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LORENZO BRASCO AND GIOVANNI FRANZINA

Abstract. Given an open set Ω, we consider the problem of providing sharp lower bounds for
λ2(Ω), i.e. its second Dirichlet eigenvalue of the p−Laplace operator. After presenting the nonlinear
analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls
minimize λ2 among open sets of given measure, we improve this spectral inequality by means of a
quantitative stability estimate. The extremal cases p = 1 and p =∞ are considered as well.

1. Introduction

In this paper, we are concerned with Dirichlet eigenvalues of the p−Laplace operator

−∆pu := −div(|∇u|p−2∇u),

where 1 < p <∞. For every open set Ω ⊂ RN having finite measure, these are defined as the real
numbers λ such that the boundary value problem

−∆pu = λ |u|p−2 u, in Ω, u = 0, on ∂Ω

has non trivial (weak) solutions. In particular, we are mainly focused on the following spectral
optimization problem

(1.1) min{λ2(Ω) : |Ω| = c},

where c > 0 is a given number, λ2(·) is the second Dirichlet eigenvalue of the p−Laplacian and
| · | stands for the N−dimensional Lebesgue measure. We will go back on the question of the
well-posedness of this problem in a while, for the moment let us focus on the particular case
p = 2. In this case we are facing the eigenvalue problem for the usual Laplace operator. As it is
well known (see [21]), Dirichlet eigenvalues form a discrete nondecreasing sequence of positive real
numbers 0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . , going to ∞, where each eigenvalue is counted with its
multiplicity. In particular, it is meaningful to speak of a second eigenvalue so that problem (1.1) is
well-posed and we know that its solution is given by any disjoint union of two balls having measure
c/2. Moreover, these are the only sets which minimize λ2 under volume constraint.

Using the scaling properties both of the eigenvalues of −∆ and of the Lebesgue measure, we can
reformulate the previous result in scaling invariant form as follows

(1.2) |Ω|2/N λ2(Ω) ≥ 22/N ω
2/N
N λ1(B),

with equality if and only if Ω is a disjoint union of two equal balls. Here and in what follows, B
will always denote a N−dimensional ball of radius 1 and ωN := |B|. Observe that for Ω = B1∪B2,
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with B1 and B2 disjoint balls having |B1| = |B2|, the first eigenvalue has multiplicity 2, i.e.
λ1(Ω) = λ2(Ω) and these are equal to the first eigenvalue of one of the two balls.

This “isoperimetric” property of balls has been discovered (at least) three times: first by Edgar
Krahn ([25]) in the ’20s, but then the result has been probably neglected, since in 1955 George
Pólya attributes this observation to Peter Szego (see the final remark of [30]). However, almost in
the same years as Pólya’s paper, there appeared the paper [22] by Imsik Hong, giving once again
a proof of this result. It has to be noticed that Hong’s paper appeared in 1954, just one year
before Pólya’s one. For this reason, in what follows we will refer to (1.2) as the Hong-Krahn-Szego
inequality (HKS inequality for short).

We briefly recall that for successive Dirichlet eigenvalues of the Laplacian, much less is known.
Apart for a result by Bucur and Henrot giving existence for k = 3 in the class of quasi-open sets
(see [10]), in general existence, regularity and characterization of optimal shapes for a problem like
(1.1) are still open issues. As for existence, a general (positive) answer has been given only very
recently, independently by Bucur [9] and Mazzoleni and Pratelli [27].

For the case of the p−Laplace operator, this is clearly a completely different story. The non-
linearity of the operator and the lack of an underlying Hilbertian structure complicate things a
lot. For example, though there exists a variational procedure to produce an infinite sequence of
eigenvalues of −∆p (the so called eigenvalues of Ljusternik-Schnirelmann type, see [17, 20] for ex-
ample), up to now it is not clear whether the resulting variational spectrum coincides with the
whole spectrum of −∆p or there exist some other eigenvalues. Negative answers were given in
[6, 13] for slightly different nonlinear eigenvalue problems. Moreover, it is not even known whether
or not the collection of the eigenvalues of −∆p forms a discrete set.

This said, while it is easy to define the first eigenvalue λ1, in principle it becomes quite difficult
even to start speaking of the second eigenvalue, the third one and so on, since discreteness of the
spectrum is not guaranteed. However, as it is well known, it turns out that also in the case of
−∆p one can speak of a second eingevalue λ2. This means that there is a gap between λ1 and
λ2, as for p = 2. Moreover, this second eigenvalue is a variational one, which has a mountain-pass
characterization (see Section 2 for more details).

The main aim of the present paper is the study of the spectral optimization problem (1.1) for a
general 1 < p <∞. As we will see, the Hong-Krahn-Szego inequality still holds in the case of the
p−Laplace operator (Theorem 3.2). Namely, any disjoint union of two equal balls minimizes the
second eigenvalue of −∆p among sets of given measure, that is

(1.3) |Ω|p/N λ2(Ω) ≥ 2p/N ω
p/N
N λ1(B).

The proof runs very similarly to the case p = 2 and it is based exactly on the same two ingredients,
which still hold in the nonlinear setting:

• the Faber-Krahn inequality (see next section) for the first eigenvalue of −∆p;
• the fact that for a connected open set the only eigenfunction of constant sign is the first

one.

We will then turn our attention to the stability issue. Indeed, when dealing with shape optimization
problems having unique solution (possibly up to some suitable group of rigid transformations, like
rotations or translations, for example), a very interesting and natural question is to know whether
this optimal shape is stable or not. For example, specializing this question to our problem (1.1),
we are interested in addressing the following issue:
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|Ω0| = c and λ2(Ω0) ' min{λ2(Ω) : |Ω| = c} ?
=⇒ Ω0 “near” to the optimal shape

In this paper, we give a positive answer to this question, by proving a quantitative version of
(1.3). By “quantitative” we mean the following: actually, inequality (1.3) can be improved by
adding a reminder term, which measures (in a suitable sense) the distance of the generic set Ω from
the “manifold” of optimizers O, i.e. the collection of all disjoint unions of two equal balls. Then
the result we provide (Theorem 4.2) is an improvement of (1.3) of the type

|Ω|p/Nλ2(Ω)− 2p/N ω
p/N
N λ1(B) ≥ Φ(d(Ω,O)),

where d(·,O) is a suitable “distance” from O and Φ : [0,∞) → [0,∞) is a continuous strictly
increasing function, with Φ(0) = 0. More precisely, in Theorem 4.2 we prove a result like this with
d equal to the L1 distance of characteristic functions (a variant of the so-called Fraenkel asymmetry,
see Section 4) and Φ given by a power function. This quantitative estimate guarantees that if the
second eigenvalue λ2 of a set Ω is almost equal to the λ1 of a ball having measure |Ω|/2, then Ω is
almost the disjoint union of two equal balls, i.e. we have stability of optimal shapes for our spectral
optimization problem. Our analysis will cover the whole range of p. Indeed, we will show that the
same proof can be adapted to cover the cases p = 1 and p = ∞ as well, where λ2 becomes the
second Cheeger constant and the second eigenvalue of the ∞−Laplacian, respectively (see Section
5 for the precise definitions). In the case of the first eigenvalue λ1, we recall that quantitative
results of this type have been derived in [19, 28, 31] (linear case, p = 2) and [4, 18] (general case,
1 < p <∞).

