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Abstract. This article is devoted to the study of the asymptotic behavior of the

zero-energy deformations set of a periodic nonlinear composite material. We approach

the problem using two-scale Young measures. We apply our analysis to show that

polyconvex energies are not closed with respect to periodic homogenization. The

counterexample is obtained through a rank-one laminated structure assembled by

mixing two polyconvex functions with p-growth, where p ≥ 2 can be fixed arbitrarily.
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1. Introduction

In this article we focus on periodic nonlinear composite materials. Due to the periodic structure,
the energy density of these materials can be described by a family of the type {(Wk, Pk)}k=1,...,n,
where {Wk : Ms×d → [0,+∞)}k=1,...,n is a family of continuous functions describing the energy
densities of the components and {Pk}k=1,...,n is a measurable partition of the unit cell Q := [0, 1)d.
In a mix of fineness ε, the functional Eε that represents, at microscopic level, the stored energy of
the composite under a deformation u ∈W 1,p(Ω,Rs) is of the type

Eε(u) =

∫

Ω

W
(
〈x
ε
〉,∇u(x)

)
dx,

where 〈·〉 denotes the fractional part of a vector componentwise, Ω is an open bounded domain in
Rd and W(y,Λ) =

∑n
k=1 χPk

(y)Wk(Λ) with χPk
the characteristic function of Pk.

When the parameter ε tends to 0, the microscopic structure becomes finer and finer and the
asymptotic behaviour of the composite is that of a homogeneous material. If the function W
satisfies coerciveness and growth conditions of order p ∈ (1,+∞), i.e., there exist c1, c2, c3 > 0
such that

c1 |Λ|p − c2 ≤ W (y,Λ) ≤ c3 (1 + |Λ|p) for all (y,Λ) ∈ Q× Ms×d , (1.1)

then the stored energy Ehom of this material can be described efficiently by the Γ-limit of the
family Eε (see Section 3) and is of the type

Ehom(u) =

∫

Ω

Whom

(
∇u(x)

)
dx,
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where the function Whom : Ms×d → [0,+∞) is defined by the asymptotic homogenization formula

Whom(Λ) := lim
t→+∞

1

td
inf

{∫

(0,t)d

W
(
〈y〉,Λ + ∇φ(y)

)
dy : φ ∈ W

1,p
0

(
(0, t)d,Rs

)}
. (1.2)

Definition 1.1. We call Whom the homogenized integrand related to W .

Observe that in the case n= 1 Whom coincides with the quasiconvexification of W1 (see [11,
Chapter 5]).

Question: Suppose that the sets Ak := W−1
k (0) (k = 1, . . . , n) are not empty. Is it possible to

characterise W−1
hom (0) and its dependence on {(Ak, Pk)}k=1,...,n?

Definition 1.2. Given a measurable partition {Pk}k=1,...,n of the unit cell Q and a family of
compact sets {Ak}k=1,...,n, we define Ahom as the set of matrices A ∈ Ms×d such that for all
εh → 0+ there exists a sequence uh ∈ W 1,∞(Ω,Rs) satisfying

i) uh ⇀ Ax weakly* in W 1,∞(Ω,Rs);
ii)

∑n
k=1 χPk

(
〈 x

εh
〉
)
dist

(
∇uh(x),Ak

)
→ 0 in measure.

The second condition is equivalent (see Proposition 2.10) to the statement that the two-scale Young
measure (ν(x,y))(x,y)∈Ω×Q corresponding to (a subsequence of) ∇uh satisfies

ii)’ for all k∈{1, . . . , n} and for a.e. (x, y)∈Ω × Pk supp ν(x,y) ⊆ Ak.

We call Ahom the homogenized set related to {(Ak, Pk)}k=1,...,n.

Note that in the case n=1 Ahom coincides with the quasiconvex hull of A1 (see [18, Chapter 4]).

The first result of this article gives an answer to the previous question, showing the link between
homogenized integrands and homogenized sets. We were inspired by [5, Section 4] and [6, Section 4].

Theorem 1.3. Let {Wk : Ms×d → [0,+∞)}k=1,...,n be a family of continuous functions, let

{Pk}k=1,...,n be a measurable partition of the unit cell Q and let W(y,Λ) :=
∑n

k=1 χPk
(y)Wk(Λ).

Suppose that for k ∈ {1, . . . , n}
i) the function Wk satisfies coerciveness and growth conditions of order p;

ii) the set Ak := W−1
k (0) is not empty.

Then
Ahom = W−1

hom(0),

i.e., the zero-level set of the homogenized integrand Whom related to W coincide with the homoge-
nized set Ahom related to {(Ak, Pk)}k=1,...,n.

The second result is to show that the polyconvexity of the sets Ak (k = 1, . . . , n) does not ensure
the polyconvexity of Ahom. This aim is achieved with an explicit example in the case d = s = n = 2.
The notions of polyconvexity for sets and functions are recalled in Section 4.

Theorem 1.4. (Loss of polyconvexity). Consider the sets

• P1 = [0, 1
2 ) × [0, 1) and P2 = [12 , 1) × [0, 1);

• A1 = {O,A1
1, A

2
1} with O = diag(0, 0), A1

1 = diag(− 1
2 , 1) and A2

1 = diag(−2, 2);

• A2 = {O,A1
2, A

2
2} with A1

2 = diag(5
2 , 1) and A2

2 = diag(3, 2);

• B = {O,B1, B2} with 2Bj = A
j
1 +A

j
2 for j = 1, 2.

