of $\partial_D R$ consists of the two bold segments of the triangle \mathcal{T} having vertices $\alpha, 0, \beta$ in Figure 1. The graph of φ on R is depicted in Figure 4.

Let m be the solution of the Dirichlet-Neumann minimum problem

$$\min \left\{ \int_{\mathbf{R}} \sqrt{1 + |\nabla f|^2} \, ds dt : f \in W^{1,1}(\mathbf{R}), f = \varphi \text{ on } \partial_D \mathbf{R} \right\}.$$
 (1.10)

It is well known that m is analytic in the interior of R. However, m is not Lipschitz, because its gradient blows up around the point $p = (\ell/2, 0)$; this fact is source of some technical difficulties in the proof of Theorem 1.1.

Define

$$\mathfrak{A}_{\min} := \int_{\mathbf{R}} \sqrt{1 + |\nabla m|^2} \ ds dt.$$

Note that \mathfrak{A}_{\min} depends nonlinearly on r, and

$$|R| = r\ell < \mathfrak{A}_{\min} < |R| + |\mathcal{T}| = r\ell + \frac{\ell^2}{4\sqrt{3}}.$$

Our result is the following.

Theorem 1.1. Let $u \in BV(B_r; \{\alpha, \beta, \gamma\})$ be the function defined in (1.3). Then

$$\mathcal{A}(u, B_r) \le |B_r| + 3\mathfrak{A}_{\min}. \tag{1.11}$$

Remark 1.2. Observe that $\mathfrak{A}_{\min} < \frac{2r\ell}{\sqrt{3}}$, since $\frac{2r\ell}{\sqrt{3}}$ is the area of the "roof surface" composed of two rectangles having sides r and $\frac{\ell}{\sqrt{3}}$ in Figure 4, hence

$$3\mathfrak{A}_{\min} < 2\sqrt{3}r\ell < 4r\ell. \tag{1.12}$$

Inequalities (1.11) and (1.12) improve the estimate (1.5) given in [2]. Note also that $3\mathfrak{A}_{\min} > 3r\ell$, consistently with (1.6).

Figure 4: This surface represents the graph of φ on R, and its area is $\frac{2r\ell}{\sqrt{3}}$, and it is larger than \mathfrak{A}_{\min} .

Remark 1.3. We believe (1.11) to be an *equality*, but we miss the proof of this assertion.

The proof of (1.11) consists in exhibiting a sequence $\{v^{\varepsilon}\}\subset \mathcal{C}^1(B_r;\mathbb{R}^2)$ converging to u in $L^1(\Omega;\mathbb{R}^2)$ and such that

$$\lim_{\varepsilon \to 0} \mathcal{A}(v^{\varepsilon}, B_r) = |B_r| + 3\mathfrak{A}_{\min}.$$

Note that, if equality holds in (1.11), then the sequence $\{v^{\varepsilon}\}$ is optimal. Note also that if the equality holds in (1.11), the nonlocality nature of $\mathcal{A}(u,\cdot)$ proved in [2], becomes transparent.

We conclude this introduction with the following observation. As shown by inequality (1.8), there is no concentration of two-dimensional area on the triple junction; from the explicit construction given in the proof of Theorem 1.1, it turns out that what concentrates on the triple junction is the Steiner graph depicted in bold in Figure 1 (b), which is one-dimensional and does not contribute to the computation of $\mathcal{A}(u, B_r)$.

2 Proof of Theorem 1.1

Let us preliminarly show that (1.10) has a unique solution. Given an open set $E \subseteq \mathbb{R}^2$ and a function $f \in W^{1,1}(E)$, recall that the integral

$$\int_{E} \sqrt{1 + |\nabla f|^2} \ ds dt$$

is the area of the graph of f on E, and it is $L^1(E)$ -lower semicontinuous. Moreover, its $L^1(E)$ -lower semicontinuous envelope is naturally defined on the whole of BV(E), and can be expressed using a distributional formulation [1], [4]; for a function $f \in BV(E)$ it is denoted by

$$\int_E \sqrt{1+|Df|^2}.$$

Define the doubled rectangle \widehat{R} as

$$\widehat{\mathbf{R}} := [0,\ell] \times [0,2r],$$

and observe that $\varphi: \widehat{\mathbb{R}} \to [0, +\infty)$ is symmetric with respect to the line $\{t = r\}$. From [4, Theorem 15.9] the minimum problem with Dirichlet condition

$$\min \left\{ \int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla f|^2} \ ds dt : \ f \in W^{1,1}(\widehat{\mathbf{R}}), \ f = \varphi \text{ on } \partial \widehat{\mathbf{R}} \right\}$$
 (2.1)

has a solution, that we denote by \widehat{m} . Moreover, \widehat{m} is unique, and is analytic in the interior of \widehat{R} [4]. Let us denote by m the restriction of \widehat{m} to R. Then m is the unique solution of the Dirichlet-Neumann minimum problem (1.10). Observe that

$$0 \le m \le \|\varphi\|_{L^{\infty}(\partial \mathbb{R})}$$
 on \mathbb{R} . (2.2)

In what follows we indicate by $D \subset \mathbb{R}^2$ an open disk containing the closure of \widehat{R} .

