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Abstract

Existence and regularity of minimizers for a geometric variational problem is shown. The vari-
ational integral models an energy contribution of the interface between two immiscible fluids in
the presence of surfactants and includes a Helfrich type contribution, a Frank type contribution
and a coupling term between the orientation of the surfactants and the curvature of the interface.
Analytical results are proven in a one–dimensional situation for curves.
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1 Introduction

The importance of surfactants for the formation of interfaces between immiscible fluids has been
recognized a long time ago. Even today, a mathematical analysis of the evolution of such a system
driven by the motion of the fluids, the elasticity of the interface, and the interplay of the curvature of
the interface with the surfactants and their orientation is not feasible, see, however, [30] for a model
that combines classical membrane elasticity with fluid dynamics, but does not include a director field
describing the surfactants. If one does not consider the motion of fluids, the situation is different, as
we will explain later in the introduction, listing literature on the Helfrich functional. In this article,
we investigate a very specific aspect of such a system, namely the interaction of the orientation of
surfactant molecules with the curvature of the interface in a one–dimensional situation, that is, for
interfaces that are given by curves in the plane, a dynamical model for two-dimensional surfaces
in three-dimensional space will be investigated in [11]. Inspired by Laradji and Mouritsen [29] we
study the functional

ELM (γ, η) =
1

2

∫
γ
(κ+ δ divγ η)2 ds+

λ

2

∫
γ
|∇γη|2 ds+ L(γ) = E(γ, η) + L(γ) , (1.1)

with λ, δ ∈ R, λ > 0 ,
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where the surfactants are modeled by a director field η; see Section 2 for the precise definitions of the
curvature κ and the differential operators on curves; if γ is a simple closed curve, then the functional
is the geometric functional defined on the trace of γ. Thus the term divγ η serves as a spontaneous
curvature the existence of which has been postulated in models related to lipid bilayers and for
the Helfrich model [26]. Specifically, we focus on the static case and investigate the existence of
minimizers of ELM , where, in view of applications, one can augment the variational problem with
additional constraints on the length of the curve, the enclosed volume, or the length of the surfactants.
This case serves as a study for potential equilibrium states for a dynamical system driven by the L2

gradient flow of the system, see Section 5 for more information.
Motivated by this functional, it is the scope of this article to begin the analysis of geometric function-
als which do not only involve a curve, or, more generally, a manifold Γ, and objects derived from it
like its surface area or its mean curvature, but functionals which combine geometric properties of the
manifold with an independent vector field defined on the manifold and which include the interac-
tion of the manifold with this vector field. In our one–dimensional model, the first term contains the
curvature κ = −divγ ν and assigns, for δ = 1 and in the presence of the constraint |η| = 1, energy
to the deviation of the orientation of the surfactants from the normal direction. The second term is a
Frank energy term that is common in models for liquid crystals and structured fluids.
It is important to note that the functional is invariant under some changes of variables and that the
terms in the energy have specific scaling properties. The signed curvature κ = 〈∂ssγ, (∂sγ)⊥〉 is
invariant under orientation preserving changes of variables, and thus

∀ϕ ∈ H2([0, 2π]; [0, 2π]) diffeo with ϕ′ > 0 on [0, 2π] : ELM (γ, η) = ELM (γ ◦ ϕ, η ◦ ϕ) (1.2)

where ϕ : [0, 2π] → [0, 2π] is an orientation preserving reparametrization of γ, see Section 2.2 for
details. However, κ does change its sign if the change of variables is not orientation preserving.
Therefore a change of orientation of γ has to be compensated by a change of sign in η. An alternative
formulation of the energy is obtained by choosing a fixed normal field ν associated to Γ and replacing
κ by ~κ = −(divΓ ν)ν. The last object is again a geometric object that does not change upon any change
of coordinates.
Since the curvature has units of one over length and since the integral has units of length, a scaling
argument shows that it is necessary to penalize the length of the curve in order to avoid a dilation to
infinity. More precisely, for R ∈ R, R > 0,

ELM (Rγ, η) =
1

R

[1

2

∫
γ
(κ+ δ divγ η)2 ds+

λ

2

∫
γ
|∇γη|2 ds

]
+RL(γ) .

This observation motivates the third term in the energy ELM . In the mathematical literature, the
modeling and the discussion of variational models involving a coupling between the orientation of
surfactants and the curvature of the interface started in [5, 6, 10] and was also investigated in [9].
Liquid crystals on deformable surfaces were also considered in [32].
In this paper we restrict our attention to the minimization in the class of immersions. In contrast
to the evolution problem for the gradient flow of the energy, where a natural initial configuration is
given by an embedding and for which the flow stays embedded for a positive time, minimization
in the class of embeddings may not lead to an embedded minimizer. Therefore we formulate the
minimization in the class H2

imm. It is an open problem to characterize the relaxation of ELM , that is,
to describe all pairs (γ, η) ∈ H2

per ×H1
per that are limits of sequences (γk, ηk)k∈N ∈ H2

emb ×H1
per with

uniformly bounded energy.
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Our model is inspired by and closely related to models for biological membranes as proposed by
Canham [13] and Helfrich [26]. The Helfrich functional has the general form

FH(S) =

∫
S
κ1(H −H0)2 + κ2K dσ,

where S denotes a smooth surface in R3, H and K are the mean curvature and the Gauß curvature of
S, respectively, and κ1, κ2, H0 are constants. In particular κ1 and κ2 are the relevant curvature–elastic
moduli and H0 is the spontaneous curvature, originally introduced to allow for chemically different
sides of the bilayer. In this model, the shape of the membrane is a minimizer of FH among a suitable
class of surfaces. In the last decades the study of the Helfrich functional has inspired a lot of work in
the mathematical community.
There are several contributions on the minimization problem [22, 35], even in the case of more than
one surface [12, 14, 15]. Moreover there is no lack of stability results [8, 23] and also the associ-
ated Dirichlet boundary value problem has been considered [17, 21]. The Helfrich functional can
be interpreted as the singular limit of a suitable approximating functional defined on diffuse inter-
faces [7, 27, 28]. In [31, 33] an interfacial energy arising from the hydrophobic effect is taken into
account and it is shown that lipid bilayers favour partial localization and display resistance to bend-
ing, stretching and fracture. Considerably less has been done concerning the associated evolution
equations, but see, for example, [4, 16].
The paper is organized as follows: In Section 2 we introduce the notation used throughout the paper
and summarize results we use in the proofs. We include a short discussion of differential operators
on curves and discuss the definition of ELM and relations between ELM and geometric functionals.
The proof of the existence of minimizers for the variational integral ELM is presented in Section 3
and the regularity in Section 4, which, in fact, contains regularity for arbitrary critical points. The
existence and regularity results include constraints on the length of the curve, the enclosed area, and
the length of the surfactants. The concluding Section 5 indicates possible extensions of our model to
dynamic equations that arise as the L2 gradient flow of the functional and the Appendix contains the
derivation of the Euler-Lagrange equations.
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Cohomology”. The paper was carried out also during a visit of Georg Dolzmann at University of
Pisa supported by PRIN 2017 “Variational methods for stationary and evolution problems with sin-
gularities and interfaces”.

2 Notation and preliminary results

In this article we fix the orientation of a curve, and do not consider orientation reversing reparametriza-
tions. Moreover, the energy ELM depends only on derivatives of γ and η and we need to introduce
a normalization in order to obtain uniqueness results. Unless otherwise stated, we therefore assume
the following hypotheses which we refer to as (H):

(H1) the constants δ, λ ∈ R satisfy λ > 0; in general, no assumption on the sign of δ is made;
dependence of constants on δ and λ is not indicated;
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(H2) the functions (γ, η) are elements of H2
imm([0, 2π];R2) × H1

per([0, 2π];R2) defined below, L(γ)
denotes the length of γ, and

|∂xγ(x)| = L(γ)

2π
for allx ∈ [0, 2π] ; (2.1)

(H3) after a suitable translation it is assumed ∫ 2π

0
γ dx = 0 ; (2.2)

(H4) since only∇γη is included in ELM , it is supposed that∫ 2π

0
η dx = 0 . (2.3)

Therefore an L2–bound on the derivative of γ and η implies by Poincaré’s inequality a corresponding
L2–bound on the functions themselves. The assumption (H4) on η is not imposed in the presence of
the constraint |η|2 = 1 on η; if this constraint holds, then the L2–norm of η is bounded by the length
of the curve. We stress the fact that, because of the invariance property (1.2) and the geometric nature
of the problem, there can only be uniqueness up to reparametrization and up to rigid motions. The
hypotheses (H2), (H3) and (H4) fix parametrisation and translations, but rotations are still allowed.

2.1 Curves

A regular curve is a differentiable curve γ : [0, 2π]→ R2 with ∂xγ 6= 0 and a plane curve is an element
in the set H2

imm defined by

H2
imm = H2

imm([0, 2π];R2) = {γ ∈ H2([0, 2π];R2) : γ regular, γ(0) = γ(2π), ∂xγ(0) = ∂xγ(2π)} .

All functions are extended by periodicity to R if needed and the set H2
imm is seen as an open subset

of the Banach space H2
per where

Hk
per = Hk

per([0, 2π];R2) = {γ ∈ Hk([0, 2π];R2) : ∂`xγ(0) = ∂(`)
x γ(2π) for ` = 0, . . . , k − 1} , k ∈ N ,

if differentiability of operators is considered. The arc length derivative of a regular curve is given by
∂sγ = |∂xγ|−1∂xγ. The change of variables that leads to an arc length parametrization leaves the class
of H2 immersions invariant. More generally, if a regular curve admits a parametrization of class Ck,
then its reparametrization by arc length is still of class Ck (see [1, Theorem 1.2.11]). The proof can be
adapted to the Sobolev space H2, for a sketch see the Appendix.
The unit tangent vector is denoted by τ = ∂xγ/|∂xγ| = ∂sγ and the unit normal vector by ν = Jτ
where J is the counterclockwise rotation in the plane by π/2. The oriented curvature of a plane curve
is the scalar function κ : [0, 2π] → R defined by ∂sτ = κν and the curvature vector ~κ is given by
~κ = ∂sτ = ∂ssγ. The length and the enclosed (signed) area of a differentiable curve are interpreted as
functionals L : H2

imm → [0,∞) and A : H2
imm → R defined by

L : γ 7→ L(γ) =

∫ 2π

0
|∂xγ(x)| dx =

∫
γ

1 ds , A : γ 7→ A(γ) = −1

2

∫ 2π

0
〈γ, J∂xγ〉dx = −1

2

∫
γ
〈γ, ν〉ds .
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Since η represents the local average of surfactants, it is reasonable to introduce a constraint on the
length of η as well. For simplicity, we choose the pointwise constraint |η|2 = 1 which we formulate
with the mapping

S : H1
per([0, 2π];R2)→ H1

per([0, 2π]) , η 7→ |η|2 − 1 .