The following properties hold:

i) A1 and A2 are both polyconvex sets;

ii) fixed p ≥ 2, there exist two polyconvex functions W1,W2 : M2×2→[0,+∞) p-coercive and

with p-growth such that A1 = W−1
1 (0) and A2 = W−1

2 (0);
iii) the homogenized set Ahom related to {(Ak, Pk)}k=1,2 is not polyconvex. More precisely

B ⊆ Ahom and B
pc * Ahom,

where Bpc denotes the polyconvex hull of B;

iv) the homogenized integrand Whom related to W(y,Λ) := χP1
(y)W1(Λ) + χP2

(y)W2(Λ) is

not polyconvex.
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The example given in the result above shows that polyconvexity is not preserved by homogenization,
unlike convexity and quasiconvexity.

At our knowledge, the first example of loss of polyconvexity by homogenization is due to
Braides [8]. He considers a function W assembled by using two functions W1,W2 : M2×2 →
[0,+∞) with different growth conditions. More precisely

W(y,Λ) :=

{
W1(Λ) if y ∈ Q\[ 14 , 3

4 ]2,

W2(Λ) if y ∈ [ 14 ,
3
4 ]2,

where W1 is a convex function satisfying coerciveness and growth conditions of order p < 2, while
W2 is a polyconvex function satisfying coerciveness and growth conditions of order 2. Since the
homogenized integrand related to W is not convex and satisfies a growth condition of order p < 2,
it cannot be polyconvex. A suitable quadratic perturbation, considered in [9], permits to assume
that also W1 satisfies coerciveness and growth conditions of order 2.

Our example is quite different. It is based on the structure of {(Ak, Pk)}k=1,2 and is inde-
pendent of the growth condition. Indeed, we first construct two sets A1 and A2 such that the
homogenized set Ahom related to {(Ak, Pk)}k=1,2 is not polyconvex and then, fixed p ≥ 2, we
construct two polyconvex functions W1,W2 : M2×2 → [0,+∞) p-coercive and with p-growth
such that A1 = W−1

1 (0) and A2 = W−1
2 (0). The homogenized integrand Whom related to

W(y,Λ) := χP1
(y)W1(Λ) + χP2

(y)W2(Λ) cannot be polyconvex because Ahom = W−1
hom(0).

The idea behind our construction of {(Ak, Pk)}k=1,2 is the following. The set A1 (resp. A2) is
polyconvex because the difference of two elements of A1 (resp. A2) has negative (resp. positive)
determinant. The set B = {O, I,diag(1

2 , 2)}, composed of average of the correspondent matrices
of A1 and A2, does not have these properties and its polyconvex hull is not trivial. The fact that
Bpc * Ahom is proved by using the function V defined in (5.1). This function was used originally by

Šverák in [20] to prove the quasiconvexity of sets of the type {O, I,diag(b1, b2)}, where 0 < b1 < 1
and b2 > 1. See also [2] for a different proof.

The plan of the paper is as follows. In Section 2 we collect concepts and basic facts about
Young measures and two-scale Young measures. In Section 3 we recall some well known facts
about Γ-convergence and prove Theorem 1.3. In Section 4 we present some simple results about
polyconvexity. Finally, in Section 5 we provide a proof of Theorem 1.4.

2. Two-scale Young measures

We start by collecting preliminary results about Young measures (see [4], [18] and [22]) and two-
scale Young measures (see [7], [23] and also [3], [19]).

Before we list the notation used in the following:

• Ω a bounded open subset of Rd;
• Q the unit cell [0, 1)d;
• L(Ω) the Lebesgue σ-algebra on Ω ;
• |S| the Lebesgue measure of a measurable subset S ⊆ Rl;
• B(S) the Borel σ-algebra on a subset S ⊆ Rl;
• P(Rm) the set of probability measures on Rm;

• Y(Ω,Rm) the family of all weakly* measurable maps x ∈ Ω
µ−→µx ∈ P(Rm);

a corresponding definition holds for Y(Ω ×Q,Rm);
• 〈x〉 ∈ Q the fractional part of x ∈ Rd componentwise, i.e.,

〈x〉k = xk − ⌊xk⌋ for k ∈ {1, . . . , d},
where ⌊xk⌋ stands for the largest integer less than or equal to xk;

• εh a sequence in (0,+∞).

Remark 2.1.
i) The term measurable is tacitly understood as Lebesgue measurable, unless otherwise stated.
ii) A map µ : Ω → P(Rm) is said to be weakly* measurable if x → µx(S) is measurable

for all S ∈ B(Rm). By approximation, if µ ∈ Y(Ω,Rm) and W : Ω × Rm → [0,+∞) is
L(Ω) ⊗ B(Rm)-measurable, then x→

∫
Rm W(x, λ)dµx(λ) is measurable.
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iii) More precisely, the elements of Y(Ω,Rm) are equivalence classes of maps that agree a.e.;
we usually do not distinguish a map from its equivalence class.