We point out that though problem (1.1) is a very natural one also for −∆p, we have not been
able to find in literature any paper recording a proof of (1.3). Only after the completion of this
work, we found a related recent paper by Kennedy ([24]), dealing with problem (1.1), but for the
second eigenvalue of −∆p with Robin boundary conditions. For this reason, we decided to write
properly the complete proof of (1.3); on the contrary, the quantitative stability results of Theorem
4.2 and Theorem 5.2 in this paper are certainly new, though probably not sharp, except for the
case p =∞ (see the discussion in Section 6).

We conclude this introduction with the plan of the paper. In order to make the work as self-
contained as possible, Section 2 recalls the basic facts about the first two eigenvalues of −∆p

that we will need in the following; in Section 3 we prove the Hong-Krahn-Szego inequality for λ2,
while Section 4 provides a quantitative version of the latter, thus extending to the nonlinear case
a result recently proven in [8]. In Section 5, for the sake of completeness, we consider the shape
optimization problem (1.1) for the “extremal” cases, i.e. for p = 1 and p = ∞: in this case, the
first two eigenvalues λ1 and λ2 become two purely geometrical objects and we study stability of
optimal shapes for them. Finally, Section 6 concludes the paper with some examples, remarks and
conjectures concerning the sharpness of the quantitative estimates derived in this work.

2. Tools: the first two eigenvalues of −∆p

Given an open set Ω ⊂ RN having finite measure and p ∈ (1,∞), we define the Lp unitary sphere

Bp(Ω) = {u ∈ Lp(Ω) : ‖u‖Lp(Ω) = 1},
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and we indicate with W 1,p
0 (Ω) the usual Sobolev space, given by the closure of C∞0 (Ω) with respect

to the norm

‖u‖ =

(∫
Ω
|∇u(x)|p dx

)1/p

.

If for a certain λ we have that there exists a non trivial u ∈W 1,p
0 (Ω) satisfying

(2.1) −∆pu = λ|u|p−2 u, in Ω,

in a weak sense, i.e.∫
Ω
〈|∇u(x)|p−2∇u(x),∇ϕ(x)〉 dx = λ

∫
Ω
|u(x)|p−2 u(x)ϕ(x) dx, for every ϕ ∈W 1,p

0 (Ω),

then we call λ a Dirichlet eigenvalue of−∆p in Ω: correspondingly u will be a Dirichlet eigenfunction
of −∆p. In particular, observe that for every such a pair (λ, u) there results∫

Ω
|∇u(x)|p dx = λ

∫
Ω
|u(x)|p dx.

Though we will not need it in the sequel, we recall that it is possible to show the existence of a
diverging sequence of eigenvalues of −∆p, see [17, 20].

Remark 2.1. Observe that in general solutions of (2.1) are just in C1,α (see [14]). In fact,
the second derivatives cannot exist in a weak sense either, unless 1 < p ≤ 2 (see [1]). Then
eigenfunctions in general are not classical solutions of the equation (2.1).

The first Dirichlet eigenvalue of the p−Laplacian of a set has the following variational definition

(2.2) λ1(Ω) = min
u∈Bp(Ω)∩W 1,p

0 (Ω)

∫
Ω
|∇u(x)|p dx,

i.e. the quantity 1/λ1(Ω) is the sharp constant in the usual Poincaré inequality∫
Ω
|u(x)|p dx ≤ CΩ

∫
Ω
|∇u(x)|p dx, u ∈W 1,p

0 (Ω),

and this in particular implies that λ1(Ω) > 0.

Remark 2.2. It is easily seen by a standard compactness argument that the minimum in (2.2) is
attained, then this λ1(Ω) is indeed an eigenvalue of −∆p, since (2.1) is precisely the Euler-Lagrange
equation for (2.2). The fact that λ1(Ω) is the minimal one follows observing that if λ is an eigenvalue

with eigenfunction v ∈ Bp(Ω) ∩W 1,p
0 (Ω), then

∫
Ω |∇v(x)|p dx = λ and thus

λ1(Ω) = min
u∈Bp(Ω)∩W 1,p

0 (Ω)

∫
Ω
|∇u(x)|p dx ≤

∫
Ω
|∇v(x)|p dx = λ.

The first important result that we need concerns the simplicity of λ1 on a connected open set.

Theorem 2.3. Let Ω ⊂ RN be an open connected set, having |Ω| < +∞. Then λ1(Ω) is simple,
i.e. the corresponding eigenfuctions form a 1−dimensional linear space.

Proof. A very short and elegant proof of this fact can be found in [3]. Their proof is based on the
strict convexity of

∫
Ω |∇u|

p along curves of the form

(2.3) σt =
(

(1− t)up0 + t up1

) 1
p
, t ∈ [0, 1],
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for every pair of strictly positive functions u0, u1 ∈W 1,p
0 (Ω). Actually, the result in [3] is stated for

the case of Ω being a bounded set, but it can be easily seen that this hypothesis plays no role and
the same proof still works for Ω having finite measure. �

Throughout the paper, we will use the following convention: when Ω is a disconnected open
set, the set of its Dirichlet eigenvalues is made of the collection of the eigenvalues of its connected
components. The eigenvalues are obtained by gathering and ordering increasingly the eigenvalues
on the single pieces; correspondingly, each eigenfunction is solution of (2.1) on a certain connected
component and vanishes on the others.

The following result plays a crucial role: it asserts that any eigenfunction having constant sign
is the first one of some connected component of the open set Ω.

