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Abstract. We present some existence results for three-dimensional quasistatic morphoelasticity.
The state of the growing body is described by its deformation and the underlying growth tensor and
is ruled by the interplay of hyperelastic energy minimization and growth dynamics. By introducing
a regularization in the model, we prove that solutions can be obtained as limits of time-discrete
solutions, built by means of an exponential-update scheme. By further allowing the dependence
of growth dynamics on an additional scalar field, to be interpreted as a nutrient or inhibitor, we
formulate an optimal control problem and prove existence of optimal controls and states. Eventually,
we tackle the existence of coupled morphoelastic and nutrient solutions, when the latter is allowed
to diffuse and interact with the growing body.

1. Introduction

Morphoelasticity describes the growth of an elastic body and finds its main application in the
context of biological systems. Here, growth is often a central aspect and is driven by a variety of
phenomena acting at different scales. Below, we limit ourselves in summarizing some key modeling
issues, referring to the recent monograph [11] for a thorough introduction to the topic and additional
material.

The description of the mechanical response of a growing body can be simplified by restricting
the attention to the macroscopic level of continua. Assume to be given a nonempty, open, simply
connected and bounded set Ω ⊂ R3 with smooth boundary, to be interpreted as the reference
configuration of the body. At all times t ∈ [0, T ], T > 0, the deformation of the body will be denoted
by y(t) : Ω→ R3. Classical morphoelastic models postulate the multiplicative decomposition of the
deformation gradient ∇y(t) into an elastic strain tensor Fel ∈ R3×3, related to stresses, and a growth
tensor G ∈ R3×3, specifying the growth dynamics, namely,

∇y(t) = Fel(t)G(t).

In case G(t) is compatible, namely, if G(t) = ∇ygr(t) for some given growth deformation ygr(t) :
Ω→ R3, one can prove that Fel(t) is compatible as well and the latter multiplicative decomposition
corresponds to the classical chain rule applied to the composition y(t) = yel(t) ◦ ygr(t). Here, yel(t)
can be interpreted as the elastic deformation of the evolved configuration ygr(t,Ω). We however
do not assume compatibility here, for this would limit the applicability of the theory, see [11, Sec.
12.5].

The state of the morphoelastic system is hence determined by the pair (y(t), G(t)) for t ∈ [0, T ]. Its
evolution in time is governed by the interplay between the mechanical equilibrium and the growth
process. As the time scales of mechanical equilibration and of growth usually differ by orders
of magnitude, inertial effects can be assumed to be negligible and one resorts to the quasistatic
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approximation of the equilibrium system

divP (t) + f(t) = 0 in [0, T ]× Ω, (1.1)

y(t) = id in [0, T ]× ΓD, (1.2)

P (t)n = g(t) in [0, T ]× ΓN. (1.3)

The tensor P (t) above is the first Piola-Kirchhoff stress. We assume the body to be hyperelastic, so
that its elastic state is determined by the elastic energy density W = W (Fel) = W (∇y(t)G−1(t)).
In particular, P (t) in (1.1) is given by

P (t) = detG(t) DW (∇y(t)G−1(t))G−>(t). (1.4)

The quasistatic equilibrium system features a time-dependent body force f(t) : Ω → R3 as well as
a time-dependent surface traction g(t) : ΓN → R3, to be imposed on the Neumann part ΓN of the
boundary ∂Ω. In addition, the body is clamped at ΓD ⊂ ∂Ω, where ΓD ∩ ΓN = ∅.

The evolution of the growth tensor G(t) is specified via the space-parametrized ODE in rate form

G′(t)G−1(t) = M(t)

where the prime stands for partial time differentiation. The constitutive choice for the growth rate
M reflects the combination of different effects driving the evolution and we refer the reader to
[7, 11] for a discussion on the many possibilities. In all generality, M can depend on time t ∈ [0, T ],
referential position x ∈ Ω, and actual position y(t, x), modeling indeed nonhomogeneous growth
conditions in time and space. Growth may also be influenced by the state of the system, namely, by
G(t) and by the deformation gradient ∇y(t). In addition, the stress P (t) is known to be possibly
driving growth in some applications [16].

In the following, we hence resort in focusing on a some reduced evolution model by prescribing

G′(t)G−1(t) = M(G(t),∇y(t)) in [0, T ]× Ω, (1.5)

G(0) = G0 in Ω (1.6)

In the latter, all nonhomogeneities are neglected for the sake of simplicity. Note however that
these could be considered as well, at the price of some additional notational intricacy. Notably, the
dependence on the stress P (t) can be accounted for in (1.5) by means of the dependence on the
tensors G(t) and ∇y(t), by implicitly assuming (1.4). Note in passing that the actual dependence
of M on stress or strain is still debated [1].

Research in morphoelasticity has been up to now primarily devoted to clarifying the mechanical
setting and to deriving numerical simulations. In this respect, we refer the reader to the recent
[6, 8, 14] and [2, 9, 17]. To the best of our knowledge, an existence theory for solutions of the
nonlinear morphoelastic evolution system (1.1)-(1.6) is still unavailable.

In this paper, we move first steps in this direction, by focusing on some nonlocally relaxed versions
of the growth-dynamics rule (1.5). Indeed, the analysis of problem (1.1)-(1.6) requires formulating
first a time-discrete version of the system, introducing suitable piecewise continuous and piecewise
affine interpolants of the key quantities, and eventually passing to the limit as the width of the time
step tends to zero. In particular, a key point is the limit passage in the nonlinear rate M , which
we will assume to be Lipschitz continuous with respect to its variables. This in turn calls for some
time-compactness of the interpolants of ∇y, which however is not to be expected in the quasistatic
framework of (1.1)-(1.3). In fact, the best one can hope for from minimality is a uniform Sobolev
bound, see (3.19) later on. Consequently, the analysis of (1.5) would soon grind to a halt. We hence
propose to introduce a regularization of ∇y in the dependence of M . This is achieved by replacing
(1.5) by

G′(t)G−1(t) = M(G(t), (K∇y)(t)) in [0, T ]× Ω (1.7)
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where (K∇y)(t) is defined as a space and time convolution as

(K∇y)(t, x) =

∫ t

0

∫
R3

κ(t− s)φ(x− z)∇y(s, z) dz dt ∀ (t, x) ∈ [0, T ]× Ω. (1.8)

Note that, here and in the following, ∇y is tacitly intended to be trivially extended to zero in R3 \Ω
whenever needed. This regularization serves the mathematical purpose of allowing a satisfactory
existence theory, at the price of a minor modification to the model. In fact, the presence of the
convolution term may be justified from the modeling viewpoint as of introducing a nonlocal in space
and time dependence of the rate M on the deformation gradient. In particular, the presence of the
time-convolution kernel κ induces a second time scale into the problem, which may be interpreted
as a time relaxation. Note that a similar effect would have been achieved by considering viscoelastic
dynamics instead.

Our first main result is an existence theory for a variational formulation on the regularized
morphoelastic evolution problem (1.1)-(1.3), (1.6)-(1.7). As already mentioned, this is achieved
via a time-discretization argument. A crucial observation here is that the sign of the determinant
of G(t) is preserved along the evolution, as an effect of the nonlinear structure of (1.7). This
conservation is crucial, for it guarantees that the growth process is nondegenerate and locally
orientation preserving. Correspondingly, we resort to a time-discrete scheme of exponential type,
reproducing this sign conservation at the discrete level.

The structure of the morphoelastic evolution problem is reminiscent of the quasistatic evolution
problem in creep inelasticity, the difference being that in this latter setting M is taken to be the
variation with respect to G of the total energy functional. As such, in creep inelasticity M is
directly related to W . This entails conservation of energy, at least formally, which in turn provides
the fundamental a priori estimate. The present situation is different, for energy cannot be expected
to be conserved along the growing process, as we are not including all energy exchanges in the
description. In particular, no relation is imposed between the elastic-energy density W and the
growth-rate function M , the specification of the latter being usually just phenomenological. As a
consequence, we have to obtain a priori estimates otherwise.

Note that most existence theories in multidimensional inelasticity at finite strains hinge on the
presence of higher-order gradients in the internal variable G, here to be interpreted as inelastic strain
[12, 19, 20, 22] (see [18, 25], however, where no gradient is involved). We avoid such higher-order
terms here, still allowing some nonlocal effect in space via the convolution term K∇y.

Our existence result can be compared with the one in [21]. There, a similar model to (1.1)-(1.6)
is introduced in the frame of rate-dependent viscoplasticity and proved to admit solutions via a
time-discretization and passage to the limit procedure. The existence theory in [21] is however
quite different from ours. At first, the analysis in [21] hinges upon assuming a variational origin of
the flow rule, which is not avaliable here. Secondly, a gradient term in G is considered, whereas our
model is local in G. Thirdly, the solution notion in [21] is variational, making the regularization of
the occurrence ∇y in the flow rule unnecessary. Eventually, the time-discretization scheme in [21]
is the classical variational one, while we consider an exponential variant instead, see (3.4).

As a second existence result, we consider an additional dependence of M from an external field
µ(t), which we assume to be scalar for definiteness. Namely, we replace (1.7) by

G′(t)G−1(t) = M(G(t), (K∇y)(t), µ(t)) in [0, T ]× Ω. (1.9)

The field µ(t) : Ω → R can be interpreted as the concentration of a nutrient (or an inhibitor),
influencing the growth rate. In Section 4 we analyze an optimal control problem, where µ(t) acts
as a control and drives the trajectory t 7→ (y(t), G(t)) to minimize a target functional, possibly of
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the form

J(y,G) =

∫
Ω
i(G(T )) dx+

∫ T

0

∫
Ω
j(y,G) dx dt.