The following result is known as the Fundamental Theorem on Young Measures. It shows that
the weak limit of a sequence of the type W (·, uh(·)) can be expressed through a suitable map
µ ∈ Y(Ω,Rm) associated to uh. The proof can be found in [4] (see also [18] and [22]). We recall
that a L(Ω)⊗B(Rm)-measurable function W is a Carathéodory integrand if W(x, ·) is continuous
for a.e. x ∈ Ω.

Theorem 2.2. Let uh be a bounded sequence in L1(Ω,Rm). There exist a subsequence uhi
and a

map µ ∈ Y(Ω,Rm) such that the following properties hold:

i) if W : Ω × Rm → [0,+∞) is a Carathéodory integrand, then

lim inf
i→+∞

∫

Ω

W
(
x, uhi

(x)
)
dx ≥

∫

Ω

W(x)dx

where

W(x) :=

∫

Rm

W(x, λ)dµx(λ);

ii) if W : Ω × Rm → R is a Carathéodory integrand and W (·, uh(·)) is equi-integrable, then

W(x, ·) is µx-integrable for a.e. x ∈ Ω, W is in L1(Ω) and

lim
i→+∞

∫

Ω

W
(
x, uhi

(x)
)
dx =

∫

Ω

W(x)dx;

iii) if A ⊆ Rm is closed, then suppµx ⊆ A for a.e. x ∈ Ω if and only if dist(uhi
,A) → 0 in

measure.

Definition 2.3. The map µ ∈ Y(Ω,Rm) is called the Young measure generated by the se-
quence uhi

.

In homogenization processes, we are interested to asymptotic behaviour of sequences of the
type Wh(·) = W

(
·, 〈 ·

εh
〉, uh(·)

)
. Under technical hypothesis on W , the weak limit of Wh can be

expressed through a suitable map ν ∈ Y(Ω ×Q,Rm) associated to the couple (εh, uh).

Definition 2.4. A function W : Ω × Q× Rm → R is said to be an admissible integrand if there
exist a family {Xδ}δ>0 of compact subsets of Ω and a family {Yδ}δ>0 of compact subsets of Q such
that |Ω\Xδ| ≤ δ, |Q\Yδ| ≤ δ and W|Xδ×Yδ×Rm is continuous for every δ > 0.

Remark 2.5. It is not restrictive to suppose that the families {Xδ}δ>0 and {Yδ}δ>0 are decreasing,
i.e., δ′ ≤ δ implies Xδ ⊆ Xδ′ and Yδ ⊆ Yδ′ . Otherwise, it is sufficient to consider the new families

{X̃δ}δ>0 and {Ỹδ}δ>0, where

X̃δ :=
⋂

i≥iδ

X2−i , Ỹδ :=
⋂

i≥iδ

Y2−i

and iδ is the minimum positive integer such that 21−iδ ≤ δ.

Remark 2.6. Admissible integrands have good measurability properties: if W is an admissible
integrand, then there exist a Borel set X ⊆ Ω with |Ω\X | = 0 and a Borel set Y ⊆ Q with
|Q\Y | = 0, such that W|X×Y ×Rm is borelian. In particular, for every fixed ε, the function (x, λ) →
W

(
x, 〈x

ε
〉, λ

)
is L(Ω) ⊗ B(Rm)-measurable.

Remark 2.7. Let {Wk : Ω × Rm → R}k=1,...,n be a family of Carathéodory integrands and let
{Pk}k=1,...,n be a measurable partition of the unit cell Q. By applying Lusin theorem to each χPk

and Scorza-Dragoni theorem (see [14]) to each Wk, we obtain that W(x, y, λ) :=
∑n

k=1 χPk
(y)Wk(x, λ)

is an admissible integrand.

The next two results are the equivalent of Theorem 2.2 in the case of two-scale Young measures.
For the convenience of the reader we prefer to give a direct proof of Theorem 2.8, although this
result can be essentially deduced from Theorem 2.2 (see [7] and [23]).
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Theorem 2.8. Let εh → 0+, let uh be a bounded sequence in L1(Ω,Rm) and let wh : Ω → Q×Rm

be defined by wh(x) :=
(
〈 x

εh
〉, uh(x)

)
. There exist a subsequence whi

and a map ν ∈ Y(Ω×Q,Rm)
such that the following properties hold:

i) if W : Ω ×Q× Rm → [0,+∞) is an admissible integrand, then

lim inf
i→+∞

∫

Ω

W
(
x,whi

(x)
)
dx ≥

∫

Ω×Q

W(x, y) dx dy, (2.1)

where

W(x, y) :=

∫

Rm

W(x, y, λ) dν(x,y)(λ);

ii) if W : Ω×Q×Rm → R is an admissible integrand and W(·, wh(·)) is equi-integrable, then

W(x, y, ·) is ν(x,y)-integrable for a.e. (x, y) ∈ Ω ×Q, W is in L1(Ω ×Q) and

lim
i→+∞

∫

Ω

W
(
x,whi

(x)
)
dx =

∫

Ω×Q

W(x, y) dx dy. (2.2)

Definition 2.9. The map ν ∈ Y(Ω ×Q,Rm) is called the two-scale Young measure generated by
the sequence uhi

with respect to εhi
. In the sequel we omit to specify the dependence on εhi

when
it is clear from the context.

