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Abstract. Consider a distribution of citizens in an urban area in which some services (super-

markets, post offices. . . ) are present. Each citizen, in order to use a service, spends an amount

of time which is due both to the travel time to the service and to the queue time waiting in

the service. The choice of the service to be used is made by every citizen in order to be served

more quickly. Two types of problems can be considered: a global optimization of the total

time spent by the citizens of the whole city (we define a global optimum and we study it with

techniques from optimal mass transportation) and an individual optimization, in which each

citizen chooses the service trying to minimize just his own time expense (we define the concept

of equilibrium and we study it with techniques from game theory). In this framework we are also

able to exhibit two time-dependent strategies (based on the notions of prudence and memory

respectively) which converge to the equilibrium.

1. Introduction

In this paper we study an optimization problem coming from the modeling of the behaviour

of citizens who every day need to use some services (supermarkets, post offices. . . ) present in

a city. We consider a bounded set Ω ⊂ R
d which is the geographic reference for the city and a

nonnegative function f with unit integral representing the population density. We fix k points

x1, x2, . . . , xk at which the services are located. If every service was able to answer immediately

to the demand of each customer, obviously every person would choose the one closest to his

home. Namely, being p ≥ 1 a fixed number so that the time spent to cover a distance ℓ is given

by ℓp, then a citizen living at x would choose the service located at xi if and only if

|x− xi|
p = min

j=1,...,k
|x− xj|

p .

However, in real world, if a service is crowded because a certain amount of citizens have

chosen it, the satisfaction of the demand of the customer is not immediate, and some time has

to be spent waiting for it. This time spent in the queue surely depends on the amount of people

waiting at the service, but also on the characteristics of the service (for instance, its dimension

or the ability of the employees). This can be modeled using k functions h1, h2, . . . , hk which

express the time to be waited in dependence of the amount of people in the queue. If the amount

of citizens choosing the service xj is cj , for j = 1, . . . , k, then a citizen living at x and going to

the service xi needs to use a total amount of time expressed by the quantity

|x− xi|
p + hi(ci)

in order to reach the service xi and to have his request fulfilled. In particular, the better service

for the customer is not necessarily the closest one. It could be convenient for him to go a bit

further away in order to be served in a bigger service, in which the queue is faster.

It is surely apparent from the above discussion that, in this modeling, the decision of each

citizen depends on the choices of all the other citizens. Each customer chooses the best service
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according to the corresponding queue, but the queue itself depends on the choices of all the other

customers. A possible attempt to tackle this question is to look for a global minimum. Let us

denote by Aj the subset of Ω consisting of the areas in which the citizens using the service xj

live. The total cost, in term of time spent to be served, needed by the citizens of the whole city

is expressed by
k∑

i=1

∫

Ai

[
|x− xi|

p + hi

(∫

Ai

f(x) dx

)]
f(x) dx .

If we agree that the choice of each citizen is done in order to minimize this total cost (for

instance, if the major of the city has the right to force the choices of the customers, in order

to make the global cost as small as possible), we are led to consider the following minimization

problem:

inf
(Ai)i=1,...,k

partition of Ω

{
k∑

i=1

∫

Ai

[
|x− xi|

p + hi

(∫

Ai

f(x) dx

)]
f(x) dx

}
. (1.1)

This type of minimization problem fits very well in the theory of optimal mass transportation.

This theory goes back to Monge [25], who considered the problem of moving a pile of sand into

a hole of the same volume, minimizing the transportation cost. We briefly refer on the Monge

problem, its relaxation due to Kantorovich ([21] and [22]) and the recent progresses on it in

Section 2.2. The study of the minimization problem (1.1) is done in Section 3. We define the

concept of optimum, which is a partition (Ai)i=1,...,k solving (1.1), we prove results of existence

and uniqueness of the optimum (under suitable assumptions on the functions hi) and we give

some characterizations of it.

However, this kind of solution of the problem is not very natural, from an economic point

of view. Indeed, as pointed out in Example 4.7, it could happen that for some citizens the

choice of the service forced by the need of producing an optimum for (1.1) is too expensive. It

is more realistic to consider as a good solution of the problem a partition of Ω in which each

citizen is “satisfied” with his own choice. By this we mean the following: the citizen looks at

the behaviour of all the other citizens, and regarding it as fixed he decides whether his decision

has been clever or not. In particular, a citizen living at x is satisfied with his choice of going to

the service located at xi if and only if

|x− xi|
p + hi(ci) = min

j=1,...,k
{|x− xj|

p + hj(cj)} , (1.2)

where the numbers cj , as before, represent the amount of customers choosing the service xj ,

for j = 1, . . . , k, but now these quantities are seen as fixed by the citizen who evaluates the

correctness of his decision. This is radically different from the previous minimization problem,

as we explicitly remark in Section 4.4. The condition expressed in (1.2) paves the way for

a connection with game theory (for which good references are [18] and [5]): in Section 4 we

define an equilibrium for our problem as a partition in which every customer is satisfied with

his choice, in the sense specified above. In classical game theory this corresponds to the so-

called Nash equilibrium. We are able to prove, under suitable assumptions on the functions

hi, existence and uniqueness of an equilibrium, and we also comment on the main differences

between equilibrium and optimum.

In Section 5 we finally consider a dynamical evolution of the problem, looking for convergence

to the equilibrium. The general question is the following. Assume that the citizens have some

strategy to decide, day by day, the most convenient service, using data which come from the
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previous days. At each day, they decide where to go, considering the lengths of the queues that

have been observed in the previous days. Does this iterative scheme converge to the equilibrium?

In Example 5.3 we show that this is not the case, if the strategy of the customers is too näıve.

If they just choose every day to minimize the right hand side of (1.2), in which the time spent

on the queues in the various services is simply the one observed the day before, then we could

obtain some oscillatory phenomena, with no convergence. However, we propose two different

strategies, quite natural at a social level, which lead to convergence to the equilibrium.

The first one (see Section 5.2) is based on the concept of prudence (which, in some sense,

could also be viewed as laziness or resistance to a change of habits). The decision that every

citizen makes is again based on the information on the queues of the previous day, but it is now

seen as a stochastic variable (in the language of optimal mass transportation this corresponds

to the notion of transport plan, see again Section 2.2). It is “too risky” for the customer to

change immediately the preferred service, thus we assume that he is only going to change his

opinion, in the sense that he will be more tempted by the most convenient service, but he will

not immediately “fully choose” it. The choice between two services of each customer is modeled

by a function with values between 0 and 1: value 0 means that the choice is completely in favour

of the first service, while value 1 means that the choice is completely in favour of the second

service. Values between 0 and 1 mean that the customer chooses a mixed strategy (this is also

common in game theory). This can also be interpreted in statistical terms: if at each point

of the city there is a condominium instead of a single citizen, then each person will choose the

service in such a way that the statistical distribution of the choices follows the stochastic variable

defined above. Assuming that the citizens have “enough prudence”, we are able to show that the

iteration of the stochastic choices converges to a deterministic decision, which is an equilibrium

for our problem.

The second strategy (see Section 5.3) relies on the notion of memory. We go back to a

deterministic strategy, but we assume that each customer bases his decision not only on the

informations coming from the previous day, but also remembering the queues that have been

seen in a certain amount of days in the past. Then the choice for the new day is based on an

average of all these informations. If the citizens have “enough memory”, in the sense that they

consider in their choice a sufficiently big amount of days, we are able to show that also this

iteration converges to an equilibrium for the problem.

We close this introduction by relating our problem to some other optimization problems

studied in the previous literature. The idea for our model came from some results relative to

the so-called location problem, see [6], [20] and [7]. In this problem, we are given a distribution

of citizens f in a city Ω, but the location of the services is no more fixed. The question is to

optimize the location of the services, in such a way that the transportation cost of the citizens

onto the services is minimized. We observe that no queues are considered in this model. Two

different approaches to this problem are possible. In the long term planning all the services are

built at the same time, minimizing the average distance the people have to cover to reach the

nearest service. In the short term planning, it is assumed that services are built one by one,

minimizing the average distance step by step, taking into account at each stage the location of

all the services opened at previous steps. Other related works, regarding the modeling of urban

areas and the structure of cities, are [9], [11], [14], [15], [13] and [24].

Acknowledgment. The authors warmly thank Luigi Ambrosio, Guy Bouchitté, Guillaume

Carlier, Fabio Priuli and Filippo Santambrogio for many valuable conversations on the subject of
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this work. Moreover, they also thank the Scuola Normale Superiore di Pisa and the Mathematics

Department of the University of Pavia for the hospitality during the preparation of this paper.

2. Notation and preliminary results on optimal mass transportation

In this section we introduce the general setup of the paper and the main notation, we review

some basic facts about optimal mass transportation (for which the reader can consult [1] or [27])

and we establish some preliminary results which will be useful in the sequel.

2.1. Main notation of the paper. We fix a bounded Borel set Ω ⊂ R
d and we denote by L

d

the d-dimensional Lebesgue measure in R
d. We consider k points x1, x2, . . . , xk belonging to

Ω, where k is a strictly positive integer; these points represent the location of the services in

the city. The density of the citizens is given by an absolutely continuous probability measure

µ = fL d Ω, where f : Ω → R is a nonnegative function with unit integral. The measure µ

defined in this way will be typically the reference measure in Ω, and we shall also write f -a.e. and

f -negligible as a shortening of the more precise notation µ-a.e. and µ-negligible. For i = 1, . . . , k

we consider the functions hi : [0, 1] → [0,+∞[ which encode the amount of time to be waited in

dependence of the amount of people using the service. With this we mean that, if the service

located at xi is chosen by an amount ci of citizens, then the time that will be spent in the queue

by each customer is hi(ci). Notice that in this modeling we can also include some penalizations

for the particular features of the various services, choosing the queue functions in such a way

that hi(0) > 0: for instance, higher prices or lower quality of the products. We do not specify

a priori any condition on the functions hi, but we will rather clarify the assumptions needed in

each particular result. For every Borel set A ⊂ Ω we consider the indicatrix function 1A defined

by

1A(x) =

{
1 if x ∈ A

0 if x 6∈ A.

The set of probability measures on Ω and Ω×Ω are denoted by P(Ω) and P(Ω×Ω) respectively.

When γ ∈ P(Ω) is given, we denote by L1
γ(Ω) the vector space consisting of the Borel functions

which are γ-integrable. A partition of Ω is a finite or countable family (Ai)i∈N of pairwise disjoint

(up to f -negligible sets) Borel sets Ai ⊂ Ω such that ∪i∈NAi has full measure in Ω.

2.2. Optimal mass transportation. In 1781 Monge [25] raised the problem of transporting

a given distribution of mass (a pile of sand, for instance) into another one (a hole, for instance),

in such a way that the total work done is minimal. In modern terms the problem can be stated

as follows. Given two measures µ, ν ∈ P(Ω) and p ≥ 1 we consider the minimization problem

Mp(µ, ν) = inf

{(∫

Ω
|x− T (x)|p dµ(x)

)1/p

: T : Ω → Ω Borel and such that T#µ = ν

}
.