Here, the functions i and j are suitably lower semicontinuous and favor specific deformations and
growth tensors. In particular, the choice i(G) = detG, j = 0 represents volume minimization
whereas j(y,G) = |y − ytarget|2, i = 0 corresponds to the possible attainment of a given target
deformation ytarget.

Eventually, we couple the evolution of the state (y(t), G(t)) with that of the scalar field µ(t) by
additionally specifying its evolution as

µ′(t)− ν∆µ(t) = h(t)−H((κ ∗ y)(t)) in [0, T ]× Ω, (1.10)

µ(t) = µD(t) in [0, T ]× ∂Ω, (1.11)

µ(0) = µ0 in Ω. (1.12)

Here, ν > 0 and h(t) : Ω→ R plays the role of a given source. The term H(κ∗y) instead models the
consumption of µ(t) during the growth process, which is indeed assumed to depend on the actual
position of the body, again mollified by a time-convolution compactifying term. In particular, the
triplet (y(t), G(t), µ(t)) describes a system, where growth is influenced by the field µ which diffuses
and is consumed during growth. The coupling of the quasistatic equilibrium (1.1)-(1.3), the growth
dynamic (1.6), (1.9), and the nutrient dynamic (1.10)-(1.12) gives rise to a nutrient-morphoelastic
evolution problem, which is variationally reformulated and proved to admit solutions in Section 5
below. Prototypical phenomena encoded by the above system are those in which diffusion happens
on a much slower time scale with respect to that of mechanical equilibration. We hence keep track
here of viscous effects in the nutrient dynamics. For completeness, we mention that an alternative
modeling choice would be to replace (1.10) by a quasistatic evolution of the nutrient as well. This
latter scenario could still be included in our analysis at the mathematical price of introducing a
further nonlocality in the dependence of M on µ.

The paper is organized as follows. In Section 2 we introduce the precise mathematical framework
and state our main results. Section 3 is devoted to the proof of Theorem 2.2, in which concentration
of nutrients is neglected. This latter dependence is accounted for in the control problem formulated
in Theorem 2.4 whose proof is the subject of Section 4. Eventually, the full nutrient-morphoelastic
evolution problem is analyzed in Section 5.

2. Setting and main results

We devote this section to making assumptions precise and stating our existence results. As
anticipated in the Introduction, we let the reference configuration of the body Ω ⊂ R3 be nonempty,
open, simply connected, bounded, and smooth and ΓN, ΓD ⊂ ∂Ω, with ΓD and ΓN open in the
topology of ∂Ω and disjoint, ΓD 6= ∅, and ΓD ∪ ΓN = ∂Ω.

Throughout the paper, GL+(3) and SO(3) denote the general linear group and the set of proper
rotations, i.e.,

GL+(3) = {A ∈ R3×3 : detA > 0}, SO(3) = {A ∈ R3×3 : detA = 1, A>A = Id},

where > denotes transposition and Id is the identity 2-tensor. Given the 2-tensors A,B ∈ R3×3

and the 3-tensors C,D ∈ R3×3×3 we classically define A : B,C : D ∈ R and C : B,B : C ∈ R3

as (summation convention) A : B := AijBij , C : D := CijkDijk, (C : B)i := CijkBjk, and
(B : C)i := BjkCjki, respectively. The space of 2-tensors R3×3 is endowed with the natural scalar

productA : B := tr (A>B), where tr (A) := Aii and corresponding norm |A|2 := A : A. We note that
this norm is submultiplicative, i.e., |AB| ≤ |A||B|. Similarly, we define the norm |C|2 := C : C, the
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partial transposition (Ct)ijk := Cjik, and the products (CB)ijk := CijlBlk and (BC)ijk := BilCljk
so that |CB|, |BC| ≤ |B||C|.

Furthermore, for A,B : Ω→ R3×3 differentiable, the gradient∇A is a 3-tensor reading (∇A)ijk :=

Aij,k and it holds that ∇(AB) = (B>∇A>)t +A∇B.

We will denote by id the identity map id(x) = x for all x ∈ R3. Given a time-dependent map
ψ(t), we indicate by ψ′(t) its (possibly partial) derivative with respect to time.

In all of the following, we assume to be given

p > 3

and denote by q = p/(p − 1) < 3/2 the corresponding conjugate exponent. Let us define the class
of admissible deformations Y and admissible growth-tensor fields G∞ as

Y := {y ∈W 1,p(Ω;R3) : det∇y > 0 a.e. in Ω, y = id on ΓD}, (2.1)

G∞ := {G ∈W 1,∞(Ω;R3×3) : detG > 0 a.e. in Ω}. (2.2)

The prescription on the a.e. positivity of detG in G∞ is intended to guarantee that G is not
degenerate and is orientation preserving.

For a given growth tensor field G(t) ∈ G∞, the variational formulation of the quasistatic equilib-
rium system (1.1)-(1.3) corresponds to the minimization on Y of the total elastic energy

E(y,G(t)) :=

∫
Ω
W (∇y(x)G−1(t, x)) detG(t, x) dx− 〈`(t), y〉, (2.3)

where we have indicated by `(t) ∈ (W 1,p(Ω;R3))′ (dual) the generalized load

〈`(t), y〉 :=

∫
Ω
f(t) · y dx+

∫
ΓN

g(t) · y dH2.

Here, 〈·, ·〉 denotes the duality pairing between (W 1,p(Ω;R3))′ and W 1,p(Ω;R3) and H2 is the two-
dimensional Hausdorff measure. The explicit occurrence of detG(t, x) in the total elastic energy
is a consequence of the fact that the integration is taken with respect to the pre-growth reference
configuration Ω [17, 24].

Above, W : R3×3 → [0,∞] denotes the elastic energy density. We assume that W ∈ C1(GL+(3)),
W ≡ ∞ on R3×3 \GL+(3) and that it satisfies the following standard hypotheses:

(H1) (polyconvexity) ∃Ŵ : R3×3 × R3×3 × R→ [0,∞] convex and such that

W (A) = Ŵ (A, cof A, detA) ∀A ∈ GL+(3).

(H2) (coercivity and control) ∃c1, c2 > 0 such that

W (A) ≥ c1|A|p −
1

c1
and |A>∂AW (A)| ≤ c2(W (A) + 1) ∀A ∈ GL+(3).

The second assumption in (H2) prescribes the controllability of the Mandel tensor A>∂AW (A) via
the energy [4, 5] and turns out to be particularly relevant in connection with finite-strain elasto-
plasticity [10, 19, 23]. Note that assumptions (H1)-(H2) are compatible with frame-indifference,
namely,

W (RA) = W (A) ∀R ∈ SO(3), ∀A ∈ GL+(3).

We will check below that detG > 0 for all times. As W is unbounded out of GL+(3) only, we hence
have that det∇y > 0 for a.e. times, as soon as the energy is finite.

Concerning body forces and traction we assume

(H3) f ∈W 1,1(0, T ;L1(Ω;R3)) and g ∈W 1,1(0, T ;L1(ΓN ;R3)).
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Note in particular, that (H3) entails

` ∈W 1,1(0, T ; (W 1,p(Ω;R3))′).

Let us recall that the evolution of G(t) is driven by relation (1.7), featuring the convolution term
K∇y. To this effect, we specify

(H4) κ ∈W 1,1(0, T ) and φ ∈W 1,q(R3)

and define the operator K as

(Kψ)(t, x) := (κ ∗ (φ ? ψ))(t, x) ∀ψ ∈ L1((0, T )× R3;R3×3),

where ∗ and ? denote the standard convolution products on (0, t) and R3, respectively. Namely,

(κ ∗ ψ)(t, ·) :=

∫ t

0
κ(t− s)ψ(s, ·) ds for t ∈ (0, T )

and

(φ ? ψ)(·, x) :=

∫
R3

φ(x− z)ψ(·, z) dz for z ∈ R3.

By applying K to (components of) functions defined on Ω only, we actually consider the corre-
sponding trivial extensions to zero to the whole R3, without introducing new notation. As regards
the initial values, we assume

(H5) G0 ∈ G∞, detG0 ≥ δ a.e. for some δ > 0, and y0 ∈ arg minYE(·, G0).

Note that we will prove in Lemma 3.2 below that such a minimizer y0 exists for all G0 ∈ G∞.

We will work under the following regularity of the growth-rate function

(H6) M ∈W 1,∞(R3×3 × R3×3;R3×3).

From assumptions (H5) and (H6), for all t 7→ G(t) solving (1.7) it follows that detG(t) > 0 a.e.
in Ω, ∀ t ∈ [0, T ]. Indeed, by the Jacobi formula and equation (1.7) we have that

d

dt
detG(t) = detG(t) trM

(
G(t), (K∇y)(t)

)
.

Solving this ODE gives

detG(t) = detG0 exp

(∫ t

0
trM

(
G(s), (K∇y)(s)

)
ds

)
. (2.4)

Using (H5) and estimating the integrand above yields

detG(t) ≥ detG0 exp
(
− 3T ‖M‖L∞

)
> 0 a.e. in Ω, ∀ t ∈ [0, T ],

where, here and in the rest of the paper, we use the short-hand ‖ · ‖L∞ to identify any L∞ norm, in
this case ‖ · ‖L∞(R3×3×R3×3;R3×3). This lower bound on detG(t) will turn out crucial in combination
with the coercivity in (H2) in order to prove the coercivity of the total elastic energy E .

Definition 2.1 (Morphoelastic solution). We say that (y,G) : [0, T ]→ Y ×G∞ is a morphoelastic
solution if

y(t) ∈ arg miny∈Y E(y,G(t)) for a.e. t ∈ (0, T ), (2.5)

G′(t)G−1(t) = M(G(t), (K∇y)(t)) a.e. in Ω, for a.e. t ∈ (0, T ), (2.6)

(y(0), G(0)) = (y0, G0) a.e. in Ω. (2.7)

Our basic existence result is the following.