Theorem 2.4. Let Ω ⊂ RN be an open set, having finite measure. Let u ∈W 1,p
0 (Ω) be a Dirichlet

eigenfunction relative to some eigenvalue λ. If u has constant sign in Ω, then λ = λ1(Ω0) for some
connected component Ω0 of Ω, i.e. u is a first eigenfunction of Ω0. In particular λ = λ1(Ω) if Ω is
connected.

Proof. If Ω is connected, a straightforward proof of this fact has been recently given by the authors
in [7], again based on the convexity of

∫
Ω |∇u|

p along curves of the form (2.3).
On the other hand, if Ω is disconnected, then λ has to be a Dirichlet eigenvalue of a certain

connected component Ω0; correspondigly u is an eigenfunction of Ω0, having constant sign. Then
it sufficies to apply the first part to conclude. �

We give now a precise definition of what we mean by the second eigenvalue of −∆p. This
definition keeps into account the multiplicity of the first eigenvalue. As we will see, this is necessary
in order to properly deal with our spectral optimization problem (1.1).

Definition. Let Ω be an open set having finite measure. Then its second eigenvalue is given by

(2.4) λ2(Ω) =

 min{λ > λ1(Ω) : λ is an eigenvalue } if λ1(Ω) is simple

λ1(Ω) otherwise.

When λ1 is simple, some words about the consistency of this definition are in order. Indeed, using
Theorem 2.4 it can be proven that if Ω is connected, then λ1 is isolated in the spectrum, the latter
being a closed set ([26, Theorem 3]): this shows that the minimum in (2.4) is well-defined. On
the other hand, if Ω consists of infinitely many connected components, one only has to check that
the collection of the first eigenvalues on the single components cannot accumulate at any value
λ ≥ λ1(Ω). This follows by combining the assumption |Ω| < ∞ and the Faber-Krahn inequality
(see below), which in particular implies that if |E| → 0, then λ1(E) → ∞. This shows again that
the minimum in (2.4) is meaningful.

Remark 2.5. By definition, the nodal domains of an eigenfunction u are the connected components
of the sets {x : u(x) > 0} and {x : u(x) < 0}. If Ω is connected, we recall that every eigenfunction
corresponding to λ2 has exactly two nodal domains (see [11]), in which case by Theorem 2.4 we
can infer

λ2(Ω) = min{λ > λ1(Ω) : λ admits a sign-changing eigenfunction}.

For the sake of completeness, we recall that one can give a variational characterization also for
λ2: in order to introduce it, we need some further notations. Given a pair of functions u, v ∈
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Bp(Ω) ∩W 1,p
0 (Ω), let us denote by ΓΩ(u, v) the set of continuous (in the W 1,p topology) paths in

Bp(Ω) ∩W 1,p
0 (Ω) connecting u to v, i.e.

ΓΩ(u, v) =
{
γ : [0, 1]→ Bp(Ω) ∩W 1,p

0 (Ω) : γ is continuous and γ(0) = u, γ(1) = v
}
.

Theorem 2.6. Let Ω ⊂ RN be an open set having finite measure, not necessarily connected. Let
u1 ∈ Bp(Ω) ∩W 1,p

0 (Ω) be one of its first eigenfunctions. Then λ2(Ω) has the following mountain
pass characterization

(2.5) λ2(Ω) = inf
γ∈ΓΩ(u1,−u1)

max
u∈γ([0,1])

∫
Ω
|∇u(x)|p dx.

If λ1(Ω) is not simple, this characterization is independent of the particular u1 we choose.

Proof. If Ω is connected, this has been proven in the paper [12], to which we refer for the proof.
Here, we just show how (2.5) can be extended to the case of general open sets: anyway, since we
will not need this result in the sequel, the uninterested reader may skip the proof at a first reading.

Let us take Ω not connected, then the following alternative holds: either λ1(Ω) is simple or not.

Case λ1 simple: in this case, a first eigenfunction u1 ∈ Bp(Ω) ∩W 1,p
0 (Ω) is unique and let us

consider a second eigenfunction u2, still normalized by ‖u2‖Lp(Ω) = 1.
If u2 is sign-changing, then it is supported on some connected component Ω0 of Ω such that

λi(Ω) = λi(Ω0), i = 1, 2: in particular the mountain pass characterization of λ2(Ω0) holds, with the
maximum performed on the restricted class of curves ΓΩ0(u1,−u1) ⊂ ΓΩ(u1,−u1). Thus setting

λ := inf
γ∈ΓΩ(u1,−u1)

max
u∈γ([0,1])

∫
Ω
|∇u(x)|p dx

on the one hand we have λ ≤ λ2(Ω0) = λ2(Ω), while on the other hand we get λ1(Ω) < λ, since
λ gives a Dirichlet eigenvalue of −∆p in any case (see [12, Section 2]). Summarizing, we obtain
λ1(Ω) < λ ≤ λ2(Ω) which gives the thesis in this case, thanks to (2.4).

On the contrary, if λ1(Ω) is simple but u2 has constant sign, then we have λ1(Ω) = λ1(Ω0) and
λ2(Ω) = λ1(Ω1), with Ω0 and Ω1 distinct connected components. We construct a special element
of ΓΩ(u1,−u1), a continuous path γ defined as follows

γ(t) = ϕt, with ϕt(x) =
cos(π t)u1(x) + t(1− t)u2(x)

(| cos(π t)|p + tp(1− t)p)1/p
, x ∈ Ω,

for all t ∈ [0, 1]. It is easy to see that γ has the following properties

γ(t) ∈ Bp(Ω) ∩W 1,p
0 (Ω), for every t ∈ [0, 1], and γ(0) = u1, γ(1) = −u1,

i.e. the curve γ is admissible for the variational problem (2.5). Hence we get

λ ≤ max
t∈[0,1]

∫
Ω
|∇ϕt(x)|p dx = max

t∈[0,1]

| cos(π t)|p λ1(Ω0) + tp(1− t)pλ1(Ω1)

| cos(π t)|p + tp(1− t)p
≤ λ1(Ω1) = λ2(Ω),

where we used λ1(Ω0) < λ1(Ω1). Thus we get λ1(Ω) < λ ≤ λ2(Ω) and we can conclude as before.

