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Abstract. A natural higher order notion of C1,α-rectifiability for any 0 < α ≤ 1
is introduced for subsets of Heisenberg groups Hn in terms of covering a set almost
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1. Introduction

Rectifiable sets are focal to studies in geometric measure theory and admit vari-
ous applications in several branches of mathematical analysis. Interest in such sets
arises mainly for their geometric, measure-theoretic, and analytic properties which
include a notion of (approximate) tangent spaces defined almost everywhere, a ver-
sion of the area and coarea formulas (see [1] and [20]), and a framework for studying
boundedness of a class of singular integral operators (see, e.g., [6–8]).

In metric spaces, particularly Carnot groups, the definition of rectifiability di-
verges along several, not necessarily equivalent, directions (see, e.g., [2, 14, 16, 24]).
The original definition by Federer [11, Section 3.2.14] is in terms of composing a set
with countably many Lipschitz images of subsets of the Euclidean space Rn. This
is adopted in [1] and shown to be inappropriate in general metric spaces considering
even the basic setting of the Heisenberg group H1. In [22], Mattila et al. defined
rectifiability in the Heisenberg group Hn considering a countable union of C1 H-
regular surfaces. This is related to the approach of using notions of regular surfaces
in the sense of Franchi, Serapioni and Serra Cassano (see, e.g., [15, 17, 18]). Several
results can be found on characterizations and basic properties of rectifiable sets in
Euclidean spaces and general metric spaces (see, e.g., [1, 9, 11, 12, 21, 22]). A well-
known characterization in the Heisenberg group Hn is in terms of the a.e. existence
of the approximate tangent spaces [22]. This is in the Spirit of the Euclidean ana-
logue which is in terms of an almost everywhere existence of approximate tangent
planes (see, e.g., [21, Corollary 15.16]).

A missing piece in the study of rectifiability in metric spaces is the natural notion
of higher order rectifiability which can be defined in terms of essentially composing a
set with countably many objects of higher order regularity defined in an appropriate
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sense. Motivated by the seminal work of Anzellotti and Serapioni [3] in the Euclidean
setting, our goal in this article is to initiate progress along this line in the metric
setting of Heisenberg groups. We introduce a notion of C1,α-rectifiability for any
0 < α ≤ 1 defined in terms of composing a set with countably many (C1,α

H ,H)-regular
surfaces (refer to Definitions 2.8 and 2.11). Using this, we address the problem of
characterisation of C1,α-rectifiable sets in a metric setting. An interesting, and
perhaps gratifying, discovery is the fact that analogous geometric criterion of ap-
proximate tangent paraboloids as in the Euclidean characterisation of C1,α-rectifiable
sets, 0 < α ≤ 1 (see [10, 25]) applies in the setting of low-codimensional sets of the
Heisenberg groups Hn

Throughout the paper we write k and km as the dimension and metric dimension
respectively, G(Hn, k) is the Grassmannian of k-dimensional subgroups (see Defini-
tion 2.16) and denote by Qα(p, V, λ) the α-paraboloid centered at the point p with
base V and dilation parameter λ (see Definition 2.20 for more details). We state the
main results of this paper:

Theorem 1.1. Fix α ∈ (0, 1] and n < k ≤ 2n. Let E ⊂ Hn be a Hkm-measurable
set with Hkm(E) < ∞ such that for Hkm-a.e. p ∈ E there are Vp ∈ G(Hn, k) and
λ > 0 such that

lim
r→0+

1

rkm
Hkm (E ∩B(p, r) \Qα(p, Vp, λ)) = 0. (1)

Assume, in addition, that for Hkm-a.e. p ∈ E there holds

Θkm
∗ (E, p) > 0.

Then E is C1,α-rectifiable in the sense of Definition 2.11.

Next, we prove that the opposite implication is also true. As above, we are in the
low-codimensional setting so n < k ≤ 2n.

Proposition 1.2. If E ⊂ Hn is a C1,α-rectifiable set with Hkm(E) < ∞, then for
Hkm-a.e. p ∈ E there exist Vp ∈ G(Hn, k) and λ = λp > 0 such that

lim
r→0+

1

rkm
Hkm (E ∩B(p, r) \Qα(p, Vp, λ)) = 0.

The proof of Theorem 1.1 draws technique from [10, Lemma 3.5] by first recovering
the Holder regularity of the distribution of subgroups as in Lemma 3.1 using the
density conditions. We remark that, unlike an analogous result in the Euclidean
setting (see [10, Theorem 1.1]) where the positive lower density condition is recovered
from the approximate tangent paraboloid condition, in our setting, this is not so
direct and we thus impose the explicit requirement. This is the same scenario in
the characterisation of k-rectifiable sets of low codimension in Hn (see [22, Theorem
3.15]) where the positive lower density condition is required and is asked if such
condition can be removed. The strategy of proof is similar to that of [22] via a
standard decomposition argument using the density conditions and a selection of
horizontal vectorfields corresponding to horizontal complement of the distribution
of vertical subgroups. Further, application of the Holder regularity result and an
inclusion in paraboloids establishes the convergence of the sequence of Whitney
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functions from which the conclusion follows via standard approximation results and
the Whitney extension theorem.