Here we denote by T#µ ∈ P(Ω) the push-forward of the measure µ, defined by

(T#µ) (A) = µ
(
T−1(A)

)
for every Borel set A ⊂ Ω.

Any map T which is admissible in the above problem is called a transport map from µ to ν.

It is extremely difficult to attack the Monge problem, mainly due to the fact that it is highly

nonlinear. This is why the following relaxed formulation, due to Kantorovich ([21] and [22]), is

of great importance. We denote by Π(µ, ν) ⊂ P(Ω × Ω) the set of the probability measures γ

in Ω × Ω with marginals µ and ν, i.e. such that (π1)#γ = µ and (π2)#γ = ν, where we denote

by π1 the projection on the first component and by π2 the projection on the second component.
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Every element of Π(µ, ν) is called a transport plan from µ to ν. We notice that Π(µ, ν) is always

nonempty, since for instance µ ⊗ ν ∈ Π(µ, ν). The relaxed formulation of the Monge problem

can be stated as follows:

Wp(µ, ν) = inf

{(∫

Ω×Ω
|x− y|p dγ(x, y)

)1/p

: γ ∈ Π(µ, ν)

}
.

By considering γ = (id × T )#µ for any given transport map T we see that the Kantorovich

problem is indeed a relaxation of the Monge problem. It turns out that Wp is a distance on

P(Ω), which metrizes the weak convergence of measures (recall that we are assuming that Ω is

bounded). This distance is called the Wasserstein distance of order p.

Existence and uniqueness results for the optimal mass transportation problem has been

proved only very recently. We refer to [8] and [23] for the case p = 2, to [26] and [19] for the case

p > 1 and to [12], [16] and [4] for the case p = 1. We summarize these results in the following

theorem.

Theorem 2.1 (Existence and uniqueness of an optimal transport map). Let µ and ν be prob-

ability measures in Ω and fix p ≥ 1. We assume that µ is absolutely continuous with respect

to the Lebesgue measure L
d. Then Mp(µ, ν) = Wp(µ, ν) and there exists an optimal transport

map from µ to ν, which is also unique f -a.e. if p > 1.

Remark 2.2. In the particular case when µ ≪ L
d and ν =

∑
i∈N

biδyi
any transport map T

is associated to a partition (Bi)i∈N of Ω in such a way that

T (x) =
∑

i∈N

yi1Bi
(x) and µ(Bi) = bi .

Conversely, any partition (Bi)i∈N of Ω satisfying µ(Bi) = bi corresponds to a transport map of

the form above.

In the situation of the above remark any transport plan can be written as

γ =
∑

i∈N

(ψiµ) ⊗ δyi
(2.1)

where the functions ψi : Ω → R
+ are such that

∑
i∈N

ψi(x) = 1 for each x ∈ Ω and
∫
Ω ψ

i dµ = bi.

With this language γ corresponds to a transport map if and only if the functions ψi have only

the values 0 and 1.

Another useful feature of Kantorovich’s relaxation is the fact that this new problem admits

a dual formulation.

Theorem 2.3 (Dual formulation). For µ, ν ∈ P(Ω) the following equality holds:

W p
p (µ, ν) = sup

{∫

Ω
u dµ+

∫

Ω
v dν :

u ∈ L1
µ(Ω) , v ∈ L1

ν(Ω) and

u(x) + v(y) ≤ |x− y|p for µ-a.e. x and ν-a.e. y

}
.

Moreover, there exists an optimal pair (u, v) for this dual formulation.

In the particular case when ν =
∑

i∈N
biδyi

is an atomic measure the dual formulation reads

as:

W p
p

(
µ,
∑

i∈N

biδyi

)
= sup





∫

Ω
u dµ +

∑

i∈N

biv(yi) :

u ∈ L1
µ(Ω) , v ∈ L1

ν(Ω) and

u(x) + v(yi) ≤ |x− yi|
p

for µ-a.e. x and every i ∈ N



 . (2.2)
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2.3. A preliminary result on the shape of partitions. We present in this subsection a

result of standard flavour relative to the shape of the sets in the partition determined by the

optimal transport of a diffuse measure to an atomic measure.

Proposition 2.4. Let f : Ω → R be a nonnegative function such that µ = fL d Ω is a proba-

bility measure, and let (yi)i∈N be a sequence of points belonging to Ω.

(i) Let ν =
∑

i∈N
biδyi

and (Bi)i∈N be a partition of Ω such that the map T (x) =∑
i∈N

yi1Bi
(x) is an optimal transport map from µ to ν. Let moreover the pair (u, v) be any

solution of the dual formulation (2.2). Then we have

u(x) = inf
i∈N

{|x− yi|
p − v(yi)} =

∑

i∈N

(|x− yi|
p − v(yi))1Bi

(x) for f -a.e. x ∈ Ω. (2.3)

(ii) Let (Bi)i∈N be a partition of Ω and set bi =
∫
Bi
f(x) dx, ν =

∑
i∈N

biδyi
and T (x) =∑

i∈N
yi1Bi

(x). Let moreover u ∈ L1
µ(Ω) and v ∈ L1

ν(Ω) be two functions (if any) satisfying

condition (2.3). Then we have that T is optimal for Mp(µ, ν) and that the pair (u, v) is optimal

for the dual formulation (2.2).

Remark 2.5. We easily see that condition (2.3) implies that for every i ∈ N the following

equality, intended up to f -negligible sets, holds:

Bi = {x ∈ Ω : |x− yi|
p − v(yi) < |x− yj|

p − v(yj) ∀j 6= i} . (2.4)

This equality precisely describes the shape of the sets in the partition. For instance, in the case

p = 1 the boundaries of the sets Bi are hyperboloids and in the case p = 2 the cells Bi are

polytopes.

From the above discussion we easily deduce the following corollary, regarding the uniqueness

of the optimal transport map from an absolutely continuous measure to an atomic measure,

which will be useful in the sequel.

Corollary 2.6. Assume that µ≪ L
d and ν =

∑
i∈N

biδyi
are probability measures in Ω. Then

the optimal transport map from µ to ν is unique f -a.e. even in the case p = 1.

Proof. The existence of an optimal transport map is ensured by Theorem 2.1. The point is to

show that in this case we also have uniqueness. We fix an optimal couple (u, v) for the dual

formulation of the Kantorovich problem (2.2) and we consider an optimal transport map T .

Recalling that, from Remark 2.2, every transport map is associated to a partition of Ω, we find

a partition (Bi)i∈N of Ω in such a way that T (x) =
∑

i∈N
yi1Bi

(x). But recalling (2.4) we deduce

that the sets (Bi)i∈N are uniquely determined (up to f -negligible sets) by v, thus we conclude

that the optimal transport map T is unique. �

We close this section proving Proposition 2.4.

Proof of Proposition 2.4. (i) Using Theorem 2.3 an the fact that the transport T and the pair

(u, v) are optimal we deduce that (see Remark 2.2)
∫

Ω

∑

i∈N

1Bi
(x)|x− yi|

pf(x) dx = W p
p (fL d Ω, ν) =

∫

Ω
u(x)f(x) dx+

∑

i∈N

biv(yi) .

Since T is a transport map from µ to ν we obtain
∫

Ω

∑

i∈N

1Bi
(x)|x− yi|

pf(x) dx =

∫

Ω

∑

i∈N

1Bi
(x)(u(x) + v(yi))f(x) dx .
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Then, recalling that in the dual formulation (2.2) the pair (u, v) is subject the the constraint

u(x) + v(y) ≤ |x− y|p for µ-a.e. x and ν-a.e. y, we get
∑

i∈N

1Bi
(x)|x− yi|

p =
∑

i∈N

1Bi
(x)(u(x) + v(yi)) for f -a.e. x ∈ Ω.

This in particular implies

u(x) =
∑

i∈N

(|x− yi|
p − v(yi))1Bi

(x) for f -a.e. x ∈ Ω. (2.5)

Using again the constraint of the dual formulation (2.2) we immediately deduce (2.3) from (2.5).

(ii) First of all we notice that T is a transport map from fL d Ω to ν =
∑

i∈N
biδyi

and

that the pair (u, v) is admissible for the dual formulation (2.2). Moreover using condition (2.3)

we obtain∫

Ω
|x− T (x)|pf(x) dx =

∑

i∈N

∫

Bi

|x− yi|
pf(x) dx =

∑

i∈N

∫

Bi

[v(yi) + u(x)] f(x) dx

=

∫

Ω
v(x) dν(y) +

∫

Ω
u(x)f(x) dx .

Recalling Theorem 2.3 we obtain the validity of (ii). �

3. Existence, uniqueness and characterization of the optimum

3.1. Formulation of the problem and definition of the optimum. In this section we

consider our problem from a global point of view. The unknown is a partition (Ai)i=1,...,k of Ω,

where each Ai represents the urban area where customers choosing the service located at xi live.

The total amount of people living in Ai is given by ci =
∫
Ai
f(x) dx. Every citizen living at x

and using the service located at xi is going to spend, in order to be served, a time given by

|x− xi|
p + hi(ci) .

In this expression, |x − xi|
p is the transport time and hi(ci) is the time spent waiting in the

queue. Consequently, the total time spent by the whole population is given by

k∑

i=1

∫

Ai

[
|x− xi|

p + hi(ci)
]
f(x) dx . (3.1)

We want to choose the partition (Ai)i=1,...,k of Ω in such a way that the quantity in (3.1) is as

small as possible; thus we are led to the following minimization problem:

inf
(Ai)i=1,...,k

partition of Ω

{
k∑

i=1

∫

Ai

[
|x− xi|

p + hi

(∫

Ai

f(x) dx

)]
f(x) dx

}
. (3.2)

Definition 3.1 (Optimum). We say that a partition (Ai)i=1,...,k of Ω is an optimum if it is a

minimizer for (3.2).

3.2. Preliminary considerations. In this subsection we prove two lemmas which will be used

in the following. We denote by S the unit simplex in R
k defined by

S =

{
c = (c1, c2, . . . , ck) ∈ R

k : ci ≥ 0 ,
k∑

i=1

ci = 1

}
.
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Lemma 3.2. The following equality holds:

inf (3.2) = inf
c∈S

{
W p

p

(
fL d Ω,

k∑

i=1

ciδxi

)
+

k∑

i=1

hi(ci)ci

}
.

Proof. By applying Theorem 2.1 we have

inf
c∈S

{
W p

p

(
fL d Ω,

k∑

i=1

ciδxi

)
+

k∑

i=1

hi(ci)ci

}

= inf
c∈S

{
Mp

p

(
fL d Ω,

k∑

i=1

ciδxi

)
+

k∑

i=1

hi(ci)ci

}
(3.3)

= inf
c∈S

{∫

Ω
|x− T (x)|pf(x) dx+

k∑

i=1

hi(ci)ci : T transport map from fL d Ω to
k∑

i=1

ciδxi

}
.