Proof of Theorem 2.8. For the sake of clarity, we divide the proof into three steps.
Step 1. Let M+(Ω×Q×Rm) be the set of non-negative and finite Radon measures on Ω×Q×Rm

and, for h ∈ N+, let ν̂h ∈ M+(Ω ×Q× Rm) be the measure canonically associated with wh, i.e.,

ν̂h(S) =

∫

Ω

χS

(
x,wh(x)

)
dx for all S ∈ B(Ω ×Q× Rm).

Since ν̂h is a bounded sequence, it has a weakly* convergent subsequence ν̂hi
. Let ν̂ ∈ M+(Ω ×

Q× Rm) be the limit of ν̂hi
. We claim that

ν̂ (S × Rm) = |S| for all S ∈ B(Ω ×Q). (2.3)

Since B(Ω ×Q) = B(Ω) ⊗ B(Q), it is sufficient to check that

ν̂ (U × V × Rm) = |U × V | for all U ⊆ Ω and V ⊆ Q open.

We use a classical result about the behaviour of the sequence ν̂h(S) when S ⊆ Ω×Q× Rm is an
open or compact set (see [1, Proposition 1.62]).

Firstly, we have for U ⊆ Ω and V ⊆ Q open

ν̂ (U × V × Rm) ≤ lim inf
i→+∞

ν̂hi
(U × V × Rm)

= lim
i→+∞

∫

Ω

χU (x)χV

(
〈 x
εhi

〉
)
dx = |U × V | ,

(2.4)

by using Riemann-Lebesgue lemma (see [11, Theorem 1.5]) in the last equality.
Denoting with Bk the open ball with centre in the origin and radius k ∈ N+, we have for X ⊆ Ω

and Y ⊆ Q compact

ν̂ (X × Y ×Bk) ≥ lim sup
i→+∞

ν̂hi
(X × Y ×Bk)

= lim sup
i→+∞

∣∣∣
{
x ∈ X : 〈 x

εhi

〉 ∈ Y and |uhi
(x)| ≤ k

}∣∣∣

≥ lim
i→+∞

∫

Ω

χX(x)χY

(
〈 x
εhi

〉
)
dx− supi ‖uhi

‖L1

k

= |X × Y | − supi ‖uhi
‖L1

k
.

Therefore, by using inner regularity of the measure ν̂, we obtain the opposite of inequality (2.4):

ν̂ (U × V × Rm)

= sup
{
ν̂(X × Y ×Bk) : X ⊆ U and Y ⊆ V compact, k ∈ N+

}

≥ sup
{
|X × Y | : X ⊆ U and Y ⊆ V compact

}
= |U × V | .
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As a consequence of equality (2.3), from disintegration theorem (see [1, Theorem 2.28] and [15,
Theorem 1.5.1]), we can infer that there exists a map ν ∈ Y(Ω ×Q,Rm) such that

∫

Ω×Q×Rm

φd ν̂ =

∫

Ω×Q

(∫

Rm

φ(x, y, λ)dν(x,y)(λ)

)
dx dy

for each continuous and bounded φ : Ω ×Q× Rm → R.

Step 2. We prove property (i). Note that by Remark 2.6, both sides of inequality (2.1) are well
defined. We first assume that there exists b > 0 such that

W(x, y, λ) ≤ b for all (x, y, λ) ∈ Ω ×Q× Rm. (2.5)

By the admissibility condition, for every δ > 0 there exist a compact set Xδ ⊆ Ω and a compact set
Yδ ⊆ Q such that |Ω\Xδ| ≤ δ, |Q\Yδ| ≤ δ and W|Xδ×Yδ×Rm is continuous. Let φ ∈ C(Ω×Q×Rm)
be an extension of W|Xδ×Yδ×Rm such that 0 ≤ φ(x, y, λ) ≤ b for every (x, y, λ) ∈ Ω × Q × Rm.

Since ν̂hi
⇀ ν̂ weakly*, defining φ(x, y) :=

∫
Rm φ(x, y, λ) dν(x,y)(λ), we have by the previous step

lim inf
i→+∞

∫

Ω

φ
(
x,whi

(x)
)
dx = lim inf

i→+∞

∫

Ω×Q×Rm

φd ν̂hi

≥
∫

Ω×Q×Rm

φd ν̂ =

∫

Ω×Q

φ(x, y) dx dy.

We can write
∫

Ω×Q

W(x, y) dx dy − b δ(1 + |Ω|) ≤
∫

Xδ×Yδ

W(x, y) dx dy

=

∫

Xδ×Yδ

φ(x, y) dx dy ≤
∫

Ω×Q

φ(x, y) dx dy ≤ lim inf
i→+∞

∫

Ω

φ
(
x,whi

(x)
)
dx

≤ lim inf
i→+∞

∫

Ω

[
χXδ

(x)χYδ

(
〈 x
εhi

〉
)

+ χΩ\Xδ
(x) + χQ\Yδ

(
〈 x
εhi

〉
)]
φ
(
x,whi

(x)
)
dx

≤ lim inf
i→+∞

∫

Xδ

χYδ

(
〈 x
εhi

〉
)
W

(
x,whi

(x)
)
dx+ b δ + b lim

i→+∞

∫

Ω

χQ\Yδ

(
〈 x
εhi

〉
)
dx

≤ lim inf
i→+∞

∫

Ω

W
(
x,whi

(x)
)
dx + b δ(1 + |Ω|).