Theorem 2.2 (Morphoelastic existence). Under assumptions (H1)-(H6) there exists a morphoe-
lastic solution (y,G) ∈ L∞(0, T ;W 1,p(Ω;R3))×L∞(0, T ;W 1,∞(Ω;R3×3))∩W 1,∞(0, T ;L∞(Ω;R3×3)).
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The proof of Theorem 2.2 is in Section 3 below.

Let us now turn to the case where the growth dynamics is influenced by the given nutrient field
µ : [0, T ] × Ω → R. To this aim, the growth-rate function M has to be modified by including an
additional dependence on the nutrient field µ. Also in this extended case, we assume M to be
Lipschitz continuous, namely, we modify (H6) as

(H7) M ∈W 1,∞(R3×3 × R3×3 × R;R3×3).

Correspondingly, we specify the class of admissible growth tensor fields as

Gp := {G ∈W 1,p(Ω;R3×3) : detG > 0 a.e. in Ω}.

One can define the following.

Definition 2.3 (Nutrient-driven morphoelastic solution). Assume to be given µ ∈ Lp(0, T ;W 1,p(Ω)).
We say that (y,G) : [0, T ]→ Y × Gp is a nutrient-driven morphoelastic solution given µ if

y(t) ∈ arg miny∈Y E(y,G(t)) for a.e. t ∈ (0, T ), (2.8)

G′(t)G−1(t) = M(G(t), (K∇y)(t), µ(t)) a.e. in Ω, for a.e. t ∈ (0, T ), (2.9)

(y(0), G(0)) = (y0, G0) a.e. in Ω. (2.10)

In Section 4 we check that the existence result of Theorem 2.2 can be readily extended to include
the nutrient-driven case. In particular, one can define a possibly set-valued solution operator

S : Lp(0, T ;W 1,p(Ω))

→ L∞(0, T ;W 1,p(Ω;R3))×W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3))

defining the set S(µ) of all nutrient-driven morphoelastic solutions (y,G) given µ, according to
Definition 2.3. One can hence use the solution operator S to specify the optimal control problem

min
µ∈A

{
J(y,G, µ) : (y,G) ∈ S(µ)

}
. (2.11)

Here, A ⊂ Lp(0, T ;W 1,p(Ω)) is the set of admissible controls µ. We assume that

(H8) A is bounded in Lp(0, T ;W 1,p(Ω)) and compact in L1((0, T )× Ω).
(H9) J : L∞(0, T ;W 1,p(Ω;R3)) × C([0, T ];L∞(Ω;R3×3)) × Lp(0, T ;W 1,p(Ω)) → [0,∞] is lower

semicontinuous with respect to the corresponding weak* topology.

As already mentioned in the Introduction, this assumption on J allows flexibility with respect to
the possible choices for J . These include, in particular,

J(y,G, µ) = β1

∫
Ω

detG(T ) dx+ β2

∫ T

0

∫
Ω
|y − ytarget|p dx dt+ β3

∫ T

0

∫
Ω
|µ|p dx dt,

which, together with incompressibility (i.e., det∇y = 1), would correspond to a weighted com-
bination (β1, β2, β3 ≥ 0) of final volume minimization, attainment of a given target deformation
ytarget ∈ L∞(0, T,W 1,p(Ω;R3)), and minimization of the amount of provided nutrient (in connection
with tumor growth, one may think here of a chemotherapy drug).

Solutions to the optimal control problem (2.11) are optimal controls µ∗ and corresponding optimal
pairs (y∗, G∗) ∈ S(µ∗). Our next result guarantees that these exist.

Theorem 2.4 (Existence of optimal controls). Under assumptions (H1)-(H5), (H7)-(H9) the so-
lution operator S is well-defined and the optimal control problem (2.11) admits a solution (y∗, G∗, µ∗).
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Theorem 2.4 is proved in Section 4.

A further extension of the model corresponds to considering the driving nutrient field to be
unknown and to evolve together with the mechanical variables, as effect of system (1.10)-(1.12). To
this aim, we introduce the class of admissible nutrient concentrations as

M := W 2,p(Ω)

and qualify boundary and initial data as

(H10) µD ∈W 1,∞(0, T ;Lp(Ω)) ∩ L∞(0, T ;W 2,p(Ω)) and µ0 ∈M.

The nutrient source and consumption terms in the right-hand side of equation (1.10) are provided
via

(H11) h ∈ L∞(0, T ;Lp(Ω)) and H ∈W 1,∞(R3).

Note in particular that we have H(κ ∗ y) ∈ L∞(0, T ;Lp(Ω)) whenever y ∈ L1(0, T ;Lp(Ω;R3)). We
are now ready to define our concept of solution of the fully coupled system.

Definition 2.5 (Nutrient-morphoelastic solution). We say that (y,G, µ) : [0, T ]→ Y × Gp ×M is
a nutrient-morphoelastic solution if

y(t) ∈ arg miny∈Y E(y,G(t)) for a.e. t ∈ (0, T ), (2.12)

G′(t)G−1(t) = M(G(t), (K∇y)(t), µ(t)) a.e. in Ω, for a.e. t ∈ (0, T ), (2.13)

µ′(t)− ν∆µ(t) = h(t)−H((κ ∗ y)(t)) a.e. in Ω, for a.e. t ∈ (0, T ), (2.14)

µ(t) = µD(t) a.e. on ∂Ω, for a.e. t ∈ (0, T ), (2.15)

(y(0), G(0), µ(0)) = (y0, G0, µ0) a.e. in Ω. (2.16)

We are eventually in the position of presenting an existence result for nutrient-morphoelastic
solutions.

Theorem 2.6 (Nutrient-morphoelastic existence). Under assumptions (H1)-(H5), (H7), and
(H10)-(H11) there exists a nutrient-morphoelastic solution (y,G, µ) ∈ L∞(0, T ;W 1,p(Ω;R3)) ×
W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3))×W 1,∞(0, T ;Lp(Ω)) ∩ L∞(0, T ;W 2,p(Ω)).

Theorem 2.6 is proved in Section 5.

3. Proof of Theorem 1: Morphoelastic existence

This section is devoted to prove the existence of morphoelastic solutions, namely, trajectories
t ∈ [0, T ] 7→ (y(t), G(t)) ∈ Y × G∞ fulfilling (2.5)-(2.7). We argue by time-discretization: we obtain
time-discrete solutions, prove a-priori estimates for the piecewise affine and backward piecewise
constant time-discrete interpolants, and eventually pass to the limit as the time step converges
to zero. For convenience of the reader, each of the above steps is associated to a corresponding
subsection.

In order to shorten notation, from here on we use the symbols ‖ · ‖L∞ and ‖ · ‖W 1,∞ to indicate
generic L∞ and W 1,∞ norms, without explicitly specifying dependencies.

3.1. Time discretization. We consider a uniform partition {0 = t0 < t1 < . . . < tN−1 < tN = T},
N ∈ N, ti = iτ , τ > 0, of the time interval [0, T ]. Given any vector {zi}Ni=0, we will denote by ẑτ
and z̄τ the corresponding piecewise affine and backward piecewise constant interpolants associated
to the partition. Namely,

ẑτ (0) := z0, ẑτ (t) := αi(t)zi + (1− αi(t))zi−1, (3.1)

z̄τ (0) := z0, z̄τ (t) := zi for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , N, (3.2)
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where αi(t) := (t− (i−1)τ)/τ for t ∈ ((i−1)τ, iτ ], i = 1, . . . , N . Setting `i := `(ti) for i = 0, . . . , N ,
we obtain a discrete solution {(yi, Gi)}Ni=1 ∈ YN × GN∞ by recursively solving

yi ∈ argminy∈Y

{∫
Ω
W (∇y G−1

i ) detGi dx− 〈`i, y〉
}
, (3.3)

Gi = exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
Gi−1 a.e. in Ω, (3.4)

for i = 1, . . . , N , starting from the initial data (y0, G0) = (y0, G0) ∈ Y×G∞ with detG0 ≥ δ > 0 a.e.
As already mentioned, this exponential-update scheme is designed to reproduce at the discrete level
the nonlinear geometry of the differential system (2.6), in particular the nondegeneracy property
(2.4).

In (3.4), the operator (Kτ∇y)i−1 is given by

(Kτ∇y)i−1(x) := (κ ∗τ (φ ?∇y))i−1(x) for a.e. x ∈ Ω, (3.5)

where the time discrete convolution ∗τ is defined as

(κ ∗τ ∇y)i−1 :=
i−1∑
j=0

τ κj ∇yi−1−j for i = 1, . . . , N

with κi := κ(ti), i = 0, . . . , N , see [27]. In order to prove the existence of discrete solutions, we
start by considering the equilibrium problem in the following lemma.

