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Abstract

In this note, we give simpler proofs of the classical continuity and lower
semicontinuity theorems of Reshetnyak.

1 Main Result

In 1968, Reshetnyak [20] proved two important results concerning the conti-
nuity and lower semicontinuity of functionals with respect to weak-star con-
vergence of measures. These theorems are used in a variety of areas in the
calculus of variations, ranging from problems in relaxation ([1],[3],[4],[6]) and
estimates in Gamma convergence ([17],[18],[19]), to anisotropic surface energies
studied in continuum mechanics ([9],[10],[11],[14]) and various other applications
([2],[7],[12]).

For X a locally compact, separable metric space, let [Mb(X)]m denote the
space of Rm-valued measures on X with finite total mass. Given µ ∈ [Mb(X)]m,
we write |µ| for the total variation of µ and dµ

d|µ| for the Radon-Nikodym deriva-
tive of µ with respect to |µ|. Under these assumptions (see Proposition 1.43
and Remark 1.57 of [5]), we have that [Mb(X)]m is the dual of [C0(X)]m (the
completion of the space of Rm-valued continuous functions with compact sup-
port in the sup norm). Thus, for µn, µ ∈ [Mb(X)]m, we have that µn

∗
⇀ µ in

([C0(X)]m)′ if

lim
n→∞

∫
X

ϕ · dµn =
∫

X

ϕ · dµ (1.1)

for every ϕ ∈ [C0(X)]m. We also define another weak convergence, the one used
in the original paper of Reshetnyak. For µn, µ as before, we say that µn

∗
⇀ µ

in ([Cb(X)]m)′ if (1.1) holds for all ϕ ∈ [Cb(X)]m (bounded and continuous
functions).

In [20], the following theorems are given.

Theorem 1.1 Let X be a locally compact, separable metric space and µn, µ ∈
[Mb(X)]m. Assume that µn

∗
⇀ µ in ([Cb(X)]m)′ and that

lim
n→∞

∫
X

g

(
x,

dµn

d|µn|
(x)

)
d|µn| =

∫
X

g

(
x,

dµ

d|µ|
(x)

)
d|µ| (1.2)

for some1continuous function g : X × Rm → R, positively 1-homogeneous and
strictly convex in the second variable, satisfying the growth condition |g(x, z)| ≤

1The English translation of this quantifier say ’for each’, when in fact the original Russian
says ’for some’. This was first noticed by Luckhaus and Modica in [19].
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C|z| for each (x, z) ∈ X × Rm and for some C > 0. Then

lim
n→∞

∫
X

f

(
x,

dµn

d|µn|
(x)

)
d|µn| =

∫
X

f

(
x,

dµ

d|µ|
(x)

)
d|µ| (1.3)

for every continuous function f : X × Rm → R satisfying the growth condition
|f(x, z)| ≤ C1|z| for each (x, z) ∈ X × Rm and for some C1 > 0.

Here, g : Rm → (−∞, +∞] is positively 1-homogeneous if

g(tz) = tg(z)

for all t > 0 and all z ∈ Rm. Note that the definition for positive 1-homogeneity
is not uniform throughout the literature, particularly when functions can take
the value +∞. We say that g : Rm → (−∞, +∞] is convex if the inequality

g(θz + (1 − θ)w) ≤ θg(z) + (1 − θ)g(w)

holds for all θ ∈ [0, 1] and for all z, w ∈ Rm. If g is positively 1-homogeneous,
this definition is equivalent to the inequality

g(z + w) ≤ g(z) + g(w) (1.4)

holding for all z, w ∈ Rm. Following Reshetnyak [20], we say that a positively
1-homogeneous function g : Rm → (−∞, +∞] is strictly convex if the inequality
(1.4) is strict, except when w = 0 or z = tw for some t > 0. Note that this
definition is not standard.