But recalling Remark 2.2 we can deduce

inf (3.3) = inf
c∈S

(Ai)i=1,...,k

partition of Ω

{
k∑

i=1

∫

Ai

|x− xi|
pf(x) dx+

k∑

i=1

hi(ci)ci :

∫

Ai

f(x) dx = ci

}
= inf (3.2) ,

thus we obtain the thesis. �

Lemma 3.3. The function F : S → R defined by

F (c1, . . . , ck) = W p
p

(
fL d Ω,

k∑

i=1

ciδxi

)

is continuous and convex.

Proof. The continuity follows directly from the fact that the topology induced by the Wasserstein

distance of order p is the weak convergence of measures, as observed in Section 2.2.

Let us now show the convexity. Let (c1, . . . , ck) and (c′1, . . . , c
′
k) be two elements of S and

let t ∈ [0, 1]. Consider two optimal transport plans

γ ∈ Π

(
fL d Ω,

k∑

i=1

ciδxi

)
and γ′ ∈ Π

(
fL d Ω,

k∑

i=1

c′iδxi

)
.

This implies that

tγ + (1 − t)γ′ ∈ Π

(
fL d Ω,

k∑

i=1

(
tci + (1 − t)c′i

)
δxi

)
,

hence we deduce

F
(
t(c1, . . . , ck) + (1 − t)(c′1, . . . , c

′
k)
)

= W p
p

(
fL d Ω,

k∑

i=1

(
tci + (1 − t)c′i

)
δxi

)

≤

∫

Ω×Ω
|x− y|p d

(
tγ + (1 − t)γ′

)
(x, y)

= t

(∫

Ω×Ω
|x− y|p dγ(x, y)

)
+ (1 − t)

(∫

Ω×Ω
|x− y|p dγ′(x, y)

)

= tF (c1, . . . , ck) + (1 − t)F (c′1, . . . , c
′
k) .

This precisely means that the map F is convex. �



OPTIMUM AND EQUILIBRIUM IN A TRANSPORT PROBLEM WITH QUEUE 9

3.3. Existence and uniqueness of the optimum. In this subsection we show how to use

the reformulation of the minimization problem (3.2) obtained in Lemma 3.2 and the results on

optimal mass transportation collected in Section 2.2 to show existence and uniqueness (under

suitable assumptions) of an optimum for (3.2). In the following we consider for i = 1, . . . , k the

functions ηi : [0, 1] → [0,+∞[ defined by

ηi(t) = thi(t) . (3.4)

Proposition 3.4. Assume that the functions hi are lower semi-continuous. Then:

(i) there exists an optimum (Âi)i=1,...,k for (3.2);

(ii) if in addition the maps ηi are strictly convex the optimum is unique.

Proof. (i) Recalling the definitions of F and ηi and using Lemmas 3.2 and 3.3 we have

inf (3.2) = inf
c∈S

{
F (c1, . . . , ck) +

k∑

i=1

ηi(ci)

}
.

The expression to be minimized on the right hand side of the above equality is a lower

semi-continuous function defined on the non-empty compact set S, hence there exists a mini-

mizer (ĉi)i=1,...,k. By Theorem 2.1 there exists an optimal transport map T̂ from fL d Ω to∑k
i=1 ĉiδxi

. Thanks to Remark 2.2 the transport map T̂ is associated to a partition (Âi)i=1,...,k

of Ω which satisfies ĉi =
∫

bAi
f(x) dx. Let us check that this partition is an optimum for (3.2).

From the above considerations we deduce

inf (3.2) = min
c∈S

{
F (c1, . . . , ck) +

k∑

i=1

ηi(ci)

}
= F (ĉ1, . . . , ĉk) +

k∑

i=1

ηi (ĉi)

= W p
p

(
fL d Ω,

k∑

i=1

ĉiδxi

)
+

k∑

i=1

ηi (ĉi)

=
k∑

i=1

∫

bAi

|x− xi|
pf(x) dx+

k∑

i=1

ηi

(∫

bAi

f(x) dx

)
.

This exactly means that (Âi)i=1,...,k is an optimum for (3.2).

(ii) Assume by contradiction that we have two different optima (Âi)i=1,...,k and (Ãi)i=1,...,k

for (3.2). We define

ĉi =

∫

bAi

f(x) dx and c̃i =

∫

eAi

f(x) dx for each i = 1, . . . , k.

It is immediate to check that T̂ (x) =
∑k

i=1 xi1 bAi
(x) is an optimal transport map from fL d Ω

to
∑k

i=1 ĉiδx1
and that T̃ (x) =

∑k
i=1 xi1 eAi

(x) is an optimal transport map from fL d Ω

to
∑k

i=1 c̃iδx1
. Recalling the fact that the optimal transport map from a diffuse measure to

an atomic measure is unique (see Theorem 2.1 for the case p > 1 and Corollary 2.6 for the

case p = 1) we deduce that (ĉi)i=1,...,k 6= (c̃i)i=1,...,k. But using again the result in Lemma

3.2 we deduce that (ĉi)i=1,...,k and (c̃i)i=1,...,k are minimizers of the map S ∋ (c1, . . . , ck) 7→

F (c1, . . . , ck) +
∑k

i=1 ηi(ci). However, the strict convexity of the maps ηi, together with the

convexity of F shown in Lemma 3.3, implies the uniqueness of the minimizer of this map, and

from this contradiction we deduce the thesis. �
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3.4. Characterization of the optimum. We say that a function φ :]0, 1] → [0,+∞[ is differ-

entiable if it is differentiable in the usual sense in the open interval ]0, 1[ and has a left derivative

in the point 1. We also use the convention 0h′i(0) = 0.

Proposition 3.5 (Necessary optimality condition). Let (Ai)i=1,...,k be an optimum for (3.2).

Assume that hi are differentiable in ]0, 1] and continuous in 0. Then for all i = 1, . . . , k the

following holds:




Ai =
{
x ∈ Ω : |x− xi|

p + hi(ci) + cih
′
i(ci) < |x− xj |

p + hj(cj) + cjh
′
j(cj) ∀ j 6= i

}

ci =
∫
Ai
f(x) dx ,

(3.5)

where as usual equalities between sets are intended up to f -negligible sets.

Proof. Consider a partition (Ar)r=1,...,k which is an optimum for (3.2) and take an L
d-negligible

set N ⊂ Ω such that for every x 6∈ N

(i) x is a Lebesgue point of f ;

(ii) if x ∈ Ar, then x is a point of density 1 in Ar.

Fix now two indices i and j in {1, . . . , k} and consider a point x0 ∈ Ai \N . For every ǫ > 0 let

the partition (Ãr)r=1,...,k be defined by




Ãi = Ai \Bε(x0)

Ãj = Aj ∪
(
Ai ∩Bε(x0)

)

Ãr = Ar for all r ∈ {1, . . . , k} \ {i, j} .

Let cε =
∫
Ai∩Bε(x0)

f(x) dx. By the optimality of the partition (Ar)r=1,...,k, comparing its total

cost with the total cost of the partition (Ãr)r=1,...,k we deduce

k∑

r=1

∫

Ar

|x− xr|
pf(x) dx+

k∑

r=1

crhr(cr) ≤
∑

r=1,...,k
r 6=i,j

∫

Ar

|x− xr|
pf(x) dx

+
∑

r=1,...,k
r 6=i,j

crhr(cr) +

∫

Ai\Bε(x0)
|x− xi|

pf(x) dx+ (ci − cε)hi(ci − cε)

+

∫

Aj∪(Ai∩Bε(x0))
|x− xj |

pf(x) dx+ (cj + cε)hj(cj + cε) .

This leads to
∫

Ai∩Bε(x0)
|x− xi|

pf(x) dx+ cihi(ci) + cjhj(cj)

≤ (ci − cε)hi(ci − cε) +

∫

Ai∩Bε(x0)
|x− xj |

pf(x) dx+ (cj + cε)hj(cj + cε) .

We now divide this expression by ωdε
d, where ωd is the volume of the unit ball in R

d. We obtain

1

ωdεd

∫

Ai∩Bε(x0)
|x− xi|

pf(x) dx+
ci
ωdεd

[
hi(ci) − hi(ci − cε)

]
+

cε
ωdεd

hi(ci − cε)

≤
1

ωdεd

∫

Ai∩Bε(x0)
|x− xj |

pf(x) dx+
cj
ωdεd

[
hj(cj + cε) − hj(cj)

]
+

cε
ωdεd

hj(cj + cε) .
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Letting ε→ 0 and recalling that x0 satisfies assumptions (i) and (ii) we easily obtain

|x0 − xi|
pf(x0) + f(x0)cih

′
i(ci) + f(x0)hi(ci) ≤ |x0 − xj|

pf(x0) + f(x0)cjh
′
j(cj) + f(x0)hj(cj) ,

that is the desired thesis. �

The following lemma will imply that condition (3.5) is in fact sufficient, under reasonable

assumptions.

Lemma 3.6. Assume that the functions hi are differentiable in ]0, 1] and continuous in 0 and

that ηi are convex. Then there exists at most one partition (Ai)i=1,...,k for which (3.5) holds.

We notice that the convexity assumption on ηi is satisfied for instance if hi(t) = tq with

0 < q < 1, which are natural concave cost functions.

Proof of Lemma 3.6. Assume by contradiction that there exist two partitions (Ai)i=1,...,k and

(Âi)i=1,...,k satisfying (3.5). We set ci =
∫
Ai
f(x) dx and ĉi =

∫
bAi
f(x) dx and we consider the

set I =
{
i ∈ {1, . . . , k} : ci < ĉi

}
. Assume that I is nonempty. Recalling the definition of the

functions ηi and comparing with (3.5) we obtain

⋃

i∈I

Ai =

{
x ∈ Ω : min

i∈I
|x− xi|

p + η′i(ci) < min
j 6∈I

|x− xj |
p + η′j(cj)

}

and ⋃

i∈I

Âi =

{
x ∈ Ω : min

i∈I
|x− xi|

p + η′i(ĉi) < min
j 6∈I

|x− xj |
p + η′j(ĉj)

}
.

Since we are assuming that the functions ηi are convex, we obtain that η′i(ci) ≤ η′i(ĉi) for every

i ∈ I and that η′j(cj) ≥ η′j(ĉj) for every j 6∈ I. This immediately implies that ∪i∈IÂi ⊆ ∪i∈IAi,

thus ∫

∪i∈I
bAi

f(x) dx ≤

∫

∪i∈IAi

f(x) dx . (3.6)

But recalling the definition of ci and ĉi and of the set I we have
∫

∪i∈IAi

f(x) dx =
∑

i∈I

ci <
∑

i∈I

ĉi =

∫

∪i∈I
bAi

f(x) dx ,

and this is in contradiction with (3.6). We deduce that the set I is empty, which means that

ci ≥ ĉi for every i = 1, . . . , k. By symmetry the opposite inequality is also true, thus we obtain

that ci = ĉi for every i = 1, . . . , k. But going back to (3.5) we immediately deduce that Ai = Âi

for every i = 1, . . . , k. �

Proposition 3.7 (Sufficient optimal condition). Let (Ai)i=1,...,k be a partition of Ω which satis-

fies (3.5). Assume that the functions hi are differentiable in ]0, 1] and continuous in 0 and that

ηi are convex. Then (Ai)i=1,...,k is the unique optimum for (3.2).