Being δ > 0 arbitrary, inequality (2.1) follows.
In order to remove assumption (2.5) we consider, for k ∈ N+, the functions

Wk(x, y, λ) := min
{
k,W(x, y, λ)

}
.

By applying the first part of the step, we have

lim inf
i→+∞

∫

Ω

W
(
x,whi

(x)
)
dx ≥ lim inf

i→+∞

∫

Ω

Wk

(
x,whi

(x)
)
dx ≥

∫

Ω×Q

Wk(x, y) dx dy.

By noting that Wk is increasing and that Wk(x, y, ·) → W(x, y, ·) a.e. in Rm for every fixed
(x, y) ∈ Ω ×Q, we deduce from the monotone convergence theorem that Wk → W a.e. in Ω ×Q.
The sequence Wk is increasing so, again from monotone convergence theorem,

∫

Ω×Q

Wk(x, y) dx dy
k→∞−−−−→

∫

Ω×Q

W(x, y) dx dy.

Step 3. We prove property (ii). Let W+ := max{0,W} and W− := max{0,−W}, so that
W = W+ −W−. Both the sequences W+(·, wh(·)) and W−(·, wh(·)) are equi-integrable, so it is
enough to prove equality (2.2) when W is non-negative.

If W is bounded from above by a constant b, then (2.2) follows by applying (2.1) to W and
b − W . For general non-negative W , by an equivalent characterization of equi-integrability, for
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each η > 0 there exists k ∈ N+ such that suph

∫
{x :W(x,wh(x))≥k}

W
(
x,wh(x)

)
dx < η. Hence

lim sup
i→+∞

∫

Ω

W
(
x,whi

(x)
)
dx− η ≤ lim

i→+∞

∫

Ω

Wk

(
x,whi

(x)
)
dx

=

∫

Ω×Q

Wk(x, y) dx dy ≤
∫

Ω×Q

W(x, y) dx dy.

Being η > 0 arbitrary, the previous inequality completes the proof.
�

Proposition 2.10. Let uh be a bounded sequence in L1(Ω,Rm) generating a two-scale Young

measure ν ∈ Y(Ω × Q,Rm) with respect to εh. If {Ak}k=1,...,n is a family of closed subsets of

Rm and {Pk}k=1,...,n is a measurable partition of the unit cell Q, then the following conditions are
equivalent:

i) for all k ∈ {1, . . . , n} and for a.e. (x, y) ∈ Ω × Pk supp ν(x,y) ⊆ Ak;

ii) D
(
〈 x

εh
〉, uh(x)

)
→ 0 in measure, where D(y, λ) :=

∑n
k=1 χPk

(y)dist(λ,Ak).

Proof. (i)⇒(ii) Fixed η > 0, we define W(y, λ) := min{η,D(y, λ)}. By Lusin theorem, W is an
admissible integrand and therefore, by Theorem 2.8,

lim
h→+∞

∫

Ω

W
(
〈 x
εh

〉, uh(x)
)
dx =

∫

Ω×Q

(∫

Rm

W(y, λ) dν(x,y)(λ)

)
dx dy = 0.

Since η > 0 is arbitrary, this proves that D
(
〈 x

εh
〉, uh(x)

)
→ 0 in measure.

(ii)⇒(i) Let ϕ ∈ Ck := {ϕ ∈ Cc(Rm) : suppϕ ⊆ Rm \ Ak} and η > 0 such that ϕ(λ) = 0 if
dist(λ,Ak) ≤ η. Taking

Sh :=
{
x ∈ Ω : 〈 x

εh

〉 ∈ Pk and dist
(
uh(x),Ak

)
> η

}
,

it follows from the hypothesis that |Sh| → 0. Given X ⊆ Ω and Y ⊆ Pk measurable, we define
W(x, y, λ) := χX(x)χY (y)ϕ(λ). By Lusin theorem, W is an admissible integrand and therefore,
by Theorem 2.8,

∫

X×Y

(∫

Rm

ϕ(λ) dν(x,y)(λ)

)
dx dy = lim

h→+∞

∫

Sh

W
(
x, 〈 x

εh

〉, uh(x)
)
dx = 0.

Since X and Y are arbitrary and Ck is separable, it remains proved that for a.e. (x, y) ∈ Ω × Pk

we have
∫

Rm ϕ dν(x,y) = 0 for all ϕ ∈ Ck or equivalently supp ν(x,y) ⊆ Ak.
�

3. Gamma-convergence

In this section we give a proof of Theorem 1.3. First we recall the definition of Γ-convergence,
referring to [9] and [13] (see also [10]) for a comprehensive treatment.

Definition 3.1. Let (U , τ) be a topological space satisfying the first countability axiom and let
Eh be a sequence of functionals from U to [−∞,+∞]. We say that E : U → [−∞,+∞] is the
Γ-limit of Eh (with respect to the topology τ), or that Eh Γ-converges to E, if for every u ∈ U the
following conditions are satisfied:

i) liminf inequality: for every sequence uh in U such that uh
τ−→ u,

E(u) ≤ lim inf
h→+∞

Eh(uh);

ii) recovery sequence: there exists a sequence uh in U such that uh
τ−→ u and

E(u) = lim
h→+∞

Eh(uh).