Remark 2.1. From [4, Theorem 15.9] it follows that \widehat{m} solves the following minimum problem in BV(D):

$$\min \left\{ \int_{\widehat{\mathbf{R}}} \sqrt{1 + |Df|^2} + \int_{\partial \widehat{\mathbf{R}}} |f - \varphi| \ d\mathcal{H}^1 : \ f \in BV(D), \ f = \varphi \text{ on } D \setminus \widehat{\mathbf{R}} \right\}, \tag{2.3}$$

where \mathcal{H}^1 is the one-dimensional Hausdorff measure, and the boundary integral in (2.3) involves the trace of f on $\partial \widehat{\mathbf{R}}$, which is well defined \mathcal{H}^1 -almost everywhere.

Let us now begin the proof of Theorem 1.1.

Step 1: reduction to a sequence of Lipschitz maps. We claim that, in order to prove (1.11), it is sufficient to construct a sequence $\{u^{\varepsilon}\}\subset \operatorname{Lip}(B_r;\mathbb{R}^2)$ converging to u in $L^1(B_r;\mathbb{R}^2)$ such that

$$\lim_{\varepsilon \to 0} \mathcal{A}(u^{\varepsilon}, B_r) = |B_r| + 3\mathfrak{A}_{\min}, \tag{2.4}$$

where we recall (see the Introduction) that, on a Lipschitz map $v = (v_1, v_2) \in \text{Lip}(\Omega; \mathbb{R}^2)$, the relaxed functional $\mathcal{A}(v, \Omega)$ defined in (1.1) has still the usual expression

$$\mathcal{A}(v,\Omega) = \int_{\Omega} \sqrt{1 + |\nabla v_1|^2 + |\nabla v_2|^2 + \left(\frac{\partial v_1}{\partial x}\frac{\partial v_2}{\partial y} - \frac{\partial v_1}{\partial y}\frac{\partial v_2}{\partial x}\right)^2} \, dx dy. \tag{2.5}$$

To prove the claim it is enough to show that for any $v \in L^1(\Omega; \mathbb{R}^2)$ we have

$$\mathcal{A}(v,\Omega) = \inf \left\{ \liminf_{\varepsilon \to 0} \mathcal{A}(v^{\varepsilon},\Omega) : \{v^{\varepsilon}\} \subset \operatorname{Lip}(\Omega;\mathbb{R}^2), v^{\varepsilon} \to v \text{ in } L^1(\Omega;\mathbb{R}^2) \right\}. \tag{2.6}$$

To prove (2.6) let $\{v^{\varepsilon}\}\subset \operatorname{Lip}(\Omega;\mathbb{R}^2)$ be such that $\lim_{\varepsilon\to 0}\mathcal{A}(v^{\varepsilon},\Omega)$ equals the right hand side of (2.6). Take a standard convolution kernel $\rho_{\delta}:\mathbb{R}^2\to[0,+\infty)$ supported in the disk of radius $\delta>0$ centered at the origin, and define $v_{\varepsilon,\delta}:=v^{\varepsilon}*\rho_{\delta}\in \mathcal{C}^1(\Omega;\mathbb{R}^2)$. Then the dominated convergent theorem implies that $\lim_{\delta\to 0^+}\mathbb{A}(v_{\varepsilon,\delta},\Omega)=\mathcal{A}(v^{\varepsilon},\Omega)$. Therefore a diagonal argument implies that $\mathcal{A}(v,\Omega)$ is smaller than or equal to the right hand side of (2.6); on the other hand the converse inequality is immediate.

We now pass to define the sequence $\{u^{\varepsilon}\}$: to do this, we need to specify various subsets of B_r . Define S^b_{ε} as

$$S_{\varepsilon}^{b} := \left\{ (x, y) \in \overline{B}_{r} : |x| \le \frac{\varepsilon}{2}, \ y \ge \frac{\varepsilon}{2\sqrt{3}} \right\}, \tag{2.7}$$

and let S_{ε}^{c} (resp. S_{ε}^{a}) be the counterclockwise rotation of S_{ε}^{b} of $2\pi/3$ (resp. of $4\pi/3$), see Figure 6 (a). Denote by T_{ε} the open equilateral triangle of side ε having the baricenter at the origin as in Figure 6 (b). Let

$$A_{\varepsilon} := A \setminus \left(S_{\varepsilon}^b \cup T_{\varepsilon} \cup S_{\varepsilon}^c \right), \quad B_{\varepsilon} := B \setminus \left(S_{\varepsilon}^a \cup T_{\varepsilon} \cup S_{\varepsilon}^c \right), \quad C_{\varepsilon} := C \setminus \left(S_{\varepsilon}^a \cup T_{\varepsilon} \cup S_{\varepsilon}^b \right).$$