Since H1
per is a Banach algebra, S is defined on H1

per. Our analysis uses the following theorem on
the existence of Lagrange multiplicators [18, Theorem 26.1]. We denote the Fréchet derivative of a
differentiable function F : X → Y by F ′, the topological dual of a Banach space X by X∗, and the
adjoint operator for a linear and bounded map T ∈ L(X,Y ) by T ∗ ∈ L(Y ∗, X∗).

Theorem 2.1. Let X , Y be real Banach spaces, B(x0, r) ⊂ X , Φ : B(x0, r) → R and F : B(x0, r) → Y
continuously differentiable, F (x0) = 0 and R(F ′(x0)) closed. Suppose also that

Φ(x0) = min{Φ(x) : x ∈ B(x0, r) and F (x) = 0} .

Then there exist “Lagrange multipliers” λ ∈ R and y∗ ∈ Y ∗, not all zero, such that

λΦ′(x0) + (F ′(x0))∗y∗ = 0 in X∗ .

If R(F ′(x0)) = Y , then λ 6= 0.

We say that a constraint is admissible if its Fréchet derivative is onto. In view of the embedding
H2
imm ↪→ C1,α for all α ∈ [0, 1/2], there exists for all γ0 ∈ H2

imm an r > 0 such that the ball with radius
r in H2

per is contained in H2
imm. Therefore the Fréchet derivatives L′(γ0) and A′(γ0) are defined and

one can verify the assumptions in Theorem 2.1.

Lemma 2.1. Suppose that γ0 ∈ H2
imm([0, 2π];R2), |∂xγ0| = L0/2π, and that η0 ∈ H1

per([0, 2π];R2) with
|η0| = 1 on [0, 2π]. Then there exists an r > 0 such that the functionals L, A, and S define admissible
constraints in the sense of Theorem 2.1 onB(γ0, r) ⊂ H2

per which we refer to as (L), (A), and (S). Additionally,
the functional G : H2

imm → R2, γ 7→ (L(γ), A(γ)) defines an admissible constraint unless γ0 has constant
curvature.

Proof. For simplicity we write ds for the arc length with respect to γ0, we add the subscript 0 to the
geometric quantities related to γ0, and we write L0 = L(γ0). An integration by parts shows that for
all functions ϕ ∈ H1

per([0, 2π];R2) and η ∈ H1
per([0, 2π];R2)

L′(γ0)[ϕ] =

∫ 2π

0
〈τ0, ∂xϕ〉 dx = −

∫ 2π

0
〈∂xτ0, ϕ〉 dx = −

∫
γ
〈κ0ν0, ϕ〉ds , S′(η0)[η] = 2〈η0, η〉R2

while by the identity JT = −J and ν0 = J∂xγ0/|∂xγ0|

A′(γ0)[ϕ] = −1

2

∫ 2π

0
〈ϕ, J∂xγ0〉+ 〈γ0, J∂xϕ〉 dx

= −1

2

∫ 2π

0
〈ϕ, J∂xγ0〉 − 〈JT∂xγ0, ϕ〉dx = −

∫
γ
〈ν0, ϕ〉ds ,

see also [24, Lemma 2.2].
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We first prove that the range of G′(γ0) on H1
per is one–dimensional if and only if κ0 is constant. In

view of the formulas for the Fréchet derivative, the assumption that κ0 is constant is sufficient for the
range of G being one–dimensional. Conversely, suppose that the range is one–dimensional, that is,
that there exists a λ ∈ R with

L′(γ0)[ϕ] = λA′(γ0)[ϕ] ⇔
∫
γ
(κ0 − λ)〈ν0, ϕ〉ds =

∫ 2π

0
(κ0 − λ)〈J∂xγ0, ϕ〉 dx = 0 for all ϕ ∈ H1

per .

Since γ0 ∈ H2
imm and ∂xγ0 ∈ H1

per, we may use for any g ∈ C∞c ([0, 2π]) the test function ϕ = gν0 =

2πgL−1
0 J∂xγ0. By the fundamental lemma of the calculus of variations, one gets κ0 = λ a.e.

Suppose now that κ0 is not constant. Denote for an integrable function f its average by f . We first
show that there exists a function f ∈ C∞c ((0, 2π)) with f = 0 and

∫ 2π
0 κ0f dx 6= 0. To see this,

suppose the assertion were not true. By definition (as f(0) = f(2π) = 0), for all f ∈ C∞c ((0, 2π)) the
function f ′ ∈ C∞c ((0, 2π)) has average zero and therefore by a variant of the fundamental lemma in
the calculus of variations, often referred to as du Bois-Raymond Lemma, see [25, Lemma 2 on Page
10], ∫ 2π

0
κ0f

′ dx = 0 ⇒ κ0 = const ,

a contradiction.
To prove the Lemma, it suffices to show that G and S define admissible constraints. To simplify
constants we choose ϕ = ν0 = 2πL−1

0 J∂xγ0 ∈ H1
per and the last formula for L′ shows that G′(γ0)[ϕ] =

G′(γ0)[ν0] =
(
−
∫
γ κ0 ds,−L0

)
.

Since κ0 ∈ L2, this defines a vector in a double cone about the e2 axis with opening angle less than π.
To prove that G′ is onto, it thus suffices to find a different choice for ϕ which leads to a vector which
is linearly independent, for example in a double cone about the e1 axis with arbitrarily small opening
angle. Fix f ∈ C∞c ((0, 2π)) with f = 0 and

∫ 2π
0 κ0f dx 6= 0. By definition of G′, G′ is defined for

ϕ = fν0 = f2πL−1
0 J∂xγ0 ∈ H1

per with

G′(γ0)[fν0] =
(
−
∫
γ
κ0f ds,−

∫
γ
f ds

)
= −

(∫
γ
κ0f ds

)
e1 6= 0 .

Thus G′(γ0)[fν0] is parallel to the e1 axis, does not vanish, and is not contained in the double cone
about the e2 axis that was determined in the first step. SinceH2

per lies dense inH1
per and all expressions

are linear in ϕ, the map G′ is also onto if restricted to its domain H2
per.

Finally, if |η0| = 1, then the map S′(η0)[·] is onto. Indeed, if ψ ∈ H1
per([0, 2π]) is given, then the

function η = (1/2)ψη0 satisfies S′(η0)[η] = ψ.

2.2 Differential operators on curves and the definition of ELM

In this section, we present differential operators on manifolds, their special form on curves in the
plane, and we define the notation used in the definition of ELM . For a curve γ ∈ H2

per([0, 2π];R2) its
trace Γ ⊂ R2 is defined by Γ = γ([0, 2π]). If γ ∈ H2

emb with

H2
emb = H2

emb([0, 2π];R2) = {γ ∈ H2
imm([0, 2π];R2) : γ simple and closed}

6



is an embedding, then Γ is an embedded manifold for which γ−1 is a chart and for which the usual
geometric derivatives of scalar functions f and arbitrary vector fields η along Γ are defined at p =
γ(x) by

∇Γf(p) =
∂x(f ◦ γ)(x)

|∂xγ(x)|
∂xγ(x)

|∂xγ(x)|
, divΓ η(p) =

〈∂x(η ◦ γ)(x)

|∂xγ(x)|
,
∂xγ(x)

|∂xγ(x)|

〉
.

Moreover,∇Γη = e1 ⊗∇Γη1 + e2 ⊗∇Γη2 is a matrix which contains the gradients of the components
as rows. Note that ∇Γ is the dual operator to divΓ in the following sense: suppose that f ∈ H1(Γ)
and η ∈ H1(Γ;R2), then the formula for integration by parts holds,∫

Γ
f divΓ η ds = −

∫
Γ
〈∇Γf, η〉ds−

∫
Γ
κf〈η, ν〉 ds .

With these definitions in place, one defines the geometric functional

EgLM (Γ, η) =
1

2

∫
Γ
(κ+ δ divΓ η)2 ds+

λ

2

∫
Γ
|∇Γη|2 ds+ L(Γ) .

If γ ∈ H2
imm is merely an immersion, then Γ is not necessarily a manifold, but still many geometric

quantities may be defined locally as well. In fact, since H2
imm ↪→ C1, for each x ∈ [0, 2π] there exists

an ε > 0 such that γ restricted to (x − ε, x + ε) is injective. Define Γx,ε = γ((x − ε, x + ε)). Then
γ|−1

(x−ε,x+ε) : Γx,ε → (x − ε, x + ε) is a chart, and if f : Γx,ε → R is a function and η : Γx,ε → R2 is a
vector field, then∇Γf and divΓ η may be defined as before.
This local representation of Γ leads to a local definition of vector fields η along Γ = γ([0, 2π]) with
γ ∈ H2

imm. In this case, η is said to be a vector field along Γ if it is defined by vector fields ηx,ε on all
the sets Γx,ε and if for (x − ε, x + ε) ∩ (x′ − ε′, x′ + ε′) 6= ∅ the compatibility condition ηx,ε = ηx′,ε′

on γ((x− ε, x+ ε) ∩ (x′ − ε′, x′ + ε′)) holds. Consequently, on (x− ε, x+ ε) the composition η ◦ γ is
defined. For simplicity we write η ◦ γ without explicit reference to the local definition. We say that
η ∈ H1(Γ) if it is a vector field along Γ and η ◦ γ is of class H1. With this local definition, one can
extend EgLM to Γ = γ([0, 2π]) for curves that are not embeddings and vector fields η along Γ based
on the local definition.
However, this local definition requires a local decomposition of [0, 2π] for a given curve γ ∈ H2

imm

and is not well adapted to minimization problems. Therefore we use the following identification in
the case of embeddings as a guideline for the definition of the functional ELM which consequently
coincides with the corresponding functional using the usual geometric definitions in the case of em-
beddings. If γ is an embedding with trace Γ, then there is a one-to-one correspondence between
points p ∈ Γ and x ∈ [0, 2π] and we can identify a function f : Γ → R and a vector field η : Γ → R
with the function f̃ : [0, 2π] → R, x 7→ f̃(x) = (f ◦ γ)(x) and the vector field η̃ : [0, 2π] → R2,
x 7→ η̃(x) = (η ◦ γ)(x). We define

∫
γ f ds =

∫ 2π
0 f(x)|∂xγ(x)| dx,

∇γ f̃(x) =
∂xf̃

|∂xγ|
∂xγ

|∂xγ|
, divγ η̃(x) =

〈 ∂xη̃

|∂xγ|
,
∂xγ

|∂xγ|

〉
and we see that the formula for integration by parts now holds in the form∫

γ
f̃ divγ η̃ ds = −

∫
γ
〈∇γ f̃ , η̃〉 ds−

∫
γ
κf̃〈η̃, ν〉 ds .
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The definition of the energy EgLM for a simple closed curve is now given in the chart γ by

EgLM (Γ, η) =
1

2

∫ 2π

0

(
κ(x) + δ

〈 ∂xη̃

|∂xγ|
,
∂xγ

|∂xγ|

〉)2
|∂xγ|dx+

λ

2

∫ 2π

0

∣∣∣ ∂xη̃|∂xγ| ⊗ ∂xγ

|∂xγ|

∣∣∣2|∂xγ| dx+ L(γ)

= ELM (γ, η̃)

and this expression serves as definition of ELM in the case that γ is not an embedding. The mini-
mization for ELM is thus carried out on function spaces defined on [0, 2π]. From now on, we write
f = f̃ and η = η̃ in the definition of ∇γ and divγ . In particular, if ϕ ∈ C1([0, 2π]; [0, 2π]) is a strictly
increasing diffeomorphism and if γ̃ = γ ◦ ϕ and f̃ = f ◦ ϕ, then at p = γ̃(y) = γ̃(ϕ−1(x)) = γ(x),

∇γ̃ f̃(y) =
∂yf̃

|∂yγ̃|
∂yγ̃

|∂yγ̃|
(y) =

∂xf

|∂xγ|
∂xγ

|∂xγ|
(ϕ(y)) =

∂xf

|∂xγ|
∂xγ

|∂xγ|
(x) = ∇γf(x) .