We can extend the definition of Γ-convergence to families of functionals depending on a param-
eter ε > 0.
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Definition 3.2. Let Eε be a family of functionals from U to [−∞,+∞]. If for every sequence
εh → 0+ we have that E is the Γ-limit of the sequence Eεh

, then we say that E is the Γ-limit
of Eε.

We are interested in Γ-convergence for periodic homogenization of integral functionals. In the
following, the space Lp(Ω,Rs), p ∈ (1,+∞), is endowed with the strong topology. We consider the
family of functionals Eε : Lp(Ω,Rs) → [0,+∞] defined by

Eε(u) :=





∫

Ω

W
(
〈x
ε
〉,∇u(x)

)
dx if u ∈ W 1,p(Ω,Rs),

+∞ otherwise,

where W : Q × Ms×d → [0,+∞) is a Carathéodory function satisfying coerciveness and growth
conditions of order p as in (1.1).

The next theorem is a standard result (see [9, Theorem 14.5]).

Theorem 3.3. The family Eε Γ-converges and its Γ-limit Ehom : Lp(Ω,Rs) → [0,+∞] is given

by

Ehom(u) =






∫

Ω

Whom

(
∇u(x)

)
dx if u ∈ W 1,p(Ω,Rs),

+∞ otherwise,

where Whom is the homogenized integrand related to W as defined in (1.2).

In the proof of Theorem 1.3, we will use the following lemma, which can be derived by [17,
Theorem 4] (see also [24, Lemma 3.1]).

Lemma 3.4. Assume that A ⊆ Ms×d is a compact set. Let A ∈ Ms×d and let uh be a sequence
converging weakly in W 1,1(Ω,Rs) to Ax and such that dist(∇uh,A) → 0 in measure. Then there

exists a sequence vh in W 1,∞(Ω,Rs) such that

i) vh ⇀ Ax weakly* in W 1,∞(Ω,Rs);

ii) |{∇vh 6= ∇uh}| → 0.

Proof of Theorem 1.3. We begin to prove the inclusion Ahom ⊆ W−1
hom(0). Note that, by co-

erciveness hypothesis, the sets A1, ..., An are compact. Fix A ∈ Ahom and εh → 0+. By def-
inition of Ahom, there exists a sequence uh such that uh ⇀ Ax weakly* in W 1,∞(Ω,Rs) and
D

(
〈 x

εh
〉,∇uh(x)

)
→ 0 in measure, where D(y,Λ) :=

∑n
k=1 χPk

(y)dist(Λ,Ak). For a suitable sub-

sequence hi, ∇uhi
generates a two-scale Young measure ν ∈ Y(Ω ×Q,Ms×d) with respect to εhi

.
By Proposition 2.10, for all k ∈ {1, . . . , n} and for a.e. (x, y) ∈ Ω×Pk we have supp ν(x,y) ⊆ Ak,

therefore
∫

Ms×d W(y,Λ) dν(x,y)(Λ) = 0. Observed that W is an admissible integrand, we obtain by
Theorem 2.8

lim
i→+∞

∫

Ω

W
(
〈 x
εhi

〉,∇uhi
(x)

)
dx =

∫

Ω×Q

(∫

Ms×d

W(y,Λ) dν(x,y)(Λ)

)
dx dy = 0.

By the definition of Γ-limit, Whom(A) = 0.

We prove now the opposite inclusion. Fix A ∈ W−1
hom(0) and εh → 0+. By Theorem 3.3, there

exists a sequence uh such that uh → Ax strongly in Lp(Ω,Rs) and Eεh
(uh) → 0. For h large

enough, Eεh
(uh) is finite and therefore uh ∈W 1,p(Ω,Rs). Thanks to the p-coerciveness hypothesis

on W , we can suppose that uh ⇀ Ax weakly in W 1,p(Ω,Rs).
We claim that D

(
〈 x

εh
〉,∇uh(x)

)
→ 0 in measure. If not, there exist δ, η > 0 and a subse-

quence uhi
such that

inf
i

∣∣∣
{
x ∈ Ω : D

(
〈 x
εhi

〉,∇uhi
(x)

)
> η

}∣∣∣ > δ. (3.1)
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Refining the subsequence hi if necessary, we can suppose that ∇uhi
generates a two-scale Young

measure ν with respect to εhi
. By Theorem 2.8

0 = lim
i→+∞

∫

Ω

W
(
〈 x
εhi

〉,∇uhi
(x)

)
dx ≥

∫

Ω×Q

(∫

Ms×d

W(y,Λ) dν(x,y)(Λ)

)
dx dy

so for all k ∈ {1, . . . , n} we have that
∫

Ms×d

Wk(Λ) dν(x,y)(Λ) = 0 for a.e. (x, y) ∈ Ω × Pk.

Since Wk is continuous and non-negative, supp ν(x,y) ⊆ Ak for a.e. (x, y) ∈ Ω × Pk. Therefore by

Proposition 2.10 D
(
〈 x

εhi

〉,∇uhi
(x)

)
→ 0 in measure, in contradiction with (3.1).