Lemma 3.1 (Equilibrium problem). Under assumptions (H1)–(H2) for every G ∈ L∞(Ω;R3×3)
with detG ≥ η > 0 a.e. for some η > 0, and for every ` ∈ (W 1,p(Ω;R3))′ there exists y ∈ Y solving∫

Ω
W (∇y G−1) detGdx− 〈`, y〉 ≤

∫
Ω
W (∇ŷ G−1) detGdx− 〈`, ŷ〉 ∀ŷ ∈ Y. (3.6)

Proof. Since W ∈ C1(GL+(3)), for all η, g > 0 we have that

λ(g, η) := max{W (A−1) : A ∈ GL+(3), |A| ≤ g, detA ≥ η} <∞. (3.7)

Recalling that id ∈ Y we get

inf
y∈Y

{∫
Ω
W (∇y G−1) detGdx− 〈`, y〉

}
≤
∫

Ω
W (G−1) detG dx− 〈`, id〉

≤ 6|Ω|λ(‖G‖L∞ , η)‖G‖3L∞ + ‖`‖(W 1,p(Ω;R3))′‖id‖W 1,p(Ω;R3) <∞. (3.8)

Owing to the coercivity from (H2), every minimizing sequence {yk} ⊂ Y fulfills

η‖∇yk‖pLp(Ω;R3×3)
≤ η‖∇ykG−1‖p

Lp(Ω;R3×3)
‖G‖pL∞ ≤

‖G‖pL∞
c1

∫
Ω
W (∇ykG−1) detG dx+

η|Ω|‖G‖pL∞
c2

1

≤
‖G‖pL∞
c1

(∫
Ω
W (G−1) detGdx+ 〈`, yk − id〉

)
+
η|Ω|‖G‖pL∞

c2
1

≤
‖G‖pL∞
c1

(
6|Ω|λ(‖G‖L∞ , η)‖G‖3L∞ + ‖`‖(W 1,p(Ω;R3))′‖yk − id‖W 1,p(Ω;R3)

)
+
η|Ω|‖G‖pL∞

c2
1

≤ C(1 + ‖∇yk‖Lp(Ω;R3×3))

for all k ∈ N, where in the second-to-last inequality we have used (3.8), and where the last inequality
follows by (H3) and the Poincaré inequality. The constant C > 0 depends on η, c1, |Ω|, ‖G‖L∞ ,
λ(‖G‖L∞ , η), and ‖`‖(W 1,p(Ω;R3))′ . In particular, by the definition of Y we infer that {yk} is a

bounded sequence in W 1,p(Ω;R3), so that there exists y ∈ Y such that

yk ⇀ y in W 1,p(Ω;R3) (3.9)
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for some not relabeled subsequence. Since G−1 ∈ L∞(Ω;R3×3), we deduce that

∇ykG−1 ⇀ ∇y G−1 in Lp(Ω;R3×3). (3.10)

The weak continuity of the minors of ∇yk [3] for p > 3 and (3.10) yield

cof(∇ykG−1) ⇀ cof(∇y G−1) in Lp/2(Ω;R3×3),

det(∇ykG−1) ⇀ det(∇y G−1) in Lp/3(Ω),

which, combined with the polyconvexity from (H1), imply

∫
Ω
W (∇y G−1) detGdx ≤ lim inf

k→∞

∫
Ω
W (∇ykG−1) detG dx. (3.11)

By (3.9) we have 〈`, yk〉 → 〈`, y〉, which, together with (3.11), leads to the minimality (3.6). �

Owing to Lemma 3.1, for every G0 ∈ G∞ with detG0 ≥ δ > 0 a.e. there exists y0 ∈ Y solving
(3.3) for i = 0. The existence of discrete solutions is then guaranteed by the following lemma.

Lemma 3.2 (Discrete existence). Under assumptions (H1)–(H3), (H5)–(H6), let (y0, G0) =
(y0, G0), where y0 solves (3.6) for G = G0 and ` = `0. For every i = 1, . . . , N , there exists
(yi, Gi) ∈ Y × G∞ solving (3.3)–(3.4) with detGi ≥ exp(−3τi‖M‖L∞)δ a.e.

Proof. We proceed by induction on i. Assume that there exist Gi−1 ∈ G∞ with detGi−1 ≥
exp(−3τ(i−1)‖M‖L∞)δ a.e. and defineGi via position (3.4). Let us check thatGi ∈W 1,∞(Ω;R3×3),
and that detGi ≥ exp(−3τi‖M‖L∞)δ a.e. in Ω, for i = 1, . . . , N . By differentiating (3.4), we find

∇Gi = (G>i−1∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)>
)t + exp

(
τ M(Gi−1, (Kτ∇y)i−1)

)
∇Gi−1 (3.12)

a.e. in Ω, for i = 1, . . . , N , where the above equality holds in the sense of distributions. In view of
(H6) and by the fact that Gi−1 ∈ G∞, we infer the estimate

‖∇Gi‖L∞ ≤ ‖G>i−1∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)>‖L∞
+ ‖ exp

(
τ M(Gi−1, (Kτ∇y)i−1)

)
∇Gi−1‖L∞

≤ ‖Gi−1‖L∞‖∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
‖L∞

+ ‖ exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
‖L∞‖∇Gi−1‖L∞

≤ C
(
1 + ‖∇ exp

(
τ M(Gi−1, (Kτ∇y)i−1)‖L∞

)
with C depending on ‖M‖L∞ and ‖Gi−1‖W 1,∞ . Denoting by D1M and D2M the differentials of
M with respect to its first and second matrix-valued variables, respectively, we obtain from the
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properties of the matrix exponential that

|∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
|

= τ

∣∣∣∣ ∫ 1

0
exp

(
(1− s)τ M

(
Gi−1, (Kτ∇y)i−1

))
∇M(Gi−1, (Kτ∇y)i−1)

× exp
(
sτ M

(
Gi−1, (Kτ∇y)i−1

))
ds

∣∣∣∣
≤ τ

∫ 1

0
exp

(
(1− s)τ

∣∣M(Gi−1, (Kτ∇y)i−1

)∣∣) exp
(
sτ
∣∣M(Gi−1, (Kτ∇y)i−1

)∣∣)ds

×
∣∣∇M(Gi−1, (Kτ∇y)i−1

)∣∣
= τ exp

(
τ
∣∣M(Gi−1, (Kτ∇y)i−1

)∣∣) ∣∣∣D1M
(
Gi−1, (Kτ∇y)i−1

)
∇Gi−1

+D2M
(
Gi−1, (Kτ∇y)i−1

)
∇(Kτ∇y)i−1

∣∣∣
≤ 2τ exp

(
τ‖M‖L∞

)
‖M‖W 1,∞

(
|∇Gi−1|+ |∇(Kτ∇y)i−1|

)
, (3.13)

so that, using once again (H6) and the fact that Gi−1 ∈ G∞ we have that

‖∇Gi‖L∞ ≤ Cτ(1 + ‖∇(Kτ∇y)i−1‖L∞) + C,

where C depends on ‖M‖W 1,∞ , and ‖Gi−1‖W 1,∞ . Now, by (3.5) and (H4),

‖∇(Kτ∇y)i−1‖L∞ ≤
i−1∑
j=0

τ |κj |‖∇yi−1−j‖Lp(Ω;R3×3)‖∇φ‖Lq(R3;R3) ≤ C (3.14)

owing to the fact that yj ∈ Y for j = 0, . . . , i− 1. This yields that Gi ∈W 1,∞(Ω;R3×3).

The lower bound on the determinant of Gi follows by induction, namely,

detGi = exp
(
τ trM(Gi−1, (Kτ∇y)i−1)

)
detGi−1 ≥ exp

(
− 3τ ‖M‖L∞

)
det Gi−1 (3.15)

≥ exp
(
− 3τ ‖M‖L∞

)
exp

(
− 3τ(i− 1) ‖M‖L∞

)
δ = exp

(
− 3τi ‖M‖L∞

)
δ (3.16)

a.e. in Ω, for i = 1, . . . , N .

We can hence conclude the proof by applying Lemma 3.1 for G = Gi and ` = `i in order to find
a deformation yi ∈ Y solving (3.3). �

3.2. A-priori estimates. Denoting by (Kτ∇y)τ and ̂(Kτ∇y)τ the backward piecewise constant
and piecewise affine interpolants associated to Kτ∇y, cf. (3.1), (3.2), and (3.5), the main result of
this subsection is the following.

Proposition 3.3 (A-priori estimates). There exist τ∗ ∈ (0, 1) depending on ‖M‖L∞ such that, for
every τ ∈ (0, τ∗) we have

‖Ĝτ‖W 1,∞(0,T ;L∞(Ω;R3×3)) ≤ C, (3.17)

detGτ (t) ≥ CdetG0 ≥ Cδ a.e. in Ω, ∀ t ∈ [0, T ], (3.18)

‖yτ‖L∞(0,T ;W 1,p(Ω;R3)) + ‖ŷτ‖L∞(0,T ;W 1,p(Ω;R3)) ≤ C, (3.19)

‖Gτ‖L∞(0,T ;W 1,∞(Ω;R3×3)) + ‖Ĝτ‖L∞(0,T ;W 1,∞(Ω;R3×3)) ≤ C, (3.20)

‖(Kτ∇y)τ‖L∞(0,T ;W 1,∞(Ω;R3×3)) ≤ C, (3.21)

‖ ̂(Kτ∇y)τ‖L∞(0,T ;W 1,∞(Ω;R3×3)) + ‖ ̂(Kτ∇y)τ‖W 1,∞(0,T ;L∞(Ω; R3×3)) ≤ C, (3.22)
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where the positive constant C depends on c1, Ω, ‖G0‖W 1,∞, ‖M‖W 1,∞, ‖κ‖W 1,1(0,T ), ‖φ‖W 1,q(R3),
‖`‖W 1,1(0,T ;(W 1,p(Ω;R3))′), and T .

Proof. Within this proof, the symbol C stands for a positive constant, possibly depending on c1, Ω,
‖G0‖W 1,∞ , ‖M‖W 1,∞ , ‖κ‖W 1,1(0,T ), ‖φ‖W 1,q(R3), ‖`‖W 1,1(0,T ;(W 1,p(Ω;R3))′), and T but independent of
τ . The actual value of C can change from line to line.