Step 2: definition of u^{ε} on $A_{\varepsilon} \cup B_{\varepsilon} \cup C_{\varepsilon}$. We set

$$u^{\varepsilon} := \begin{cases} \alpha & \text{in } A_{\varepsilon}, \\ \beta & \text{in } B_{\varepsilon}, \\ \gamma & \text{in } C_{\varepsilon}. \end{cases}$$
 (2.8)

Note that $\mathcal{A}(u^{\varepsilon}, (A_{\varepsilon} \cup B_{\varepsilon} \cup C_{\varepsilon}) \cap B_r) = |A_{\varepsilon} \cap B_r| + |B_{\varepsilon} \cap B_r| + |C_{\varepsilon} \cap B_r|$, hence

$$\lim_{\varepsilon \to 0^+} \mathcal{A}(u^{\varepsilon}, (A_{\varepsilon} \cup B_{\varepsilon} \cup C_{\varepsilon}) \cap B_r) = |B_r|. \tag{2.9}$$

Before passing to the next step a comment is in order. The construction of the sequence $\{u^{\varepsilon}\}$ on the three cygar-shaped sets S^b_{ε} , S^c_{ε} , S^a_{ε} makes use of a rescaled version of the minimizer m (where the rescaling has also a correction which takes into account that m is defined on a rectangle): however, m is not Lipschitz, and therefore the resulting sequence would not be in $\text{Lip}(B_r; \mathbb{R}^2)$, and step 1 would be inapplicable. We need therefore a further smoothing argument with a new positive parameter σ , which we now describe, and which shows that m can be approximated by a Lipschitz function that will be denoted by $m_{\sigma,\varphi}$, with the property that

$$\left| \int_{\mathbf{R}} \sqrt{1 + |\nabla m|^2} \, ds dt - \int_{\mathbf{R}} \sqrt{1 + |\nabla m_{\sigma, \varphi}|^2} \, ds dt \right|$$

becomes as small as we want, provided σ tends to zero (see step 5 below).

We begin by smoothing the function φ in a neighbourhood of the points where it is not differentiable. Given $\sigma \in (0, \ell/4)$ let $\varphi_{\sigma} : \mathbb{R}^2 \to \mathbb{R}$ be a function with the following properties:

- $\varphi_{\sigma} \in \mathcal{C}^2(\mathbb{R}^2)$, and φ_{σ} is symmetric with respect to the line $\{t=r\}$;
- $\varphi_{\sigma} = \varphi$ on $\widehat{R} \setminus (B_{\sigma}(p) \cup B_{\sigma}(\widehat{p}))$, where $B_{\sigma}(p)$ (resp. $B_{\sigma}(\widehat{p})$) is the disk of radius σ centered at $p = (\ell/2, 0)$ (resp. at $\widehat{p} := (\ell/2, 2r)$), and $\varphi_{\sigma} \leq \varphi$;
- $\|\varphi \varphi_{\sigma}\|_{L^{1}(\widehat{\mathbf{R}})} = O(\sigma)$.

The graph of φ_{σ} over the segment $[0,\ell] \times \{0\}$ coincides with the graph of φ out of an interval centered at p with length 2σ and it is, roughly speaking, smoothed by a sort of arc of circle around the edge.

We now smoothen the rectangle \widehat{R} . Denote by $\widehat{R}_{\sigma} \subset \widehat{R}$ the \mathcal{C}^2 convex set, symmetric with respect to the point $(\ell/2, r)$, the boundary of which is obtained by smoothing the four vertices of ∂R in a disk of radius σ centered at each vertex, and with $\partial \widehat{R}_{\sigma} = \partial \widehat{R}$ out of the four disks.

Step 3: definition of $f_{\sigma,\varphi}$. Let \widehat{f}_{σ} be the solution of

$$\inf \left\{ \int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla f|^2} \, ds dt : f \in \operatorname{Lip}(\widehat{\mathbf{R}}_{\sigma}), \ f = \varphi_{\sigma} \text{ on } \partial \widehat{\mathbf{R}}_{\sigma} \right\}. \tag{2.10}$$

The existence of the *Lipschitz* function \hat{f}_{σ} is guaranteed by [4, Theorem 12.10], since \hat{R}_{σ} is convex of class \mathcal{C}^2 and φ_{σ} is of class \mathcal{C}^2 .

Figure 5: The smoothed sets $R_{\sigma} \subset R$, and (in bold) the graph of the smoothed boundary datum φ_{σ} on ∂R_{σ} but the frontal side. We also depict the graph of the Lipschitz minimizer f_{σ} on R_{σ} .