Finally, noticed that dist
(
∇uh(x),

⋃n
k=1 Ak

)
→ 0 in measure, we can apply Lemma 3.4 to infer

the existence of a sequence vh such that vh ⇀ Ax weakly* in W 1,∞(Ω,Rs) and |{∇vh 6=∇uh}| → 0.
In particular, D

(
〈 x

εh
〉,∇vh(x)

)
→ 0 in measure.

�

4. Polyconvexity

In this section we recall some of the definitions and the results related to polyconvexity. General
references are [11], [12] and [18]. In the following we always assume that d, s ≥ 2 since otherwise
polyconvexity agrees with ordinary convexity.

Definition 4.1. A function W : Ms×d → R is said to be polyconvex if there is a convex function

V : Rγ(d,s) → R such that W(Λ) = V(Λ̂) for all Λ ∈ Ms×d. Here Λ̂ denotes the list of all minors

(subdeterminants) of Λ and γ(d, s) =
(
d+s

d

)
− 1. We can identify Λ̂ with a point of Rγ(d,s). In the

simple case d = s = 2 we have Λ̂ = (Λ, det(Λ)) ∈ R5.

Remark 4.2. The maximum of two polyconvex functions is still polyconvex.

Definition 4.3. We say that a set A ⊆ Ms×d is polyconvex if there exists a convex set C ⊆ Rγ(d,s)

such that

A =
{
A ∈ Ms×d : Â ∈ C

}
. (4.1)

Definition 4.4. The polyconvex hull of a set A ⊆ Ms×d is the smallest polyconvex set containing
A and is denoted by Apc.

Remark 4.5. If W : Ms×d → [0,+∞) is polyconvex, then W−1(0) is polyconvex.

Lemma 4.6. Let A be a compact set of Ms×d and let p ≥ min{d, s}. If A is polyconvex, then there

exists a polyconvex function W : Ms×d → [0,+∞) satisfying coerciveness and growth conditions of

order p such that

A = W−1(0).

Proof. Let C ⊆ Rγ(d,s) be a compact and convex set such that (4.1) holds. Consider the functions

W1(Λ) := distp(Λ,Aco) and W2(Λ) := dist
p
q (Λ̂,C),

where q = min{d, s} and co denotes the convex hull. Both are polyconvex and with p-growth,
moreover W1 is p-coercive and W−1

2 (0) = A. The function W := max{W1,W2} does the job.
�

5. Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Assuming in the following that d = 2, we
begin by a technical lemma.

Lemma 5.1. Let Ahom be the homogenized set related to {(Ak, Pk)}k=1,2, where A1, A2, P1 and

P2 are defined as in Theorem 1.4. If A ∈ Ahom, then A− diag
(

1
2 , 1

)
is not positive definite.

This lemma will be proved by using a remarkable result, due to Šverák.
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Lemma 5.2. (See [20, Corollary 1] and also [16]). Let V : M2×2 → [0,+∞) be the continuous

function defined by

V(Λ) =

{
det E(Λ) if Λ is positive definite,

0 otherwise,
(5.1)

where E(Λ) denotes the symmetric part of Λ. Let vh ∈W 1,∞(Ω,R2) be a sequence such that

i) vh ⇀ Ax weakly* in W 1,∞(Ω,R2);

ii) dist(∇vh,M2×2
sym) → 0 in measure;

ii) ∇vh generates a Young measure µ ∈ Y(Ω,M2×2).

Then
∫

M2×2 V(Λ) dµx(Λ) ≥ V(A) for a.e. x ∈ Ω.

Proof of Lemma 5.1. Let εh→ 0+ and let uh be a sequence such that uh ⇀ Ax weakly* in
W 1,∞(Ω,R2) and D

(
〈 x

εh
〉,∇uh(x)

)
→ 0 in measure, where as usual D(y,Λ) := χP1

(y)dist(Λ,A1)+

χP2
(y)dist(Λ,A2). Passing to a subsequence if necessary, we can assume that ∇uh generates a

two-scale Young measure ν ∈ Y(Ω×Q,M2×2). By Proposition 2.10, we have supp ν(x,y) ⊆ Ak for
a.e. (x, y) ∈ Ω × Pk (k = 1, 2).

Let observe now that diag
(

1
2 , 1

)
= 1

2 [diag(−2, 1) + diag(3, 1)] and that the matrices belonging
to A1 − diag(−2, 1) and A2 − diag(3, 1) are not positive definite. In particular, if V is defined as
in (5.1), then

∫

M2×2

V
(
Λ − diag(−2, 1)

)
dν(x,y)(Λ) = 0 for a.e.(x, y) ∈ Ω × P1

∫

M2×2

V
(
Λ − diag(3, 1)

)
dν(x,y)(Λ) = 0 for a.e.(x, y) ∈ Ω × P2.

(5.2)

Let vh ∈ W 1,∞(Ω,R2) be the sequence defined by

vh(x)1 := uh(x)1 −
5

2
εh

∣∣∣〈x1

εh

〉 − 1

2

∣∣∣ − 1

2
x1

vh(x)2 := uh(x)2 − x2.