We first show estimate (3.17). We subtract Gi−1 from both sides of (3.4), divide by τ , and
contract with Gi. This yields

Gi −Gi−1

τ
: Gi =

(
exp

(
τ M(Gi−1, (Kτ∇y)i−1)

)
− Id

)
Gi−1

τ
: Gi (3.23)

a.e. in Ω, for i = 1, . . . , N . The left-hand side can be treated as

Gi −Gi−1

τ
: Gi =

|Gi|2

2τ
+
|Gi −Gi−1|2

2τ
− |Gi−1|2

2τ
,

whereas for the right-hand side of (3.23) we use the Cauchy-Schwarz and the Young inequalities, as
well as the properties of the matrix exponential in order to get that(

exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
− Id

)
Gi−1

τ
: Gi

≤

∣∣∣∣∣exp
(
τ M(Gi−1, (Kτ∇y)i−1)

)
− Id

τ

∣∣∣∣∣ |Gi−1| |Gi|

≤
exp

(
τ |M(Gi−1, (Kτ∇y)i−1)|

)
− 1

τ
|Gi−1| |Gi|

≤
exp

(
τ ‖M‖L∞

)
− 1

τ

(
|Gi−1|2

2
+
|Gi|2

2

)
where we have also used the fact that | expA− Id| ≤ exp(|A|)−1. Therefore, we have obtained that

|Gi|2

2τ
+
|Gi −Gi−1|2

2τ
− |Gi−1|2

2τ
≤

exp
(
τ ‖M‖L∞

)
− 1

τ

(
|Gi−1|2

2
+
|Gi|2

2

)
.

Fix an integer m ≤ N . By multiplying by τ and summing up for i = 1, . . . ,m, we deduce that

|Gm|2

2
− |G0|2

2
≤ 1

2

(
exp

(
τ ‖M‖L∞

)
− 1
) (
|Gm|2 + |G0|2

)
+
m−1∑
i=1

(
exp

(
τ ‖M‖L∞

)
− 1
)
|Gi|2.

Taking τ < (log 2)/‖M‖L∞ =: τ∗ and applying the Discrete Gronwall Lemma, cf. [15, Proposition
2.2.1], we conclude that

|Gm| ≤ C, ∀m = 1, . . . , N, (3.24)

and hence

Ĝτ and Gτ are bounded in L∞(0, T ;L∞(Ω;R3×3)) independently of τ ∈ (0, τ∗). (3.25)

By subtracting Gi−1 from both sides of (3.4), dividing by τ , and taking the norm, we get∣∣∣∣Gi −Gi−1

τ

∣∣∣∣ ≤
∣∣∣∣∣exp

(
τ M(Gi−1, (Kτ∇y)i−1)

)
− Id

τ

∣∣∣∣∣ |Gi−1|

≤ 1

τ

(
exp

(
τ ‖M‖L∞

)
− 1
)
|Gi−1| ∀ i = 1, . . . , N. (3.26)

By (3.24), for τ < τ∗ we infer (3.17).
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Next, we prove (3.18) and (3.19). Recalling the definition of G∞, by subtracting Gi−1 from both
sides of (3.4), dividing by τ , taking the gradient, and contracting with ∇Gi, we obtain

∇
(
Gi −Gi−1

τ

)
: ∇Gi = ∇(Ei−1Gi−1) : ∇Gi (3.27)

a.e. in Ω, for i = 1, . . . , N , where we have set

Ei−1 :=
exp

(
τ M(Gi−1, (Kτ∇y)i−1)

)
− Id

τ
. (3.28)

The left-hand side of (3.27) reads equivalently

∇
(
Gi −Gi−1

τ

)
: ∇Gi =

|∇Gi|2

2τ
+
|∇Gi −∇Gi−1|2

2τ
− |∇Gi−1|2

2τ
, (3.29)

while for the right-hand side, we compute

∇(Ei−1Gi−1) : ∇Gi ≤ |∇(Ei−1Gi−1)||∇Gi| = |(G>i−1∇E>i−1)t + Ei−1∇Gi−1||∇Gi|

≤
(
|G>i−1∇E>i−1|+ |Ei−1∇Gi−1|

)
|∇Gi|

≤
(
|Gi−1||∇Ei−1|+ |Ei−1||∇Gi−1|

)
|∇Gi|. (3.30)

From the properties of the matrix exponential, arguing as in (3.13), and from the estimate on the
convolution (3.14) we deduce that

|∇Ei−1| ≤ 2 exp
(
τ‖M‖L∞

)
‖M‖W 1,∞

(
|∇Gi−1|+ |∇(Kτ∇y)i−1|

)
≤ 2 exp

(
τ‖M‖L∞)‖M‖W 1,∞

(
|∇Gi−1|+

i−1∑
j=0

τ |κj |‖∇yi−1−j‖Lp(Ω;R3×3)‖∇φ‖Lq(R3;R3)

)
. (3.31)

On the other hand, by iterating (3.15), we find

detGm ≥ exp(−3τm‖M‖L∞) detG0 ≥ exp(−3T‖M‖L∞) detG0 ∀m = 1, . . . , N,

which gives (3.18). Thus, (H2), (H6), (3.3), and the Poincaré inequality imply

‖∇yiG−1
i ‖

p
Lp(Ω;R3×3)

≤ C (1 + 〈`i, yi〉) ≤ C
(
1 + ‖`i‖(W 1,p(Ω;R3))′‖yi‖W 1,p(Ω;R3)

)
≤ C

(
1 + ‖∇yi‖Lp(Ω;R3×3)

)
≤ C

(
1 + ‖∇yiG−1

i ‖Lp(Ω;R3×3)‖Gi‖L∞
)
.

By using the Young Inequality and (3.25), we arrive at

‖∇yiG−1
i ‖

p
Lp(Ω;R3×3)

≤ C
(
1 + ‖Gi‖qL∞

)
≤ C, (3.32)

which in turn yields

‖∇yi‖pLp(Ω;R3×3)
≤ ‖∇yiG−1

i ‖
p
Lp(Ω;R3×3)

‖Gi‖pL∞ ≤ C ∀ i = 1, . . . , N. (3.33)

In particular, we obtain the bound (3.19).

We now prove the bound (3.20). Going back to (3.31), from (3.19) and (H4) we infer the estimate

|∇Ei−1| ≤ C(1 + |∇Gi−1|).
On the other hand, the same computations as in (3.26) yield

|Ei−1| ≤
1

τ
(exp(τ‖M‖L∞)− 1) ≤ C.

Therefore, by combining (3.27)–(3.30) and multiplying by τ , from (3.25) we conclude that

|∇Gi|2

2
+
|∇Gi −∇Gi−1|2

2
− |∇Gi−1|2

2
≤ Cτ (1 + |∇Gi−1|) |∇Gi|
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for i = 1, . . . , N . Summing up for i = 1, . . . ,m for some m = 1, . . . , N and using the Young
Inequality we get

|∇Gm|2

2
− |∇G0|2

2
≤

m∑
i=1

Cτ(1 + |∇Gi−1|)|∇Gi| ≤
m∑
i=1

Cτ(1 + |∇Gi−1|2) +
1

4

m∑
i=1

τ |∇Gi|2.

We can hence apply the Discrete Gronwall Lemma and obtain |∇Gm| ≤ C for all m = 1, . . . , N ,
which, together with (3.25), implies (3.20).

It remains to prove the a-priori bounds involving the discrete convolution term. From (3.14),
(3.19), and (H4), for every i = 1, . . . , N there holds

‖∇(Kτ∇y)i‖L∞ ≤
N∑
j=0

τ |κj |‖∇yi−j‖Lp(Ω;R3×3)‖∇φ‖Lq(R3;R3)

≤ τ(N + 1)‖κ‖L∞(0,T )‖∇yτ‖L∞(0,T ;Lp(Ω;R3×3))‖∇φ‖Lq(R3;R3) ≤ C. (3.34)

Analogously,

(Kτ∇y)i(x)− (Kτ∇y)i−1(x)

τ
=

∫
R3

φ(x− z)

κ0∇yi(z) +

i∑
j=1

(κj − κj−1)∇yi−j(z)

 dz

for a.e. x ∈ Ω, so that∣∣∣∣(Kτ∇y)i − (Kτ∇y)i−1

τ

∣∣∣∣ ≤ (‖κ‖L∞(0,T ) + ‖κ′‖L1(0,T ))‖∇yτ‖L∞(0,T ;Lp(Ω;R3×3))‖φ‖Lq(R3)

a.e. in Ω. This, combined with (3.19) and (H4), yields (3.21) and (3.22) and concludes the proof
of the proposition. �

3.3. Passage to the limit. We are now in a position to pass to the limit as τ → 0. In view of
(3.17), (3.19), and (3.20), we find G ∈ W 1,∞(0, T ;L∞(Ω;R3×3)) ∩ L∞(0, T ;W 1,∞(Ω;R3×3)) and
a limiting deformation y ∈ L∞(0, T ;W 1,p(Ω;R3)) such that, up to the extraction of not relabeled
subsequences, there holds

Ĝτ
∗
⇀ G in W 1,∞(0, T ;L∞(Ω;R3×3)) ∩ L∞(0, T ;W 1,∞(Ω;R3×3)), (3.35)

yτ
∗
⇀ y in L∞(0, T ;W 1,p(Ω;R3)). (3.36)

The Aubin-Lions Lemma [26] yields

Ĝτ → G in C([0, T ];Cα(Ω;R3×3)) ∀α ∈ (0, 1), (3.37)

and, in particular,

G(0) = G0. (3.38)

From (3.1) and (3.2), we deduce the identity

|Gτ (t)− Ĝτ (t)| = τ(1− αi(t))|Ĝ′τ (t)| a.e. in Ω,

for all t ∈ ((i− 1)τ, iτ ], i = 1, . . . , N , so that

|Gτ (t)− Ĝτ (t)| ≤ τ |Ĝ′τ (t)| a.e. in Ω, ∀ t ∈ [0, T ]. (3.39)

Hence, (3.17), (3.20), and (3.37) yield

Gτ → G in L∞((0, T )× Ω;R3×3), (3.40)

Gτ (t)→ G(t) in L∞(Ω;R3×3), ∀t ∈ [0, T ], (3.41)

Gτ
∗
⇀ G in L∞(0, T ;W 1,∞(Ω;R3×3)). (3.42)
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Moreover, by (3.19), we find ξ ∈ L∞(0, T ;Lp(R3;R3×3)) such that, up to subsequences,

∇yτ
∗
⇀ ξ in L∞(0, T ;Lp(R3;R3×3))

where ∇yτ is the trivial extension to the whole R3.