The calculation for divγ η is analogous and establishes (1.2). Along the same lines, the local definition
of EgLM is equivalent to the definition of ELM .

3 Existence of minimizers

The existence of minimizers follows with the direct method in the calculus of variations. If (γk, ηk)k∈N
is a minimizing sequence, then, by (1.2), we may assume that |γ̇k| = L(γk)/2π and that L(γk) is
bounded by the energy. The Gauß-Bonnet theorem provides a uniform L2–bound on the curvature
which, under the hypothesis (H), for a plane curve, gives a uniform bound on the H2–norm of γ.
Weak compactness in this space together with the compact embedding into H1 and the lower semi-
continuity of the variational integral imply the assertion.

Lemma 3.1 (Bounds on geometric quantities). Let (γ, η) ∈ H2
imm([0, 2π];R2)×H1

per([0, 2π];R2) satisfy
the a priori bound ELM (γ, η) ≤ C0 <∞. Then∫

γ
κ2 ds ≤ 2(λ+ δ2)

λ
C0 = C̃ and c̃ =

2π2λ

C0(λ+ δ2)
≤ L(γ) ≤ C0 .

Proof. For simplicity we assume δ ≥ 0, the proof for δ ≤ 0 is analogous. Moreover, if a plane curve is
a simple closed curve with positive orientation, then the total curvature is 2π. More generally, if the
curve is a plane curve, then the total curvature is an integer multiple of 2π [34] and does not vanish
either. After changing the orientation of γ and the sign of η, if needed, we may assume that the total
curvature of γ is greater than or equal to 2π.
We begin by showing the bound on the L2–norm of the curvature of γ. We first derive a lower bound
on the quantity (κ+ δ divγ η)2 in terms of κ2 and (divγ η)2. Using the generalized Young’s inequality
in the form |ab| ≤ (ε/2)a2 + 1/(2ε)b2 with a = δκ, b = divγ η and ε = 1/(λ+ δ2) > 0 we get

δκdivγ η ≥ −
δ2

2 (λ+ δ2)
κ2 − λ+ δ2

2
(divγ η)2 . (3.1)
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Since ‖ divγ η‖L2 ≤ ‖∂sη‖L2 , we obtain for E defined in (1.1)

E(γ, η) ≥
∫
γ

κ2

2
+
δ2

2
(divγ η)2 + δκdivγ η +

λ

2
|∂sη|2 ds

≥
∫
γ

λκ2

2 (λ+ δ2)
− λ

2
(divγ η)2 +

λ

2
|∂sη|2 ds ≥ λ

2 (λ+ δ2)

∫
γ
κ2 ds ,

(3.2)

and hence the L2–bound for κ. Since ELM = E +L, the upper bound on L follows from the assump-
tion. To derive a lower bound, one uses Fenchel’s Theorem, see [19, Section 5.7, Theorem 3], together
with Hölder’s inequality,

2π ≤
∫
γ
|κ| ds ≤

(∫
γ
κ2 ds

)1/2(∫
γ

1 ds
)1/2

, (3.3)

that is, ∫
γ
κ2 ds ≥ 4π2

L(γ)
, (3.4)

and together with the L2–bound on the curvature (3.2) one obtains L(γ) ≥ 4π2/C̃ = c̃ > 0.

Lemma 3.2 (Lower bound on the energy). For (γ, η) ∈ H2
imm([0, 2π];R2)×H1

per([0, 2π];R2) the following
inequality for ELM holds true,

ELM (γ, η) ≥ 2π

√
2λ

λ+ δ2
. (3.5)

Proof. We conclude with the lower bounds on E in (3.2) and ‖κ‖22 in (3.4) that

ELM (γ, n) ≥ λ

2 (λ+ δ2)

∫
γ
κ2 ds+ L(γ) ≥ 2λπ2

λ+ δ2
· 1

L(γ)
+ L(γ) ≥ 2π

√
2λ

λ+ δ2

where we use in the last inequality the estimate b/L+ L ≥ 2
√
b for b ≥ 0.

Theorem 3.1 (Existence of minimizers forELM ). Suppose that δ, λ ∈ R and that λ > 0. Then there exists a
minimizer of the functional ELM : H2

imm([0, 2π];R2)×H1
per([0, 2π];R2)→ R subject to the constraints (2.2)

and (2.3).

Proof. The energy is nonnegative and finite for all (γ, η) ∈ H2
imm([0, 2π];R2)×H1

per([0, 2π];R2). Hence

inf
(γ,η)∈H2

imm×H1
per

ELM (γ, η) = m ≥ 0 .

Choose a minimizing sequence (γk, ηk)k∈N in H2
imm([0, 2π];R2) × H1

per([0, 2π];R2) and assume that
ELM (γk, ηk) ≤ C0, C0 = 2m + 1, and that, by (1.2), |∂xγk| = L(γk)/2π. Recall that we always
assume (2.2) and (2.3), i.e., the averages of γk and ηk vanish. By Lemma 3.1, L(γk) is uniformly
bounded from above and below and we may assume that L(γk) → L∞ ∈ (0,∞) for k → ∞. Since
|∂xγk| is constant in x,

|κk| = |∂ssγk| =
∣∣∣ 1

|∂xγk|
∂x

( 1

|∂xγk|
∂xγk

)∣∣∣ =
1

|∂xγk|2
· |∂xxγk| ≥

(2π)2

C2
0

|∂xxγk| .

9



By the bounds on L(γk) and on the L2–norm of κk in Lemma 3.1∫ 2π

0
|∂xγ|2 dx = 2π · L(γk)

2

(2π)2
≤ C2

0

2π

as well as ∫
γk

κ2
k dsk =

∫ 2π

0

(
|∂xxγk|
|∂xγk|2

)2

|∂xγk| dx =

∫ 2π

0

|∂xxγk|2

|∂xγk|3
dx

and thus ∫ 2π

0
|∂xxγk|2 dx =

(
L(γk)

2π

)3 ∫
γk

|κk|2 dsk ≤
C̃C3

0

8π3
.

By Poincaré’s inequality, which is applicable in view of (2.2), we deduce the uniform bound

‖γk‖H2([0,2π];R2) ≤ C

with a suitable constant C <∞. Moreover, (2.3) holds,∫
γk

|∇γkηk|
2 dsk =

∫
γk

|∇skηk ⊗ τk|
2 dsk =

1

|∂xγk|

∫ 2π

0
|∂xηk|2 dx ≥ 2π

C0

∫ 2π

0
|∂xηk|2 dx

and, again by Poincaré’s inequality, ‖ηk‖H1([0,2π];R2) is uniformly bounded as well. Consequently
there exists a subsequence (γn, ηn)n∈N = (γkn , ηkn)n∈N such that (γn, ηn)n∈N converges weakly in
H2
per([0, 2π];R2) × H1

per([0, 2π];R2) to (γ∞, η∞). By the compact embedding of Sobolev spaces into
Hölder spaces one gets for everyα ∈ (0, 1

2) the strong convergence inC1,α([0, 2π];R2)×Cα([0, 2π];R2).
In particular, the length functional is continuous with respect to convergence in C1,α and we infer
L(γ∞) = L∞ > 0 and |∂xγ∞| = L∞/(2π) > 0. Thus γ∞ ∈ H2

imm. Note that

κn =
1

|∂xγn|2
· ∂xxγn , ∇γnηn =

1

|∂xγn|
∂xηn ⊗ τn .

Since γn → γ∞ in C1,α, τn → τ∞ in Cα and we find κn ⇀ κ∞ in L2 and ∇γnηn ⇀ ∇γ∞η∞ in L2

for n → ∞. Moreover, the sequences |∂xγ∞|1/2(κn + δ divγn ηn) : [0, 2π] → R and |∂xγ∞|1/2∇γnηn :
[0, 2π]→ R are weakly convergent in L2 and uniformly bounded in L2 by a constant C1. Hence∫

γn

(κn + δ divγn ηn)2 dsn =

∫ 2π

0
(κn + δ divγn ηn)2|∂xγn| dx

≥
∫ 2π

0
(κn + δ divγn ηn)2|∂xγ∞| dx−

∫ 2π

0
(κn + δ divγn ηn)2|∂xγn − ∂xγ∞| dx

and in view of the convergence of (γn) in C1,α and lower semicontinuity of the norm with respect to
weak convergence we find for all ε > 0

lim inf
n→∞

∫
γn

(κn + δ divγn ηn)2 dsn ≥
∫
γ∞

(κ∞ + δ divγ∞ η)2 ds∞ − C1ε .

Therefore the first term in ELM is sequentially lower semicontinuous with respect to the given con-
vergence, the argument for the second term is analogous, and the third term is in fact continuous.
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We now consider the variational integral ELM subject to the constraints (A) and (S), that is, we seek
for given A0 ∈ R minimizing pairs (γ, η) ∈ H2

imm([0, 2π];R2) × H1
per([0, 2π];R2) with A(γ) = A0

and S(η) = 0. Since ELM penalizes the length of the curve, we do not include the constraint on the
length of the curve which, due to the isoperimetric inequality, requires the condition |A0| ≤ L(γ)2/4π.
Recall that we do not impose the condition (2.3), that the average of η vanishes, if the length of η is
prescribed.