Case λ1 multiple: if Ω is not connected and its corresponding first eigenvalue is not simple, we
just take two linearly independent first eigenfunctions u1, u2 ∈ Bp(Ω) ∩W 1,p

0 (Ω), which are thus



THE HKS INEQUALITY FOR −∆p 7

supported on different connected components of Ω. Repeating the construction of the curve γ
above, we obtain

λ1(Ω) ≤ λ = inf
γ∈ΓΩ(u,−u)

max
u∈γ([0,1])

∫
Ω
|∇u(x)|p dx ≤ λ1(Ω),

which shows that λ = λ1(Ω) = λ2(Ω). Observe that if we exchange the role of u1 and u2, we still
arrive at the same conclusion, thus proving that in this case formula (2.5) is independent of the
choice of the particular first eigenfunction. �

Remark 2.7. It is useful to recall at this point that usually the variational eigenvalues {λk}k≥1

of −∆p are defined through a minimax problem on Bp ∩W 1,p
0 for the integral

∫
Ω |∇u|

p, involving
the concept of Krasnosel’skii genus. The previous result gives in particular that for k = 2 this
characterization coincides with the mountain-pass one given by (2.5).

Finally, since our aim is that of considering a particular class of shape optimization problems
involving the spectrum of −∆p, we conclude this introduction by recalling some further properties
of λ1 and λ2 that we will need in the sequel. In particular, they are monotone decreasing with
respect to set inclusion, while as for their scaling properties we have

λi(tΩ) = t−pλi(Ω), t > 0, i = 1, 2,

which in particular implies that the shape functional Ω 7→ |Ω|p/N λi(Ω) is scaling invariant. Thus
the two problems

min{λi(Ω) : |Ω| = c} and min |Ω|p/N λi(Ω), i = 1, 2,

are equivalent, in the sense that they both provide the same optimal shapes, up to a scaling. For
i = 1, the solution to the previous problem is given by any ball: this is the celebrated Faber-Krahn
inequality. The classical proof combines the Schwarz symmetrization with the so called Pólya-Szegő
principle (see [21, Chapter 3], for example).

Faber-Krahn Inequality. Let 1 < p <∞. For every open set Ω ⊂ RN having finite measure, we
have

(2.6) |Ω|p/Nλ1(Ω) ≥ ωp/NN λ1(B),

where B is the N−dimensional ball of radius 1 and ωN := |B|. Moreover, equality sign in (2.6)
holds if and only if Ω is a ball.

In other words, for every c > 0 the unique solutions of the following spectral optimization problem

min{λ1(Ω) : |Ω| = c},
are given by balls having measure c.

3. The Hong-Krahn-Szego inequality

In this section, we are going to prove that the disjoint unions of equal balls are the only sets
minimizing λ2 under volume constraint, i.e. we will prove the Hong-Krahn-Szego inequality for the
p−Laplacian. The key step in the proof is the following technical result: this is an adaptation of a
similar result for the linear case p = 2 (see [8, Lemma 3.1], for example).

Lemma 3.1. Let Ω ⊂ RN be an open set with |Ω| <∞. Then there exists Ω+,Ω− disjoint subsets
of Ω such that

(3.1) λ2(Ω) = max{λ1(Ω+), λ1(Ω−)}.
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Proof. Let us take u1, u2 ∈ Bp(Ω) ∩W 1,p
0 (Ω) a first and second eigenfunction, respectively: notice

that if λ1(Ω) is not simple, we mean that u1 and u2 are two linearly independents eigenfunctions
corresponding to λ1(Ω). We can distinguish two alternatives:

(i) u2 is sign-changing;
(ii) u2 has constant sign in Ω.

Let us start with (i): in this case, by Remark 2.5 u2 has exactly two nodal domains

Ω+ = {x ∈ Ω : u2(x) > 0} and Ω− = {x ∈ Ω : u2(x) < 0},
which by definition are connected sets. The restriction of u2 to Ω+ is an eigenfunction of constant
sign for Ω+, then Theorem 2.4 implies that u2 must be a first eigenfunction for it. Replacing Ω+

with Ω−, the previous observation leads to

λ2(Ω) = λ1(Ω−) = λ1(Ω+).

which implies in particular (3.1) in this case.

In case (ii), let us set

Ω+ = {x ∈ Ω : |u1(x)| > 0} and Ω− = {x ∈ Ω : |u2(x)| > 0}.
Using Theorem 2.4, we have that Ω+ and Ω− have to be two distinct connected components of Ω:
in addition u1, u2 are eigenfunctions (with constant sign) of Ω+ and Ω−, respectively. Then

λ1(Ω−) =

∫
Ω−

|∇u2(x)|p dx =

∫
Ω
|∇u2(x)|p = λ2(Ω).

Clearly, we also have λ1(Ω+) = λ1(Ω) ≤ λ2(Ω), which finally gives (3.1) also in this case. �

We are now ready for the main result of this section.

Theorem 3.2 (HKS inequality for the p−Laplacian). For every Ω ⊂ RN open set having finite
measure, we have

(3.2) |Ω|p/N λ2(Ω) ≥ 2p/N ω
p/N
N λ1(B),

where B is the N−dimensional ball of radius 1 and ωN := |B|. Moreover, equality sign in (3.2)
holds if and only if Ω is the disjoint union of two equal balls.

In other words, for every c > 0 the unique solutions of the following spectral optimization problem

min{λ2(Ω) : |Ω| = c},
are given by disjoint unions of two balls, both having measure c/2.

Proof. With the notation of Lemma 3.1, an application of the Faber-Krahn inequality yields

(3.3) λ2(Ω) = max{λ1(Ω+), λ1(Ω−)} ≥ max{λ1(B+), λ1(B−)},
where B+, B− are balls such that |B+| = |Ω+| and |B−| = |Ω−|. Thanks to the scaling properties
of λ1, we have

λ1(B+) =

(
ωN
|Ω+|

)p/N
λ1(B) and λ1(B−) =

(
ωN
|Ω−|

)p/N
λ1(B),

so that from (3.3) we obtain

λ2(Ω) ≥ ωp/NN λ1(B) max{|Ω+|−p/N , |Ω−|−p/N}.
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Finally, observe that since |Ω+|+ |Ω−| ≤ |Ω|, we get

(3.4) max{|Ω+|−p/N , |Ω−|−p/N} ≥
(
|Ω|
2

)−p/N
,

which concludes the proof of the inequality.
As for the equality cases, we start observing that we just used two inequalities, namely (3.3) and

(3.4). On the one hand, equality in (3.3) holds if and only if at least one among the two subsets is
a ball, say Ω+ = B+, with λ1(B+) ≥ λ1(Ω−); on the other hand, if equality holds in (3.4) then we
must have |Ω+| = |Ω−| = |Ω|/2. Since Ω+ and Ω− have the same measure and the one with the
greatest λ1 is a ball, we can conclude that both have to be a ball, thanks to the equality cases in
the Faber-Krahn inequality. �

4. The stability issue

We now come to the question of stability for optimal shapes of λ2 under measure constraint.
In particular, we will enforce the lower bound on |Ω|2/N λ2(Ω) provided by the Hong-Krahn-Szego
inequality, by adding a remainder terms in the right-hand side of (3.2). At this aim, we need to
introduce some further tools. Given an open set Ω ⊂ RN having |Ω| <∞, its Fraenkel asymmetry
is defined by

A(Ω) = inf

{
‖1Ω − 1B‖L1

|Ω|
: B is a ball such that |B| = |Ω|

}
.