It is interesting to notice that most of the technical points exploited to prove The-
orem 1.1 can be extended to a general Carnot group without much effort. Indeed,
the structure of the Heisenberg group Hn only plays a fundamental role in Proposi-
tion 2.17 and, consequently, in the Hölder-continuity result (Lemma 3.2). That said,
in Remark 3.5 we will show that our main result can be extended in codimension
one to any Carnot group G and briefly discuss codimension ≥ 2.

The structure of the paper is the following. In Section 2 we briefly recall the main
properties of the Heisenberg group Hn, the definition of Hausdorff measure with some
useful density results and Pansu differentiability for general Carnot groups. Next,
in Section 2.1, we exploit them to finally introduce the notion of low codimensional
C1,α-rectifiability that will be used throughout the paper.

In Section 2.3, following [22], the intrinsic Grassmannian is defined and charac-
terized (Proposition 2.17). To conclude the preliminaries, in Section 2.4, we prove
several technical results concerning α-paraboloids and cylinders (Definition 2.20)
that will be used for the proof of the main theorem.

In Section 3 we give a proof to Proposition 1.2 as well as other technical results
(Lemma 3.3) which will be used in the next section to prove Theorem 1.1. Finally,
in Section 3.2 we briefly discuss how our main result can be extended to general
Carnot groups in codimension one.

2. Preliminaries

We shall restrict to essential notions of our space. The interested reader is invited
to the references [4, 5] on Carnot groups, and in particular on Heisenberg groups.

The Heisenberg group Hn is the simplest Carnot group whose Lie algebra hn has
a step two stratification; more precisely, we have

hn = h1 ⊕ h2,

where h1 = span {X1, . . . , Xn, Y1, . . . , Yn} and h2 = span{T} with commutators

[Xi, Yj ] = δijT and [Xi, Xj ] = [Yi, Yj ] = 0.

The vector fields X1, . . . , Xn, Y1, . . . , Yn span a vector subbundle of the tangent vec-
tor bundle THn, the so-called horizontal vector bundle HHn. Via exponential coor-
dinates Hn can be identified with R2n+1 and we may express the group law using
the Baker-Campbell-Hausdorff formula as follows:

p · q :=

(
p′ + q′, p2n+1 + q2n+1 − 2

n∑
i=1

(piqi+n − pi+nqi)

)
,

where p′ := (p1, · · · , p2n). The inverse of p is given by

p−1 =
(
−p′,−p2n+1

)
,

and e = 0 is the identity of Hn. The center of Hn is the subgroup

T := {p = (0, . . . , 0, p2n+1)} .
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For any q ∈ Hn and r > 0, we denote by τq : Hn → Hn the left translation
p 7→ q · p =: τq(p) and by δr : Hn → Hn the dilation

p 7→
(
rp′, r2p2n+1

)
=: δrp.

We denote by ‖ · ‖ the homogeneous (with respect to dilations) norm and by d the
metric given, respectively, by

‖p‖ := d(p, e) := max
{∥∥p′∥∥R2n , |p2n+1|1/2

}
,

where ‖ · ‖R2n denotes the standard euclidean norm, and

d(p, q) = d
(
q−1p, e

)
=
∥∥q−1p∥∥

for all p, q ∈ Hn. We conclude this section by recalling the definition of the Hausdorff
measure in metric spaces and some density results.

Definition 2.1. Let E ⊂ Hn and k ∈ (0,∞). The k-dimensional Hausdorff measure
Hk of E is defined by setting

Hkd(E) := sup
δ>0
Hkδ (E),

where Hkδ (E) = inf
{∑

i 2−kdiam(Ei)
k : E ⊂

⋃
iEi, diam(Ei) ≤ δ

}
.

Given a Hk-measurable subset E ⊂ Hn we define the corresponding upper and
lower k-densities of E at p ∈ Hn as follows:

Θ∗k(E, p) = lim sup
r→0

Hk(E ∩B(p, r))

rk
and Θk

∗(E, p) = lim inf
r→0

Hk(E ∩B(p, r))

rk
.

We now recall the following standard density estimates for Hausdorff measures;
see, for example, [11, 2.10.19].

Lemma 2.2. Let E ⊂ Hn be Hk-measurable with Hk(E) < +∞. Then

(i) For Hk-a.e. p ∈ E, it turns out that 2−k ≤ Θ∗k(E, p) ≤ 5k.

(ii) For Hk-a.e. p ∈ Hn \ E, it turns out that Θ∗k(E, p) = 0.

Let Ω be an open subset of Hn (identified with R2n+1 as explained above) and
m ≥ 0 a nonnegative integer. Following [22, Section 2.2], we denote by Cm(Ω) the
space of real-valued functions which are m times continuously differentiable in the
Euclidean sense. We further denote by Cm (Ω,HHn) the set of all Cm-sections of
HHn construed in the sense of regularity between smooth manifolds.

Definition 2.3. Let f ∈ C1(Ω). We define the horizontal gradient of f as

∇Hf := (X1f, . . . ,Xnf, Y1f, . . . , Ynf)

or, equivalently, as the section of the horizontal bundle HHn

∇Hf :=
n∑
j=1

(Xjf)Xj + (Yjf)Yj ,

with canonical coordinates (X1f, . . . ,Xnf, Y1f, . . . , Ynf).
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Definition 2.4. Let U ⊂ Hn and f : U → R a continuous function. We say that
f ∈ C1

H(U) if ∇Hf exists and is continuous in U . Furthermore, if ∇Hf ∈ C0,α for

some 0 < α ≤ 1, then we say that f ∈ C1,α
H (U).