Theorem 1.2 Let X be a locally compact, separable metric space and µn, µ ∈
[Mb(X)]m; if µn

∗
⇀ µ in ([Cb(X)]m)′, then

lim inf
n→∞

∫
X

f

(
x,

dµn

d|µn|
(x)

)
d|µn| ≥

∫
X

f

(
x,

dµ

d|µ|
(x)

)
d|µ|

for every continuous function f : X × Rm → R, positively 1-homogeneous and
convex in the second variable, satisfying the growth condition |f(x, z)| ≤ C|z|
for each (x, z) ∈ X × Rm and for some C > 0.

Proofs to variants of Theorems 1.1 and 1.2 have been given in [5], [19], and
[20], and although the statement of the hypotheses differs, the technique is es-
sentially the same. The idea has been to construct measures in the product
space X × Sm−1 and use a disintegration theorem to analyze the projections of
the measures (see [5], Theorem 2.28). There has been some work involving ar-
guments specific to particular problems, for example, time-dependent problems
[17], as well as the desire to consider f that are not necessarily 1-homogeneous
([15], [16]). However, these arguments either use the original theorem or are
applicable only in a more specific context.

In this paper, we show that in the Euclidean setting it is possible to give
simple proofs of Theorems 1.1 and 1.2 which do not make use of the disinte-
gration theorem. Note that the assumption X ⊂ RN is not as restrictive as
it looks, since locally compact topological vector spaces are finite dimensional
(see Section 1.9 in [21])2. Moreover, the application of Theorems 1.1 and 1.2 is

2Thus, if the metric on X comes from a norm or is compatible with the topology of a
topological vector space, then X is automatically finite dimensional.
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generally to problems involving functions of bounded variation [BV (Ω)]m (the
space of functions in [L1(Ω)]m whose distributional derivative is an element of
[Mb(Ω)]mN ). We are now ready to state the main result.

Theorem 1.3 Let Ω ⊂ RN be open, µn, µ ∈ [Mb(Ω)]m such that

µn
∗
⇀ µ in ([C0(Ω)]m)′ and |µn| (Ω) → |µ| (Ω). (1.5)

Then

lim
n→∞

∫
Ω

f

(
x,

dµn

d|µn|
(x)

)
d|µn| =

∫
Ω

f

(
x,

dµ

d|µ|
(x)

)
d|µ|

for every continuous and bounded function f : Ω × Sm−1 → R.

Note that although hypotheses (1.5) of Theorem 1.3 seem to differ from
those in Theorem 1.1 (namely, µn

∗
⇀ µ in ([Cb(Ω)]m)′ and (1.2)), they are in

fact equivalent, as we will demonstrate following the proof of this theorem (see
Remark 1.5 below). Let us begin with the following remark, which will simplify
our analysis in the proofs of the theorems.

Remark 1.4 The convergence assumptions in (1.5) imply convergence in a
topology stronger than the weak-star topology. Namely, if A ⊂ Ω is open with
A ⊂ Ω compact and |µ|(∂A) = 0, then

lim
n→∞

∫
A

ϕ · dµn =
∫

A

ϕ · dµ (1.6)

for every ϕ ∈ [Cb(Ω)]m, and

lim
n→∞

∫
A

ψ d|µn| =
∫

A

ψ d|µ| (1.7)

for every ψ ∈ Cb(Ω) (see [13], Corollary 1.204, Remark 1.205, and Proposition
1.206, for example).