We now use the fact that \widehat{m} solves (2.3), by comparing the area of the graph of \widehat{m} with the area of the competitor function $\widehat{f}_{\sigma,\varphi}$ defined as follows:

$$\widehat{f}_{\sigma,\varphi} := \begin{cases} \widehat{f}_{\sigma} & \text{in } \widehat{R}_{\sigma}, \\ \varphi & \text{in } D \setminus \widehat{R}_{\sigma}. \end{cases}$$

Observe that $\widehat{f}_{\sigma,\varphi} \in BV(D)$ is discontinuous in a neighbourhood of the points p and \widehat{p} . Since \widehat{m} solves (2.3), it follows that

$$\int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{m}|^2} \ ds dt \leq \int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma, \varphi}|^2} \ ds dt + \int_{\partial \widehat{\mathbb{R}}} |\widehat{f}_{\sigma, \varphi} - \varphi| \ d\mathcal{H}^1.$$

We have

$$\int_{\partial \widehat{\mathbf{R}}} |\widehat{f}_{\sigma,\varphi} - \varphi| \ d\mathcal{H}^1 = \int_{\partial \widehat{\mathbf{R}} \cap (B_{\sigma}(p) \cup B_{\sigma}(\widehat{p}))} |\widehat{f}_{\sigma,\varphi} - \varphi| \ d\mathcal{H}^1 = O(\sigma).$$

Hence

$$\int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{m}|^2} \, ds dt \le \int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma, \varphi}|^2} \, ds dt + O(\sigma). \tag{2.11}$$

We now look for a converse inequality. From [4, Theorem 15.9] it follows that \widehat{f}_{σ} solves the following minimum problem in BV(D):

$$\min \left\{ \int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |Df|^2} + \int_{\partial \widehat{\mathbf{R}}_{\sigma}} |f - \varphi_{\sigma}| \ d\mathcal{H}^1 : \ f \in BV(D), \ f = \varphi_{\sigma} \text{ on } D \setminus \widehat{\mathbf{R}}_{\sigma} \right\}. \tag{2.12}$$

We compare the area of the graph of \hat{f}_{σ} with the area of the competitor function defined as

$$\begin{cases}
\widehat{m} & \text{in } \widehat{R}_{\sigma}, \\
\varphi_{\sigma} & \text{in } D \setminus \widehat{R}_{\sigma}.
\end{cases}$$
(2.13)

Observe that the function in (2.13) is discontinuous in a neighbourhood of the points p and \widehat{p} , and along the four arcs $\partial \widehat{R}_{\sigma} \setminus (\partial \widehat{R} \cap \partial \widehat{R}_{\sigma})$.

Since \hat{f}_{σ} solves the minimum problem (2.12), it follows that

$$\int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla \widehat{f}_{\sigma}|^{2}} \, ds dt \leq \int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla \widehat{m}|^{2}} \, ds dt + \int_{\partial \widehat{\mathbf{R}}_{\sigma}} |\widehat{m} - \varphi_{\sigma}| \, d\mathcal{H}^{1}$$

$$\leq \int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla \widehat{m}|^{2}} \, ds dt + \int_{\partial \widehat{\mathbf{R}}_{\sigma}} |\widehat{m} - \varphi_{\sigma}| \, d\mathcal{H}^{1}.$$
(2.14)

We have

$$\int_{\partial \widehat{R}_{\sigma}} |\widehat{m} - \varphi_{\sigma}| d\mathcal{H}^{1} = \int_{\partial \widehat{R}_{\sigma} \cap (B_{\sigma}(p) \cup B_{\sigma}(\widehat{p}))} |\widehat{m} - \varphi_{\sigma}| d\mathcal{H}^{1} + \int_{\partial \widehat{R}_{\sigma} \setminus (\partial \widehat{R} \cap \partial \widehat{R}_{\sigma})} |\widehat{m} - \varphi_{\sigma}| d\mathcal{H}^{1}$$

$$= O(\sigma) + \int_{\partial \widehat{R}_{\sigma} \setminus (\partial \widehat{R} \cap \partial \widehat{R}_{\sigma})} |\widehat{m} - \varphi_{\sigma}| d\mathcal{H}^{1} \leq O(\sigma), \tag{2.15}$$

where the last inequality is a consequence of (2.2). Hence from (2.14) it follows that

$$\int_{\widehat{\mathbb{R}}_{\sigma}} \sqrt{1 + |\nabla \widehat{f}_{\sigma}|^2} \, ds dt \le \int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{m}|^2} \, ds dt + O(\sigma). \tag{2.16}$$