We write
[
C1
H(U)

]`
as the set of `-tuples f = (f1, . . . , f`) such that fi ∈ C1

H(U)

for each 1 ≤ i ≤ `. We define
[
C1,α
H (U)

]`
in the same way.

Remark 2.5. The inclusion C1(U) ⊂ C1
H(U) is strict (see e.g., [15, Remark 5.9]).

We would like to introduce an intrinsic notion of differentiability in Carnot groups
due to P. Pansu [23].

Definition 2.6. Let G1,G2 be Carnot groups, with homogeneous norms ‖ · ‖1, ‖ · ‖2
and dilations δ1λ, δ

2
λ. We say that L : G1 → G2 is H-linear, or is a homogeneous

homomorphism, if L is a group homomorphism such that

L
(
δ1λg
)

= δ2λL(g), for all g ∈ G1 and λ > 0

Definition 2.7 (Pansu differentiability). Let (G1, d1) and (G2, d2) be Carnot groups
and A ⊂ G1. A function f : A → G2 is Pansu differentiable in g ∈ A if there is a
H-linear map Lg : G1 → G2 such that

d2
(
f(g)−1 · f (g′) , Lg

(
g−1 · g′

))
d1 (g, g′)

→ 0, as d1
(
g, g′

)
→ 0, g′ ∈ A

The homogeneous homomorphism Lg is denoted dHfg and is called the Pansu dif-
ferential of f in g.

2.1. C1,α-rectifiability in low codimension. In [22, Proposition 2.20] it was
proved that the metric dimension in Hn is given by

km = k + 1 if n+ 1 ≤ k ≤ 2n.

This tells us that the notion of rectifiability via Lipschitz maps is only interesting in
low dimension (k ≤ n). Indeed, any Lipschitz function f : A ⊂ Rk → Hn satisfies

Hkm (f(A)) = 0

whenever dimension and metric dimension are different (i.e., the case k > n). There-
fore, we need to find a different notion of rectifiability.

The idea, looking at the Euclidean case, is to first introduce a notion of regular
surfaces which is more fitting in our setting.

Definition 2.8. Let n + 1 ≤ k ≤ 2n. A set S ⊂ Hn is a k-dimensional (C1,α
H ,H)-

regular surface if for any p ∈ S there are U ⊆ Hn open and f ∈ [C1,α
H (U)]2n+1−k

satisfying

(a) dHfq is surjective at all q ∈ U ;

(b) S ∩ U = {q ∈ U : f(q) = 0}.

The operator dH is the Pansu differential and it is represented by the horizontal
gradient ∇Hf introduced above. This definition (with C1,α

H replaced by C1
H) was

already given in [22] so we refer the reader to that paper for more details.
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Definition 2.9. Fix n + 1 ≤ k ≤ 2n. Let S be a k-dimensional (C1,α
H ,H)-regular

surface and let f be as above. The tangent group to S at p0 ∈ S, denoted as THS(p0),
is given by

THS(p0) := {p ∈ H : dHfp0(p) = 0} .

The following characterization of H-regular surfaces is an immediate consequence
of the definition:

Proposition 2.10. A set S is a k-dimensional (C1,α
H ,H)-regular surface if and only

if S is locally the intersection of (2n + 1 − k) 1-codimensional (C1,α
H ,H)-regular

surfaces with linearly independent normal vectors.

We recall that, for any open set Ω ⊂ Hn, the Taylor’s expansion of a function
f ∈ C1,α

H (Ω) based at the point x0 ∈ Ω is given by (see [13, Theorem 1.42])

f(x) = f(x0) + dHfx0(x−10 x) +O
(
d(x0, x)1+α

)
. (2)

To conclude this introductory section, we can give the formal definition of C1,α-
rectifiability for a subset of a homogeneous group.

Definition 2.11. A measurable set E ⊂ Hn is C1,α-rectifiable if there are k-
dimensional (C1,α

H ,H)-regular surfaces Si, with i ∈ N, such that

Hkm
(
E \

⋃
i∈N

Si

)
= 0,

where km = k if 1 ≤ k ≤ n and km = k + 1 if n+ 1 ≤ k ≤ 2n.

2.2. Whitney’s extension theorem. The following Whitney-type extension the-
orem was proved in [26, Theorem 4] for general Carnot groups but here stated for
the Heisenberg groups Hn.

Theorem 2.12 (C1,α-extension). Let F be a closed subset of Hn, let α ∈ (0, 1] and
f : F → R, g : F → HHn satisfying the following property: there exists a positive
constant M such that

(i) |f(x)|, |g(x)| ≤M on every compact subset of F ;

(ii) |f(x)− f(y)− 〈g(x), π(y−1x)〉| ≤Md(x, y)1+α for every x, y ∈ F ;

(iii) |g(x)− g(y)| ≤Md(x, y)α for every x, y ∈ F ;

where 〈·, ·〉 denotes the inner product in HHn (identified as an Euclidean space).