Proof. It is a direct consequence of Propositions 3.4 and 3.5 and of Lemma 3.6. �

3.5. Summary of the results on the optimum. We close this section presenting a summary

of the results relative to the optimum for (3.2). Remember that the functions ηi have been

defined in (3.4).

• If hi are lower semi-continuous, then there exists an optimum for (3.2).

• If hi are lower semi-continuous and ηi are strictly convex, then there exists a unique

optimum for (3.2).
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• If hi are differentiable in ]0, 1] and continuous in 0 and ηi are convex, then there exists

a unique optimum for (3.2).

• If hi are differentiable and continuous in 0, then (3.5) is a necessary optimality condition.

• If hi are differentiable in ]0, 1] and continuous in 0 and ηi are convex, then (3.5) is a

necessary and sufficient optimality condition.

We remark in passing what follows: in the general setting of the Monge problem, the

“distance” |y− x|p is replaced by any lower semi-continuous function c(x, y), usually called cost

function. But in fact we have used only two features of the particular choice c(x, y) = |y − x|p,

namely, the existence and uniqueness of an optimal transport map and the fact that for any

y ∈ Ω the level sets of c(·, y) are negligible. Hence our results can be extended for general costs

c(x, y) for which both properties hold true, such as c(x, y) = |y − x|p with 0 < p < 1 (see [19])

or c(x, y) = ‖y − x‖ for different kinds of norm (see [12] and [3]).

4. Existence, uniqueness and charaterization of the equilibrium

4.1. Definition of the equilibrium. In this section we start to consider the situation from the

point of view of the single citizen. Assume for the moment that the sets Ai, and so the quantities

ci, are given: the single citizen is probably not interested whether the partition (Ai)i=1,...,k is

optimal in the global sense that we discussed up to now. Indeed, it is quite convincing that he

does not even know the sets Ai, nor the quantities ci, nor the functions hi: what is meaningful,

is that he only knows the quantities hi(ci), i.e. the queue times in the various services. Then, of

course, a citizen living at x ∈ Ω and going to xi shall be “satisfied” if and only if

|x− xi|
p + hi(ci) = min

j=1,...,k
|x− xj |

p + hj(cj) .

In the context of game theory this is precisely a Nash equilibrium (see Section 12.3 of [5]):

each player is satisfied in the sense that his strategy (i.e. the choice of the service) is the best

possible, once the behaviour of the other players (in this case, the sets Ai) is fixed. We give the

following definition.

Definition 4.1. We say that a partition (Ai)i=1,...,k of Ω is an equilibrium if for every i =

1, . . . , k the following condition holds:




Ai =
{
x ∈ Ω : |x− xi|

p + hi(ci) < |x− xj |
p + hj(cj) for every j 6= i

}

ci =
∫
Ai
f(x) dx .

(4.1)

We remark that this type of equilibrium is non-cooperative: each citizen chooses the service

just by himself, without collaborating with the other citizens in order to choose a “better” global

strategy. In Theorem 4.4 and Proposition 4.5 we show that there exists an equilibrium, under

fairly general assumptions: we remark that this is not a trivial result, since in general game

theory it is typically a difficult task to show existence of a Nash equilibrium.

4.2. Existence and uniqueness of the equilibrium. In this subsection we show how it is

possible to formulate an auxiliary problem in such a way that the optimum for this new problem

corresponds to the equilibrium for the original problem. Thus we easily deduce some existence

and uniqueness results for the equilibrium, relying on the results presented in the previous

section.
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Assume that the functions hi are continuous. We introduce for i = 1, . . . , k the functions

gi : [0, 1] → [0,+∞[ defined by

gi(t) =





1

t

∫ t

0
hi(s) ds if 0 < t ≤ 1

hi(0) if t = 0.

It is immediate that the functions gi are continuous and that t 7→ tgi(t) are differentiable

everywhere in [0, 1] with derivative hi(t).

Proposition 4.2. Assume that the functions hi are continuous. Every partition (Ai)i=1,...,k of

Ω which is a minimizer of the problem

inf
(Ai)i=1,...,k

partition of Ω

{
k∑

i=1

∫

Ai

[
|x− xi|

p + gi

(∫

Ai

f(x) dx

)]
f(x) dx

}
(4.2)

is an equilibrium for the original problem. If in addition the functions hi are non-decreasing

then every equilibrium for the original problem is a minimizer of (4.2).

Proof. Consider a minimizer (Ai)i=1,...,k of (4.2). Since the functions gi are continuous in 0

and the functions tgi(t) are differentiable in [0, 1] we can apply Proposition 3.5 to deduce that

(Ai)i=1,...,k satisfies the optimality condition (3.5), but in view of the definition of gi this condition

is precisely (4.1): recall that
(
tgi(t)

)′
= hi(t). Thus (Ai)i=1,...,k is an equilibrium for the original

problem. If hi is non-decreasing for all i = 1, . . . , k, we immediately obtain the convexity of

the functions t 7→ tgi(t), thus we can apply Proposition 3.7, obtaining precisely that every

equilibrium for the original problem is a minimizer of (4.2). �

Remark 4.3. Arguing similarly to the previous proof, we can also show that, under the as-

sumption that the maps ηi defined in (3.4) are differentiable in [0, 1], any optimum for (3.2) is

an equilibrium for the problem with queue functions

h̃i(t) = hi(t) + th′i(t) i = 1, . . . , k .

Using the correspondence given by the previous proposition, it is now easy to show the

following theorem.

Theorem 4.4. Assume that the functions hi are continuous. Then there exists an equilibrium.

If in addition the functions hi are non-decreasing then the equilibrium is unique.

Proof. Under the assumptions of the theorem we have that the functions t 7→ tgi(t) are lower

semi-continuous, thus applying Proposition 3.4 we obtain the existence of a minimizer of (4.2),

and using the result of Proposition 4.2 we deduce that this minimizer is an equilibrium for

the original problem. If the functions hi are non-decreasing we apply again Proposition 4.2,

obtaining that every equilibrium for the original problem is a minimizer of (4.2). But since hi

are non-decreasing we also deduce that the maps t 7→ tgi(t) are convex, thus using Proposition

3.7 we deduce that (4.2) has a unique solution, and this concludes the proof. �

4.3. A direct proof in the case k = 2. We now give an alternative and more direct proof

of the above result in the particular case k = 2. This has also the advantage of introducing
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some ideas and notation that will be important in the dynamical analysis of Section 5. In what

follows, we will make extensively use of the following definitions:

τ(x) = |x− x1|
p − |x− x2|

p , m(t) =

∫

{x : τ(x)<t}
f(x) dx . (4.3)

The condition in (4.1) defining the equilibrium can be read in this context as follows: a partition

(A1, A2) of Ω is an equilibrium when there exists t̄ ∈ R such that:

A1 =
{
x ∈ Ω : τ(x) < t̄

}
, A2 =

{
x ∈ Ω : τ(x) > t̄

}
(4.4)

h2

(
1 −m(t̄)

)
− h1

(
m(t̄)

)
= t̄ . (4.5)

Proposition 4.5. Assume that the functions h1 and h2 are continuous and non-decreasing.

Then there exists a unique equilibrium (A1, A2).

Proof. Let us consider the map

U(t) = t− h2

(
1 −m(t)

)
+ h1

(
m(t)

)
.

It is a continuous and strictly increasing map. Notice that for t ≥ supΩ τ we have m(t) = 1 and

U(t) = t− h2(0) + h1(1) so that limt→+∞ U(t) = +∞. In the same way for t ≤ infΩ τ we have

m(t) = 0 and U(t) = t− h2(1) + h1(0), thus limt→−∞ U(t) = −∞. By consequence, there exists

a unique t̄ such that U(t̄) = 0, that is, (4.5) holds. Then the partition (A1, A2) associated to t̄

as in (4.4) is an equilibrium and this is unique. �

4.4. A comparison between optimum and equilibrium. Recall that the optimality con-

dition for the optimum obtained in Proposition 3.5, read with the notation of the previous

subsection, was

h2

(
1 −m

(
t̂
))

+
(
1 −m

(
t̂
))
h′2
(
1 −m

(
t̂
))

− h1

(
m
(
t̂
))

−m
(
t̂
)
h′1
(
m
(
t̂
))

= t̂ .

Thus a comparison with (4.5) shows how deep is the difference between the two conditions of

optimality. In this subsection we give two explicit examples in which we see in a qualitative way

some differences between the optimum and the equilibrium.

Example 4.6. On a beach represented by Ω = [0, 1] there are two ice-cream shops at coordinates

x1 = 1/4 and x2 = 3/4. Suppose there are less employes in the second shop, so that h1(t) = t

and h2(t) = (1 + ε)t. Assume that the costumers are uniformly distributed on the beach, that

is f ≡ 1, and take p = 2.

In this case the optimum (A1, A2) is given by

A1 = [0, λopt
ε [ , A2 =]λopt

ε , 1] with λopt
ε =

1

2
+

ε

5 + 2ε
,

whereas the equilibrium (B1, B2) is

B1 = [0, λeq
ε [ , B2 =]λeq

ε , 1] with λeq
ε =

1

2
+

ε

6 + 2ε
≤ λopt

ε .
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The costs for the customers in the two cases are given by:

cost on the

optimum

cost on the

equilibrium
position

|x− 1/4|2 + λopt
ε |x− 1/4|2 + λeq

ε 0 ≤ x ≤ λeq
ε

|x− 1/4|2 + λopt
ε |x− 3/4|2 + (1 + ε)(1 − λeq

ε ) λeq
ε ≤ x ≤ λopt

ε

|x− 3/4|2 + (1 + ε)(1 − λopt
ε ) |x− 3/4|2 + (1 + ε)(1 − λeq

ε ) λopt
ε ≤ x ≤ 1

Note that, in the case ε = 0, the situations of optimum and equilibrium coincides and we have

A1 = B1 = [0, 1/2[ and A2 = B2 =]1/2, 1]. In the case ε > 0, despite the global cost is minimized

by the partition (A1, A2), in the equilibrium situation more than one half of the costumers pay

less than in the optimum situation.

Example 4.7. Let us now take Ω = [0, 1], f ≡ 1, x1 = 0, x2 = 1, p = 1 and

h1(s) ≡ 100 and h2(s) =

{
0 for 0 ≤ s ≤ 0.999

1 for 0.999 < s ≤ 1.

It is clear that the unique equilibrium is A1 = ∅ and A2 = [0, 1], whereas the optimum is

obtained with A1 = [0, 0.001[ and A2 =]0.001, 1]. Notice that the optimum is very unfair for

costumers living in A1, who pay 100+x, whereas the other costumers just pay the distance from

1. Note that the result would have the same features with h2 equal to 0 on [0, 0.998], equal to

1 on [0.999, 1] and increasing smoothly from 0 to 1 on ]0.998, 0.999[.