Observe now that

$$\int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma,\varphi}|^{2}} \, ds dt = \int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla \widehat{f}_{\sigma}|^{2}} \, ds dt + \int_{\widehat{\mathbf{R}} \setminus \widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla \varphi|^{2}} \, ds dt$$

$$\leq \int_{\widehat{\mathbf{R}}_{\sigma}} \sqrt{1 + |\nabla \widehat{f}_{\sigma}|^{2}} \, ds dt + O(\sigma) \sqrt{1 + (\operatorname{lip}(\varphi))^{2}}$$

$$= \int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma}|^{2}} \, ds dt + O(\sigma).$$
(2.17)

Therefore, using (2.16), from (2.17) we deduce

$$\int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma,\varphi}|^2} \, ds dt \le \int_{\widehat{\mathbb{R}}} \sqrt{1 + |\nabla \widehat{m}|^2} \, ds dt + O(\sigma). \tag{2.18}$$

From (2.11) and (2.18) it follows that

$$\left| \int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla \widehat{f}_{\sigma, \varphi}|^2} \ ds dt - \int_{\widehat{\mathbf{R}}} \sqrt{1 + |\nabla \widehat{m}|^2} \ ds dt \right| \le O(\sigma),$$

hence by symmetry

$$\left| \int_{\mathcal{R}} \sqrt{1 + |\nabla f_{\sigma,\varphi}|^2} \, ds dt - \int_{\mathcal{R}} \sqrt{1 + |\nabla m|^2} \, ds dt \right| \le O(\sigma), \tag{2.19}$$

where

$$f_{\sigma,\varphi} := \begin{cases} \widehat{f}_{\sigma} & \text{in } \mathbf{R}_{\sigma}, \\ \varphi & \text{in } \mathbf{R} \setminus \mathbf{R}_{\sigma}. \end{cases}$$

Step 4: definition of $m_{\sigma,\varphi}$. We define the function $m_{\sigma,\varphi}: \mathbb{R} \to \mathbb{R}$ as follows:

$$m_{\sigma,\varphi}(s,t) := \begin{cases} f_{\sigma,\varphi}\left(s, \frac{(t-\sigma)r}{r-\sigma}\right) & \text{if } (s,t) \in \mathbf{R}, \ t \ge \sigma, \\ \frac{t}{\sigma}\varphi_{\sigma}(s,t) + \left(1 - \frac{t}{\sigma}\right)\varphi(s,t) & \text{if } (s,t) \in \mathbf{R}, \ t \le \sigma. \end{cases}$$

$$(2.20)$$

Observe that $m_{\sigma,\varphi} \in \text{Lip}(\mathbb{R})$.

Step 5. We have

$$\left| \int_{\mathcal{R}} \sqrt{1 + |\nabla m|^2} \, ds dt - \int_{\mathcal{R}} \sqrt{1 + |\nabla m_{\sigma, \varphi}|^2} \, ds dt \right| \le O(\sigma). \tag{2.21}$$

We define $N_{\sigma} := \{(s,t) \in \mathbb{R} : t \leq \sigma\}$, and we split

$$\int_{\mathbf{R}} \sqrt{1 + |\nabla m_{\sigma,\varphi}|^2} \ dsdt = \int_{\mathbf{R} \setminus N_{\sigma}} \sqrt{1 + |\nabla m_{\sigma,\varphi}|^2} \ dsdt + \int_{N_{\sigma}} \sqrt{1 + |\nabla m_{\sigma,\varphi}|^2} \ dsdt. \tag{2.22}$$

Let us first estimate the second integral on the right hand side of (2.22). Note that $\|\frac{\partial}{\partial s}m_{\sigma,\varphi}\|_{L^{\infty}(N_{\sigma})} = O(1)$ since φ and φ_{σ} are Lipschitz on R. Moreover $\|\frac{\partial}{\partial t}m_{\sigma,\varphi}\|_{L^{\infty}(N_{\sigma})} = O(1) + \frac{1}{\sigma}O(\|\varphi - \varphi_{\sigma}\|_{L^{\infty}(N_{\sigma})}) = O(1)$. It follows that

$$\int_{N_{\sigma}} \sqrt{1 + |\nabla m_{\sigma,\varphi}|^2} \, ds dt = O(\sigma), \tag{2.23}$$

since $|N_{\sigma}| = O(\sigma)$.

On the other hand it is not difficult to prove that there exist two positive constants C_1^{σ} , C_2^{σ} such that $C_1^{\sigma} \leq C_2^{\sigma}$, $C_1^{\sigma} = 1 + O(\sigma)$, $C_2^{\sigma} = 1 + O(\sigma)$, and

$$C_1^{\sigma} \int_{\mathcal{R}} \sqrt{1 + |\nabla f_{\sigma,\varphi}|^2} \, ds dt \le \int_{\mathcal{R} \setminus N_{\sigma}} \sqrt{1 + |\nabla m_{\sigma,\varphi}|^2} \, ds dt \le C_2^{\sigma} \int_{\mathcal{R}} \sqrt{1 + |\nabla f_{\sigma,\varphi}|^2} \, ds dt. \tag{2.24}$$

Then (2.21) follows from (2.23), (2.24) and (2.19).