Then there exists an extension f̃ : Hn → R, f̃ ∈ C1,α
H (Hn), such that

g(x) = ∇H f̃(x) for all x ∈ F .

2.3. The intrinsic Grassmannian. A subgroup S ⊂ Hn is a homogeneous sub-
group if δr(S) ⊆ S for all r > 0, where δr is the intrinsic dilation defined by

δr(p) = (rp1, . . . , rp2n, r
2p2n+1).

A homogeneous subgroup S is either horizontal, i.e. contained in exp(h1), or vertical,
i.e., it contains the center T of Hn. We introduce the notation

d(p, S) := inf
s∈S

d(p, s) = inf
s∈S
‖p−1s‖.
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Notice also that horizontal subgroups are commutative while vertical subgroups are
non-commutative and normal in Hn.

Definition 2.13. Two homogeneous subgroups S and T of Hn are complementary
subgroups in Hn if S ∩ T = {0} and Hn = T · S. If, in addition, T is normal we
say that Hn is the semidirect product of S and T and write Hn = T o S.

If Hn is the semidirect product of homogeneous subgroups S and T , then we can
define unique projections πS : Hn → S and πT : Hn → T such that

idHn = πT · πS .
Furthermore, if T is normal in Hn, then the following algebraic equalities hold:

πT (p−1) = π−1S (p) · π−1T (p) · πS(p), πS(p−1) = π−1S (p),

πT (δλp) = δλπT (p), πS(δλp) = δλπS(p),

πT (p · q) = πT (p) · πS(p) · πT (q) · π−1S (p), πS(p · q) = πS(p) · πS(q).

Proposition 2.14. If Hn = T o S as above, then the projections πS and πT are
continuous, πS is a h-homomorphism and there is c(S, T ) := c > 0 such that

c‖πS(p)‖ ≤ d(p, T ) ≤ ‖πS(p)‖,
c‖π−1S (p) · πT (p) · πS(p)‖ ≤ d(p, S) ≤ ‖π−1S (p) · πT (p) · πS(p)‖,

holds for all p ∈ Hn.

This result was proved in [22] for the Heisenberg group and generalized in [19] to
all homogeneous groups.

Remark 2.15. In [19], we also proved that the constant c does not depend on S
and T if we consider (for 1 ≤ k ≤ n) a k-homogeneous subgroup S and write

Hn = S⊥ o S,

where S⊥ is the vertical subgroup defined as follows. If S = 〈f1, . . . , fk〉, we take

S⊥ = 〈f1, . . . , fk〉⊥H1 ⊕ 〈e2n+1〉,
where ⊥H1 denotes the orthogonal in the horizontal layer of Hn with respect to the
fixed scalar product. In this case, we denote by cH the universal constant.

We are now ready to introduce the notion of intrinsic Grassmannian as in [22].

Definition 2.16. A k-homogeneous subgroup S belongs to the k-Grassmannian
G(Hn, k) if there exists a (2n + 1 − k)-subgroup T such that Hn = T · S. More-
over, the union

G(Hn) :=
2n+1⋃
k=0

G(Hn, k)

is often referred to as the intrinsic Grassmannian of Hn.

Proposition 2.17. The trivial subgroups {e} and Hn are the unique elements of
G(Hn, 0) and G(Hn, 2n+ 1) respectively and

(i) for 1 ≤ k ≤ n, G(Hn, k) coincides with the set of all horizontal k-homogeneous
subgroups;
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(ii) for n + 1 ≤ k ≤ 2n, G(Hn, k) coincides with the set of all vertical k-
homogeneous subgroups.

Furthermore, any vertical subgroup T with linear dimension in {1, . . . , n} is not an
element of the intrinsic Grassmannian of Hn.

This result was proved in [22, Proposition 2.17]. Notice that in the Carnot setting
this result is no longer true since the identity

G(G, k) = {vertical k-homogeneous subgroups}
does not hold for any k if we do not put additional assumptions on G or to the
possible values of k.

Remark 2.18. If S is a (C1,α
H ,H)-regular surface, then THS(p0) ∈ G(Hn).

Remark 2.19. The Grassmannian G(Hn) is a subset of the Euclidean counterpart
(that is, in R2n+1) and is endowed with the same topology. Moreover, G(Hn, k) is a
compact metric space with respect to the distance

ρ(S1, S2) := max
‖x‖=1

d (πS1(x), πS2(x)) .

2.4. Intersection lemma. The main objects we deal with in this paper are α-
paraboloids and cylinders, so we first recall the definitions in this setting.

Definition 2.20. Fix α ∈ (0, 1], λ, η > 0 and r > 0. Fix moreover x ∈ Hn and
S ∈ G(Hn). The α-paraboloid centered at x ∈ Hn with base S and parameter λ is
defined as

Qα(x, S, λ) =
{
y ∈ Hn : d(x−1y, S) ≤ λd(x, y)1+α

}
,

while the cylinder with axis S and parameter η is given by

C(S, η) := {y ∈ Rn : d(y, S) < η}.
Throughout the paper we will mainly consider sets of the form C(S, λr1+α)∩B(x, r).

Definition 2.21. Let E ⊂ Hn be Hkm-measurable and α ∈ (0, 1]. We say that a
homogeneous subgroup Vp, of dimension k and metric dimension km, is an approx-

imate tangent paraboloid to E at p if Θ∗km(E, p) > 0 and

lim
r→0

r−kmHkm (E ∩B(p, r) \Qα(p, Vp, λ)) = 0 for all λ > 0.