This is a scaling invariant quantity such that 0 ≤ A(Ω) < 2, with A(Ω) = 0 if and only if Ω coincides
with a ball, up to a set of measure zero. Then we recall the following quantitative improvement of
the Faber-Krahn inequality, proven in [4] (case N = 2) and [18] (general case). For every Ω ⊂ RN
open set with |Ω| <∞, we have

(4.1) |Ω|p/N λ1(Ω) ≥ ωp/NN λ1(B) [1 + γN,pA(Ω)κ1 ] ,

where γN,p is a constant depending only on N and p and the exponent κ1 = κ1(N, p) is given by

κ1(N, p) =

{
3, if N = 2,

2 + p, if N ≥ 3.

Remark 4.1. One may ask wheter the exponent κ1 in (4.1) is sharp or not. By introducing the
deficit

FK(Ω) :=
|Ω|p/N λ1(Ω)

ω
p/N
N λ1(B)

− 1,

one would like to prove the existence of suitable deformations {Ωε}ε>0 of a ball B, such that

lim
ε→0

FK(Ωε) = 0 and lim
ε→0

A(Ωε)
κ1

FK(Ωε)
= ` 6= {0,+∞}.

i.e. the asymmetry to the power κ1 and the deficit have the same decay rate to 0. At least in the
case p = 2, the answer should be no, since the conjectured sharp exponent is 2 (see [5, pag. 56]),
while κ1(N, 2) ≥ 3. At present, a proof of this fact still lacks.

In the case of the Hong-Krahn-Szego inequality, the relevant notion of asymmetry is the Fraenkel
2−asymmetry, introduced in [8]

A2(Ω) = inf

{
‖1Ω − 1B1∪B2‖L1

|Ω|
: B1, B2 balls such that |B1 ∩B2| = 0, |Bi| =

|Ω|
2
, i = 1, 2

}
.
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The main result of this section is the following quantitative version of Theorem 3.2.

Theorem 4.2. Let Ω ⊂ RN be an open set, with |Ω| <∞ and p ∈ (1,∞). Then

(4.2) |Ω|p/Nλ2(Ω) ≥ 2p/N ω
p/N
N λ1(B) [1 + CN,pA2(Ω)κ2 ] ,

with CN,p > 0 constant depending on N and p only and κ2 = κ2(N, p) given by

κ2(N, p) = κ1(N, p) · N + 1

2
.

Proof. Thanks to Lemma 3.1, we have existence of two disjoint sets Ω+,Ω− ⊂ Ω such that (3.1)
holds. We then set

δ+ = |Ω+| −
|Ω|
2
, δ− = |Ω−| −

|Ω|
2
,

and we observe that it must be δ+ + δ− ≤ 0, since |Ω+| + |Ω−| ≤ |Ω|. To simplify a bit formulas,
let us introduce the deficit functional

HKS(Ω) :=
|Ω|p/Nλ2(Ω)

2p/N ω
p/N
N λ1(B)

− 1.

In order to prove (4.2), we just need to show that

(4.3) HKS(Ω) ≥ CN,p max

{
A(Ω+)κ1 +

∣∣∣∣ δ+

|Ω|

∣∣∣∣ , A(Ω−)κ1 +

∣∣∣∣ δ−|Ω|
∣∣∣∣} ,

then a simple application of Lemma 4.3 below will conclude the proof. To obtain (4.3), it will be
useful to distinguish between the case p ≤ N and the case p > N . For both of them, we will in
turn treat separately the case where both δ+ and δ− are non positive and the case where they
have opposite sign. Finally, since the quantities appearing in the right-hand side of (4.3) are all
universally bounded, it is not restrictive to prove (4.3) under the additional assumption

(4.4) HKS(Ω) ≤ 1

4
.

Indeed, it is straightforward to see that if HKS(Ω) > 1/4 then (4.3) trivially holds with constant

CN,p =
1

2

1

2κ1+1 + 1
> 0.

Case A: p ≤ N . In this case the proof runs very similarly to the linear case p = 2 treated in [8].
We start applying the quantitative Faber-Krahn inequality (4.1) to Ω+. If we indicate with B the
ball of unit radius, recalling (3.1) and using the definition of δ+, we find

γN,pA(Ω+)κ1 ≤ |Ω+|p/N λ1(Ω+)

ω
p/N
N λ1(B)

− 1 ≤ (|Ω|+ 2 δ+)p/N λ2(Ω)

2p/Nω
p/N
N λ1(B)

− 1

Since p ≤ N , the power function t 7→ (|Ω|+ t)p/N is concave, thus we have

(|Ω|+ 2δ+)p/N ≤ |Ω|p/N +
2p

N
|Ω|p/N δ+

|Ω|
.

Using this information in the previous inequality, we get

γN,pA(Ω+)κ1 ≤ HKS(Ω) +
2p

N

δ+

|Ω|
|Ω|p/N λ2(Ω)

2p/N ω
p/N
N λ1(B)

,
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that we can rewrite as follows

(4.5) γN,pA(Ω+)κ1 ≤ HKS(Ω) +
2p

N

δ+

|Ω|
(HKS(Ω) + 1) .

Replacing Ω+ with Ω−, one obtains a similar estimate for Ω−.

Case A.1: δ+ and δ− are both non-positive. In this case, it is enough to observe that HKS(Ω) ≥ 0
while δ+ ≤ 0, thus from (4.5) we get

γN,pA(Ω+)κ1 +
2p

N

|δ+|
|Ω|
≤ HKS(Ω).

The same computations with Ω− in place of Ω+ yield (4.3).