Step 6: definition of $u^{\varepsilon,\sigma}$ on $S^b_{\varepsilon} \cup S^c_{\varepsilon} \cup S^a_{\varepsilon}$. We set

$$\xi = (\xi_1, \xi_2) := \frac{\beta - \alpha}{\ell} \in \mathbb{S}^1, \qquad \eta = (\eta_1, \eta_2) := \xi^{\perp},$$

where $^{\perp}$ denotes the counterclockwise rotation of $\pi/2$.

Let $\psi_{\varepsilon}: \left[\frac{\varepsilon}{2\sqrt{3}}, r\right] \to [0, r]$ be the unique increasing affine function mapping $\left[\frac{\varepsilon}{2\sqrt{3}}, r\right]$ into [0, r]. Note that for any $y \in \left[\frac{\varepsilon}{2\sqrt{3}}, r\right]$ we have

$$\psi'(y) = \frac{r}{r - \frac{\varepsilon}{2\sqrt{3}}} =: \kappa_{\varepsilon}, \qquad \lim_{\varepsilon \to 0} \kappa_{\varepsilon} = 1.$$
 (2.25)

Recalling the definition of $m_{\sigma,\varphi}$ in (2.20) we set

$$u^{\varepsilon,\sigma}(x,y) := \alpha + \left(\frac{1}{2} + \frac{x}{\varepsilon}\right)\ell\xi + m_{\sigma,\varphi}\left(\frac{\ell}{2} + \frac{\ell x}{\varepsilon}, \psi_{\varepsilon}(y)\right)\eta, \qquad (x,y) \in S_{\varepsilon}^{b}. \tag{2.26}$$

Figure 6: (a): the "cygar-shaped" set S^b_{ε} defined in (2.7), and its rotated S^c_{ε} , S^a_{ε} . The central triangle T_{ε} of side ε , further subdivided into four triangles T^a_{ε} , T^b_{ε} , T^c_{ε} , T^c_{ε} , is depicted also in (b) on a larger scale.

Observe that $u^{\varepsilon,\sigma}=(u_1^{\varepsilon,\sigma},u_2^{\varepsilon,\sigma})\in\mathcal{C}^\infty(S^b_\varepsilon;\mathbb{R}^2),\ u^{\varepsilon,\sigma}=\alpha$ on $\{(x,y)\in S^b_\varepsilon:x=-\varepsilon/2\}$, and $u^{\varepsilon,\sigma}=\beta$ on $\{(x,y)\in S^b_\varepsilon:x=\varepsilon/2\}$. Write for simplicity

$$\widetilde{m} = m_{\sigma,\varphi}$$
.

We have

$$\nabla u_1^{\varepsilon,\sigma} = \left(\frac{\ell \xi_1}{\varepsilon} + \frac{\widetilde{m}_s}{\varepsilon} \ \ell \eta_1 \ , \ \widetilde{m}_t \ \kappa_\varepsilon \ \eta_1 \right), \qquad \nabla u_2^{\varepsilon,\sigma} = \left(\frac{\ell \xi_2}{\varepsilon} + \frac{\widetilde{m}_s}{\varepsilon} \ \ell \eta_2 \ , \ \widetilde{m}_t \ \kappa_\varepsilon \ \eta_2 \right),$$

where \widetilde{m}_s , \widetilde{m}_t denote the partial derivatives of \widetilde{m} with respect to s and t respectively, and are evaluated at $(\frac{\ell}{2} + \frac{\ell x}{\varepsilon}, \psi_{\varepsilon}(y))$. Hence

$$|\nabla u_1^{\varepsilon,\sigma}|^2 + |\nabla u_2^{\varepsilon,\sigma}|^2 = \frac{1}{\varepsilon^2} \left\{ \ell^2 |\xi|^2 + (\widetilde{m}_s)^2 \ell^2 |\eta|^2 + 2\widetilde{m}_s \ell^2 \left(\xi_1 \eta_1 + \xi_2 \eta_2 \right) \right\} + (\widetilde{m}_t)^2 \kappa_{\varepsilon}^2 |\eta|^2$$

$$= \frac{1}{\varepsilon^2} \left\{ \ell^2 + (\widetilde{m}_s)^2 \ell^2 \right\} + (\widetilde{m}_t)^2 \kappa_{\varepsilon}^2, \tag{2.27}$$

where we have used $|\xi| = |\eta| = 1$ and $\xi_1 \eta_1 + \xi_2 \eta_2 = 0$. Moreover