Corollary 3.3 (ELM with constraints). Fix δ, λ, A0 ∈ R with λ > 0. Then the variational problem

minimize ELM in A = {(γ, η) ∈ H2
imm([0, 2π];R2)×H1

per([0, 2π];R2) : A(γ) = A0, S(η) = 0}

has a solution.

Proof. If that A0 6= 0, then let γ be a circle with area A0 (parametrized clockwise or counterclockwise
depending on the sign of A0) and let η = ν be a unit normal vector field. Then (γ, η) ∈ A. If instead
A0 = 0, let γ parametrize a figure eight and again let η = ν be a unit normal vector field. Also in this
case (γ, η) ∈ A. The assertion follows from the direct method in the calculus of variations applied
to minimizing sequences (γk, ηk)k∈N with γk of vanishing mean value since the constraints (A) and
(S) are continuous with respect to the convergence established in the proof of Theorem 3.1, that is,
strong convergence in H1

per ×L2 which implies, up to a further subsequence, convergence pointwise
a.e. for ηk. Since |η| = 1 almost everywhere, the L2–bound for η is immediate.

Recall that E defined in (1.1) does not include the penalization of the length.

Corollary 3.4 (E with constraints). Fix δ, λ, L0, A0 ∈ R with λ > 0, L0 > 0 and A0 ∈ [−L2
0/4π, L

2
0/4π].

Then the variational problem

minimize E in A = {(γ, η) ∈ H2
imm([0, 2π];R2)×H1

per([0, 2π];R2) : L(γ) = L0, A(γ) = A0, S(η) = 0}

has a solution.

Proof. For |A0| = L2
0/4π let γ parametrize (clockwise or counterclockwise depending on the sign of

A0) a circle with area A0 and let η = ν be a unit normal vector field. If A0 = 0 let γ be a figure
eight with length L0. In the case 0 < |A0| ≤ L2

0/4π let γ parametrize an ellipse with length L0 and
area A0 (again clockwise or counterclockwise depending on the sign of A0) and choose η = ν. In
all cases, (γ, η) ∈ A. The assertion follows from the direct method in the calculus of variations since
the constraints (L), (A), (S) are continuous with respect to the convergence established in the proof of
Theorem 3.1.

4 Regularity of critical points

In view of the invariance under reparametrization (1.2), the natural question concerning regularity
addresses the regularity of solutions (γ, η) for which γ has been parametrized proportional to arc
length. In this section we prove regularity of critical points, that is, for solutions of the Euler-Lagrange
equations for ELM and for the corresponding necessary conditions for minima that result from the
theorem on Lagrangian multipliers in the presence of some of the constraints (L), (A), (S) for ELM
or E. If one considers E, one has to include at least the constraint (L). For completeness, the Euler-
Lagrange equations for the functionals are derived in Lemma A.1. Set

C∞per([0, 2π];R2) = {γ ∈ C∞([0, 2π];R2) : γ(`)(0) = γ(`)(2π) for all ` ∈ N0} .
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Remark 4.1. In this section, we focus on the regularity for κ which implies regularity of γ. Indeed, by
the fundamental theorem of the local theory of curves in the plane, given κ either of class Ck([0, 2π])
or of class W `,p, there exists, up to rigid motion of the plane, a unique regular curve γ̃ either of class
Ck+2([0, 2π]) or of class W `+2,p parametrized by arc length with curvature κ (see [19, page 19 and
Ex. 9 page 24]). Since we only consider critical points in H2

imm, this curve coincides, up to a rigid
motion, with the given curve γ. Moreover, once regularity has been established in W `+2,p, the same
regularity follows inW `+2,p

per since we may extend all functions in the existence theorem by periodicity
to I = [−2π, 4π] and argue on I .

Remark 4.2. Notice that our results does not say anything on regularity of the trace Γ. For example,
we are not aware of sufficient conditions that guarantee that minimizers are simple closed curves.

The proof of the regularity statement proceeds by duality, as it is illustrated in the following lemma,
that can be found for example in [2]. Since the key quantity in the regularity statements is the term
κ+ δ divγ η, we refer to W k,∞ regularity if this term is in W k,∞.

Lemma 4.3 ( [2, Corollary 6.13, Exercise 6.7]). Suppose that Ω ⊂ Rn is open, f ∈ L1
loc(Ω), p ∈ (1,∞],

1/p + 1/p′ = 1, m ∈ N0, and that there exists a constant C such that for all k ∈ N0 with k ≤ m and all
ζ ∈ C∞c (Ω) ∣∣∣∫

Ω
f∂kζ dx

∣∣∣ ≤ C0‖ζ‖Lp′ (Ω) .

Then f ∈Wm,p(Ω) and there exists a constant C = C(m,C0) with ‖f‖m,p ≤ C.

Proposition 4.4 (L∞ bounds for ELM ). Suppose that (H) holds. If a curve γ ∈ H2
imm([0, 2π];R2) paramet-

rized proportional to arc length together with a vector field η ∈ H1
per([0, 2π];R2) is a critical point ofELM , then

γ ∈ W 2,∞
per ([0, 2π];R2) and η ∈ W 1,∞

per ([0, 2π];R2). Moreover, there exists a constant C = C(‖γ‖H2 , ‖η‖H1)
with

‖γ‖W 2,∞ + ‖η‖W 1,∞ ≤ C(‖γ‖H2 , ‖η‖H1) .

Proof. By assumption |∂xγ| = L(γ)/2π. We first prove L∞–regularity for the expression κ+ δ div η. If
(γ, η) is a critical point of ELM , then the first variation with respect to γ vanishes and by (A.3) for all
ϕ ∈ H2

per ∫
γ
(κ+ δ divγ η)〈∂ssϕ, ν〉ds =

∫
γ

(3

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
〈τ, ∂sϕ〉

− δ (κ+ δ divγ η) 〈∂sη, ∂sϕ〉 ds . (4.1)

We denote the right-hand side of (4.1) by F (γ, η, ϕ). Since γ ∈ H2
imm, the L2–norm of the curvature is

bounded and since H2 ↪→ C1 we find

‖κ+ δ divγ η‖L1 ≤ C(γ)‖κ+ δ divγ η‖L2 ≤ C(‖γ‖H2 , ‖η‖H1)

and with Hölder’s inequality in the last integral,

|F (γ, η, ϕ)| ≤ C
(
‖κ+ δ divγ η‖2L2 + ‖∂sη‖2L2 + 1

)
‖∂sϕ‖L∞ ≤ C(‖γ‖H2 , ‖η‖H1)‖ϕ‖W 2,1 .
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For g ∈ C∞per([0, 2π]) we define with A, B ∈ R2

ϕ(x) =
L(γ)2

(2π)2

∫ x

0

∫ y

0
g(t)ν(t) dtdy +

(
L(γ)

2π
x

)
A+

(
L(γ)2

8π2
x2

)
B

where we choose A and B in such a way that ϕ ∈ H2
per. The conditions are

0 = ϕ(0) = ϕ(2π) =
L(γ)2

(2π)2

∫ 2π

0

∫ y

0
g(t)ν(t) dt dy + L(γ)A+

(
L(γ)2

2

)
B ,

L(γ)

2π
A = ∂xϕ(0) = ∂xϕ(2π) =

L(γ)2

(2π)2

∫ 2π

0
g(t)ν(t) dt+

L(γ)

2π
A+

L(γ)2

2π
B .

The second equation determines B and the first equation A with

|B| ≤ 1

2π

∫ 2π

0
|g(t)| dx ≤ C‖g‖L1 ,

|A| ≤ C(‖γ‖H2)‖g‖L1 + C(‖γ‖H2)

∫ 2π

0

∫ y

0
|g(t)|dtdy ≤ C(‖γ‖H2)‖g‖L1 .

Consequently ϕ ∈ H2
per with

∂ssϕ = gν +B , ‖ϕ‖W 2,1 ≤ C(‖γ‖H2)‖g‖L1 . (4.2)

We insert ϕ in (4.1) and find ∫
γ
(κ+ δ divγ η) (g + 〈B, ν〉) ds = F (γ, η, ϕ)

hence for all g ∈ C∞per([0, 2π]) with the estimate for F (γ, η, ϕ)∫
γ
(κ+ δ divγ η)g ds ≤ C(‖γ‖H2 , ‖η‖H1)‖ϕ‖W 2,1 + ‖κ+ δ divγ η‖L1‖〈B, ν〉‖L∞

≤ C(‖γ‖H2 , ‖η‖H1)‖g‖L1 . (4.3)

By duality, see Lemma 4.3,

κ+ δ divγ η ∈ L∞ , ‖κ+ δ divγ η‖L∞ ≤ C(‖γ‖H2 , ‖η‖H1) .

The variation (A.4) with respect to η implies with λ 6= 0 and the L∞–bound just obtained

λ

∫
γ
〈∂sη, ∂sψ〉 ds = −

∫
γ
δ(κ+ δ divγ η) divψ ds ≤ C(‖γ‖H2 , ‖η‖H1)‖ψ‖W 1,1 . (4.4)

For σ ∈ C∞per([0, 2π];R2) define

ψ(x) =
L(γ)

2π

∫ x

0
σ(t) dt− L(γ)

2π
Ax ,

A =

∫ 2π

0
σ(t) dt , |A| ≤ C‖σ‖L1 , ‖ψ‖W 1,1 ≤ C(‖γ‖H2)‖σ‖L1 . (4.5)
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We insert ψ with ∂sψ = σ −A in (4.4),

λ

∫
γ
〈∂sη, σ〉 ds ≤ λ

∫
γ
〈∂sη,A〉ds+ C(‖γ‖H2 , ‖η‖H1)‖σ‖L1 ≤ C(‖γ‖H2 , ‖η‖H1)‖σ‖L1 , (4.6)

and conclude again by duality as in Lemma 4.3 that

∂xη ∈ L∞ , ‖∂xη‖L∞ ≤ C(‖γ‖H2 , ‖η‖H1) .

Both estimates together imply κ ∈ L∞([0, 2π]) and the assertion of the proposition in view of Re-
mark 4.1.

Proposition 4.5 (W 1,∞ bounds for ELM ). Suppose that (H) holds. If a curve γ ∈ H2
imm([0, 2π];R2) para-

metrized proportional to arc length together with a vector field η ∈ H1
per([0, 2π];R2) is a critical point of ELM ,

then γ ∈W 3,∞
per ([0, 2π]) and η ∈W 2,∞

per ([0, 2π];R2). Moreover, there exists a constant C = C(‖γ‖H2 , ‖η‖H1)
with

‖γ‖W 3,∞ + ‖η‖W 2,∞ ≤ C(‖γ‖H2 , ‖η‖H1).