Case A.2: δ+ and δ− have opposite sign. Let us assume for example that δ+ ≥ 0 and δ− ≤ 0: the
main difference with the previous case is that now the larger piece Ω+ could be so large that the
information provided by (3.1) is useless. However, estimate (4.5) still holds true for both Ω+ and
Ω−. Using this and the fact that δ+ + δ− ≤ 0, we can thus infer

HKS(Ω) ≥ −2p

N

δ−
|Ω|
≥ 2p

N

δ+

|Ω|
,

i.e. the deficit is controlling the error term |δ+|/|Ω|. To finish, we still have to control the asym-
metry of the larger piece Ω+ in terms of the deficit: it is now sufficient to introduce the previous
information into (4.5), thus getting

γN,pA(Ω+)κ1 ≤ HKS(Ω)(2 +HKS(Ω)).

Since we are assuming HKS(Ω) ≤ 1/4, the previous implies that HKS(Ω) controls A(Ω+)κ1 ,
modulo a constant depending only on N and p. These estimates on Ω+, together with the validity
of (4.5) for Ω− and with the fact that δ− ≤ 0, ensure that (4.3) holds also in this case.

Case B: p > N . Let us start once again with Ω+. Using (3.1) and the quantitative Faber-Krahn
(4.1) as before, we get

HKS(Ω) ≥ |Ω|p/N λ1(Ω+)

2p/N ω
p/N
N λ1(B)

− 1 ≥

[(
|Ω|

2 |Ω+|

)p/N
(1 + γN,pA(Ω+)κ1)− 1

]
.

Then using the definition of δ+ and the convexity of the function t 7→ (1 + t)p/N (since p > N), we
have (

|Ω|
2 |Ω+|

)p/N
=

(
1− δ+

|Ω+|

)p/N
≥ 1− p

N

δ+

|Ω+|
.

Inserted in the previous estimate, this yields

(4.6) HKS(Ω) ≥
[
γN,p

(
1− p

N

δ+

|Ω+|

)
A(Ω+)κ1 − p

N

δ+

|Ω+|

]
.

In the same way, using Ω− in place of Ω+, we obtain a similar estimate for Ω−.

Case B.1: δ+ and δ− are both non positive. In this case, in (4.6) we can drop the terms

− p

N

δ+

|Ω+|
γN,pA(Ω+)κ1 and − p

N

δ−
|Ω−|

γN,pA(Ω−)κ1 ,
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since these are positive, thus we arrive once again at (4.3), keeping into account that

− δ+

|Ω+|
≥ − δ+

|Ω|
and − δ−

|Ω−|
≥ − δ−
|Ω|

.

Case B.2: δ+ and δ− have opposite sign. Let us suppose as before that δ+ ≥ 0 and δ− ≤ 0. Now
the main problem is the term in front of the asymmetry A(Ω+) in (4.6), which could be negative.
Since δ+ + δ− ≤ 0, applying (4.6) to Ω− we obtain

(4.7)
δ+

|Ω|
≤ − δ−
|Ω|
≤ N

p
HKS(Ω).

We then observe that if

(4.8) δ+ ≤
N

p

|Ω|
4
,

we have (
1− p

N

δ+

|Ω+|

)
≥ 1− 1

4

|Ω|
|Ω+|

≥ 1

2
,

thanks to the fact that |Ω| ≤ 2 |Ω+|, which easily follows from the assumption that δ+ ≥ 0. From
(4.6) we can now infer

HKS(Ω) ≥
γN,p

2
A(Ω+)κ1 − p

N

δ+

|Ω+|
,

then (4.3) follows as before, using (4.7) and the fact that

− δ+

|Ω+|
≥ −2

δ+

|Ω|
.

This would prove the thesis under the additional hypothesis (4.8): however, if this is not satisfied,
then (4.7) would imply HKS(Ω) > 1/4, which is in contrast with our assumption (4.4). �

The following technical Lemma of geometrical content completes the proof of Theorem 4.2. This
is the same as [8, Lemma 3.3] and we omit the proof.

Lemma 4.3. Let Ω ⊂ RN be an open set, with finite measure. For every Ω+,Ω− ⊂ Ω such that
|Ω+ ∩ Ω−| = 0, we have

(4.9) A2(Ω) ≤ CN
(
A(Ω+) +

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣+A(Ω−) +

∣∣∣∣12 − |Ω−||Ω|
∣∣∣∣)2/(N+1)

,

for a suitable dimensional constant CN > 0.

5. Extremal cases: p = 1 and p =∞

To complete the analysis of our spectral optimization problem in the nonlinear setting, it is
natural to give a brief look at what happens for (1.1), when p tends to the extrema of its possible
range, i.e. p = 1 and p =∞. It is known that in these cases, some shape functionals of geometric
flavour appear, in place of the eigenvalues of an elliptic operator.

To enter more in this question, we need some definitions: for Ω ⊂ RN open set with |Ω| < ∞,
C1(Ω) and C2(Ω) stand for the first two Cheeger constants, which are defined respectively by

C1(Ω) = inf
E⊂Ω

P (E)

|E|
and C2(Ω) = inf

{
t :

there exist E1, E2 ⊂ Ω
such that E1 ∩ E2 = ∅ and max

i=1,2

P (Ei)

|Ei|
≤ t

}
,
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where P (E) equals the distributional perimeter of a set E if this is a finite perimeter sets and is
+∞ otherwise. Also, if |E| = 0 we use the convention P (E)/|E| = +∞.

We denote by Λ1(Ω) the inverse of the radius r1 of the largest ball included in Ω, while Λ2(Ω)
will denote the inverse of the largest positive number r2 such that there exist two disjoint balls of
radius r2 contained in Ω. It is remarkable to notice that Λ1 and Λ2 are indeed two eigenvalues,
precisely they coincide with the first two eigenvalues of the ∞−Laplacian (see [23]).

Our interest in these quantities is motivated by the following Theorem, collecting various results
about the asymptotic behaviour of λ1 and λ2.

Limiting behaviour of eigenvalues. For every set Ω ⊂ RN , there holds

(5.1) lim
p→1+

λi(Ω) = Ci(Ω), i = 1, 2 and lim
p→∞

λi(Ω)1/p = Λi(Ω), i = 1, 2.