We write apParkmH (E, p) for the set of all approximate tangent paraboloids to E at
p and, if there is only one, we denote it by Vp.

The following result gives the analogous relation between cylinders and paraboloids
as in [10, Lemma 2.3] in the Euclidean setting.

Lemma 2.22. Let S ∈ G(Hn, k) and r0 > 0 be fixed. Suppose that for every r < r0

Hk
(
E ∩B(x, r) \ C(S, λr1+α)

)
≤ εrk.

Then for all r < r0 we have

Hk
(
E ∩B(x, r) \Qα(x, S, λ′)

)
≤ ε

1− 2−k
rk,

where λ′ := 41+αλ.
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Proof. A straightforward verification gives that(
B(x, r) \B(x, r2)

)
\Qα(x, V, λ′) ⊂ B(x, r) \ C(V, λr1+α)

As a consequence we obtain

B(x, r) \Qα(x, V, λ′) =
⋃
j∈N

(
B(x, r

2j
) \B(x, r

2j+1 )
)
\Qα(x, V, λ′)

⊂
⋃
j∈N

B(x, r
2j

) \ C
(
V, λ

(
r
2j

)1+α)
.

Using the assumption we obtain that

Hk
(
E ∩B(x, r) \Qα(x, V, λ′)

)
≤
∑
j∈N

ε
( r

2j

)k
=

ε

1− 2−k
rk. �

Using the Taylor’s expansion (2), it is not difficult to prove the following (repeating
similar arguments as in [22, Lemma 2.28]).

Lemma 2.23. Fix n < k ≤ 2n. Let S ⊂ Hn be a k-dimensional H-regular C1,α-
surface and x ∈ S. Then there exist λ > 0 and r0 = r0(S, x) > 0 such that

S ∩B(x, r0) ⊂ Qα(x, THS(x), λ). (3)

Proof. By Definitions 2.8 and 2.9 we have that there are r0 > 0 and f ∈
[
C1,α
H (U)

]2n+1−k

such that dHfx : Hn → R2n+1−k is surjective and

S ∩B(x, r) = {p : f(p) = 0} , THS(x) = ker(dHfx).

For any p ∈ S ∩B(x, r0), from (2) we have that∥∥dHfx(x−1p)
∥∥
R2n+1−k = O

(
d(x, p)1+α

)
. (4)

By H-linearity of dHfx there is c = c(x, f) > 0 such that∥∥dHfx(x−1p)
∥∥
R2n+1−k ≥ c d

(
x−1p, THS(x)

)
. (5)

Indeed, if L : Hn → R2n+1−k isH-linear, ker(L) is a vertical subgroup and we have by
the intrinsic decomposition that there exists V horizontal such that ker(L) ·V = Hn.
Then L : V → R2n+1−k is injective and hence there exists c > 0 such that

‖L(v)‖R2n+1−k ≥ c‖v‖,
for all v ∈ V . Now by (4) and (5) we find λ > 0 such that (3) holds. �

We now prove that vertical subgroups in the Grassmannian have horizontal com-
plements that can be chosen in a Lipschitz-continuous way.

Definition 2.24. If ν ∈ h1 we denote by N(ν) the 1-codimensional normal subgroup
orthogonal to ν, that is,

N(ν) := {x ∈ Hn : 〈ν, π(x)〉 = 0},
where π is the projection of Hn onto the horizontal layer h1 defined by setting

π(x) :=
n∑
i=1

(xiXi + xn+iYi).
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Lemma 2.25. Given T ∈ G(Hn, k) with n < k ≤ 2n, we can always find unit vectors
ν1, . . . , ν2n+1−k ∈ h1, Lipschitz-continuously depending on T , such that

S := exp (span{ν1, . . . , ν2n+1−k})
is a horizontal complement of T . Furthermore T = ∩2n+1−k

j=1 N(νj) and for all p ∈ Hn

and all α ∈ (0, 1] the following inclusion holds:

Qα(p, T, λ) ⊆
2n+1−k⋂
j=1

Qα(p,N(νj), λ). (6)

Proof. Using [17, Lemma 3.26] we obtain a horizontal subgroup S complementary
to T . Moreover, from the construction in the proof of that lemma it follows that S
depends Lipschitz continuously on T (indeed, as observed in the proof of [22, Lemma
2.32], this is a continuous dependence and, by linearity argument in the construction,
this is equivalent to Lipschitz-continuity). Hence, we can choose ν1, . . . , ν2n+1−k as
an orthonormal basis of S depending on T in a Lipschitz way.

Now denote by t ⊂ h the Lie algebra of T and hi := Span {t, ν1, . . . , νi−1, νi+1, . . . , ν2n+1−k}.
Then we have that N(νi) = exp(hi) ∈ G(Hn, 2n) and T = ∩iN(νi). Now, since
d(p,N(νi)) ≤ d(p, T ) we have thatQα(p, T, λ) ⊂ Qα(p,N(νi), λ) for all i = 1, . . . , 2n+
1− k, and hence (6) follows. �

The following is a basic result with proof which closely follows an Euclidean
version that can be found in [10, Lemma 2.1].