Proof. We argue as in the proof of Proposition 4.4 and define for g ∈ C∞per([0, 2π]) with L(γ) = ‖∂xγ‖,
A ∈ R2

ϕ(x) =
L(γ)

2π

∫ x

0
g(t)ν(t) dt− L(γ)

2π
Ax , A =

∫ 2π

0
g(t)ν(t) dt , |A| ≤ C‖g‖L1 .

Since ν ∈ H1
per, the function ϕ ∈ H2

per, ∂sϕ = gν −A is an admissible test function with

〈∂ssϕ, ν〉 = 〈∂sgν − κgτ, ν〉 = ∂sg , ‖ϕ‖W 1,1 ≤ C(γ)‖g‖L1 ,

and (4.1) can be written as∫
γ
(κ+ δ divγ η)∂sg ds =

∫
γ

(3

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
〈τ, ∂sϕ〉 − δ (κ+ δ divγ η) 〈∂sη, ∂sϕ〉 ds .

By the L∞–bounds in Proposition 4.4,∫
γ
(κ+ δ divγ η)∂sg ds ≤ C(‖γ‖H2 , ‖η‖H1)‖gν −A‖L1 ≤ C(‖γ‖H2 , ‖η‖H1)‖g‖L1 . (4.7)

By duality, see Lemma 4.3, the two bounds (4.3) and (4.7) imply κ+ δ divγ η ∈W 1,∞. This additional
regularity allows us a partial integration in the right-hand side of (4.4), and we find for all ψ = σ ∈
C∞per([0, 2π];R2)

λ

∫
γ
〈∂sη, ∂sσ〉 ds = −

∫
γ
δ(κ+ δ divγ η) div σ ds

=

∫
γ
δ〈∇s(κ+ δ divγ η), σ〉 ds+

∫
γ
δ(κ+ δ divγ η)κ〈σ, ν〉ds

≤ C(δ, ‖κ+ δ divγ η‖W 1,∞ , ‖ν‖L∞ , ‖κ‖L∞)‖σ‖L1 .

(4.8)

The estimates (4.6) and (4.8) imply by duality ∂sη ∈ W 1,∞, that is η ∈ W 2,∞, and consequently
divγ η ∈W 1,∞ and κ ∈W 1,∞. The assertion follows by Remark 4.1.
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After these preparations we are in a position to prove full regularity.

Theorem 4.1 (Regularity for critical points ofELM ). Suppose that (H) holds. If a curve γ ∈ H2
imm([0, 2π];R2)

parametrized proportional to arc length together with a vector field η ∈ H1
per([0, 2π];R2) is a critical point

of the functional ELM , then γ, η ∈ C∞per([0, 2π];R2). Moreover, for all k ∈ N there exists a constant
Ck = Ck(‖γ‖H2 , ‖η‖H1) with

‖γ‖Wk+2,∞ + ‖η‖Wk+1,∞ ≤ Ck(‖γ‖H2 , ‖η‖H1).

Proof. The proof follows by induction based on Lemma 4.3. Indeed, we prove that for all m ∈ N0, all
g ∈ C∞per([0, 2π]), σ ∈ C∞per([0, 2π];R2) and all k ∈ N0, k ≤ m,∫

γ
(κ+ δ divγ η)∂ks g ds ≤ C(‖γ‖H2 , ‖η‖H1)‖g‖L1 , λ

∫
γ

〈
∂sη, ∂

k
sσ
〉

ds ≤ C(‖γ‖H2 , ‖η‖H1)‖g‖L1 .

Then κ+δ divγ η ∈Wm,∞
per , η ∈Wm+1,∞

per , κ ∈Wm,∞
per and γ ∈Wm+2,∞

per together with the corresponding
estimates.
By (4.3), (4.7), (4.6), (4.8) the assertion holds for m = 1 and Proposition 4.5 states the corresponding
regularity, γ ∈ W 3,∞

per , κ ∈ W 1,∞
per and η ∈ W 2,∞

per together with the estimate. Suppose now that m ≥ 2
and that the assertion holds for m − 1. We need to establish the estimates for k = m and assume
that κ + divγ η ∈ W k−1,∞

per , η ∈ W k,∞
per , γ ∈ W k+1,∞

per , ν ∈ W k,∞
per together with the estimate. For

g ∈ C∞per([0, 2π]) we use ϕ = ∂k−2
s gν as a test function in (4.1) and calculate first

〈∂ssϕ, ν〉 = 〈∂s(∂k−1
s gν + ∂k−2

s g∂sν), ν〉 = ∂ks g + 2〈∂k−1
s g∂sν, ν〉+ 〈∂k−2

s g∂ssν, ν〉
= ∂ks g − 〈∂k−2

s g∂s(κτ), ν〉 = ∂ks g − κ2∂k−2
s g .

From (4.1) we obtain with 〈∂sϕ, τ〉 = 〈∂k−1
s gν + ∂k−2

s g∂sν, τ〉 = −κ∂k−2
s g∫

γ
(κ+ δ divγ η)∂ks g ds =

∫
γ
κ2(κ+ δ divγ η)∂k−2

s g ds

+

∫
γ

(3

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
(−κ)∂k−2

s g − δ (κ+ δ divγ η)
〈
∂sη, ∂

k−1
s gν + ∂k−2

s g∂sν
〉

ds .

In view of the regularity already established, we may integrate by parts in the terms involving deriva-
tives of g on the right-hand side and obtain together with the estimates that have been established∫

γ
(κ+ δ divγ η)∂ks g ds ≤ C(‖γ‖H2 , ‖η‖H1)‖g‖L1 . (4.9)

Since this estimate holds for all k ≤ m we conclude by duality κ + δ divγ η ∈ Wm,∞, see Lemma 4.3
together with the corresponding estimates. Finally fix σ ∈ C∞per([0, 2π];R2); we return to (4.8) and use
the test function ∂k−1

s σ to obtain

λ

∫
γ

〈
∂sη, ∂

k
sσ
〉

ds = −
∫
γ
δ(κ+ δ divγ η) divγ ∂

k−1
s σ ds

=

∫
γ
δ〈∇s(κ+ δ divγ η), ∂k−1

s σ〉 ds+

∫
γ
δ(κ+ δ divγ η)κ〈∂k−1

s σ, ν〉ds

≤ C(‖κ+ δ divγ η‖Wk,∞ , ‖ν‖Wk−1,∞ , ‖κ‖Wk−1,∞)‖σ‖L1 ≤ C(‖γ‖H2 + ‖η‖H1)‖σ‖L1 .

(4.10)
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Here all integrations by parts are justified on the right-hand side in view of the regularity already
established. Since this estimate holds for all k ≤ m, ∂sη ∈ Wm,∞, κ ∈ Wm,∞ and therefore γ ∈
Wm+2,∞, see Remark 4.1.

Corollary 4.6. Fix δ, λ ∈ R with λ > 0. There exist (γ, η) ∈ H2
imm([0, 2π];R2) × H1

per([0, 2π];R2) with
γ parametrized by arc length which satisfy equality in (3.5). In fact, any such γ is a simple curve and the
trace of γ is a circle of radius

√
λ/
√

2(λ+ δ2). The vector field η is uniquely defined if one imposes the
additional assumption (2.3). In this case, it is a normal vector field given by η = δ/(λ + δ2)ν. Consequently
the variational problem for ELM together with the constraints (2.2) and (2.3) has a unique minimizer which is
parametrized by arc length.

Proof. As in Lemma 3.1 we assume that δ ≥ 0. If the functions (γ, η) satisfy equality in (3.5), then
equality holds in all inequalities in the derivation of the lower bound for the energy. Equality in
Hölder’s inequality in (3.3) implies that |κ| is constant and since κ is by Theorem 4.1 smooth, κ is
constant and, after a change of the orientation of γ and of the sign of η, positive. Thus γ defines a
circle, possibly multiply covered, and equality in Youngs’s inequality in (3.1) leads in view of the
lower bound to

δ√
λ+ δ2

κ = −divγ η ·
√
λ+ δ2 ⇔ divγ η = − δ

λ+ δ2
· κ .

In particular, divγ η is constant. In the last estimate in (3.2) we find in case of equality that

|∂sη · τ | = | divγ η| = |∇γη| = |∂sη ⊗ τ | = |∂sη|

and ∂sη is parallel to τ with constant length. Minimization in L(γ) in the lower bound in Lemma 3.2
implies

1

L(γ)2
=
λ+ δ2

2λπ2

and with n the number of coverings of the circle (with n = 1 if γ is a simple closed curve and therefore
a circle)

L(γ)2 = (2nπR)2 =
2λπ2

λ+ δ2
⇔ R2 =

λ

2n2(λ+ δ2)
.

Since we assume κ ≥ 0,

κ =
1

R
=

√
2n2(λ+ δ2)

λ
,

δκ√
λ+ δ2

=
δ
√

2n2(λ+ δ2)√
λ+ δ2

√
λ

= | divγ η|
√
λ+ δ2

and hence

| divγ η| =
√

2n2δ√
λ+ δ2

√
λ

= κ · δ

λ+ δ2
.
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We compute the energy and find

ELM =
1

2

∫
γ
(κ+ δ divγ η)2 ds+

λ

2

∫
γ
|∇γη|2 ds+ L(γ)

=
1

2

∫
γ

[(
1− δ2

λ+ δ2

)
κ
]2

ds+
λ

2

∫
γ

2n2δ2

λ(λ+ δ2)
ds+ L(γ)

=
L(γ)

2

( λ

λ+ δ2

)2
· 2n2(λ+ δ2)

λ
+
L(γ)

2
· 2n2δ2

λ+ δ2
+ L(γ)

=
L(γ)

2

( λ

λ+ δ2
+

δ2

λ+ δ2

)
· 2n2 + L(γ) = (n2 + 1)L(γ) = (n2 + 1)π

( 2λ

λ+ δ2

)1/2

and hence n = 1. Thus γ is a circle. It remains to determine η. For simplicity we consider the
arc length parametrization of γ. By assumption, τ and ν are in H1

per[0, L(γ)]) and we may write
η = aτ + bν with a, b ∈ H1

per([0, L(γ)]). Since ∂sη = c0τ , c0 ∈ R, the functions a and b satisfy

∂sη = (∂sa− κb)τ + (κa+ ∂sb)ν = c0τ or
(

0 1
1 0

)(
∂sa
∂sb

)
+ κ

(
a
−b

)
=

(
0
c0

)
.