4.5. A comparison with Pareto optimum. The examples given in the previous subsection

show that in some cases the global optimum can really be not convenient for some citizens; in

particular, in Example 4.7 the optimum is better than the equilibrium for 99.9% of the citizens,

even though it is much worse for the remaining 0.1%. In some classical games (like the well-

known prisoner’s dilemma, see for instance Section 7.8 of [5]) the equilibrium is in fact a bad

strategy for all players, in the sense that there is a situation which is better for everybody.

On the contrary, we are going to see that in our model this can not happen. Even more,

given an equilibrium, we show that it is not possible to find a situation in which every citizen

spend less time. More precisely, and introducing a further notion from game theory, we are

going to see that every equilibrium is a Pareto optimum for the problem. This means that, in

our situation, starting from the non-cooperative Nash equilibrium it is not possible to lower the

costs of all the citizens by a cooperation in the choice of the services.

Let us introduce the individual cost function

C(x, (Bi)i) =

k∑

i=1

[
|x− xi|

p + hi

(∫

Bi

f(x) dx

)]
1Bi

(x) , (4.6)

defined for x ∈ Ω and (Bi)i=1,...,k partition of Ω. We say that a partition (Ai)i=1,...,k of Ω

is a Pareto optimum (see also Section 12.5 of [5]) if there exists no partition (Bi)i=1,...,k of Ω

satisfying

C(x, (Bi)i) ≤ C(x, (Ai)i) for f -a.e. x ∈ Ω
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with strict inequality in a set of strictly positive measure. With this definition of C the following

equivalence is immediate:

(Ai)i=1,...,k is an equilibrium ⇐⇒ C(x, (Ai)i) = min
j=1,...,k

{
|x− xj|

p + hj

(∫

Aj

f(x) dx

)}
. (4.7)

We establish now the following result of independent interest, which makes a connection

between the equilibrium and the optimal transport map from µ = fL d Ω to the atomic

measure concentrated on the points x1, . . . , xk.

Proposition 4.8 (Link between equilibrium and optimal transportation). Let (Ai)i=1,...,k be a

partition of Ω, µ = fL d Ω, ci =
∫
Ai
f , ν =

∑k
i=1 ciδxi

and T =
∑k

i=1 xi1Ai
; let moreover

u(x) = C(x, (Ai)i) and v(xi) = −hi(ci). Then the couple (u, v) is optimal for the dual prob-

lem (2.2) if and only if (Ai)i=1,...,k is an equilibrium. Moreover, in this case T is an optimal

transport map between µ and ν.

Proof. First of all, one can notice that the cost of the transport T equals
∫
Ω u dµ +

∑
i civ(xi):

indeed, one has

∫

Ω
|x− T (x)|p dµ =

k∑

i=1

∫

Ai

|x− xi|
pf(x) dx =

k∑

i=1

∫

Ai

[
|x− xi|

p + hi(ci)
]
f(x) dx+

k∑

i=1

civ(xi)

=

∫

Ω
u(x) dµ(x) +

∫

Ω
v(x) dν(x) .

Thanks to Theorem 2.3 we deduce that, if (u, v) is admissible for the dual problem, then T is

an optimal transport map and (u, v) is optimal for the dual problem.

On the other hand, the property (4.7) exactly means that (u, v) is admissible for the dual

problem if and only if (Ai)i=1,...,k is an equilibrium. These two considerations give the thesis. �

Notice that, in the situation of the proposition above, it may happen that T is an optimal

map but (u, v) is not optimal for the dual problem and (Ai)i=1,...,k is not an equilibrium.

We now use Proposition 4.8 to prove that an equilibrium is a Pareto optimum.

Proposition 4.9. Assume that the maps hi are strictly increasing and let (Ai)i=1,...,k be an

equilibrium. Let (Bi)i=1,...,k be a partition of Ω such that

C(x, (Bi)i) ≤ C(x, (Ai)i) for f -a.e. x ∈ Ω. (4.8)

Then the partitions (Ai)i=1,...,k and (Bi)i=1,...,k coincide.

Proof. We first show that for every i = 1, . . . , k the equality
∫
Ai
f(x) dx =

∫
Bi
f(x) dx holds.

Indeed, if this were not true, we could find j ∈ {1, . . . , k} such that
∫
Aj
f(x) dx <

∫
Bj
f(x) dx.

Considering a point x ∈ Bj such that (4.8) holds we have

|x− xj|
p + hj

(∫

Bj

f(x) dx

)
= C(x, (Bi)i) ≤ C(x, (Ai)i)

= min
i=1,...,k

{
|x− xi|

p + hi

(∫

Ai

f(x) dx

)}

≤ |x− xj |
p + hj

(∫

Aj

f(x) dx

)
.
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But this leads to a contradiction: indeed, hj being strictly increasing, we should have

hj

(∫
Aj
f(x) dx

)
< hj

(∫
Bj
f(x) dx

)
. This shows as claimed that

∫
Ai
f(x) dx =

∫
Bi
f(x) dx

for every i = 1, . . . , k.

Since (Ai)i=1,...,k is an equilibrium, using Proposition 4.8 we obtain that the map T =
∑k

i=1 xi1Ai
is an optimal transport map from µ to

∑k
i=1

(∫
Ai
f(x) dx

)
δxi

. Using this fact and

applying the assumption (4.8) we deduce

k∑

i=1

∫

Bi

|x− xi|
pf(x) dx ≤

k∑

i=1

∫

Ai

|x− xi|
pf(x) dx

= Wp

(
µ,

k∑

i=1

(∫

Ai

f(x) dx

)
δxi

)
= Wp

(
µ,

k∑

i=1

(∫

Bi

f(x) dx

)
δxi

)
.

Hence the map S =
∑k

i=1 xi1Bi
is an optimal transport map from µ to

∑k
i=1

(∫
Bi
f(x) dx

)
δxi

=
∑k

i=1

(∫
Ai
f(x) dx

)
δxi

. By the uniqueness results of Theorem 2.1 and Corollary 2.6 we conclude.

�

Corollary 4.10. If the maps hi are strictly increasing, then every equilibrium is a Pareto

optimum.

5. Evolution dynamic and convergence to the equilibrium

In this section we discuss a dynamical formulation of the problem, in which every single day

each citizen decides where to go, using the knowledge of what happened in the previous days

and trying to make a “smart” choice. We set the problem and discuss under which assumptions

the situation converges to the (unique) individual equilibrium, giving also counterexamples to

show that this is not always the case. In the first subsection we consider the standard evolution,

where every day one thinks only to the previous day. In the second subsection we study the

evolution with prudence, where the citizens again remember only the previous day, but are more

careful and try to avoid changing idea too often. In the last subsection we describe the case of

the evolution with memory, where each day the citizens remember more previous days. In all

this section, to keep the discussion as simple as possible, we consider the case k = 2 when there

are only two services located at x1 and x2; however, the general case requires more care with

multiple indeces but no really new ideas.

Recall that, thanks to Proposition 4.5, we know the existence of a unique individual equi-

librium under the assumption that the functions h1 and h2 are continuous and non-decreasing.

5.1. Standard evolution. We face now the question whether or not the situation can naturally

evolve toward this equilibrium. By “naturally” we mean that we try to model the evolution in

time, in which the citizens do not know the situation in its complete complexity, but they just

see how long is the queue and decide day by day how to behave. In other words, we introduce a

simple scheme which models the everyday choice of people, and we study the possible convergence

under this model. The idea is very easy: at each day, each citizen decides freely whether to go

to x1 or to x2. Moreover, at the end of every day he discovers what has happened in that day,

that is, he discovers h1(c1) and h2(c2): this will clearly affect the choice of the following day.

More precisely, for each j ∈ N we have the function ψj : Ω → {0, 1}, where ψj(x) = 0 (resp.

ψj(x) = 1) means that at the day j the citizen living at x goes to x1 (resp. to x2); note that,
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in the language of (2.1), the function ψj corresponds to ψ2 at time-step j, while ψ1 is simply

1−ψ2. We also set mj ∈ [0, 1] the mass of the people that, at the day j, decide to go to x1, i.e.

mj :=

∫

Ω

(
1 − ψj(x)

)
f(x) dx . (5.1)

The evolution of the problem is the following: we fix any function ψ0 : Ω → {0, 1}, and consider

it as a data of the problem; that is, we leave the citizens free to decide by chance what to do at

the day 0. Of course, the most meaningful choice would be

ψ0(x) =

{
0 if τ(x) < 0

1 otherwise,
(5.2)

recalling the definitions of τ and m given previously

τ(x) = |x− x1|
p − |x− x2|

p , m(t) =

∫

{x : τ(x)<t}
f(x) dx . (4.3)

Indeed, this choice of ψ0 means that in the first day each one simply goes to the closest of the

two service places, which makes sense since he does not have any information about queues.

However, our results also hold with any other function ψ0. Given now any j ∈ N, and given the

function ψj , the function ψj+1 is determined as follows:

ψj+1(x) =

{
0 if τ(x) < h2(1 −mj) − h1(mj)

1 otherwise.
(5.3)

The meaning of this model is extremely clear: at the day j + 1, each citizen decides where to

go assuming that the quantity of people going to x1 and x2 will be the same as in the day j.

The first property that we can easily notice is the following: there exists a sequence (tj)j≥1 such

that for any j one has

ψj(x) =

{
0 if τ(x) < tj
1 otherwise;

this is immediate by the definition for any j ≥ 1. Being ψ0 free, we can not say the same for

j = 0, of course: however, in the case of the “meaningful” choice (5.2), the above formula holds

also for j = 0 with t0 = 0. Notice that

tj+1 = h2(1 −mj) − h1(mj); (5.4)

as a consequence, we understand that everything in the choices of the citizen living at x depends

only on the value of τ(x). This also implies, for j ≥ 1, that

mj = m(tj) .

What we want to know is if the situation converges to the individual optimum; that is, if ψj

converges to the function ψ̄ defined as

ψ̄(x) =

{
0 if x ∈ A1

1 if x ∈ A2,

where (A1, A2) is the equilibrium partition given by Proposition 4.5. Equivalently, we want to

understand if tj converges to t̄ where, according to Proposition 4.5, t̄ is the unique real number

such that

t̄ = h2

(
1 −m(t̄)

)
− h1

(
m(t̄)

)
.

A first answer to this question is given below. We shall consider the function G : R → R defined

by

G(t) := h2

(
1 −m(t)

)
− h1

(
m(t)

)
. (5.5)
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Notice that the function G has a very simple meaning, namely, it is tj+1 = G(tj); moreover

t̄ is uniquely determined by the fact that G(t̄) = t̄. We then prove the following result which

clarifies what happens for the standard evolution.

Proposition 5.1. Assume that h1 and h2 are continuous and non-decreasing, as well as that

|G(s) −G(t)| < |s− t| (5.6)

for all s 6= t ∈ R. Then tj → t̄ for j → +∞, hence also ψj → ψ̄ uniformly on the compact

subsets of Ω \ {τ = t̄}.