Proof. The first fact is proven in [16] and [29], respectively. For the second, one can consult [23]
and the references therein. �

Remark 5.1. At this point, one could be tempted to use the previous results for λ1, in order to
improve inequality (4.1). For example, using the subadditivity of the function t 7→ (1 + t)1/p, it is
not difficult to see that

lim
p→∞

FK(Ω)1/p ≥ |Ω|
1/N Λ1(Ω)

ω
1/N
N

− 1 ≥ 1

2N
A(Ω),

where in the last inequality we used the (sharp) quantitative stability estimate1 for Λ1 (see [23],
equation (2.6)). Then one could bravely guess that for p “very large”, inequality (4.1) has to hold
with the exponent κ1(N, p) replaced by p, which is strictly small if N ≥ 3. This would prove that
(4.1) is not sharp, at least for N ≥ 3 and p going to ∞. Needless to say, this argument (and the
related one for p→ 1) is only a heuristic one, since these limits are not uniform with respect to the
sets Ω.

The analogues of problem (1.1) in these extremal cases are the following

min{C2(Ω) : |Ω| = c} and min{Λ2(Ω) : |Ω| = c}.
Once again, they both have (unique) solution given by any disjoint union of two equal balls: for
the first one, the reader can see [29, Proposition 3.14], while the second is easily derived thanks to
the geometrical meaning of Λ2. In scaling invariant form, these rewrite as

|Ω|1/N C2(Ω) ≥ 21/N Nω
1/N
N and |Ω|1/N Λ2(Ω) ≥ 21/N ω

1/N
N ,

and they both can be improved in a quantitative form, as it is proved in the following.

Theorem 5.2. Let Ω be an open subset of RN having finite measure. Then

(5.2) |Ω|1/N C2(Ω) ≥ 21/N N ω
1/N
N

[
1 + hN A2(Ω)N+1

]
,

where the constant hN > 0 only depens on the dimension N . Moreover, for Λ2 we have

(5.3) |Ω|1/N Λ2(Ω) ≥ 21/N ω
1/N
N

[
1 +

1

2N
A2(Ω)

]
.

1The relation between the Fraenkel asymmetry α(Ω) as defined in [23] and our definition is given byA(Ω) = 2α(Ω).
This explains the discrepancy between our constant 1/(2N) and the constant 1/N that can be found in [23], equation
(2.6).
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Proof. To prove (5.2), we start defining

TΩ =

{
t > 0 : there exist Ω1,Ω2 ⊂ Ω disjoint and s.t. max

i=1,2

P (Ωi)

|Ωi|
≤ t
}
.

It is not difficult to see that if Ω is open, then TΩ 6= ∅, since Ω contains at least two disjoint small
balls, which are in particular two sets with positive measure and finite perimeter. Then let us pick
up a t ∈ TΩ. Correspondingly, there exist Ωt

+,Ω
t
− ⊂ Ω disjoint and such that

(5.4) t ≥ max

{
P (Ωt

+)

|Ωt
+|

,
P (Ωt

−)

|Ωt
−|

}
≥ max{C1(Ωt

+), C1(Ωt
−)},

where we used the straightforward estimate C1(E) ≤ P (E)/|E|, which is valid for every finite
perimeter set E. Now, we introduce the following quantity

DΩ(t) :=
|Ω|1/N max{C1(Ωt

+), C1(Ωt
−)}

21/N N ω
1/N
N

− 1,

and we proceed exactly as in Case A of the proof of Theorem 4.2. We only need to replace HKS(Ω)
byDΩ(t) and the quantitative Faber-Krahn inequality by the following (sharp) quantitative Cheeger
inequality (see [15]),

(5.5) |Ω|1/NC1(Ω) ≥ N ω
1/N
N

[
1 + γN A(Ω)2

]
,

where γN > 0 is a constant depending only on the dimension N . In this way, one arrives at the
estimate

DΩ(t) ≥ hN AN+1
2 (Ω), for every t ∈ TΩ,

that is
|Ω|1/N t

21/N N ω
1/N
N

− 1 ≥ hN AN+1
2 (Ω), for every t ∈ TΩ,

thanks to (5.4). Taking the infimum on TΩ on both sides and using the definition of second Cheeger
constant, we eventually prove the thesis.

In order to prove (5.3), let us take a pair of optimal disjoint balls B(x0, r), B(x1, r) ⊂ Ω, whose
common radius r is given by

Λ2(Ω) = r−1,

and set for simplicity O1 := B(x0, r) ∪B(x1, r), then obviously we have

|Ω \ O1| = |Ω| − 2ωN r
N .

Up to a rigid movement, we can assume that x0 = (M, 0, . . . , 0) and x1 = (−M, 0, . . . , 0), for
some M ≥ r, then for every t ≥ 1 we define the new centers x0(t) := (M + (t − 1) r, 0, . . . , 0) and
x1(t) := ((1− t) r −M, 0, . . . , 0): observe that xi(1) = xi, i = 0, 1. Finally, we set

Ot := B(x0(t), t r) ∪B(x1(t), t r), t ≥ 1,

i.e. for every t ≥ 1 this is a disjoint union of two balls of radius t r and moreover Ot ⊂ Os if
t < s.The latter fact implies that the function t 7→ |Ω ∩ Ot| is increasing, thus t 7→ |Ω \ Ot| is
decreasing. We exploit this fact by taking t0 > 1 such that |Ot0 | = |Ω|: then we have

|Ω| − 2ωN r
N = |Ω \ O1| ≥ |Ω \ Ot0 | ≥

1

2
A2(Ω) |Ω|,



THE HKS INEQUALITY FOR −∆p 15

where in the last inequality we used that Ot0 is admissible for the problem defining A2(Ω). From
the previous, we easily obtain

|Ω|
rN
≥ 2ωN

(1− 1/2A2(Ω))
,

which finally gives (5.3), just by raising both members to the power 1/N , using the elementary

inequality (1− t)−1/N ≥ 1 + 1/N t for t < 1 and recalling that r = Λ2(Ω)−1. �

6. Sharpness of the estimates: examples and open problems

In the estimates of Theorem 4.2 and 5.2, we have shown that for every set the relevant notion
of deficit dominates a certain power κ of the asymmetry A2. If in addition to this, one could prove
that for some sets converging to the optimal shape (i.e. a disjoint union of two equal balls), the
deficit and Aκ2 have the same decay rate to 0, then these estimates would turn out to be sharp. We
devote the last section to this interesting issue.