This is an inhomogeneous system of linear differential equations with constant coefficients and the
general solution is given by(

a(s)
b(s)

)
= c1

(
sin(κs)
cos(κs)

)
+ c2

(
cos(κs)
− sin(κs)

)
+

(
0

−c0/κ

)
and hence with γ(s) = (1/κ)(cos(κs), sin(κs))

η = −c0

κ
ν + (c1 sin(κs) + c2 cos(κs))

(
− sin(κs)
cos(κs)

)
+ (c1 cos(κs)− c2 sin(κs))

(
− cos(κs)
− sin(κs)

)
= −c0

κ
ν − c1e1 + c2e2 .

If (2.3) holds, then c1 = c2 = 0 and η = −(c0/κ)ν. Since divγ η = c0 = −δκ/(λ + δ2), we conclude
c0 = −δκ/(λ+ δ2) and this is the assertion of the corollary.

We consider now the regularity of critical points of the constrained problems.

Proposition 4.7 (L∞–bounds for ELM with constraints). Suppose that (H) holds. If a curve γ of class
H2
imm([0, 2π];R2) parametrized proportional to arc length together with a vector field η ∈ H1

per([0, 2π];R2)

is a critical point of ELM subject to the constraints (A) and (S), then γ ∈ W 2,∞
per ([0, 2π];R2) and η ∈

W 1,∞
per ([0, 2π];R2). Moreover, there exists a Lagrange multiplier ψ∗ ∈ H−1

per([0, 2π]), ψ∗ = ψ∗0 + ∂sψ
∗
1 with

ψ∗0 , ψ∗1 ∈ L2([0, 2π]) associated to the constraint (S) which satisfies ψ∗1 ∈ L∞([0, 2π]) and there exists a
constant C = C(‖γ‖H2 , ‖η‖H1 , ‖ψ∗‖H−1) with

‖γ‖W 2,∞ + ‖η‖W 1,∞ + ‖ψ∗1‖L∞ ≤ C(‖γ‖H2 , ‖η‖H1 , ‖ψ∗‖H−1) .

Proof. Since H2
imm is an open subset in H2

per there exists an r > 0 such that B(γ, r) ⊂ H2
imm ⊂ H2

per.
Therefore we may consider (γ, η) as a minimizer of

ELM : Br = B((γ, η), r) ⊂ X → R , X = H2
per([0, 2π];R2)×H1

per([0, 2π];R2)
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subject to the given constraints. According to [3, Proposition 1.2], the map ELM is Fréchet differen-
tiable in Br if the partial Fréchet derivatives with respect to γ and η are continuous in Br. By (A.3)
and (A.4), the partial Gateaux derivatives in the directions ϕ ∈ H2

per and ψ ∈ H1
per are given for

(γ̃, η̃) ∈ Br by

∂γELM ((γ̃, η̃), ϕ) =

∫
γ̃
(κ̃+ δ divγ̃ η̃)

[
〈∂s̃s̃ϕ, ν̃〉+ δ〈∂s̃η̃, ∂s̃ϕ〉

]
ds̃

+

∫
γ̃

(
−3

2
(κ̃+ δ divγ̃ η̃)2 − λ

2
|∂s̃η̃|2 + 1

)
〈τ̃ , ∂s̃ϕ〉 ds̃ ,

∂ηELM ((γ̃, η̃), ψ) =

∫
γ̃
δ(κ̃+ δ divγ̃ η̃) divγ̃ ψ ds̃+ λ

∫
γ̃
〈∂s̃η̃, ∂s̃ψ〉 ds̃ .

The Gateaux derivatives define bounded and linear functionals.
Therefore the partial Fréchet derivatives exist, and by Hölder’s inequality one sees that the Fréchet
derivatives are continuous on B((γ, η), r) ⊂ X . Finally, by Lemma 2.1 the constraints (A) and (S) are
admissible constraints and we may use Theorem 2.1 with Φ = ELM , Br ⊂ X as constructed and the
constraint

F : X → R×H1
per([0, 2π]) = Y , (ϕ,ψ) 7→ (A(ϕ), |ψ|2 − 1) .

Thus there exists a Lagrange multiplier y∗ ∈ Y ∗ such that E′LM (γ, η) + (F ′(γ, η))∗y∗ = 0 in X∗. Since
Y ∗ = R×H−1

per, there exist a ∈ R and ψ∗ ∈ H−1
per such that for all (ϕ,ψ) ∈ X the identity

〈E′LM (γ, η), (ϕ,ψ)〉+ 〈y∗, F ′(γ, η))(ϕ,ψ)〉
= ∂γELM (γ, η)[ϕ] + ∂ηELM (γ, η)[ψ] + aA′(γ)[ϕ] + 〈ψ∗, S′(η)[ψ]〉 = 0

holds. If one chooses ψ = 0, then one finds for all ϕ ∈ H2
per that the equation that corresponds to (4.1)

has an additional term on the right-hand side,∫
γ
(κ+ δ divγ η)〈∂ssϕ, ν〉ds =

∫
γ

(3

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
〈τ, ∂sϕ〉

−δ (κ+ δ divγ η) 〈∂sη, ∂sϕ〉 − a〈ν, ϕ〉 ds .

The additional term is of lower order compared to the other terms on the right-hand side since ν = Jτ
has the same regularity as τ and the arguments in the proof of Proposition 4.4 imply that κ+δ divγ η ∈
L∞. The choice of ϕ = 0 leads with (4.4) and ψ∗ = ψ∗0 + ∂sψ

∗
1 , ψ∗0 , ψ∗1 ∈ L2([0, 2π]), to

λ

∫
γ
〈∂sη, ∂sψ〉 ds = −

∫
γ
δ(κ+ δ divγ η) divγ ψ ds− 〈ψ∗, S′(η)[ψ]〉

= −
∫
γ
δ(κ+ δ divγ η) divγ ψ ds− 2

∫
γ
ψ∗0〈η, ψ〉 − ψ∗1∂s〈η, ψ〉ds .

(4.11)

We expand the derivative and rearrange terms∫
γ
〈λ∂sη − 2ψ∗1η, ∂sψ〉 ds = −

∫
γ
δ(κ+ δ divγ η) divγ ψ ds− 2

∫
γ
ψ∗0〈η, ψ〉 − ψ∗1〈∂sη, ψ〉ds , (4.12)
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and use ψ as an anti-derivative of σ as in (4.5) as a test function. Since ‖ψ‖L∞ ≤ C‖ψ‖W 1,1 ≤
C(‖γ‖H2)‖σ‖L1 , we obtain for all σ ∈ C∞per([0, 2π];R2)∫

γ
〈λ∂sη − 2ψ∗1η, σ〉 ds ≤

∫
γ
〈λ∂sη − 2ψ∗1η,A〉 ds+ C(γ, η, ψ∗)‖σ‖L1

≤ C(‖γ‖H2 , ‖η‖H1 , ‖ψ∗‖H−1)‖σ‖L1

and by duality h = λ∂sη−2ψ∗1η defines an element in L∞ and the norm is bounded by the constant on
the right-hand side. By assumption, η satisfies the constraint |η|2 = 1 and 〈∂sη, η〉 = 0. Consequently
∂sη ∈ L∞ and, as in Proposition 4.4, κ ∈ L∞ and γ ∈ W 2,∞

per . This argument also proves that ψ∗1 =
−(1/2)〈h, η〉 ∈ L∞ together with an estimate.

Proposition 4.8 (W 1,∞–bounds for ELM with constraints). Suppose that (H) holds. If a curve γ ∈
H2
imm([0, 2π];R2) parametrized proportional to arc length together with a vector field η ∈ H1

per([0, 2π];R2)

is a critical point of ELM subject to the constraints (A) and (S), then γ ∈ W 3,∞
per ([0, 2π]), η ∈ W 2,∞

per ([0, 2π]),
ψ∗0 ∈ L∞, and ψ∗1 ∈W 1,∞. Moreover, there exists a constant C = C(‖γ‖H2 , ‖η‖H1) with

‖γ‖W 3,∞ + ‖η‖W 2,∞ + ‖ψ0‖L∞ + ‖ψ∗1‖W 1,∞ ≤ C(‖γ‖H2 , ‖η‖H1 , ‖ψ∗‖H−1).

Proof. The regularity ∂sη ∈ L∞ shown in Proposition 4.7 implies as in the proof of Proposition 4.5
that κ+ δ divγ η ∈ W 1,∞. With this information, one infers from (4.12) with ψ = σ ∈ C∞per([0, 2π];R2)
after an integration by parts in the first term on the right-hand side that ∂s(λ∂sη−2ψ∗1η) ∈ L∞, that is,
h ∈ W 1,∞

per . Thus ψ∗1 = −(1/2)〈h, η〉 ∈ W 1,∞
per and ∂sψ

∗
1 ∈ L∞. Consequently, λ∂sη = h + 2ψ∗1 ∈ W

1,∞
per

and we may rewrite (4.11) as

2

∫
γ
ψ∗0〈η, ψ〉 ds =

∫
γ
λ 〈∂ssη, ψ〉 − δ〈∇γ(κ+ δ divγ η), ψ〉+ δ (κ+ δ divγ η)κ 〈ψ, ν〉 − 2∂sψ

∗
1〈η, ψ〉ds .

The special choice ψ = gη with g ∈ C∞per([0, 2π]) implies that∫
γ
ψ∗0g ds ≤ C(‖γ‖H2 , ‖η‖H1 , ‖ψ∗‖H−1)‖g‖L1

and this estimate implies ψ∗0 ∈ L∞ together with the estimate.

Theorem 4.2 (Regularity for critical points of ELM and E with constraints). Fix δ, λ, L0, A0 ∈ R with
λ > 0, L0 > 0 and assume that γ ∈ H2

imm([0, 2π];R2) is parametrized proportional to arc length and that
η ∈ H1

per([0, 2π];R2). If (γ, η) is

(i) a critical point of ELM subject to the constraints (A) and (S) or

(ii) a critical point ofE subject to the constraints (L), (A) and (S) with κ not constant,A0 ∈ [−L2
0/4π, L

2
0/4π],

then γ, η ∈ C∞per([0, 2π];R2), ψ∗0 , ψ∗1 ∈ C∞per([0, 2π]). There exists a constant

Ck = Ck(‖γ‖H2 , ‖η‖H1 , ‖ψ‖H−1) k ∈ N ,

with

‖γ‖Wk+2,∞ + ‖η‖Wk+1,∞ + ‖ψ∗0‖Wk,∞ + ‖ψ∗1‖Wk,∞ ≤ Ck(‖γ‖H2 , ‖η‖H1 , ‖ψ‖H−1) .
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Proof. (i) The proof follows by induction as in Theorem 4.1 and we sketch the key estimate which
states that for all k ∈ N, k ≥ 1, κ ∈ W k,∞

per , γ ∈ W k+2,∞
per , η ∈ W k+1,∞

per , ψ∗0 ∈ W k−1,∞
per , ψ∗1 ∈ W k,∞

per

together with the corresponding estimates. The case k = 1 is stated in Proposition 4.8. Suppose thus
that the assertion holds for k − 1 ≥ 1. We use ϕ = ∂k−2

s g and ψ = ∂k−1
s σ with g ∈ C∞per([0, 2π]) and

σ ∈ C∞per([0, 2π];R2) as test functions as in Proposition 4.8. This choice implies κ + δ divγ η ∈ W k,∞
per

and h = λ∂sη − 2ψ∗1η ∈ W
k,∞
per together with the corresponding estimates. Consequently η ∈ W k+1

per ,
κ ∈W k,∞

per and γ ∈W k+2,∞
per . Then ψ∗1 ∈W

k,∞
per and finally ψ∗0 ∈W

k−1,∞
per .