Proof of Theorem 1.3. We claim it is enough to demonstrate

lim
n→∞

∫
Ω′

f

(
x,

dµn

d|µn|
(x)

)
d|µn| =

∫
Ω′

f

(
x,

dµ

d|µ|
(x)

)
d|µ| (1.8)

for every Ω′ ⊂ Ω open with Ω′ ⊂ Ω compact and |µ|(∂Ω′) = 0. If this is the
case, we may estimate the boundary layer by∫

Ω\Ω′
f

(
x,

dµn

d|µn|
(x)

)
d|µn| ≤ M |µn| (Ω \ Ω′) , (1.9)∫

Ω\Ω′
f

(
x,

dµ

d|µ|
(x)

)
d|µ| ≤ M |µ| (Ω \ Ω′) , (1.10)

where M := sup(x,z)∈Ω×Sm−1 |f(x, z)|. Computing the limit of (1.9), we have

lim
n→∞

|µn|(Ω \ Ω′) = lim
n→∞

|µn|(Ω) − lim
n→∞

|µn|(Ω′)

= |µ|(Ω) − |µ|(Ω′) = |µ|(Ω \ Ω′),
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where we have used the the fact that |µ|(∂Ω′) = 0 to apply the convergence in
equation (1.7) with ψ = 1. We can then choose Ω′ appropriately to make (1.9)
and (1.10) arbitrarily small.

We therefore proceed to prove (1.8). Define f̃ : Ω × B(0, 1) → R by

f̃(x, z) =
{

f(x, z
|z| )|z| if 0 < |z| ≤ 1,

0 if z = 0.

Then since f is bounded and continuous, we have that f̃ is bounded and contin-
uous. Further, since Ω′ is compact, f̃ : Ω′×B(0, 1) → R is uniformly continuous.
Thus, for every δ > 0, there exists an Cδ > 0 such that∣∣∣f̃(x, y) − f̃(x, z)

∣∣∣ ≤ Cδ|y − z|2 + δ (1.11)

for all x ∈ Ω′ and for all y, z ∈ B(0, 1). To obtain this estimate, let δ > 0 be
given. By uniform continuity of f̃ , there exists an ϵ = ϵ(δ) > 0 such that∣∣∣f̃(x, y) − f̃(x, z)

∣∣∣ ≤ δ (1.12)

for all x ∈ Ω′ and for all y, z ∈ B(0, 1) with |y − z| < ϵ. However, if |y − z| ≥ ϵ,
then |y−z|2

ϵ2 ≥ 1 so that by boundedness of f̃ we have∣∣∣f̃(x, y) − f̃(x, z)
∣∣∣ ≤ 2M ≤ 2M

|y − z|2

ϵ2
(1.13)

Combining equations (1.12) and (1.13) and defining Cδ := 2M
ϵ2 yields inequality

(1.11).
Let φ : Ω → B(0, 1) ⊂ Rm be continuous, to be chosen later. Then add and

subtract zero to what remains in the interior to obtain∣∣∣∣∫
Ω′

f

(
x,

dµn

d|µn|
(x)

)
d|µn| −

∫
Ω′

f

(
x,

dµ

d|µ|
(x)

)
d|µ|

∣∣∣∣
≤

∣∣∣∣∫
Ω′

f̃

(
x,

dµn

d|µn|
(x)

)
d|µn| −

∫
Ω′

f̃ (x, φ(x)) d|µn|
∣∣∣∣

+
∣∣∣∣∫

Ω′
f̃ (x, φ(x)) d|µn| −

∫
Ω′

f̃ (x, φ(x)) d|µ|
∣∣∣∣

+
∣∣∣∣∫

Ω′
f̃ (x, φ(x)) d|µ| −

∫
Ω′

f̃

(
x,

dµ

d|µ|
(x)

)
d|µ|

∣∣∣∣
=: I + II + III.

We have that II goes to zero by applying the convergence result found in equa-
tion (1.7) with A = Ω′ and ψ = f̃ (x, φ(x)). As for I and III, by (1.11) we can
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bound

I + III ≤
∫

Ω′

(
Cδ

∣∣∣∣ dµn

d|µn|
(x) − φ(x)

∣∣∣∣2 + δ

)
d|µn|

+
∫

Ω′

(
Cδ

∣∣∣∣ dµ

d|µ|
(x) − φ(x)

∣∣∣∣2 + δ

)
d|µ|

≤
∫

Ω′

(
2Cδ

(
1 − dµn

d|µn|
(x) · φ(x)