Proof. The evolution of the sequence j 7→ tj is shown in the Figure 1: notice that since h1

and h2 are non-decreasing then the function G is non-increasing, hence the equilibrium point

t̄ = G(t̄) is unique. Let us assume by symmetry that, as in the figure, t1 ≤ t̄: then, since G is a

G

t1

t2 t4 t3

Figure 1. The situation in Proposition 5.1

non-increasing function and G(t̄) = t̄, we have immediately that tn ≥ t̄ for all even n and tn ≤ t̄

for all odd n. Therefore, t2n ց t+ and t2n+1 ր t− with t− ≤ t̄ ≤ t+. Moreover, by continuity

of G it is clear that G(t+) = t− and G(t−) = t+. By (5.6) we deduce that, if t− < t+, then

t+ − t− = G(t−) −G(t+) < t+ − t− ,

which gives an absurd: hence, t− = t+, so tj → t̄ as we stated. Consider now any compact

subset K of Ω \ {τ = t̄}: there is then a small interval I ∋ t̄ so that τ(x) /∈ I for all x ∈ K.

There exists j̄, depending on I thus on K, such that tj ∈ I for all j ≥ j̄; hence, for any x ∈ K

and for any j ≥ j̄, one has ψj(x) = ψ̄(x). �

Remark 5.2. As the proof underlines, we have more than the uniform convergence of ψj to ψ̄

on the compact subsets of Ω \ {τ = t̄}: indeed, in such compact subsets one has that ψj ≡ ψ̄ for

j ≫ 1.
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Example 5.3 (Non-convergence). We show now that the strict 1-Lipschitzianity of G required

in Proposition 5.1 is necessary. Indeed, let f and h1, h2 be such that G(t) = 1− t for t ∈ (−2, 2):

this is of course possible with a smooth choice of f and of h1 and h2. Moreover, let ψ0 be given

by (5.2): in this case it is clear that tj = 0 for all even j and tj = 1 for all odd j, so there is

not convergence to t̄ = 1/2. Notice that in this case G is a Lipschitz function with Lipschitz

constant equal to 1.

We can easily understand a practical meaning of the possible non-convergence that we have

described: if a small town has two supermarkets, there is not a big difference for the people to

drive to one or to the other one. However, it may happen that these supermarkets can have very

long queues. Therefore, if in a certain day everybody decides to go to the first one, all the people

will be unsatisfied with their choice, noticing that the other one has no queue. Consequently, in

the next day everybody will go to the second supermarket, leading to a long queue in this one

and no queue in the first one. Clearly this procedure will be repeated all the following days, and

so there will be no convergence.

Remark 5.4. Let us underline what is the meaning of the request of 1-Lipschitzianity of G; if

everything is smooth, we can evaluate

G′(t) = −
(
h′2(1 −m(t)) − h′1(m(t))

)
m′(t) ;

hence, requiring that |G′| is small means that we want h′i and/or m′ small: the first fact means

that the queue does not change dramatically for a small change in the quantity of people; and

the second one means that f is not too big, so that a small region of the city (the region where

the people can have the doubt whether going to one or the other place) does not contain too

many citizens.

5.2. Evolution with prudence. As Example 5.3 shows, in the previous setting the convergence

to the individual optimum does not always hold; however, this does not seem to be likely. In

particular, in the case described in the second part of the example, it seems not so reasonable

that people continue to change their idea every day in such a silly way. To model the “smarter”

behaviour of the people, we can follow two ways. One way is to allow people to remember more

than a single day, giving them a memory, and this is the content of Section 5.3. The other way,

which is what we investigate now, is to make people more “prudent”.

To introduce the concept of prudence, we start by noticing that the easiness with which

people change their habit is excessive: in other words, it is not very reasonable that for a generic

x ∈ Ω the function j 7→ ψj(x) can change from 0 to 1 and vice-versa. The idea of “prudence”

is that it can be more convenient to consider the choice of a citizen living at x at time j as a

stochastic variable, hence using the approach with transport plans instead of transport maps;

recalling (2.1), this means that the value of ψj(x) can be not only 0 or 1, but any number

between 0 and 1. This approach is also common in game theory, and is related to the notion of

mixed strategy, for which we refer to Section 7.4 of [5]. So, ψj(x) is the percentage of the citizens

living at x which decide to go to x2 at the time j, while 1 − ψj(x) is the percentage of those

going to x1. With this approach, one is not assuming that all the citizens living at the same

place x are forced to take always exactly the same decisions. The evolution rule will be then a

simple modification of (5.3). Recall the definition (5.1) of mj which corresponds to the mass of

people going to x1 at time j. Notice also that the definition (5.4) of tj+1 means that at time

j + 1, for a citizen living at x it would seem at first glance more convenient to go to x1 (resp.

x2) if τ(x) is smaller (resp. greater) than tj+1. We introduce then a parameter 0 < ρ < 1 which
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we call prudence parameter, expressing the “resistance” that the average citizen feels against

changing his habit. The evolution rule is then given as follows:

ψj+1(x) =

{
ρψj(x) if τ(x) < tj+1

1 − ρ
(
1 − ψj(x)

)
otherwise.

(5.7)

Note that the extreme case ρ = 0, that is no prudence, corresponds to the case of the previous

section; on the opposite, the extreme case ρ = 1, that is full prudence, means that nobody will

ever change his habit, and so ψj = ψ0 for each j. We can then prove our result.

Theorem 5.5. Assume that f is bounded and that h1 and h2 are non-decreasing and Lipschitz

continuous. Then there exists 0 < ρ̄ < 1 so that, if ρ̄ < ρ < 1, ψj converges to ψ̄ uniformly on

the compact subsets of Ω \ {τ = t̄}.

Proof. First of all, we introduce the quantities

S2
j =

∫

{τ(x)<t̄}
ψj(x) dµ(x) and S1

j =

∫

{τ(x)>t̄}

(
1 − ψj(x)

)
dµ(x) . (5.8)

Observe that, at time j, S2
j is the amount of people which are going to x2, but which should

go to x1 according to the equilibrium ψ̄; analogously, S1
j are the people going to x1 and which

should go to x2. Clearly, if we call m̄ = m(t̄), it is mj = m̄ + S1
j − S2

j , where mj is defined in

(5.1). Hence, comparing (4.5) and (5.4) and recalling that h1 and h2 are Lipschitz, we deduce
∣∣tj+1 − t̄

∣∣ ≤ K
∣∣S1

j − S2
j

∣∣ (5.9)

with a constant K depending only on h1 and h2. Moreover, since h1 and h2 are non-decreasing

and since G(t̄) = t̄ by definition of equilibrium, we deduce that mj ≤ m̄ implies tj+1 ≥ t̄ and

symmetrically mj ≥ m̄ implies tj+1 ≤ t̄. This means that if at time j “few” people are going to

x1, at time j + 1 “many” people will assume to be convenient to do so: however, thanks to the

prudence, only a part of those people will indeed change their goal point.

Let us now take j ∈ N and let us assume by symmetry that S1
j ≥ S2

j , hence mj ≥ m(t̄),

tj+1 ≤ t̄ and m(tj+1) ≤ m(t̄). Keep in mind that, due to the prudence, it is not true in general

that mj = m(tj). By construction, we know

S1
j+1 = ρS1

j . (5.10)

On the other hand, concerning S2
j+1, by definition (5.8) one has

S2
j+1 =

∫

{τ<t̄}
ψj+1(x) dµ(x) =

∫

{τ<tj+1}
ψj+1(x) dµ(x) +

∫

{tj+1<τ<t̄}
ψj+1(x) dµ(x)

=

∫

{τ<tj+1}
ρψj(x) dµ(x) +

∫

{tj+1<τ<t̄}
(1 − ρ+ ρψj(x)) dµ(x)

= ρS2
j +

(
1 − ρ

)(
m(t̄) −m(tj+1)

)
≤ ρS2

j + (1 − ρ)D
(
S1

j − S2
j

)
.

(5.11)

Here D = KL, where K is given by (5.9) and L is the Lipschitz constant of m: indeed, by

immediate geometric arguments one understands that t 7→ L
d({x ∈ Ω : τ(x) ≤ t

})
is a

Lipschitz map, so that m(t), which is the integral over the sets
{
x ∈ Ω : τ(x) ≤ t

}
of the

bounded function f , is also Lipschitz.

Now, using (5.10) and (5.11) we have

S1
j+1 − S2

j+1 ≥
(
ρ− (1 − ρ)D

)(
S1

j − S2
j

)
.
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We can finally deduce what follows: if the prudence is close enough to 1, namely ρ > 1 − 1
D+1 ,

the sign of S1
m −S2

m remains positive for all m ≥ j. In other words, if the population is prudent

enough and at a certain moment too many people are going to the service x1, then in the

sequel the same service will always have more people than in the equilibrium, though the excess

becomes smaller and smaller.

We can now observe that S1
m and S2

m go to 0 for m → ∞. Indeed, by (5.10) we have that

S1
m = ρm−jS1

j , so S1
m → 0; moreover, being 0 ≤ S2

m ≤ S1
m, it is clearly also S2

m → 0.

Using (5.9) we deduce that tm → t̄, and finally by (5.7) this implies that ψm converges to ψ̄

uniformly on the compact subsets of Ω \ {τ = t̄}. �

Example 5.6 (Non-convergence). We show that the claim of Theorem 5.5 is sharp, in the sense

that a small prudence could be not enough to ensure convergence. As in the second part of

Example 5.3, assume to be in a small city with two supermarkets having long queues, and take

the prudence ρ = 1/3. Assume also that ψ0(x) = 1/4 for f−a.e. x: then, 25% of people are

going to the first supermarket and 75% to the second one. Since the city is small, the queue

convinces all the citizens that the first supermarket could be better; hence it will be ψ1(x) = 3/4

for f−a.e. x, so that at the day 1 one has 75% of people going to the first supermarket and 25%

to the second one. Clearly, this procedure will be periodic and there will be no convergence to

the equilibrium.

We conclude by noticing that this model with a “fixed prudence” may seem not so convinc-

ing, since it appears more likely that the prudence is increasing with the time: this increment

can be also thought as a sign of “laziness”, or of habit. We describe now how a model with

an increasing prudence (that is, ρ = ρj in the definition (5.7)) gives rise to convergence to the

equilibrium.

Theorem 5.7 (Increasing prudence). Assume that f is bounded and that h1 and h2 are non-

decreasing and Lipschitz continuous. Consider a sequence (ρj)j≥1 such that

ρj → 1 and

∞∑

j=1

(1 − ρj) = +∞ .

Consider an evolution with increasing prudence, i.e. consider (5.7) with ρ = ρj . Then there is

convergence of ψj to ψ̄ uniformly on the compact subsets of Ω \ {τ = t̄}.

Proof. Since ρj → 1, there is j̄ ∈ N so that for all j ≥ j̄ one has ρj ≥ ρ̄, being ρ̄ as in Theorem 5.5.