Lemma 2.26. Let S, T ∈ G(Hn, k) with n < k ≤ 2n and set ϑ := ρ(S, T ). Then
there are Z ∈ G(Hn, k − 1) and ` > 0 such that for any positive number η we have

C (S, η) ∩ C (T, η) ⊆ C
(
Z,

3nη

`ϑ

)
.

Proof. First, we claim that there is e ∈ T⊥ with ‖e‖ = 1 such that there holds
‖πS⊥(e)‖ = `ϑ. Indeed, an application of the triangular inequality gives

ϑ ≥ ρ(S⊥, T⊥)− CT − CS ≥ sup
t∈T⊥
‖t‖=1

‖πS⊥(t)‖ − CT − CS ,

where

CT = max
‖x‖=1

d(πT (x), πT⊥(x)) and CS = max
‖x‖=1

d(πS(x), πS⊥(x)).

It follows that
ϑ+ CT + CS ≥ sup

t∈T⊥
‖t‖=1

‖πS⊥(t)‖ > 0

so there must be L1, L2 > 0 such that

L1ϑ ≥ sup
t∈T⊥
‖t‖=1

‖πS⊥(t)‖ ≥ L2ϑ.

By compactness, we can find e ∈ T⊥ and ` ∈ [L2, L1] such that

‖πS⊥(e)‖ = `ϑ,
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and this concludes the proof of the claim. Now consider an orthonormal basis
ek+1, . . . , e2n+1 of S⊥ and define

Z := span{e, ek+1, . . . , e2n+1}⊥.
It is easy to verify that dim(Z) = k − 1 and for any x ∈ C(S, η) ∩ C(T, η) we have{

‖x−1 · ei‖ ≤ η for i = k + 1, . . . , 2n+ 1,

‖x−1 · e‖ ≤ η.
.

We now set e′ := πS(e)
‖πS(e)‖ and consider the resulting orthonormal basis {e′, ek+1, . . . , e2n+1}

of Z⊥. Then for x ∈ C(S, η) ∩ C(T, η), using the triangle inequality, we have

‖x−1 · e′‖ =
1

‖πS(e)‖
‖x−1 · πS(e)‖

=
1

`ϑ

∥∥∥∥∥x−1 ·
(
e−

2n+1∑
i=k+1

(e−1 · ei)ei

)∥∥∥∥∥
≤ 1

`ϑ
(2n+ 1− k + 1)η.

We finally infer that

‖πZ⊥(x)‖ ≤ ‖x−1 · e′‖+

2n+1∑
i=k+1

‖x−1 · ei‖

≤ 1

`ϑ
(2n+ 1− k + 1)η +

2n+1∑
i=k+1

‖x−1 · ei‖

≤ 1

`ϑ
(2(2n+ 1)− 2k + 1)η ≤ 3n

`ϑ
η,

and this concludes the proof. �

3. Proof of the main results

The goal of this section is to prove Theorem 1.1 and Proposition 1.2. For some of
the key results below we adopted techniques similar to the ones used in [10, Section
3] and [22, Section 3] respectively.

Proof of Proposition 1.2. Let E ⊂ Hn be C1,α-rectifiable and let {Γi}i∈N be the
family of C1,α-regular H-surfaces such that

Hk
(
E \

⋃
i∈N

Γi

)
= 0.

In particular E is Hk-rectifiable so (see [22, Theorem 3.15]) for Hk-a.e. x ∈ E there
exists an approximate tangent subgroup Tx ∈ G(Hn, k) and Θk

∗(E, x) > 0. For each
i ∈ N denote by Ei the set E ∩Γi; by standard density properties (e.g., [22, Lemma
3.6]) for Hk-a.e. x ∈ Ei we have that

Θk (E \ Ei, x) = 0. (7)
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By Lemma 2.23, for some λ > 0 we have that Ei ∩ B(x, r) \ Qα(x, Tx, λ) = ∅ for
every x ∈ Ei and r small enough. The conclusion follows by the latter and (7). �

For the sake of simplicity, in the next technical result we will use the following
notation for cylinders:

Crα(x) := C(Vx, λr1+α),

where λ > 0 does not appear in the left-hand side because it is fixed.

Lemma 3.1. Let E ⊂ Hn, take n < k ≤ 2n and let M,λ, δ > 0, 0 < α, r ≤ 1 be
fixed. Suppose that for every z ∈ E and for every s > 0 we have

Hkm (E ∩B(z, s)) ≤Mskm . (8)

Consider any two points x, y such that d(x, y) ≤ r and Vx, Vy ∈ G(Hn, k) satisfying{
Hkm (E ∩B(x, r)) ≥ δrkm
Hkm (E ∩B(y, r)) ≥ δrkm

(9)

and {
Hkm (E ∩B(x, 2r) \ Crα(x)) ≤ εrkm
Hkm (E ∩B(y, 2r) \ Crα(y)) ≤ εrkm

(10)

where ε ≤ δ
4 . Then there exists a positive constant C := C(n, δ,M, λ) such that

ρ(Vx, Vy) ≤ Crα.