(ii) The proof proceeds analogously starting with the variations ofE in (A.1) and (A.2). By Lemma 2.1,
the constraints (L), (A) and (S) are admissible constraints and also the geometric constraint (G) which
combines (L) and (A) is admissible if γ does not have constant curvature. Thus we may use Theo-
rem 2.1 with Φ = E, Br ⊂ X as in Proposition 4.2 and the constraint

F : X → R× R×H1
per([0, 2π]) = Y , (ϕ,ψ) 7→ (G,S)(ϕ,ψ) = (L(ϕ), A(ϕ), |ψ|2 − 1) .

Thus there exists a Lagrange multiplyer y∗ ∈ Y ∗ such that E′(γ, η) + (F ′(γ, η))∗y∗ = 0 in X∗. The
multiplier y∗ is now given by a triple (`, a, ψ∗) with `, a ∈ R and ψ∗ ∈ H−1

per. The variation with
respect to γ contains from the constraint on the length the term `

∫
γ κ〈ϕ, ν〉ds = −`

∫
γ〈τ, ∂sϕ〉ds. This

term is also present in the variation of ELM (with a constant one in front of it) and we conclude as
before.

5 Conclusions

In this article, we discussed existence of minimizers for the variational problem involving the en-
ergy ELM , derived the Euler-Lagrange system, and proved that critical points (γ, η), and therefore
in particular minimizers, are smooth if γ is parametrized proportional to arc length. The main mo-
tivation for the formulation of ELM is the geometric functional EgLM for simple plane curves where
one can interpret η as a vector field along the curve and where the surface gradient and the surface
divergence are the usual geometric objects. One of the advantages of the formulation ELM is the
fact that the variation of the energy with respect to the curve can be calculated without modeling
assumptions concerning the vector field. More precisely, if one interprets η as a vector field on the
trace Γ of a simple closed curve γ, then a variation of γ changes its trace and one needs an extension
of the vector field η to a neighborhood of Γ. The usual approach for the derivation of the variation
of EgLM is to consider normal variations γε = γ + εϕν of γ and to extend η as a constant vector field
along the trace ε 7→ γε(x) for all x ∈ [0, 2π]. The calculation for normal variations is carried out in the
Appendix and leads to the following notion of solution for the negative L2–gradient flow. A family
of smooth and regular plane closed curves γ : [0, T ] × [0, 2π] → R2 and a family of smooth vector
fields η : [0, T ]× [0, 2π]→ R2 is said to be a smooth solution of the L2–gradient flow dynamics of the
functional ELM if{

∂tγ
⊥ =

[
−∂ss(κ+ δ divγ η) + δ∂s[(κ+ δ divγ η)〈∂sη, ν〉]− 1

2(κ+ δ divγ η)2κ− λ
2 |∂sη|

2κ+ κ
]
ν ,

∂tη = λ∂ssη + δ∇s(κ+ δ divγ η) + δ(κ+ δ divγ η)κν ,

see Lemma A.3, where ∂tγ⊥ denotes the normal component of the velocity vector ∂tγ. During the
derivation we also collect some useful evolution equations of geometric quantities. The analysis will
be addressed in a forthcoming publication [11].
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A second generalization concerns the formulation of the energyEgLM for two-dimensional embedded
or immersed manifolds in R3. Let ϕ : Σ → R3 be a smooth immersion of a 2-dimensional orientable
closed surface Σ. The Laradji-Mouritsen model [29] for the energy of a liquid-liquid interface Σ
with mean curvature H , surfactant direction η, and material constants δ, λ > 0 leads to the energy
functional

ELM (ϕ, η) =
1

2

∫
Σ

(H + δ divϕ η)2 dµϕ +
λ

2

∫
Σ
|∇ϕη|2 dµϕ ,

where∇ϕ and divϕ are the surface gradient and the surface divergence, and where dµϕ is the volume
measure on Σ induced by ϕ. Also for this model the evolution equations can be derived. First
analytical results on the evolution can be found in [9] and will be presented in detail in a forthcoming
publication [11].

A Formulas

In the appendix, we collect formulas that are used in the text and sketch their proofs.
As indicated in the introduction, reparametrization of regular curves in Sobolev classes leaves the
Sobolev class invariant.
In fact, for γ ∈ H2([0, 2π];R2) the function s(x) =

∫ x
0 |∂xγ(y)| dy satisfies ∂xs(x) = |∂xγ(x)| and

∂xxs(x) = 〈∂xγ, ∂xxγ〉/|∂xγ(x)|, thus s defines an H2 function which, by embedding theorems, is a
diffeomorphism onto its range. From the explicit formula ∂ys−1(y) = 1/s′(x) with y = s(x) one
sees that s−1 is in fact in H2 and ∂y(γ ◦ s−1)(y) = (∂xγ)(s−1(y)) · ∂y(s−1)(y), ∂xx(γ ◦ s−1)(y) =
(∂yyγ)(s−1(y))·(∂y(s−1)(y))2+(∂xγ)(s−1(y))·∂yy(s−1)(y). The last expression is inH2 sinceH1 ↪→ C0

in one spatial dimension.

Lemma A.1 (Variation ofE). The variation of the functionalE : H2
imm([0, 2π];R2)×H1

per([0, 2π];R2)→ R
in a point (γ, η) ∈ H2

imm([0, 2π];R2) × H1
per([0, 2π];R2) in the direction (ϕ,ψ) ∈ H2

per([0, 2π];R2) ×
H1
per([0, 2π];R2) is given by

δE

δγ
[ϕ] =

∫
γ
(κ+ δ divγ η)

[
〈∂ssϕ, ν〉+ δ〈∂sη, ∂sϕ〉

]
ds

+

∫
γ

(
−3

2
(κ+ δ divγ η)2 − λ

2
|∂sη|2

)
〈τ, ∂sϕ〉 ds , (A.1)

δE

δη
[ψ] =

∫
γ
δ(κ+ δ divγ η) divγ ψ ds+ λ

∫
γ
〈∂sη, ∂sψ〉 ds . (A.2)

Proof. For ϕ, ψ ∈ C∞per([0, 2π];R2) we consider variations of the curve γ of the form γε = γ + εϕ and
of the vector field η of the form ηε = η + εψ. In view of the embedding H2

imm ↪→ C1 the immersion
γ satisfies |∂xγ| ≥ c0 > 0 for a positive constant c0 and γ + εϕ is an immersion for |ε| > 0 small
enough.From [19, Ex. 12, p. 25]

κε =
det(∂x(γ + εϕ), ∂xx(γ + εϕ))

|∂x(γ + εϕ)|3
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we get with direct computations

d

dε

∣∣∣
ε=0

κε =
det(∂xϕ, ∂xxγ)

|∂xγ|3
+

det(∂xγ, ∂xxϕ)

|∂xγ|3
− 3

det(∂xγ, ∂xxγ)

|∂xγ|5
〈∂xγ, ∂xϕ〉 = I + II + III .

We simplify the three terms with ∂xτ = κ|∂xγ|ν and ν = Jτ and the identities

∂xxγ = ∂x(|∂xγ|τ) = κ|∂xγ|2ν +
1

|∂xγ|
〈∂xγ, ∂xxγ〉τ ,

∂xxγ

|∂xγ|2
= κν +

〈∂xγ, ∂xxγ〉
|∂xγ|3

τ ,

∂xxϕ = ∂x(|∂xγ|∂sϕ) = |∂xγ|2∂ssϕ+
1

|∂xγ|
〈∂xγ, ∂xxγ〉∂sϕ ,

according to

I =
det(∂xϕ, ∂xxγ)

|∂xγ|3
= κ〈∂sϕ, τ〉 −

〈∂xγ, ∂xxγ〉
|∂xγ|3

〈∂sϕ, ν〉 ,

II =
det(∂xγ, ∂xxϕ)

|∂xγ|3
= 〈∂ssϕ, ν〉+

〈∂xγ, ∂xxγ〉
|∂xγ|3

〈∂sϕ, ν〉 ,

III = −3
det(∂xγ, ∂xxγ)

|∂xγ|5
〈∂xγ, ∂xϕ〉 = −3κ〈τ, ∂sϕ〉 ,

and the sum of all terms is just the variation of the curvature and leads to the term 〈∂ssϕ, ν〉 −
2κ〈∂sϕ, τ〉. Moreover

d

dε

∣∣∣
ε=0

divγε η =
d

dε

∣∣∣
ε=0

〈 ∂xη

|∂xγε|
,
∂xγε
|∂xγε|

〉
=
〈 ∂xη

|∂xγ|
,
∂xϕ

|∂xγ|

〉
− 2〈∂xη, ∂xγ〉

〈∂xγ, ∂xϕ〉
|∂xγ|4

= 〈∂sη, ∂sϕ〉 − 2(divγ η)〈τ, ∂sϕ〉 ,
d

dε

∣∣∣
ε=0
|∂sη|2 =

d

dε

∣∣∣
ε=0

|∂xη|2

|∂xγε|2
= −2

|∂xη|2

|∂xγε|4
〈∂xγ, ∂xϕ〉 = −2|∂sη|2〈τ, ∂sϕ〉 .

Putting all together we get

d

dε
E(γε, η)

∣∣∣
ε=0

=

∫
γ
(κ+ δ divγ η)

[
〈∂ssϕ, ν〉+ δ〈∂sη, ∂sϕ〉

]
ds

+

∫
γ

(
−3

2
(κ+ δ divγ η)2 − λ

2
|∂sη|2

)
〈τ, ∂sϕ〉 ds .

For the variation in η we find with an integration by parts

d

dε
E(γ, ηε)

∣∣∣
ε=0

=
d

dε

∣∣∣
ε=0

∫
γ

1

2
(κ+ δ divγ ηε)

2 ds+
λ

2

∫
γ
|∂sηε|2 ds

=

∫
γ
δ(κ+ δ divγ η) divγ ψ ds+ λ

∫
γ
〈∂sη, ∂sψ〉 ds .