)
+ δ

)
d|µn|

+
∫

Ω′

(
2Cδ

(
1 − dµ

d|µ|
(x) · φ(x)

)
+ δ

)
d|µ|,

where in the last inequality we have used the fact that |φ| ≤ 1. Letting n → ∞,
and again applying the convergence results (1.6) and (1.7), we have

I + III ≤ 2
∫

Ω

(
2Cδ

(
1 − dµ

d|µ|
(x) · φ(x)

)
+ δ

)
d|µ|

= 2δ|µ|(Ω) + 4Cδ

∫
Ω

(
1 − dµ

d|µ|
(x) · φ(x)

)
d|µ|.

First choosing δ > 0 small, and then choosing φ close to dµ
d|µ| (since dµ

d|µ| ∈
L1(Ω, |µ|), and using the density result given by Proposition 7.9 in [8]), the
result is demonstrated.

Remark 1.5 We can now establish the equivalence of the hypotheses of Theo-
rem 1.1 and Theorem 1.3. That µn

∗
⇀ µ in ([Cb(Ω)]m)′ and (1.2) imply (1.5) is

relatively straightforward, since weak-star convergence in ([Cb(Ω)]m)′ is stronger
than the weak-star convergence in ([C0(Ω)]m)′, and applying Theorem 1.1, we
conclude that (1.3) holds for f(x, z) = |z|. Conversely, assuming (1.5), we have
that (1.2) holds for g(x, z) = |z|, and given ϕ ∈ [Cb(Ω)]m, we may apply The-
orem 1.3 to the function f(x, z) = ϕ(x) · z to prove weak-star convergence in
([Cb(Ω)]m)′.

In the remainder of the paper we give an alternative proof of Theorem 1.2 in
the Euclidean setting. In view of the applications (see [3], [4], [6]) we also study
lower semicontinuity with respect to the weak-star convergence in ([C0(Ω)]m)′,
which requires f to be non-negative but allows f to take the value +∞. To
simplify the proof, we proceed in two steps, first assuming the additional hy-
pothesis f(x, 0) = 0 for all x ∈ Ω (which is true if f is real-valued by positive
1-homogeneity), and then proceeding to the general case.

Theorem 1.6 Let Ω ⊂ RN be open and µn, µ ∈ [Mb(Ω)]m; if µn
∗
⇀ µ in

([C0(Ω)]m)′, then

lim inf
n→∞

∫
Ω

f

(
x,

dµn

d|µn|
(x)

)
d|µn| ≥

∫
Ω

f

(
x,

dµ

d|µ|
(x)

)
d|µ|

for every lower semicontinuous function f : Ω × Rm → [0,∞], positively 1-
homogeneous and convex in the second variable such that f(x, 0) = 0 for all
x ∈ Ω.
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Proof. Since we have assumed f(x, 0) = 0, we can apply Proposition 6.42 in
[13] to represent f as

f(x, z) = sup
i

bi(x) · z, (1.14)

where bi : Ω → Rm are bounded and continuous. Following the proofs of
Theorem 5.14 and Theorem 6.54 in [13], without loss of generality we may
assume that

lim inf
n→∞

∫
Ω

f

(
x,

dµn

d|µn|

)
d|µn| = lim

n→∞

∫
Ω

f

(
x,

dµn

d|µn|

)
d|µn| < ∞. (1.15)

Passing to a subsequence, there exists a positive Radon measure ν ∈ Mb(Ω)
such that

f

(
x,

dµn

d|µn|

)
d|µn|

∗
⇀ ν in (C0(Ω))′

as n → ∞. We claim it is enough to show that

dν

d|µ|
(x0) ≥ f

(
x0,

dµ

d|µ|
(x0)

)
for |µ| a.e. x0 ∈ Ω. (1.16)

If we can prove (1.16), then by the Radon-Nikodym theorem we can write

ν =
dν

d|µ|
|µ| + νs,

where νs ≥ 0 (since f , and in turn ν, are non-negative), and we have the
following inequalities

lim
n→∞

∫
Ω

f

(
x,

dµn

d|µn|
(x)

)
d|µn| ≥ ν(Ω) ≥

∫
Ω

dν

d|µ|
(x) d|µ|

≥
∫

Ω

f

(
x,

dµ

d|µ|
(x)

)
d|µ|.