We proceed by identifying ξ. Let x0 ∈ Ω and r > 0 be such that Br(x0) := {x ∈ R3 : |x− x0| <
r} ⊂ Ω. Then, for every ψ ∈ L1((0, T );R3×3) we have∫ T

0

∫
Br(x0)

ξ(t, x)·ψ(t) dx dt = lim
τ→0

∫ T

0

∫
Br(x0)

∇yτ (t, x)·ψ(t) dx dt =

∫ T

0

∫
Br(x0)

∇y(t, x)·ψ(t) dx dt,

where the last equality is due to (3.36). This yields
∫
Br(x0) ξ(t, x) dx =

∫
Br(x0)∇y(t, x) dx for a.e.

t ∈ (0, T ) and for every Br(x0) ⊂ Ω. Namely, ξ = ∇y a.e. in (0, T ) × Ω. Analogously, let y0 ∈ Ωc

and let s > 0 be such that Bs(y0) ⊂ Ωc. Then, for every ψ ∈ L1((0, T );R3×3) there holds∫ T

0

∫
Bs(y0)

ξ(t, x) · ψ(t) dx dt = lim
τ→0

∫ T

0

∫
Bs(y0)

∇yτ (t, x) · ψ(t) dx dt = 0,

which implies ξ = 0 a.e. in (0, T )× Ωc. Therefore, ξ = ∇y.

Arguing as in (3.23), we deduce

Ĝ′τ (t) =

(
exp

(
τ M(Gτ (t− τ), (Kτ∇y)τ (t− τ))

)
− Id

)
τ

Gτ (t− τ). (3.43)

Owing to (3.21) and (3.22), the same argument as in the proof of (3.40) yields

(Kτ∇y)τ → K∇y in L∞((0, T )× Ω;R3×3). (3.44)

Therefore, by (3.35), (3.40), the regularity of M , and the fact that the exponential map is locally
Lipschitz, we find that (y,G) solves (2.6).

We are hence left with proving that minimality (2.5) holds almost everywhere in time. To this
aim, assume to be given ŷ ∈ Y and recall that W (∇ŷ G−1(t)) detG(t) ∈ L∞(Ω) since G(t) ∈
L∞(Ω;R3×3) and detG(t) ≥ Cδ a.e. In particular, we have that

W (∇ŷ G−1(t)) ≤ λ(‖G(t)‖L∞ , Cδ) a.e. in Ω× (0, T ) (3.45)

where λ is defined in (3.7). We will make use of the following simplified version of [23, Lemma 4.1].

Lemma 3.4. Under assumption (H2) there exist c3, ε > 0 such that

|W (FH)−W (F )| ≤ c3(W (F ) + 1)|H − Id| ∀F, H ∈ GL+(3), |H − Id| ≤ ε. (3.46)

Let s ∈ (0, T ). By choosing F = ∇ŷ G−1(s) and H = G(s)G
−1
τ (s) in (3.46) we find that∫

Ω
W (∇ŷ G−1

τ (s)) detGτ (s) dx−
∫

Ω
W (∇ŷ G−1(s)) detG(s) dx

≤
(
c3

∫
Ω

(W (∇ŷ G−1(s)) + 1) detGτ (s) dx

)
‖G(s)G

−1
τ (s)− Id‖L∞

+

∫
Ω
W (∇ŷ G−1(s))

(
detGτ (s)− detG(s)

)
dx.

Owing to (3.45), this entails that W (∇ŷG−1
τ (t)) detGτ (t) ∈ L1(Ω) for all τ as well. Moreover,

taking into account convergence (3.41), we have that

lim sup
τ→0

(∫
Ω
W (∇ŷ G−1

τ (s)) detGτ (s) dx−
∫

Ω
W (∇ŷ G−1(s)) detG(s) dx

)
= 0. (3.47)
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Fix now t ∈ (0, T ) and δ > 0 small so that t+ δ ∈ (0, T ). From the discrete minimality (3.3), we
deduce that∫ t+δ

t

∫
Ω
W (∇yτ (s)G

−1
τ (s)) detGτ (s) dx ds−

∫ t+δ

t
〈`τ (s), yτ (s)〉 ds ≤

∫ t+δ

t

∫
Ω
W (∇ŷ G−1

τ (s)) detGτ (s) dx ds−
∫ t+δ

t
〈`τ (s), ŷ〉 ds.

(3.48)
We now aim at passing to the lim inf as τ → 0 first. Convergence (3.36) and the regularity of the
applied loads implies that∫ t+δ

t
〈`τ (s), yτ (s)〉 ds→

∫ t+δ

t
〈`(s), y(s)〉ds and

∫ t+δ

t
〈`τ (s), ŷ〉 ds→

∫ t+δ

t
〈`(s), ŷ〉 ds.

By (3.32), there exists e ∈ L∞(0, T ;Lp(Ω;R3×3) such that, for a not relabeled subsequence,

∇yτG
−1
τ ⇀∗ e in L∞(0, T ;Lp(Ω;R3×3)).

On the other hand, the convergences (3.40) and (3.36) yield that e = ∇yG−1. We can hence use
convergence (3.47) and the polyconvexity from (H1) in order to pass to the lim inf in (3.48) and
obtain that∫ t+δ

t

∫
Ω
W (∇y(t)G−1(s)) detG(s) dx ds−

∫ t+δ

t
〈`(s), y(s)〉 ds ≤ lim inf

τ→0

∫ t+δ

t

∫
Ω
W (∇ŷ G−1

τ (s)) detGτ (s) dx ds−
∫ t+δ

t
〈`(s), ŷ〉 ds

(3.47)

≤
∫ t+δ

t

∫
Ω
W (∇ŷ G−1(s)) detG(s) dx ds−

∫ t+δ

t
〈`(s), ŷ〉 ds. (3.49)

By applying again Lemma 3.4, this time for the choice F = ∇ŷ G−1(t) and H = G(t)G−1(s) and
using the time regularity of G and ` one proves that

lim
δ→0

(
1

δ

∫ t+δ

t

∫
Ω
W (∇ŷ G−1(s)) detG(s) dx ds− 1

δ

∫ t+δ

t
〈`(s), ŷ〉 ds

)
=

∫
Ω
W (∇ŷ G−1(t)) detG(t) dx−〈`(t), ŷ〉.

(3.50)
Estimate (3.49) implies that the function

t ∈ (0, T ) 7→
∫

Ω
W (∇y(t)G−1(t)) detG(t) dx− 〈`(t), y(t)〉 (3.51)

is integrable. Choose now t ∈ (0, T ) to be one of its Lebesgue points. By using (3.50) one can pass
to the limit as δ → 0 in (3.49) and deduce that∫

Ω
W (∇y(t)G−1(t)) detG(t) dx − 〈`(t), y(t)〉 ≤

∫
Ω
W (∇ŷ G−1(t)) detG(t) dx − 〈`(t), ŷ〉.

As ŷ ∈ Y is arbitrary, minimality (2.5) follows.

4. Proof of Theorem 2: Optimal control

We now turn to the existence proof of optimal controls µ∗ and optimal pairs (y∗, G∗) ∈ S(µ∗)
solving problem (2.11).

The first step is to check that the solution operator S is well-defined. This amounts in proving
the existence of nutrient-driven morphoelastic solutions for given µ ∈ Lp(0, T ;W 1,p(Ω)), and can
be ascertained by extending the argument of Theorem 2.2. Indeed, by resorting again to a time
discretization with constant time step τ , starting from (y0, G0) = (y0, G0) ∈ Y × Gp, one solves for
{(yi, Gi)}Ni=1 ∈ YN × GNp such that, for i = 1, . . . , N ,

yi ∈ argminy∈Y

{∫
Ω
W (∇y G−1

i ) detGi dx− 〈`i, y〉
}
, (4.1)

Gi = exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
Gi−1 a.e. in Ω, (4.2)
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where now the additional datum µi is defined as

µi :=
1

τ

∫ iτ

(i−1)τ
µ(t) dt ∈W 1,p(Ω) for i = 1, . . . , N.

Note here that ‖µτ‖Lp(0,T ;W 1,p(Ω)) ≤ ‖µ‖Lp(0,T ;W 1,p(Ω)) and µτ → µ in Lp(0, T ;W 1,p(Ω)) as τ → 0.
The existence of a solution to (4.1)-(4.2) can be obtained by simply adapting the argument of
Lemma 3.2. The only modification is required in the estimate on ∇Gi, which now hinges on (H7)
and reads

‖∇Gi‖Lp(Ω;R3×3×3) ≤ ‖Gi−1‖L∞‖∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
‖Lp(Ω;R3×3×3)

+ ‖ exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
‖L∞‖∇Gi−1‖Lp(Ω;R3×3×3)

≤ ‖Gi−1‖L∞‖∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
‖Lp(Ω;R3×3×3)

+ C‖Gi−1‖W 1,p(Ω;R3×3).