Proof. The proof is by a contradiction. Suppose θ := ρ(Vx, Vy) > Crα, with C =
C(n, δ,M, λ) > 0 to be chosen later. First we observe that by the assumptions (9)
and (10) we obtain that

Hk(E ∩ Crα(x) ∩B(x, r)) ≥ (δ − ε)rk.
Furthermore, using that

E ∩ Crα(x) ∩B(x, r) \ Crα(y) ⊆ E ∩B(y, 2r) \ Crα(y),

it follows that Hk(E ∩ Crα(x) ∩B(x, r) \ Crα(y)) ≤ εrk and hence

(δ − ε)rk ≤ Hk (E ∩ Crα(x) ∩B(x, r)) ≤ Hk (E ∩ Crα(x) ∩B(x, r) ∩ Crα(y)) + εrk.

Thus, by the assumption on ε, we obtain that

Hkm (E ∩ Crα(x) ∩ Crα(y) ∩B(x, r)) ≥ δ

2
rkm (11)

and, in particular, B(x, r) ∩ Crα(x) ∩ Crα(y) 6= ∅.
Now since Vx and Vy are vertical k-subgroups they intersect and hence by Lemma 2.26

we have that there exists a vertical (k − 1)-subgroup Z such that

Crα(x) ∩ Crα(y) ⊂ C
(
Z, 4nλr1+α

/
`θ
)
.

where ` > 0 is as in Lemma 2.26. We set η := 4nλr1+α
/
`θ and Eη = E ∩B(x, r) ∩

C(Z, η). By the supposition on θ we infer η ≤ r. We claim that

Hkm(Eη) <
4nC1Mλ

`C
rkm . (12)
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where C1 = C1(n, km) > 0. Indeed, clearly Eη can be covered with h balls of radius

ηr and h ≤ C1η
−km+1, where C1 depends only on n and km. Thus by (8) we have,

using that 0 < r < 1 and the assumption on θ,

Hkm(Eη) ≤ C1Mηrkm =
4nC1Mλr1+α

`θ
rkm <

4nC1Mλ

`C
rkm ,

hence the claim (12). Now, using the above estimate together with (11) we obtain
that

δ

2
rkm ≤ Hkm(Eη) <

4nC1Mλ

`C
rkm .

Choosing C = 4n
δ` max {C1Mλ, λ} the contradiction is immediate and the result

follows. �

Thanks to this result, Lemma 2.25 can be improved as in the following.

Lemma 3.2. Let n < k ≤ 2n and fix M,λ, δ > 0, 0 < α, r ≤ 1. Let U ⊂ Hn be an
open subset with diam(U) > 2r and E ⊆ U as in Lemma 3.1. Consider the mapping

U 3 p 7−→ Vp ∈ G(H, k)

and suppose, for every p, q ∈ E with d(p, q) < r and satisfying (9), that Vp and Vq
satisfy (10). If we denote by

Wp = span (exp{ν1(p), . . . , ν2n+1−k(p)})
the horizontal complement for T = Vp in Lemma 2.25, then the mappings

p 7−→ νj(p), j = 1, . . . , 2n+ 1− k
are α-Hölder continuous in some U ′ ⊂ U .

Proof. By Lemma 3.1 we have that for every p, q ∈ E with d(p, q) < r,

ρ(Vp, Vq) ≤ Cd(p, q)α

for some C > 0. On the other hand, in Lemma 2.25 we proved that

Vp 7−→ νj(p), j = 1, . . . , 2n+ 1− k

are Lipschitz-continuous maps for p ∈ Ũ , for some open set Ũ ⊆ U , that is, there
exists c′ > 0 such that

d(νj(p), νj(q)) ≤ c′ρ(Vp, Vq)

holds for all p, q ∈ Ũ . Putting the above inequalities together, we get

d(νj(p), νj(q)) ≤ c̃d(p, q)α,

for all p, q ∈ Ũ∩E, where c̃ := C ·c′. Take U ′ = Ũ∩E and the conclusion follows. �

The following is a very useful separation result.

Lemma 3.3. Let α ∈ (0, 1], λ > 0, p, q ∈ Hn and Vp, Vq ∈ G(Hn, k), n < k ≤ 2n,
vertical subgroups satisfying the assumptions of Lemma 3.1. Then there exists λ′ > λ
such that, if we further assume

q /∈ Qα(p, Vp, λ
′),
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then the following inclusion holds:

B
(
q,
r

2

)
∩ Cr/2α (q) ⊂ B(p, 2r) \Qα (p, Vp, λ) ,

where r := d(p, q). Moreover, for λ′ we can take any value satisfying

λ′ ≥ 2αcC + (1 + 31+α)λ

21+αc
, (13)

where c and C are the positive constants given, respectively, in Proposition 2.14 and
Lemma 3.1.