By approximation, the necessary conditions hold for ϕ ∈ H2
per and ψ ∈ H1

per.
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Lemma A.2 (Euler-Lagrange equations for ELM ). The variation of

ELM : H2
imm([0, 2π];R2)×H1

per([0, 2π];R2)→ R

in a point (γ, η) ∈ H2
imm([0, 2π];R2) × H1

per([0, 2π];R2) in the direction (ϕ,ψ) ∈ H2
per([0, 2π];R2) ×

H1
per([0, 2π];R2) is given by

δELM
δγ

[ϕ] =

∫
γ
(κ+ δ divγ η)

[
〈∂ssϕ, ν〉+ δ〈∂sη, ∂sϕ〉

]
ds

+

∫
γ

(
−3

2
(κ+ δ divγ η)2 − λ

2
|∂sη|2 + 1

)
〈τ, ∂sϕ〉 ds , (A.3)

δELM
δη

[ψ] =

∫
γ
δ(κ+ δ divγ η) divγ ψ ds+ λ

∫
γ
〈∂sη, ∂sψ〉 ds . (A.4)

Proof. The only difference in the variation of ELM compared to the variation of E is the additional
term L(γ) which leads to an additional term of

∫
γ〈τ, ∂sϕ〉ds in the variation.

Lemma A.3 (Gradient flow for ELM ). Let (γ0, η0) ∈ H4
imm([0, 2π];R2)×H3

per([0, 2π];R2) and let T > 0.
Suppose that γ : [0, T ]× [0, 2π]→ R2 is a time-dependent family of regular plane closed curves at least of class
H1 in the time variable and H4 in the space variable and that η : [0, T ] × [0, 2π] → R2 is a time-dependent
family of vector fields of class H1 in the time variable and H3 in the space variable. Then (γ, η) is a solution to
the (formal) L2–gradient flow of ELM (obtained considering only normal variations of the curve) in the time
interval [0, T ] with initial datum (γ0, η0) if and only if (γ, η) satisfy the following system for all t ∈ [0, T ],
x ∈ [0, 2π]:

∂tγ
⊥ =

[
−∂ss(κ+ δ divγ η) + δ∂s[(κ+ δ divγ η)〈∂sη, ν〉]− 1

2(κ+ δ divγ η)2κ− λ
2 |∂sη|

2κ+ κ
]
ν ,

∂tη = λ∂ssη + δ∇s(κ+ δ divγ η) + δ(κ+ δ divγ η)κν ,

(γ(0, x), η(0, x)) = (γ0, η0)

(A.5)
where ∂tγ⊥ denotes the normal component of the velocity vector.

Proof. We characterize, at least formally, the L2–gradient flow dynamics of ELM .
For ϕ, ψ ∈ C∞per([0, 2π];R2) and |ε| > 0 small enough, we consider variations of the vector field η of
the form ηε = η + εψ and of the curve γ of the form γε = γ + εϕ, and we require that γε be a normal
variation of γ with ϕ = uν, where ν = Jτ is the unit normal vector to γ, and hence

ϕ = uν , ∂sϕ = ∂suν − uκτ , ∂2
sϕ =

(
∂2
su− uκ2

)
ν − (2∂suκ+ u∂sκ) τ .

In order to pass from the variations obtained in Lemma A.1 to expressions that do not involve deriva-
tives of ϕ and ψ, we need to integrate by parts and this calculation needs additional regularity for γ
and η compared to Theorem 4.1. From (A.3)

d

dε
ELM (γε, η)

∣∣∣∣
ε=0

=

∫
γ

(κ+ δ divγ η) ∂ssu− κ2 (κ+ δ divγ η)u

− κ
(
−3

2
(κ+ δ divγ η)2 − λ

2
|∂sη|2 + 1

)
u+ δ (κ+ δ divγ η) 〈∂sη, ∂suν − uκτ〉 ds

=

∫
γ

(κ+ δ divγ η) ∂ssu+ δ (κ+ δ divγ η) 〈∂sη, ν〉 ∂su+

(
1

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
κuds .
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Integrating by parts we obtain

d

dε
ELM (γε, η)

∣∣∣∣
ε=0

=

∫
γ
∂ss (κ+ δ divγ η)u− δ∂s [(κ+ δ divγ η) 〈∂sη, ν〉]u

+

(
1

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 − 1

)
κuds ,

and we rearrange terms to obtain

∂ELM
∂γ

(γ, η)[ϕ] =

∫
γ

〈[
∂ss(κ+ δ divγ η)− δ∂s[(κ+ δ divγ η)〈∂sη, ν〉]

+
1

2
(κ+ δ divγ η)2κ+

λ

2
|∂sη|2κ− κ

]
ν, ϕ

〉
ds . (A.6)

Concerning η we integrate by parts in (A.4) and get

∂ELM
∂η

(γ, η)[ψ] = −
∫
γ
〈λ∂ssη + δ∇s(κ+ δ divγ η) + δ(κ+ δ divγ η)κν, ψ〉 ds . (A.7)

We proceed as in Theorem 4.2 and consider H4
imm as open subset in H4

per. There exists an r > 0 with
B(γ, r) ⊂ H4

imm ⊂ H4
per. The Gateaux derivatives in the directions ϕ ∈ H4

per and ψ ∈ H3
per are given

by (A.6) and by (A.7). It is easy to see that the partial Fréchet derivatives exist and are continuous
on B((γ, η), r), thus the map ELM is continuously Fréchet differentiable in a neighborhood of an
immersion γ and for (ϕ,ψ) ∈ H4

per ×H3
per we have the representation

E′(γ, η)[ϕ,ψ] =
d

dε

∣∣∣∣
ε=0

E(γ + εϕ, η + εψ) .

Therefore E′LM is the gradient of ELM and if a time-dependent family (γt, ηt)t∈[0,T ) moves with ve-
locity equal to the negative gradient of ELM , then this family is a solution of the associated gradient
flow.

We also prove that the energy ELM decreases along the flow. To do so we introduce some notation:

z = κ+ δ divγ η

V = −∂ssz + δ∂s(z〈∂sη, ν〉)−
1

2
z2κ− λ

2
|∂sη|2κ+ κ ,

~W = λ∂ssη + δ∂szτ + δzκν .

We give here some formulas that describe the evolution of geometric quantities under the gradient
flow of ELM .
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Lemma A.4. Suppose that γt = γ⊥t . We have

∂t (ds) = −κV ds , (A.8a)
∂t∂s· = ∂s∂t ·+κV ∂s· , (A.8b)
∂tτ = ∂t∂sγ = ∂s∂tγ + κV ∂sγ = ∂sV ν , (A.8c)

∂tκ = ∂ssV + V κ2 , (A.8d)

∂t∂sη = ∂s∂tη + kV ∂sη = ∂s ~W + κV ∂sη , (A.8e)

∂t divγ η = 〈∂s ~W, τ〉+ κV divγ η + 〈∂sη, ∂sV ν〉 , (A.8f)

∂tz = ∂ssV + κV z + δ〈∂s ~W, τ〉+ δ 〈∂sη, ∂sV ν〉 . (A.8g)

Proof. Formulas (A.8a)–(A.8d) have been derived several times in the literature, we refer for instance
to [20, Lemma 2.1]. Let us pass to compute the evolution equation for ∂sη. Thanks to (A.8b) ∂t∂sη =

∂s∂tη + κV ∂sη. Since the equation of motion for η reads ∂tη = ~W , we can conclude ∂t∂sη = ∂s ~W +
κV ∂sη, that is (A.8e). With this formula we prove (A.8f) since

∂t divγ η = 〈∂t∂sη, τ〉+ 〈∂sη, ∂tτ〉
= 〈∂s ~W, τ〉+ 〈κV ∂sη, τ〉+ 〈∂sη, ∂sV ν〉 = 〈∂s ~W, τ〉+ κV divγ η + 〈∂sη, ∂sV ν〉 .

Finally, combining (A.8d) and (A.8e) we get

∂tz = ∂t (κ+ δ divγ η) = ∂ssV + V κ2 + δ(〈∂s ~W, τ〉+ κV divγ η + 〈∂sη, ∂sV ν〉)

= ∂ssV + κV z + δ
〈
∂s ~W, τ

〉
+ δ〈∂sη, ∂sV ν〉

and this is (A.8g).

Lemma A.5. Let (γt, ηt) be a time dependent family of closed curves and vector fields evolving under the
law (A.5) with γt = γ⊥t . Then

∂tELM (γt, ηt) =

∫
γt

−V 2 − | ~W |2 ds .

Proof. With an extensive use of the formulas of the previous lemma, we can compute

d

dt

[∫
γt

1

2
(κ+ δ divγ η)2 +

λ

2
|∂sη|2 + 1 ds

]
=

d

dt

[∫
γt

1

2
z2 +

λ

2
|∂sη|2 + 1 ds

]
=

∫
γt

∂ssV z + κV z2 + δ〈∂s ~W, τ〉z + δ 〈∂sη, ∂sV ν〉 z + λ〈∂sη, ∂s ~W 〉+ λ 〈∂sη, κV ∂sη〉

− 1

2
κV z2 − λ

2
κV |∂sη|2 − κV ds

=

∫
γt

∂sszV +
1

2
κz2V +

λ

2
κ|∂sη|2V − κV − δ∂s (〈∂sη, ν〉 z)V

− λ〈∂ssη, ~W 〉 − δ〈∂s(z)τ, ~W 〉 − δ〈zκν, ~W 〉 ds

=

∫
γt

−V 2 − 〈 ~W, ~W 〉 ds ,

as desired.
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Corollary A.6. Let γ : [0, T ] × [0, 2π] → R2 be a family of time-dependent smooth and regular plane closed
curves and η : [0, T ] × [0, 2π] → R2 a time-dependent family of vector fields evolving under the law (A.5)
with γt = γ⊥t in the time interval [0, T ] with initial datum (γ0(x), η0(x)) = (γ(0, x), η(0, x)). Then for every
t ∈ [0, T ] the energyELM (γ(t, x), η(t, x)) at time t is bounded by the energy of the initial datumELM (γ0, η0).

Proof. Suppose that (γt, ηt) is a solution to system (A.5) in the time interval [0, T ] with initial datum
(γ0(x), η0(x)) = (γ(0, x), η(0, x)). Thanks to Lemma A.5 we have that ∂tE is nonpositive, so E is
decreasing in t, the maximum of the energy is attained at t = 0 and for all t ∈ (0, T ] the energy of
(γt, ηt) is less or equal to the energy of the initial datum.

Remark A.7. If we combine the corollary with Lemma 3.1 we also get a (uniform in time) bound on
the L2–norm of the curvature of evolving curves γt and a (uniform in time) bound on the L2–norm
of ∂sηt and on div(ηt).
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