Here and in the following, we use the symbol C to indicate a positive constant, possibly depending
on data but not on µ nor on τ . The actual value of C can change from line to line.

By arguing as in (3.13), we get

|∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
| ≤ 3τ exp

(
τ‖M‖L∞

)
‖M‖W 1,∞

(
|∇Gi−1|+|∇(Kτ∇y)i−1|+|∇µi|

)
,

so that, using once more (H7) we have

‖∇ exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
‖Lp(Ω;R3×3×3)

≤ Cτ(‖Gi−1‖W 1,p(Ω;R3×3) + ‖∇(Kτ∇y)i−1‖Lp(Ω;R3×3×3) + ‖µi‖W 1,p(Ω)).

Owing to (3.5) and (H4) along with the fact that yj ∈ Y for j = 0, . . . , i− 1,

‖∇(Kτ∇y)i−1‖Lp(Ω;R3×3×3) ≤
i−1∑
j=0

τ |κj |‖∇yi−1−j‖Lp(Ω;R3×3)‖∇φ‖L1(R3;R3) ≤ C, (4.3)

which, together with the facts that µτ is bounded in Lp(0, T ;W 1,p(Ω)) independently of τ and that
Gi−1 ∈ Gp, implies that Gi ∈W 1,p(Ω;R3×3).

In view of passing to the limit in the time discretization, a priori estimates independent of τ
have to be provided. The extra µ-dependence of the growth-rate function M has no influence on
estimates (3.17)-(3.19) and (3.21)-(3.22), which can be readily obtained as in Proposition 3.3. As
regards the estimate on Gτ , one is asked to deal with an extra term featuring ∇µi. In particular,
subtracting Gi−1 from both sides of (4.2), dividing by τ , and taking the gradient we find

∇
(
Gi −Gi−1

τ

)
= ∇(Ei−1Gi−1) = (G>i−1∇E>i−1)t + Ei−1∇Gi−1 (4.4)

a.e. in Ω, for i = 1, . . . , N , where

Ei−1 :=
exp

(
τ M(Gi−1, (Kτ∇y)i−1, µi)

)
− Id

τ
.

We can hence control the Lp norm as follows∥∥∥∥∇(Gi −Gi−1

τ

)∥∥∥∥
Lp(Ω;R3×3×3)

≤ ‖G>i−1∇E>i−1‖Lp(Ω;R3×3×3) + ‖Ei−1∇Gi−1‖Lp(Ω;R3×3×3). (4.5)

From the properties of the matrix exponential, arguing as in (3.13), we get that

|∇Ei−1| ≤ 3 exp
(
τ‖M‖L∞

)
‖M‖W 1,∞

(
|∇Gi−1|+ |∇(Kτ∇y)i−1|+ |∇µi|

)
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and hence that

‖∇Ei−1‖Lp(Ω;R3×3×3)

≤ C exp
(
τ‖M‖L∞

)
‖M‖W 1,∞

×
(
‖∇Gi−1‖Lp(Ω;R3×3×3) + ‖∇(Kτ∇y)i−1‖Lp(Ω;R3×3×3) + ‖∇µi‖Lp(Ω;R3)

)
≤ C exp

(
τ‖M‖L∞

)
‖M‖W 1,∞

×
(
‖∇Gi−1‖Lp(Ω;R3×3×3) +

i−1∑
j=0

τ |κj |‖∇yi−1−j‖Lp(Ω;R3×3)‖∇φ‖L1(R3;R3) + ‖µi‖W 1,p(Ω)

)
≤ C

(
1 + ‖∇Gi−1‖Lp(Ω;R3×3×3) + ‖µi‖W 1,p(Ω)

)
, (4.6)

for all i = 1, . . . , N , where we have also used that ‖yj‖W 1,p(Ω;R3) is bounded independently of τ , as
well as that one can control

i−1∑
j=0

τ |κj |‖∇yi−1−j‖Lp(Ω;R3×3)‖∇φ‖L1(R3;R3) ≤ C. (4.7)

On the other hand, similar calculations as in (3.26) shows that

‖Ei−1‖L∞ ≤
1

τ
(exp(τ‖M‖L∞)− 1) ≤ C.

Going back to (4.5) and using the Hölder Inequality, (4.6), and the fact that ‖Gi−1‖L∞ is bounded
independently of τ , we deduce that∥∥∥∥∇(Gi −Gi−1

τ

)∥∥∥∥
Lp(Ω;R3×3×3)

≤ ‖Gi−1‖L∞‖∇Ei−1‖Lp(Ω;R3×3×3) + ‖Ei−1‖L∞‖∇Gi−1‖Lp(Ω;R3×3×3)

≤ C
(
1 + ‖∇Gi−1‖Lp(Ω;R3×3×3) + ‖µi‖W 1,p(Ω)

)
≤ C

1 + ‖∇G0‖Lp(Ω;R3×3×3) +

i−1∑
j=1

τ

∥∥∥∥∇(Gj −Gj−1

τ

)∥∥∥∥
Lp(Ω;R3×3×3)

+ ‖µi‖W 1,p(Ω)

 .

By taking the p-power, applying the Discrete Gronwall Lemma, and recalling that µτ is bounded in

Lp(0, T ;W 1,p(Ω)) independently of τ we conclude that ∇Ĝ′τ is bounded in Lp(0, T ;Lp(Ω;R3×3×3)),

independently of τ . Consequently, it follows that Ĝτ is bounded in W 1,p(0, T ;W 1,p(Ω;R3×3)) and
that Gτ is bounded in L∞(0, T ;W 1,p(Ω;R3×3)), both independently of τ .

One can now extract not relabeled subsequences and pass to the limit as τ → 0, following the

very argument of Subsection 3.3. Note nonetheless that the convergence of Ĝτ and Gτ is slightly
weaker, namely,

Ĝτ
∗
⇀ G in W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3)), (4.8)

Ĝτ → G in C([0, T ];C(Ω;R3×3)), (4.9)

Gτ → G in L∞((0, T )× Ω;R3×3) ∩ Lp(0, T ;Lp(Ω;R3×3)), (4.10)

Gτ
∗
⇀ G in L∞(0, T ;W 1,p(Ω;R3×3)), (4.11)

where we have also used the Aubin-Lions Lemma. As µτ → µ in Lp(0, T ;W 1,p(Ω)) and the growth-
rate function M is Lipschitz continuous with respect to µ from (H7), we readily check again that
the limit (y,G) of time-discrete solutions is a nutrient-driven solution in the sense of Definition 2.3.
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The above argument shows that the solution operator

S : Lp(0, T ;W 1,p(Ω))

→ L∞(0, T ;W 1,p(Ω;R3))×W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3))

representing the set S(µ) of all nutrient-driven solutions (y,G) given µ is well-defined and bounded.

In order to prove Theorem 2.4, let now µk ∈ A and (yk, Gk) ∈ S(µk) with

J(yk, Gk, µk)→ inf
µ∈A

{
J(y,G, µ) : (y,G) ∈ S(µ)

}
≥ 0.

Since A is bounded in Lp(0, T ;W 1,p(Ω)) and compact in L1((0, T )×Ω) by (H8), one can find µ∗ ∈ A
and pass to a not relabeled subsequence such that µk → µ∗ a.e. Moreover, the boundedness of S
implies that (yk, Gk) are uniformly bounded in L∞(0, T ;W 1,p(Ω;R3))×W 1,∞(0, T ;L∞(Ω;R3×3))∩
W 1,p(0, T ;W 1,p(Ω;R3×3)). Hence, by extracting again (without relabeling) we get that

yk
∗
⇀ y∗ in L∞(0, T ;W 1,p(Ω;R3×3)),

Gk
∗
⇀ G∗ in W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3)).

The latter implies in particular that Gk → G∗ in C([0, T ]×Ω;R3×3). Moreover, since detGk is a.e.
bounded below by a positive constant independently of k one has that

(Gk)
−1 → (G∗)−1 in C([0, T ]× Ω;R3×3)),

as well. These convergences are enough to pass to the limit in relations (2.8)-(2.10) and obtain that
the limiting (y∗, G∗) belongs to S(µ∗). In particular, the almost-everywhere-in-time minimality
(2.8) follows along the same lines as in the proof of Theorem 1, see Subsection 3.3.

On the other hand, due to the lower semicontinuity of J from (H9) we get that

J(y∗, G∗, µ∗) ≤ lim inf
k→∞

J(yk, Gk, µk) = min
µ∈A

{
J(y,G, µ) : (y,G) ∈ S(µ)

}
.

In particular, µ∗ is an optimal control and (y∗, G∗) ∈ S(µ∗) is the corresponding optimal state.

5. Proof of Theorem 3: Nutrient-morphoelastic existence

In this section, we prove the existence of nutrient-morphoelastic solutions, namely, trajectories
t ∈ [0, T ] 7→ (y(t), G(t), µ(t)) ∈ Y×Gp×M satisfying (2.12)-(2.16). Using again a time discretization
with constant time step τ , starting from (y0, G0, µ0) = (y0, G0, µ0) ∈ Y × Gp ×M, we look for
{(yi, Gi, µi)}Ni=1 ∈ YN × GNp ×MN fulfilling

yi ∈ argminy∈Y

{∫
Ω
W (∇y G−1

i ) detGi dx− 〈`i, y〉
}
, (5.1)

Gi = exp
(
τ M(Gi−1, (Kτ∇y)i−1, µi−1)

)
Gi−1 a.e. in Ω, (5.2)

µi − µi−1

τ
− ν∆µi = hi −H((κ ∗τ y)i−1) a.e. in Ω, (5.3)

µi = µD,i a.e. on ∂Ω (5.4)

for i = 1, . . . , N . In (5.3)-(5.4), we have set

hi :=
1

τ

∫ iτ

(i−1)τ
h(s) ds ∈ Lp(Ω) for i = 1, . . . , N,

and

µD,i :=
1

τ

∫ iτ

(i−1)τ
µD(s) ds ∈W 2,p(Ω) for i = 1, . . . , N,
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and we recall that

(κ ∗τ y)i−1(x) :=
i−1∑
j=0

τ κj yi−1−j(x) for a.e. x ∈ Ω, for i = 1, . . . , N,

where κi := κ(ti), i = 0, . . . , N .