$$\left(\frac{\partial u_1^{\varepsilon,\sigma}}{\partial x}\frac{\partial u_2^{\varepsilon,\sigma}}{\partial y} - \frac{\partial u_1^{\varepsilon,\sigma}}{\partial y}\frac{\partial u_2^{\varepsilon,\sigma}}{\partial x}\right)^2 = \frac{1}{\varepsilon^2} \left(\ell \widetilde{m}_t \ \kappa_\varepsilon \left(\xi_1 \eta_2 - \xi_2 \eta_1\right)\right)^2 = \frac{1}{\varepsilon^2} \left(\ell \widetilde{m}_t \ \kappa_\varepsilon\right)^2, \tag{2.28}$$

where again \widetilde{m}_s , \widetilde{m}_t are evaluated at $(\frac{\ell x}{\varepsilon} + \frac{\ell}{2}, \psi_{\varepsilon}(y))$, and we have used $\xi_1 \eta_2 - \xi_2 \eta_1 = 1$. Therefore

Figure 7: The set P_{ε} is bounded by the bold contour.

from (2.27) and (2.28) we obtain

$$1 + |\nabla u_1^{\varepsilon,\sigma}|^2 + |\nabla u_2^{\varepsilon,\sigma}|^2 + \left(\frac{\partial u_1^{\varepsilon,\sigma}}{\partial x} \frac{\partial u_2^{\varepsilon,\sigma}}{\partial y} - \frac{\partial u_1^{\varepsilon,\sigma}}{\partial y} \frac{\partial u_2^{\varepsilon,\sigma}}{\partial x}\right)^2$$

$$= 1 + \left(\widetilde{m}_t\right)^2 \kappa_{\varepsilon}^2 + \frac{\ell^2}{\varepsilon^2} \left(1 + \left(\widetilde{m}_s\right)^2 + \left(\widetilde{m}_t\right)^2 \kappa_{\varepsilon}^2\right) = 1 + \frac{\ell^2}{\varepsilon^2} \left(1 + \left(\widetilde{m}_s\right)^2 + \left(\widetilde{m}_t\right)^2 \kappa_{\varepsilon}^2 \left(1 + \frac{\varepsilon^2}{\ell^2}\right)\right).$$

As a consequence

$$\mathbb{A}(u^{\varepsilon}, S_{\varepsilon}^{b}) = \frac{\ell}{\varepsilon} \int_{S_{\varepsilon}^{b}} \sqrt{1 + \left[\widetilde{m}_{s} \left(\frac{\ell}{2} + \frac{\ell x}{\varepsilon}, \psi_{\varepsilon}(y)\right)\right]^{2} + \left[\widetilde{m}_{t} \left(\frac{\ell}{2} + \frac{\ell x}{\varepsilon}, \psi_{\varepsilon}(y)\right)\right]^{2} \kappa_{\varepsilon}^{2} \left(1 + \frac{\varepsilon^{2}}{\ell^{2}}\right) + O(\varepsilon^{2})} dxdy$$

$$= \frac{1}{\kappa_{\varepsilon}} \int_{\mathbb{R} \setminus P_{\varepsilon}} \sqrt{1 + \left[\widetilde{m}_{s}(s, t)\right]^{2} + \left[\widetilde{m}_{t}(s, t)\right]^{2} \kappa_{\varepsilon}^{2} \left(1 + \frac{\varepsilon^{2}}{\ell^{2}}\right) + O(\varepsilon^{2})} dsdt, \tag{2.29}$$

where the last equality follows by making the change of variables

$$\Phi:(s,t)\in\mathbf{R}\rightarrow\Phi(s,t):=\left(\frac{\varepsilon}{\ell}\left(s-\frac{\ell}{2}\right),\psi_{\varepsilon}^{-1}(t)\right)=(x,y)\in\left[-\frac{\varepsilon}{2},\frac{\varepsilon}{2}\right]\times\left[\frac{\varepsilon}{2\sqrt{3}},r\right]\supset S_{\varepsilon}^{b},$$

and $P_{\varepsilon} := \mathbb{R} \setminus \Phi^{-1}(S_{\varepsilon}^b)$ (see Figure 7). Hence, recalling also the second equality in (2.25),

$$\lim_{\varepsilon \to 0} \mathbb{A}(u^{\varepsilon,\sigma}, S_{\varepsilon}^b) = \int_{\mathbb{R}} \sqrt{1 + (\widetilde{m}_s)^2 + (\widetilde{m}_t)^2} \, ds dt. \tag{2.30}$$

We recall that from (2.21) it follows that

$$\int_{\mathbb{R}} \sqrt{1 + (\widetilde{m}_s)^2 + (\widetilde{m}_t)^2} \, ds dt = \mathfrak{A}_{\min} + O(\sigma). \tag{2.31}$$

Hence, employing the same construction used in step 6 in the strips S_{ε}^{c} and S_{ε}^{a} , and using (2.31) we obtain

$$\lim_{\varepsilon \to 0} \mathbb{A}(u^{\varepsilon,\sigma}, S^b_{\varepsilon} \cup S^c_{\varepsilon} \cup S^a_{\varepsilon}) = 3\mathfrak{A}_{\min} + O(\sigma). \tag{2.32}$$