(5.3)

It is trivial to check that

∇vh(x) = ∇uh(x) − χP1
(〈 x
εh

〉)diag(−2, 1) − χP2
(〈 x
εh

〉)diag(3, 1)

and dist
(
∇vh(x),M2×2

sym

)
→ 0 in measure. Moreover by Riemann-Lebesgue lemma follows that

vh ⇀
(
A − diag(1

2 , 1)
)
x weakly* in W 1,∞(Ω,R2). Passing to a subsequence if necessary, we can

suppose that ∇vh generates a Young measure µ ∈ Y(Ω,M2×2).
Consider the function

W(y,Λ) := χP1
(y)V

(
Λ − diag(−2, 1)

)
+ χP2

(y)V
(
Λ − diag(3, 1)

)
.

By construction of the sequence vh, we have W
(
〈 x

εh
〉,∇uh(x)

)
= V

(
∇vh(x)

)
. Moreover, by Theo-

rem 2.8 and equalities (5.2)

lim
h→+∞

∫

Ω

W
(
〈 x
εh

〉,∇uh(x)
)
dx =

∫

Ω×Q

(∫

M2×2

W(y,Λ) dν(x,y)(Λ)

)
dx dy = 0

while by Theorem 2.2 and Lemma 5.2

lim
h→+∞

∫

Ω

V
(
∇vh(x)

)
dx =

∫

Ω

(∫

M2×2

V(Λ) dµx(Λ)

)
dx ≥

∫

Ω

V
(
A− diag

(1

2
, 1

))
dx.

Since the last integrand vanishes, V
(
A − diag

(
1
2 , 1

))
= 0, i.e., the matrix A − diag

(
1
2 , 1

)
is not

positive definite.
�
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O

A1
1

A2
1

B1

B2

A1
2

A2
2

(−2, 1) (1
2 , 1) (3, 1)

Figure 1. A representation of A1, A2 and B in R2, identified with the set
of the diagonal matrices. The arc joining B1 and B2 represents the set
{diag(b1(t), b2(t)) : t ∈ (0, 1)}.

Proof of Theorem 1.4. Let C = {C1, C2, C3} ⊆ M2×2 and let ψ be the symmetric bilinear form on
M2×2 determined by detΛ = 1

2ψ(Λ,Λ). We can write for all (t1, t2, t3) ∈ R3

3∑

k,j=1

tktjdet(Ck − Cj) =

3∑

k,j=1

tktjψ(Ck, Ck) −
3∑

k,j=1

tktjψ(Ck, Cj)

= 2

3∑

k,j=1

tktjdet(Ck) − 2det
( 3∑

k=1

tkC
k
)
.

In particular

C
pc =

{ 3∑

k=1

tkC
k : tk ≥ 0,

3∑

k=1

tk = 1 and det
( 3∑

k=1

tkC
k
)

=

3∑

k=1

tk detCk

}

=

{ 3∑

k=1

tkC
k : tk ≥ 0,

3∑

k=1

tk = 1 and

3∑

k,j=1

tktj det(Ck − Cj) = 0

}
.

By the formula above, since det (Λ − Λ′) does not change sign on A1 × A1 and A2 × A2, it follows
that

A1 = A
pc
1 and A2 = A

pc
2 .

Moreover, an elementary computation shows that Bpc = B∪{diag(b1(t), b2(t)) : t ∈ (0, 1)}, where
b1, b2 are defined by

b1(t) :=
−3t+ 2 +

√
9t2 − 4t+ 4

4
and b2(t) :=

3t+ 2 +
√

9t2 − 4t+ 4

4
.

By Lemma 4.6, there exist two polyconvex functions W1,W2 : M2×2→[0,+∞) p-coercive and
with p-growth such that

A1 = W−1
1 (0) and A2 = W−1

2 (0).

Fixed εh→ 0+ and k ∈ {1, 2}, it is easy to build as in (5.3) a sequence such that uh ⇀ Bkx

weakly* in W 1,∞(Ω,R2) and ∇uh(x) = χP1
(〈 x

εh
〉)Ak

1 + χP2
(〈 x

εh
〉)Ak

2 . Therefore

B ⊆ Ahom.

On the other hand, noted that b1(t) >
1
2 and b2(t) > 1 for all t ∈ (0, 1), we have from Lemma 5.1

B
pc * Ahom.

Finally, the homogenized integrand Whom related to the function W(y,Λ) := χP1
(y)W1(Λ) +

χP2
(y)W2(Λ) cannot be polyconvex because by Theorem 1.3 Ahom = W−1

hom(0).
�
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Remark 5.3. The polyconvex hull of a compact set C ⊆ M2×2 can be characterized as

C
pc =

{∫

M2×2

Λ dν : ν ∈ P(M2×2) , supp ν ⊆ C and

∫

M2×2

detΛ dν = det

∫

M2×2

Λ dν

}
.

Thanks to this characterization, the polyconvexity of A1 and A2 can be derived by [21, Lemma 3].
Actually, our proof is a simple adaptation.

Remark 5.4. Since the matrices in Aco
2 − diag(3, 1) are not positive definite, by a straightforward

modification of Lemma 5.1 we infer that the homogenized set related to {(A1, P1), (A
co
2 , P2)} is not

polyconvex. Consequently, the homogenized integrand related to χP1
(y)W1(Λ)+χP2

(y) distp(Λ,Aco
2 )

cannot be polyconvex. This proves that also by mixing a polyconvex function and a convex func-
tion both p-coercive and with p-growth, loss of polyconvexity can occur in the homogenization
process.
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