Thus, let x0 be a Lebesgue point of dµ
d|µ| with respect to the measure |µ| such

that by the Besicovitch derivation theorem we have

dν

d|µ|
(x0) = lim

ϵ→0

ν(Q(x0, ϵ))
|µ|(Q(x0, ϵ))

< ∞,

where Q(x0, ϵ) is the cube centered at x0 with side length ϵ. Choosing a sequence
of ϵk → 0+ such that ν(∂Q(x0, ϵk)) = 0, by (1.6) and (1.14) we have that

dν

d|µ|
(x0) = lim

k→∞

ν(Q(x0, ϵk))
|µ|(Q(x0, ϵk))

= lim
k→∞

lim
n→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

f

(
x,

dµn

d|µn|
(x)

)
d|µn|

≥ lim inf
k→∞

lim inf
n→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

bi(x) · dµn

d|µn|
(x) d|µn|

= lim inf
k→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

bi(x) · dµ

d|µ|
(x) d|µ|,
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where we have used the weak-star convergence µn
∗
⇀ µ in ([C0(Ω)]m)′. By the

continuity of bi, for every η > 0 we have that

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

|bi(x) − bi(x0)| d|µ| ≤ η,

whenever k is sufficiently large. Thus, we have that

lim
k→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

bi(x) · dµ

d|µ|
(x) d|µ|

= lim
k→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

bi(x0) ·
dµ

d|µ|
(x) d|µ|

= bi(x0) ·
dµ

d|µ|
(x0),

and combining this with the above, we have

dν

d|µ|
(x0) ≥ bi(x0) ·

dµ

d|µ|
(x0). (1.17)

Finally, taking the supremum over i and using equation (1.14), we obtain the
inequality (1.16), and the result is demonstrated.

We now remove the hypothesis that f(x, 0) = 0 for all x ∈ Ω, with some
subtle analysis of the set of x ∈ Ω such that f(x, 0) = 0.

Theorem 1.7 Let Ω ⊂ RN be open and µn, µ ∈ [Mb(Ω)]m; if µn
∗
⇀ µ in

([C0(Ω)]m)′, then

lim inf
n→∞

∫
Ω

f

(
x,

dµn

d|µn|
(x)

)
d|µn| ≥

∫
Ω

f

(
x,

dµ

d|µ|
(x)

)
d|µ| (1.18)

for every lower semicontinuous function f : Ω × Rm → [0,∞], positively 1-
homogeneous and convex in the second variable.

Moreover, if we assume that µn
∗
⇀ µ in ([Cb(Ω)]m)′, then (1.18) holds for

every lower semicontinuous function f : Ω × Rm → (−∞,∞], positively 1-
homogeneous and convex in the second variable such that

f(x, z) ≥ b(x) · z (1.19)

for some b ∈ [Cb(Ω)]m.

Proof. Define the set

C := {x ∈ Ω : f(x, 0) = 0} ,

and note that by lower semicontinuity of f , C is a closed set. We will show that
without loss of generality, the complement of C has |µ| measure zero, which
combined with a representation for f on C similar to the one used in the proof
of Theorem 1.6 will yield the result. Thus, we claim that |µ|(Ω \C) = 0. To see
this, note that assumption (1.15) implies that for n large, say n ≥ n0,

f

(
x,

dµn

d|µn|
(x)

)
< ∞ for |µn| a.e. x ∈ Ω.
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Fix n ≥ n0 and let x ∈ Ω be such that f
(
x, dµn

d|µn| (x)
)

< ∞. Applying positive
1-homogeneity and using lower semicontinuity of f , we have that

0 ≤ f (x, 0) ≤ lim
t→0+

f

(
x, t

dµn

d|µn|
(x)

)
= lim

t→0+
tf

(
x,

dµn

d|µn|
(x)

)
= 0.