Step 7: definition of u^{ε} on T_{ε} . We divide T_{ε} into four closed equilateral triangles T_{ε}^{a} , T_{ε}^{b} , T_{ε}^{c} and T_{ε}^{0} as in Figure 6 (b). We set the value of u^{ε} on T_{ε}^{0} as the baricenter of α , β , γ , namely

$$u^{\varepsilon} := 0 \quad \text{in } T_{\varepsilon}^{0}.$$
 (2.33)

We define u^{ε} on T_{ε}^{b} so that:

- (i) the value of u^{ε} on the bottom vertex of T_{ε}^{b} is β ;
- (ii) the value of u^{ε} on the top side of T_{ε}^{b} is the baricenter of α , β , γ (the zero vector);
- (iii) u^{ε} is affine.

Note that u^{ε} does not depend on x. We make the similar constructions on T_{ε}^{a} and on T_{ε}^{c} . We compute

$$\mathcal{A}(u^{\varepsilon}, T_{\varepsilon}) = \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}^{0}) + \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}^{a}) + \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}^{b}) + \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}^{c}) = O(\varepsilon^{2}) + O(\varepsilon),$$

since on T^0_{ε} the integrand is 1, and on $T_{\varepsilon} \setminus T^0_{\varepsilon}$ the integrand is $O(\varepsilon^{-1})$. Hence

$$\lim_{\varepsilon \to 0} \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}) = 0. \tag{2.34}$$

Finally, let us define u^{ε} as in (2.8) on $A_{\varepsilon} \cup B_{\varepsilon} \cup C_{\varepsilon}$, as in step 7 on T_{ε} , and on $S_{\varepsilon}^b \cup S_{\varepsilon}^c \cup S_{\varepsilon}^a$ let

$$u^{\varepsilon} := u^{\varepsilon, \sigma_{\varepsilon}}.$$

where $\{\sigma_{\varepsilon}\}\subset(0,+\infty)$ is a sequence such that

$$\lim_{\varepsilon \to 0^+} \sigma_{\varepsilon} = 0. \tag{2.35}$$

From (2.8), (2.26), (2.33), and (i)-(iii) it follows that

$$\{u^{\varepsilon}\} \subset \operatorname{Lip}(B_r; \mathbb{R}^2), \qquad \lim_{\varepsilon \to 0} \int_{B_r} |u^{\varepsilon} - u| \ dx dy = 0.$$
 (2.36)

Moreover

$$\mathcal{A}(u^{\varepsilon}, B_r) = \mathcal{A}(u^{\varepsilon}, (A_{\varepsilon} \cup B_{\varepsilon} \cup C_{\varepsilon}) \cap B_r) + \mathcal{A}(u^{\varepsilon}, S_{\varepsilon}^b) + \mathcal{A}(u^{\varepsilon}, S_{\varepsilon}^c) + \mathcal{A}(u^{\varepsilon}, S_{\varepsilon}^a) + \mathcal{A}(u^{\varepsilon}, T_{\varepsilon}). \tag{2.37}$$

Then
$$(1.11)$$
 follows from (2.36) , step 1, (2.37) , (2.9) , (2.32) , (2.35) and (2.34) .

Remark 2.2. Theorem 1.1 is still valid with a similar statement, and easy modifications in the proof, under less restrictive hypotheses on u (however always under the assumption n = k = 2). In the following two specific cases (of increasing generality):

- $u: \mathbb{R}^2 \to \{\alpha, \beta, \gamma\}$ is a function jumping only along three different radii of B_r meeting at the origin with arbitrary angles;
- $u: \mathbb{R}^2 \to \{\alpha, \beta, \gamma\}$ is a function jumping only along three curves of class \mathcal{C}^1 meeting only at the origin, each curve being without self-intersections and connecting the origin with ∂B_r , and provided the three curves have equal length,

we expect the theorem to be true and, in addition, the corresponding sequence $\{u^{\varepsilon}\}$ to be optimal, namely the value $\lim_{\varepsilon \to 0^+} \mathcal{A}(u^{\varepsilon}, B_r)$ to be equal to the $L^1(B_r; \mathbb{R}^2)$ -lower semicontinuous envelope of $\mathbb{A}(\cdot, B_r)$ evaluated at u.

References

- [1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000.
- [2] E. Acerbi, G. Dal Maso, New lower semicontinuity results for polyconvex integrals, Calc. Var. Partial Differential Equations 2, 329–371, 1994
- [3] E. De Giorgi, On the relaxation of functionals defined on cartesian manifolds, in Developments in Partial Differential Equations and Applications in Mathematical Physics (Ferrara 1992), Plenum Press, New York 1992.
- [4] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.