6.1. Quantitative Hong-Krahn-Szego inequality. Here, the question of sharpness is quite a
delicate issue. First of all, observe that in contrast with the case of the Faber-Krahn inequality, the
exponent of the asymmetry κ2 blows up with N . For this reason, one could automatically guess
that κ2 is not the sharp exponent. However, it has to be noticed that this dependence on N is
directly inherited from the geometrical estimate (4.9), which is indeed sharp. Let us fix a small
parameter ε > 0 and consider the following set

Ωε = {(x1, x
′) ∈ RN : (x1 + 1− ε)2 + |x′|2 < 1} ∪ {(x1, x

′) ∈ RN : (x1 − 1 + ε)2 + |x′|2 < 1},

which is just the union of two balls of radius 1, with an overlapping part whose area is of order
ε(N+1)/2. We set

Ωε
+ = {(x1, x

′) ∈ Ωε : x1 ≥ 0} and Ωε
− = {(x1, x

′) ∈ Ωε : x1 ≤ 0},

and it is not difficult to see that A(Ωε
+) = O(ε(N+1)/2), while on the contrary A2(Ωε) = O(ε) which

means

A2(Ωε)(N+1)/2 ' A(Ωε).

i.e. both sides in (4.9) are asymptotically equivalent, as the area of the overlapping region goes to
0 (see [8, Example 3.4], for more details on this example). And in fact one can use these sets Ωε to
show that the sharp exponent in (4.2) has to blow-up with the dimension. Also observe that in the
proof of Theorem 4.2, the precise value of κ1 plays no role, so the same proof actually gives (4.2)
with

κ2 = (sharp exponent for (4.1))× N + 1

2
.

Though we strongly suspect this κ2 not to provide the right decay rate, currently we are not able
to solve this issue, which seems to be quite a changelling one even for p = 2.

6.2. Second Cheeger constant. Also in this case, the exponent N + 1 in (5.2) seems not to be
sharp in the decay rate of the deficit. In order to shed some light on this fact, we estimate the
deficit for C2 of the same set Ωε as before. First of all, thanks to the symmetries of Ωε, it is not
difficult to see that C2(Ωε) = C1(Ωε

+) = C1(Ωε
−). Then we have

hN A2(Ωε)N+1 ≤ |Ω
ε|1/N C2(Ωε)

21/N N ω
1/N
N

− 1 =
|Ωε|1/N C1(Ωε

+)

21/N N ω
1/N
N

− 1 ≤
|Ωε

+|1/N−1 P (Ωε
+)

N ω
1/N
N

− 1,
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so that the deficit of this inequality is controlled from above by the isoperimetric deficit of one of
the two cut balls. We then estimate the right-hand side in the previous expression: observe that
setting ϑ = arccos(1− ε), we have for instance

P (Ωε
+) = NωN + ωN−1

[
(sinϑ)N−1 − (N − 1)

∫ sinϑ

0

tN−2

√
1− t2

d%

]
,

and

|Ωε
+| = ωN − ωN−1

∫ 1

cosϑ
(1− t2)

N−1
2 dt,

then

P (Ωε
+) ' N ωN −

N − 1

N + 1

ωN−1

2
ϑN+1 and |Ωε

+|1/N−1 ' ω
1−N
N

N

(
1 +

N − 1

N(N + 1)

ωN−1

ωN
ϑN+1

)
,

from which we can infer

|Ωε
+|1/N−1 P (Ωε

+)−N ω1/N ' N − 1

N + 1
ωN−1 ω

1−N
N

N ϑN+1 ' cN ε
N+1

2 .

In the end, we get

(6.1) C1A2(Ωε)N+1 ≤ |Ωε|1/N C2(Ωε)− 21/N N ω
1/N
N ≤ C2A2(Ωε)

N+1
2 ,

where we used that A2(Ωε) ' ε. Notice that this estimate implies in particular that, also in this
case, the sharp exponent is dimension-dependent and it blows up as N goes to ∞.

We point out that the previous computations give the correct decay rate to 0 of the quantity
C2(Ωε) − C2(B), which is O(ε(N+1)/2) = O(A2(Ωε)

(N+1)/2). Indeed, from the right-hand side of
(6.1) we can promptly infer that

C2(Ωε) = C1(Ωε
+) ≤ N + c ε

N+1
2 = C1(B) + c ε

N+1
2 .

Now assume that C1(Ωε
+) ≤ C1(B) + ω(ε) for some modulus of continuity ω such that ω(ε) =

o(ε(N+1)/2) as ε goes to 0, in this case we would obtain

0 ≤ |Ωε|1/N C1(Ωε
+)− 21/N N ω

1/N
N ≤ −K ε

N+1
2 ,

for some constant K > 0 independent of ε. This gives a contradiction, thus proving that

C2(Ωε)− C2(B) ' ε
N+1

2 .

6.3. Second eigenvalue of −∆∞. On the contrary, it is not difficult to see that the quantitative
estimate (5.3) is sharp. By still taking the set Ωε as before, we observe that

Λ2(Ωε) = Λ1(Ωε
+) =

2

2− ε
' 1 +

ε

2
and |Ωε|1/N ' ω1/N

N

(
1− ωN−1

ωN

2
N+1

2

N (N + 1)
ε
N+1

2

)
,

while A2(Ωε) = O(ε) as already observed. Then

|Ω|1/N Λ2(Ω)− ω1/N
N ' A2(Ω),

proving the sharpness of (5.3). We remark that in this case the sharp exponent does not depend
on the dimension, in contrast with the cases p ∈ [1,∞).
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[17] S. Fučik, J. Nečas, J. Souček, V. Souček, Spectral Analysis of Nonlinear Operators, Lect. Notes Math, 346

Springer-Verlag, 1973.
[18] N. Fusco, F. Maggi, A. Pratelli, Stability estimates for certain Faber-Krahn, Isocapacitary and Cheeger in-

equalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 51–71.
[19] W. Hansen, N. Nadirashvili, Isoperimetric inequalities in potential theory, Potential Anal., 3 (1994), 1–14.
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[25] E. Krahn, Über Minimaleigenschaften der Krugel in drei un mehr Dimensionen, Acta Comm. Univ. Dorpat.,
A9 (1926), 1–44.



18 BRASCO AND FRANZINA

[26] P. Lindqvist, On a nonlinear eigenvalue problem, Bericht 68 (1995), 33–54.
[27] D. Mazzoleni, A. Pratelli, Existence of minimizers for spectral problems, preprint (2011), available at

http://arxiv.org/abs/1112.0203

[28] A. Melas, The stability of some eigenvalue estimates, J. Differential Geom. 36 (1992), 19-33.
[29] E. Parini, The second eigenvalue of the p−Laplacian as p goes to 1, Int. J. Differ. Equ., (2010), Art. ID 984671,

23 pp.
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