Thus,

f (x, 0) = 0 for |µn| a.e. x ∈ Ω,

which combined with the weak-star convergence µn
∗
⇀ µ in ([C0(Ω)]m)′ implies

0 ≤
∫

Ω

f (x, 0) d|µ| ≤ lim inf
n→∞

∫
Ω

f (x, 0) d|µn| = 0,

so

f (x, 0) = 0 for |µ| a.e. x ∈ Ω.

By Proposition 6.42 in [13], we may represent f : C × Rm → [0,∞] as

f(x, z) = sup
i

bi(x) · z,

where bi : C → Rm are bounded and continuous. Now, since C is closed,
by the Tietze extension theorem (see [8], Theorem 4.16) we may extend bi to
b̃i : Ω → Rm such that b̃i are still bounded and continuous. But then examining
the blowup argument in the previous proof under these modifications, for any
x0 ∈ C and n large we have

dν

d|µ|
(x0) = lim

k→∞

ν(Q(x0, ϵk))
|µ|(Q(x0, ϵk))

= lim
k→∞

lim
n→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)∩C

f

(
x,

dµn

d|µn|
(x)

)
d|µn|

≥ lim inf
k→∞

lim inf
n→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)∩C

b̃i(x) · dµn

d|µn|
(x) d|µn|

= lim inf
k→∞

lim inf
n→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

b̃i(x) · dµn

d|µn|
(x) d|µn|

= lim inf
k→∞

1
|µ|(Q(x0, ϵk))

∫
Q(x0,ϵk)

b̃i(x) · dµ

d|µ|
(x) d|µ|,

where we have used twice the |µn| negligibility of the complement of C for n
large. However, this again says that

dν

d|µ|
(x0) ≥ b̃i(x0) ·

dµ

d|µ|
(x0) = bi(x0) ·

dµ

d|µ|
(x0),

since x0 ∈ C and b̃i is an extension of bi. This inequality is similar to (1.17)
in Theorem 1.6, and we follow the remainder of the argument of Theorem 1.6,
along with the |µ| negligibility of the complement of C to reach the desired
conclusion.
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To prove the last claim of the theorem, assume that µn
∗
⇀ µ in ([Cb(Ω)]m)′

and let f be as in the final part of the statement. Consider the function

g(x, z) := f(x, z) − b(x) · z ≥ 0.

Applying the first part of the proof to the function g, we have

lim inf
n→∞

∫
Ω

f

(
x,

dµn

d|µn|
(x)

)
d|µn| −

∫
Ω

b(x) · dµ

d|µ|
(x) d|µ|

= lim inf
n→∞

∫
Ω

g

(
x,

dµn

d|µn|
(x)

)
d|µn|

≥
∫

Ω

g

(
x,

dµ

d|µ|
(x)

)
d|µ|

=
∫

Ω

f

(
x,

dµ

d|µ|
(x)

)
d|µ| −

∫
Ω

b(x) · dµ

d|µ|
(x) d|µ|.

This concludes the proof.

Remark 1.8 Under the hypotheses of Theorem 1.2, we have that (1.19) holds.
We obtain this using Proposition 6.42 in [13] to conclude that for f real-valued,
we have

f(x, z) ≥ b(x) · z

for some b ∈ [C(Ω)]m. To show that b ∈ [Cb(Ω)]m, we combine this lower bound
with the upper bound f(x, z) ≤ C|z| at z = b(x). Then we have

|b(x)|2 ≤ f (x, b(x)) ≤ C|b(x)|,

which implies that |b(x)| ≤ C.
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