From the proof of that theorem, we know that, assuming by symmetry that S1
j̄
≥ S2

j̄
, for all

j ≥ j̄ it is still S1
j ≥ S2

j . Notice also that a trivial calculation ensures

∞∏

j=j̄

ρj = exp

(
ln
( ∞∏

j=j̄

ρj

))
= exp

( ∞∑

j=j̄

ln ρj

)
≤ exp

( ∞∑

j=j̄

−(1 − ρj)
)

= 0 . (5.12)

Keeping in mind (5.10) and the fact that for all j ≥ j̄ it is S2
j ≤ S1

j , we have that S1
j =

S1
j̄

∏j−1
l=j̄

ρl → 0 and so also S2
j → 0; by (5.9), which does not depend on ρj , we deduce that

tj → t̄. Finally, the required convergence of ψj to ψ̄ is shown exactly as in Theorem 5.5

recalling (5.12). �

We now briefly discuss the assumptions of the above theorem: as already said, the meaning

of ρj → 1 is that the people become more and more prudent, or more and more lazy. The

fact that
∑

j(1 − ρj) must diverge tells us that if the prudence goes to 1 too fast, we can have
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convergence to a situation different from the equilibrium: for instance, if ρj = 1 for all j, as

already pointed out we have the full prudence, so that the people do never change their habit,

and so ψj = ψ0 for all j, whatever ψ0 is. Finally, we have this last remark.

Remark 5.8. Notice that the constant ρ̄ of Theorem 5.5 depends on the data of the problem.

Since it is likely that the people only know how long the queues are everyday, but not the

functions f , h1 and h2, a “smart” population does not have enough information to decide a fixed

prudence ρ which ensures the convergence to the equilibrium. However, thanks to Theorem 5.7,

the population can decide a strategy which surely leads to the convergence, that is an increasing

prudence such as, for instance, ρj = 1 − 1/j.

5.3. Evolution with memory. We describe now the second possibility to overcome the un-

satisfactory non-convergence behaviour of the simple evolution modeled in Section 5.1. As

anticipated, the idea is to allow people to have a memory, so that every day they can decide

what to do keeping in mind more than just the queue of the day before. We go back to the

deterministic model, in which the position where a citizen lives completely determines his be-

haviour. Recall that the function G given by (5.5) represents the difference between the queues

at x2 and at x1 if a quantity m(t) of people is going to x1.

In the model of Section 5.1, each citizen assumes that at the day j+1 the queue would have

been the same as in the day j. Here, we give to the people a “memory”: in other words, we take

κ ∈ N, κ > 1, and in this model each citizen guesses that the queue will be approximatively the

average of the queues of the preceding κ days. Therefore, the citizen assumes that the difference

between the queues at x2 and at x1 at the day j + 1 will be

Q =

∑j
m=j−κ+1G(tm)

κ
.

As a consequence, the citizen living at x will decide to go to x1 at the day j + 1 if τ(x) < Q.

We take ψ1, ψ2, . . . , ψκ as data of the problem, which means that for the first κ days we let

the people decide freely how to move (as in Section 5.1, the choice of these ψj ’s will not effect

any of our results). For each n > κ, one has again

ψn(x) =

{
0 if τ(x) < tn
1 otherwise,

but this time the evolution rule is simply

tn+1 =

∑n
m=n−κ+1G(tm)

κ
. (5.13)

We give now the first result of this section, which reduces to Proposition 5.1 in the extreme case

κ = 1.

Theorem 5.9. Assume that h1 and h2 are continuous and non-decreasing. Assume that the

function G given by (5.5) is Lipschitz with constant L < κ. Then tn → t̄ for n → +∞, hence

also ψn → ψ̄ uniformly on the compact subsets of Ω \ {τ = t̄}.

To prove this theorem, we will need the following definition.

Definition 5.10. Given n ∈ N and j ∈ {1, 2, . . . , κ}, we say that the property P j
n(α) holds

true when, given any set I ⊆ {n, n− 1, . . . n− κ+ 1} with #I = j and n ∈ I, there holds
∣∣∣∣
∑

i∈I

[
G(ti) −G(t̄)

]∣∣∣∣ ≤ α . (5.14)
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The fundamental feature of the properties P j
n(α) is given by the lemma below.

Lemma 5.11. Assume that G is L−Lipschitz with a constant L ≤ κ. Then take n ∈ N

and α > 0, and assume that P j
m(α) holds true for any j ∈ {1, 2, . . . , κ} and for any m ∈

{n, n− 1, . . . , n− κ+ 1}. We have then what follows.

(A) For any j ∈ {1, 2, . . . , κ} and for any m > n, one has that P j
m(α) is true.

(B) For any j ∈ {1, 2, . . . , κ} and for any m > n + (j − 1)κ one has that P j
m(Cjα) is true,

where

Cj = 1 −

(
1 −

L

κ

)j

. (5.15)

Before proving the lemma, let us notice how the result of Theorem 5.9 easily follows.

Proof of Theorem 5.9. Let us set n = κ: there exists a positive α such that all the properties

P j
m(α) are valid for j and m in {1, 2, . . . , κ}, since there are a finite number of inequalities of

the type (5.14) to be checked. By part (A) of Lemma 5.11 we know then that all the properties

P j
m(α) hold true for any m ∈ N and 1 ≤ j ≤ κ. Moreover, since the constants Cj are increasing

in j because L < κ, by part (B) we also have that the properties P j
m(Cκα) are valid for any j

and all m > κ+ (κ− 1)κ, that is

m ≥ κ+ κ(κ− 1) + 1 .

By an immediate iteration, we obtain the validity of the properties P j
m(Ch

κα) for all j and all

m ≥ κ+ h
(
κ(κ− 1) + 1

)
.

Since Cκ < 1, the properties with j = 1 are sufficient to deduce that G(ti) − G(t̄) → 0 for

i → ∞, and since G(ti) = ti+1 while G(t̄) = t̄ this ensures that ti → t̄ which is the first part of

the thesis. The second part follows from the first one as already done in Proposition 5.1. �

Let us then prove the lemma.

Proof of Lemma 5.11. We start by proving (A). Let us then fix m̄ > n and j̄. We aim to show

the validity of the property P j̄
m̄(α). We can assume as an inductive hypothesis that P j

m(α) has

already been established

• for all n < m < m̄ and all j;

• for m = m̄ and all j < j̄.

Let us now fix a set I according with Definition 5.10, and let us assume that tm̄ ≤ t̄ (so that

G(tm̄) ≥ G(t̄)), which is clearly admissible by symmetry. Keeping in mind that G(t̄) = t̄, and

then

tm̄ − t̄ =

∑
{m̄−κ≤i<m̄} [G(ti) −G(t̄)]

κ
, (5.16)

we can first give the simple estimate
∑

i∈I

[G(ti) −G(t̄)] = G(tm̄)−G(t̄)+
∑

i∈I\{m̄}

[G(ti) −G(t̄)] ≥
∑

i∈I\{m̄}

[G(ti) −G(t̄)] ≥ −α . (5.17)

Notice that the last inequality is emptily true for j̄ = 1, even in the stronger form where 0 replaces

−α, while for j̄ > 1 it is a consequence of the property P j̄−1
m (α) with m = max{i ∈ I \ {m̄}},

which is already known to hold by assumption.

We must now show also the opposite inequality, that is,
∑

i∈I

[G(ti) −G(t̄)] ≤ α . (5.18)
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To this aim notice that, calling J = {m̄− 1, m̄− 2, . . . , m̄− κ} \ I, one can evaluate

tm̄ − t̄ =

(∑
i∈I\{m̄} [G(ti) −G(t̄)]

)
+
(∑

i∈J [G(ti) −G(t̄)]
)

κ

≥

(∑
i∈I\{m̄} [G(ti) −G(t̄)]

)
− α

κ
,

(5.19)

using P j
m′(α) with m′ = maxJ < m̄ and j = #J . Since in the same way one also has∑

i∈I\{m̄} [G(ti) −G(t̄)] ≤ α, the right term in last inequality is nonpositive: hence, by the

L−Lipschitzianity of G and the fact that L ≤ κ we obtain

G(tm̄) −G(t̄) ≤ L
α−

∑
i∈I\{m̄} [G(ti) −G(t̄)]

κ
≤ α−

∑

i∈I\{m̄}

[G(ti) −G(t̄)] , (5.20)

which gives (5.18). Hence, we have shown (A) in its full generality.

Let us now attack (B), which will be done performing the same estimates as above, but

more carefully. Our proof will be obtained as an induction over j̄, so we must start with the

case j̄ = 1. In fact, this case is trivial: for any m̄ > n, recalling (5.16) we have

∣∣tm̄ − t̄
∣∣ =

∣∣∣∣∣

∑
{m̄−κ≤i<m̄} [G(ti) −G(t̄)]

κ

∣∣∣∣∣ ≤
α

κ
, (5.21)

and hence by the L−Lipschitzianity of G one has

∣∣G(tm̄) −G(t̄)
∣∣ ≤ L

κ
α ;

this means that for any m̄ > n one has the validity of P 1
m̄(C1α) with C1 = L

κ , which coincides

with (5.15).

We now take 1 < j̄ ≤ κ, suppose by induction that (B) has been proved for any j < j̄,

and try to obtain the thesis. We take then m̄ > n+ (j̄ − 1)κ, a set I as in Definition 5.10 and,

as before, to fix the ideas we start assuming without loss of generality that tm̄ ≤ t̄. Since, as a

consequence, we have G(tm̄) ≥ G(t̄), it is immediate to give the lower bound. Indeed, exactly

as in (5.17), we can estimate

∑

i∈I

[G(ti) −G(t̄)] = G(tm̄) −G(t̄) +
∑

i∈I\{m̄}

[G(ti) −G(t̄)] ≥
∑

i∈I\{m̄}

[G(ti) −G(t̄)]

≥ −Cj̄−1α ≥ −Cj̄α .

(5.22)

To do so, we have used that Cj̄−1 ≤ Cj̄, which is clear by the definition (5.15), and we have also

used the validity of P j̄−1
m′ (Cj̄−1α) where m′ = max{i ∈ I \ {m̄}}. And in turn, P j̄−1

m′ (Cj̄−1α) is

true by the inductive assumption and since

m′ > m̄− κ > n+ (j̄ − 1)κ− κ = n+ (j̄ − 2)κ .

To conclude the proof, we need then to show the upper bound, that is,
∑

i∈I

[G(ti) −G(t̄)] ≤ Cj̄α . (5.23)
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We start exactly as we did to show (5.18) in the proof of (A); more precisely, we keep in mind

the first inequality in (5.20), which has already been proved above, that is

G(tm̄) −G(t̄) ≤ L
α−

∑
i∈I\{m̄} [G(ti) −G(t̄)]

κ
.