Let us first prove that the scheme (5.1)-(5.4) admits a solution. Using the same arguments as in
Lemma 3.2, it follows that for i = 0, . . . , N − 1, given Gi ∈ Gp, there exists yi ∈ Y solving (5.1).
By quite similar arguments to those in the beginning of Section 4, it is readily verified that for
i = 1, . . . , N , given (yi−1, Gi−1, µi−1) ∈ Y × Gp ×M, there exists a solution Gi ∈ Gp to (5.2). It
remains to check that for i = 1, . . . , N , given (yi−1, µi−1) ∈ Y ×M, there exists a solution µi ∈M
to (5.3)-(5.4). Letting

Fi := τhi − τH((κ ∗τ y)i−1) + µi−1 ∈ Lp(Ω),

an application of [13, Theorem 2.4.2.5] shows that the problem

µi − ντ∆µi = Fi a.e. in Ω, µi = µD,i a.e. on ∂Ω, (5.5)

has a unique solution µi ∈M.

We next perform some a-priori estimates. The additional dependence of the growth-rate function
M on µ has no impact on the estimates (3.17)-(3.19) and (3.21)-(3.22). These estimates can be
obtained as in Proposition 3.3. For the estimates on µ̄τ and µ̂τ , we deduce by applying [13, Theorems
2.3.3.6 & 1.5.1.2] and using (5.5) that

‖µi‖W 2,p(Ω) ≤ C
(
‖µi − ντ∆µi‖Lp(Ω) + ‖µi|∂Ω‖W 2−1/p,p(∂Ω)

)
≤ C

(
‖Fi‖Lp(Ω) + ‖µD,i‖W 2,p(Ω)

)
(5.6)

for every i = 1, . . . , N . Here and in the following, the symbol C stands for a positive constant,
possibly depending on the data but not on τ and varying from line to line. By letting µ̃i := µi−µD,i

and

F̃i := hi −H((κ ∗τ y)i−1)−
µD,i − µD,i−1

τ
+ ν∆µD,i ∈ Lp(Ω),

equations (5.3) and (5.4) read

µ̃i − µ̃i−1

τ
− ν∆µ̃i = F̃i a.e. in Ω, (5.7)

µ̃i = 0 a.e. on ∂Ω, (5.8)

for i = 1, . . . , N . We multiply (5.7) by the function τ |µ̃i|p−2µ̃i and integrate over Ω to obtain that∫
Ω

(µ̃i − µ̃i−1) |µ̃i|p−2µ̃i dx− ντ
∫

Ω
(∆µ̃i) |µ̃i|p−2µ̃i dx = τ

∫
Ω
F̃i |µ̃i|p−2µ̃i dx. (5.9)

From the convexity of the map µ 7→ |µ|p/p we obtain∫
Ω

(µ̃i − µ̃i−1) |µ̃i|p−2µ̃i dx ≥ 1

p

∫
Ω
|µ̃i|p dx− 1

p

∫
Ω
|µ̃i−1|p dx. (5.10)

On the other hand, by applying the Hölder and the Young Inequalities we have

τ

∫
Ω
F̃i |µ̃i|p−2µ̃i dx ≤ τ

(∫
Ω
|F̃i|p dx

)1/p(∫
Ω
|µ̃i|p dx

)1/q

≤ τ
(

1

p

∫
Ω
|F̃i|p dx+

1

q

∫
Ω
|µ̃i|p dx

)
. (5.11)
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Furthermore, by using the Green Formula and taking into account the boundary condition (5.8),
we get

−ντ
∫

Ω
(∆µ̃i) |µ̃i|p−2µ̃i dx = ντ(p− 1)

∫
Ω
|µ̃i|p−2|∇µ̃i|2 dx. (5.12)

Thus, by plugging (5.10)-(5.12) in (5.9), we arrive at

1

p

∫
Ω
|µ̃i|p dx− 1

p

∫
Ω
|µ̃i−1|p dx+ ντ(p− 1)

∫
Ω
|µ̃i|p−2|∇µ̃i|2 dx ≤ τ

p

∫
Ω
|F̃i|p dx+

τ

q

∫
Ω
|µ̃i|p dx.

Summing this inequality from i = 1 to m ≤ N we infer that(
1

p
− τ

q

)
‖µ̃m‖pLp(Ω) ≤

1

p
‖µ̃0‖pLp(Ω) +

τ

p

m∑
i=1

‖F̃i‖pLp(Ω) +
τ

q

m−1∑
i=1

‖µ̃i‖pLp(Ω).

Upon choosing τ small enough, by applying the Discrete Gronwall Lemma and owing to assumptions
(H10) and (H11) we deduce that ‖µ̃m‖Lp(Ω) ≤ C for all m = 1, . . . , N . Hence, the definition of µ̃m,

the reverse triangle inequality, and the fact that µD ,τ is bounded in L∞(0, T ;W 2,p(Ω)) independently
of τ , result in ‖µm‖Lp(Ω) ≤ C for all m = 1, . . . , N . Now, inserting this estimate into (5.6) and
using again (H10) and (H11), we find that, for sufficiently small τ ,

‖µi‖W 2,p(Ω) ≤ C ∀i = 1, . . . , N.

This proves that µ̄τ and µ̂τ are bounded in L∞(0, T ;W 2,p(Ω)) independently of τ , and, together with
(5.3), (H10), and (H11), it also proves that µ̂τ is bounded in W 1,∞(0, T ;Lp(Ω)) independently
of τ .

Using the fact that µ̄τ is bounded in L∞(0, T ;W 2,p(Ω)) independently of τ , the same arguments

from Section 4 entail that Ĝτ is bounded in W 1,p(0, T ;W 1,p(Ω;R3×3)) and that Gτ is bounded in
L∞(0, T ;W 1,p(Ω;R3×3)), both independently of τ .

We proceed to show some a-priori bounds for (κ ∗τ y)τ and ̂(κ ∗τ y)τ . By (3.19) and (H4), we
have for every i = 1, . . . , N

‖(κ ∗τ y)i‖Lp(Ω;R3) ≤
N∑
j=0

τ |κj |‖yi−j‖Lp(Ω;R3)

≤ τ(N + 1)‖κ‖L∞(0,T )‖yτ‖L∞(0,T ;Lp(Ω;R3)) ≤ C

and analogously

‖∇(κ ∗τ y)i‖Lp(Ω;R3×3) ≤ τ(N + 1)‖κ‖L∞(0,T )‖∇yτ‖L∞(0,T ;Lp(Ω;R3×3)) ≤ C,

which imply that both (κ ∗τ y)τ and ̂(κ ∗τ y)τ are bounded in L∞(0, T ;W 1,p(Ω;R3)) independently
of τ . Moreover for a.e. x ∈ Ω,∣∣∣∣(κ ∗τ y)i(x)− (κ ∗τ y)i−1(x)

τ

∣∣∣∣ =

∣∣∣∣∣∣κ0yi(x) +
i∑

j=1

(κj − κj−1)yi−j(x)

∣∣∣∣∣∣
≤ ‖κ‖L∞(0,T )|yi(x)|+ ‖κ′‖L1(0,T )|yi−j(x)|,

so that ∥∥∥∥(κ ∗τ y)i − (κ ∗τ y)i−1

τ

∥∥∥∥
Lp(Ω;R3)

≤ C
(
‖κ‖L∞(0,T ) + ‖κ′‖L1(0,T )

)
‖yτ‖L∞(0,T ;Lp(Ω;R3)).

This, along with (3.19) and (H4), yields that ̂(κ ∗τ y)
′
τ is bounded in L∞(0, T ;Lp(Ω;R3)) indepen-

dently of τ .
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We can now pass to the limit as τ → 0. Following the arguments in Sections 3.3 and 4, we can
extract subsequences, without relabeling, in such a way that

yτ
∗
⇀ y in L∞(0, T ;W 1,p(Ω;R3)),

Ĝτ
∗
⇀ G in W 1,∞(0, T ;L∞(Ω;R3×3)) ∩W 1,p(0, T ;W 1,p(Ω;R3×3)),

Gτ → G in L∞((0, T )× Ω;R3×3) ∩ Lp(0, T ;Lp(Ω;R3×3)),

(Kτ∇y)τ → K∇y in L∞((0, T )× Ω;R3×3) ∩ Lp(0, T ;Lp(Ω;R3×3)),

and

µ̂τ
∗
⇀ µ in L∞(0, T ;W 2,p(Ω)) ∩W 1,∞(0, T ;Lp(Ω)),

µτ → µ in L∞(0, T ;Lp(Ω)),

µτ
∗
⇀ µ in L∞(0, T ;W 2,p(Ω)),

(κ ∗τ y)τ → κ ∗ y in L∞(0, T ;Lp(Ω;R3)).

Since the functions M and H are Lipschitz continuous according to (H7) and (H11), and since
hτ → h in L∞(0, T ;Lp(Ω)), we easily check that the limit (y,G, µ) is a nutrient-morphoelastic
solution in the sense of Definition 2.5. Once again, the almost-everywhere-in-time minimality (2.12)
follows by adapting the argument of Subsection 3.3.
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