In order to use in a more careful way the L-Lipschitzianity of G, we rewrite the last inequality

in the equivalent form

G(tm̄) −G(t̄) ≤
L

κ
α−

L

κ

∑

i∈I\{m̄}

[G(ti) −G(t̄)] ,

from which we obtain, using again some P j̄−1
m′ (Cj̄−1α) of which we already know the validity by

inductive assumption, that
∑

i∈I

[G(ti) −G(t̄)] ≤
L

κ
α+

(
1 −

L

κ

) ∑

i∈I\{m̄}

[G(ti) −G(t̄)]

≤
L

κ
α+

(
1 −

L

κ

) ∣∣∣∣∣
∑

i∈I\{m̄}

[
G(ti) −G(t̄)

]∣∣∣∣∣ ≤
L

κ
α+

(
1 −

L

κ

)
Cj̄−1α

=

[
L

κ
+
(
1 −

L

κ

)(
1 −

(
1 −

L

κ

)j̄−1
)]
α = Cj̄α ,

(5.24)

hence (5.23) is established and we have completed the proof. �

As in the previous cases, we can give a counterexample to show that a small memory

coefficient κ could be not enough to guarantee convergence.

Example 5.12 (Non-convergence). This example is very similar to the ones in Examples 5.3

and 5.6: take a small city with the two supermarkets, and assume that the first supermarket can

have a long queue, but the second one can have a much longer one. Take the memory coefficient

κ = 2, and assume that in the days 0 and 1 everybody goes to the first supermarket. This gives,

for the days j = 0 and j = 1, an average queue which is high for the first supermarket and null

for the second one: hence, at the day j = 2 everybody will go to the second supermarket. The

average queue for the days j = 1 and j = 2, then, is high for the first shop but very high for

the second, thus everybody will go back to the first one at the day j = 3. Again, the average

queue for the days j = 2 and j = 3 will be high in the first supermarket and very high for the

second one, so also at the day j = 4 everybody will go to the first one. But then, at the day

5 all the people will move to the second one because the average queue for the days j = 3 and

j = 4 is all at the first one. This procedure is clearly periodic with a period of 3 days and so

the situation does not converge to the equilibrium. It is obvious how to modify the example to

show that any memory coefficient κ can be not enough for a suitable choice of Ω, f , h1 and h2.

Let us give also a “precise” counterexample to show the exact role of the assumption L < κ.

Example 5.13. Let us take a situation so that G(t) = −2t for −3 ≤ t ≤ 3. Assume also that

κ = 2 and t0 = t1 = −1. Then it is immediate to deduce by (5.13) that it will be tj = −1 for all

j ≡ 0 (mod 3) or j ≡ 1 (mod 3), while tj = 2 for all j ≡ 2 (mod 3).

In the example above there is no convergence even though the Lipschitz constant L coincides

with the memory coefficient κ, and it is immediate to modify the example to find a situation with

no convergence with L = κ for any κ. This ensures that the assumption L < κ in Theorem 5.9
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is almost sharp. Indeed, we can slightly strengthen the assumption of Theorem 5.9 covering

also the situation in which L = κ but the Lipschitzianity is strict. We recall that a function

ϕ : X → Y is said strictly Lipschitz with constant L if for any x1 6= x2 in X one has
∥∥ϕ(x1) − ϕ(x2)

∥∥
Y
< L‖x1 − x2‖X .

We have the following result.

Theorem 5.14. Assume that h1 and h2 are continuous and non-decreasing and that the function

G given by (5.5) is strictly Lipschitz with constant κ. Then tn → t̄ for n → +∞, hence also

ψn → ψ̄ uniformly on the compact subsets of Ω \ {τ = t̄}.

Proof. We start by recalling that the result of Lemma 5.11 has been proved also in the case

L = κ; therefore, we can start as in the proof of Theorem 5.9 finding a constant ᾱ and knowing

that all the properties P j
m(ᾱ) with 1 ≤ j ≤ κ and m ∈ N are valid. However, for L = κ all the

constants Cj given in (5.15) are all equal to 1, so obtaining P j
m(Ch

j ᾱ) is of no help.

We now claim what follows: there exists a continuous and decreasing function ξ : R
+ → R

+

such that ξ(α) < α for all α > 0, with the property that if all the P j
m(α) with 1 ≤ j ≤ κ and

m ≥ n are valid, then all the P j
m(ξ(α)) with 1 ≤ j ≤ κ and m > n+ κ(κ− 1) hold. Notice that

this will immediately give the thesis, because for any h ∈ N we will have, for m big enough, all

the properties P j
m(ξh(α)), and by the continuity of ξ the sequence h 7→ ξh(ᾱ) must converge to

0.

To conclude the proof we take α > 0 and we suitably modify the proof of Lemma 5.11 for

the case of L = κ but with the strict Lipschitzianity, so to show the existence of the desired

constant ξ(α) < α. Our plan is to find constants αj < α for 1 ≤ j ≤ κ in such a way that P j
m(αj)

is true for m > m̄+ κ(j − 1). The key idea is the following: since G is strictly κ−Lipschitz, for

any ε ∈]0, α[ there exists κε < κ so that
∣∣G(t) −G(t̄)

∣∣ ≤ κε|t− t̄| , for all t ∈ [t̄− α, t̄− ε] ∪ [t̄+ ε, t̄+ α] : (5.25)

this is trivial by compactness, but it will also be very useful for our purpose. We start arguing

by induction. The case j = 1 is very easy: indeed, we already noticed in (5.21) that for all

m̄ > n one has |tm̄ − t̄| ≤ α/κ. Then we can fix an arbitrary ε < α/κ. If |tm̄ − t̄| < ε, then by

Lipschitzianity of G we have ∣∣G(tm̄) −G(t̄)
∣∣ ≤ κε ;

on the other hand, if |tm̄ − t̄| ≥ ε, by making use of (5.25) we know that
∣∣G(tm̄) −G(t̄)

∣∣ ≤ κε|tm̄ − t̄| ≤
κε

κ
α .

Hence we obtain the case j = 1 with α1 = min{κεα/κ, κε} < α.

Consider now the case 1 < j ≤ κ, and assume that the claim has been already proved up to

j− 1. Let us begin as in Lemma 5.11: supposing that tm̄ ≤ t̄ by symmetry, as in (5.22) we have
∑

i∈I

[
G(ti) −G(t̄)

]
= G(tm̄) −G(t̄) +

∑

i∈I\{m̄}

[
G(ti) −G(t̄)

]

≥
∑

i∈I\{m̄}

[
G(ti) −G(t̄)

]
≥ −αj−1

(5.26)

and the estimate from below is done. Concerning the estimate from above, there are again two

cases to consider: fix an arbitrary

ε <
α− αj−1

κ
.
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If |tm̄ − t̄| < ε, then
∑

i∈I

[G(ti) −G(t̄)] ≤ κε+
∑

i∈I\{m̄}

[G(ti) −G(t̄)] ≤ κε+ αj−1 < α . (5.27)

On the other hand, if |tm̄ − t̄| ≥ ε, we can use (5.25) to derive, from (5.19) which says

tm̄ − t̄ ≥

(∑
i∈I\{m̄} [G(ti) −G(t̄)]

)
− α

κ
,

the estimate

G(tm̄) −G(t̄) ≤
κε

κ

(
α−

( ∑

i∈I\{m̄}

[G(ti) −G(t̄)]
))

.

Therefore, we mimic (5.24) to find
∑

i∈I

[G(ti) −G(t̄)] ≤
κε

κ
α+

(
1 −

κε

κ

) ∑

i∈I\{m̄}

[G(ti) −G(t̄)] ≤
κε

κ
α+

(
1 −

κε

κ

)
αj−1 . (5.28)

Recalling (5.26), (5.27) and (5.28), we obtain the inductive step of the claim by setting

αj := max

{
αj−1, κε+ αj−1,

κε

κ
α+

(
1 −

κε

κ

)
αj−1

}
< α .

We finally set ξ(α) = ακ = maxj=1,...,κ αj ; since the continuity of this map ξ is clear by the

construction, the proof is obtained. �

We conclude the paper with a last result in the same philosophy of Theorem 5.7, in which we

considered a prudence increasing in time: we consider what happens with an increasing memory.

More precisely, we focus on the case of “global memory”, where the citizens remember all the

previous days and then the definition (5.13) must be replaced by

tn+1 =

∑n
m=1G(tm)

n
. (5.29)

We can show that there is always convergence with global memory, and this leads exactly to the

same considerations as in Remark 5.8.

Theorem 5.15 (Global memory). Assume that h1 and h2 are continuous and non-decreasing.

Assume that the function G is Lipschitz, and that the evolution is given by the global mem-

ory (5.29). Then tn → t̄ and so ψn → ψ̄ uniformly on the compact subsets of Ω \ {τ = t̄}.

Proof. We can rewrite (5.29) in a useful way as

tn+1 − t̄ =
(
1 −

1

n

)(
tn − t̄) +

1

n

(
G(tn) −G(t̄)

)
.

Take then n ∈ N and assume for simplicity that tn ≥ t̄, so that G(tn) ≤ G(t̄): we can estimate

tn+1 − t̄ ≤
(
1 −

1

n

)(
tn − t̄

)
,

tn+1 − t̄ ≥
1

n

(
G(tn) −G(t̄)

)
≥ −

L

n

(
tn − t̄

)
;

as a consequence, provided n is big enough, regardless of the sign of tn − t̄ we have

∣∣tn+1 − t̄
∣∣ ≤

(
1 −

1

n

)∣∣tn − t̄
∣∣ .

Since Π∞
n=1

(
1 − 1/n

)
= 0, this immediately leads to the thesis. �
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Remark 5.16. One can of course consider a lot of other “schemes of memory”. For instance,

one could have a global memory with different weights for older days, such as

tn+1 =

n∑

m=1

1

2m(1 − 2−n)
G(tm) ,

where the term (1 − 2−n) is put to let the sum of the coefficients equal 1. It is not hard to

notice that our method of proof can be easily adapted to a generality of those “schemes”: it

is important that tn+1 is given by a mean of terms G(tj) for some times j ≤ n and that the

associated coefficients are decreasing as the days become older; that is,

tn+1 =

n∑

m=1

C(n,m)G(tj)

with 0 ≤ C(n,m) ≤ 1,
∑n

m=1 C(n,m) = 1 and C(n,m) ≤ C(n,m′) for m < m′. In these cases

one has the desired convergence provided G is L-Lipschitz with a suitable constant L as well as

general convergence for a Lipschitz G for reasonable global schemes of memory.

References

[1] L. Ambrosio, Lecture Notes on Optimal Transport Problems. Mathematical aspects of evolving interfaces,

CIME Summer School in Madeira, vol. 1812, Springer, 2003.

[2] L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems.

Oxford University Press (2000).

[3] L. Ambrosio, B. Kirchheim & A. Pratelli, Existence of optimal transport maps for crystalline norms. Duke

Math. J. 125 (2004), no. 2, 207–241.

[4] L. Ambrosio & A. Pratelli, Existence and stability results in the L
1 theory of optimal transportation.

Optimal transportation and applications (Martina Franca, 2001), 123–160, Lecture Notes in Math., 1813,

Springer, Berlin, 2003.

[5] J.-P. Aubin, Optima and equilibria. An introduction to nonlinear analysis. Translated from the French

by Stephen Wilson. Second edition. Graduate Texts in Mathematics, 140. Springer-Verlag, Berlin, 1998.

xviii+429 pp.
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