Proof. Let z ∈ B(q, r/2) ∩ Cr/2α (q). Using the triangular inequality we have

d(p, z)1+α ≤ [d(p, q) + d(q, z)]1+α ≤
(

3

2

)1+α

r1+α,

so to prove that z does not belong to the paraboloid Qα (p, Vp, λ) we only need to
estimate from below d(p−1z, Vp). We start by noticing that

q /∈ Qα(p, Vp, λ
′) =⇒ d(p−1q, Vp) > λ′r1+α, (14)

and, similarly, also that

z ∈ Cr/2α (q) =⇒ d(q−1z, Vq) ≤ λ
(r

2

)1+α
. (15)

Since Vp is a vertical homogeneous subgroups, by Proposition 2.14 we have

d(p−1z, Vp) ≥ c‖πV ⊥p (p−1z)‖,

where c is a constant that depends on the dimension of p only. Now, taking into
account that V ⊥p and V ⊥q are horizontal by definition, we have

‖πV ⊥p (p−1z)‖ =
∥∥∥πV ⊥p (p−1q) · πV ⊥q (q−1z) · π−1

V ⊥q
(q−1z) · πV ⊥p (q−1z)

∥∥∥
≥ ‖πV ⊥p (p−1q)‖ − ‖πV ⊥q (q−1z)‖ − ‖π−1

V ⊥q
(q−1z) · πV ⊥p (q−1z)‖.

Notice that for the last term we have the inequality

‖π−1
V ⊥q

(q−1z) · πV ⊥p (q−1z)‖ ≤ ρ(Vp, Vq)d(q, z)

≤ Crα r
2

=
C

2
r1+α,

where C is the constant given in Lemma 3.1. If we apply Proposition 2.14 to the
first two terms we get the following inequalities:

d(p−1z, Vp) ≥ c‖πV ⊥p (p−1z)‖

≥ c‖πV ⊥p (p−1q)‖ − c‖πV ⊥q (q−1z)‖ − c‖π−1
V ⊥q

(q−1z) · πV ⊥p (q−1z)‖

≥ cd(p−1q, Vp)− d(q−1z, Vq)−
C

2
cr1+α, .

Using both (14) and (15) yields the inequality

d(p−1z, Vp) >

[
cλ′ − λ2−1−α − cC

2

]
r1+α
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and, as a consequence, the quantity[
cλ′ − λ2−1−α − cC

2

]
r1+α − λ

(
3

2

)1+α

r1+α

is nonnegative if we take λ′ > 0 as in (13), concluding the proof. �

3.1. Proof of Theorem 1.1. Following [22], we first prove uniqueness almost ev-
erywhere of approximate tangent paraboloids.

Proposition 3.4. Let E ⊂ Hn be Hkm-measurable with Hkm(E) < ∞, and let A
be the set of points of E for which there is an approximate tangent parabolid of
dimension k and metric dimension km. Then the following holds:

(a) A is Hkm-measurable;
(b) E has an unique approximate tangent paraboloid Vp at Hkm-a.e. p ∈ A;
(c) the mapping A 3 p 7→ Vp ∈ G(Hn, k) is measurable.

The proof of this result follows the same strategy of [22, Proposition 3.9] so we
refer the reader to that paper for more details.

We are now ready to prove our main result. We follow closely the strategy in
[22, Theorem 3.15] and point out the main differences in our case.

Proof of Theorem 1.1. First, since Hkm(E) < ∞, by a standard density estimate
(see Lemma 2.2), Θ∗km(E, p) ≤ 5km for Hkm-a.e. x ∈ E; we can assume

Hkm(E ∩B(p, r)) ≤ 7kmrkm for all p ∈ E and r > 0. (16)

Using the positive lower density and condition (1), we have that for Hkm-a.e. p ∈ E
we can find `(p) > 0, 0 < r(p) ≤ 1 and Vp = apParkmH (E, p) such that

Hkm (E ∩B(p, r)) > `(p)rkm for all 0 < r < r(p), (17)

and, for some λ = λp > 0, we also have

Hkm (E ∩B(p, r) \Qα(p, Vp, λ)) ≤ εrkm

with ε < 1
4km+1

`(p). Moreover, since B(p, r) ∩Qα(p, Vp, λ) ⊂ Crα(p), it follows that

Hkm (E ∩B(p, r) \ Crα(p)) ≤ εrkm . (18)

Consider for any i ≥ 1 the set

Ei :=

{
p ∈ E : min{r(p), `(p)} > 1

i

}
,

and denote by E∗ =
⋃
i≥1Ei. Then clearly Hkm(E \ E∗) = 0. Hence it suffices to

prove the result for the set Ei for each i ≥ 1.
Now recall that, by Lemma 2.25, for any p ∈ E∗, we can find 2n+1−k horizontal

unit vectors νh(p) in the horizontal bundle HHn
p transversal to Vp such that

Tp := exp (span{ν1(p), . . . , ν2n+1−k(p)})
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is a horizontal subgroup of Hn satisfying Hn = Vp ·Tp. Moreover, using the Lipschitz
continuity part of Lemma 2.25 and Proposition 3.4, we have

E∗ =
⋃
j≥1

Fj ,

with Hkm(Fj) <∞ and νh
∣∣
Fj

is Hkm-measurable. As a consequence

νh : E∗ → HHn

is a measurable sections of HHn for each 1 ≤ h ≤ 2n+ 1− k.
Now, following the strategy proposed in [22], we define for appropriate indices

and for p ∈ E∗ the function

ρi,h,j(p) := sup

{
|〈νh(p), π(p−1q)〉|

d(p, q)1+α
: q ∈ Ei, 0 < d(p, q) <

1

j

}
,

where π : Hn → h1 is the projection onto the first layer given by

π(q) :=

n∑
j=1

(qjXj + q̃jYj).

For any pair of points p, q ∈ Ei, applying Lemma 3.1 with r = d(p, q) we obtain that
the map p→ Vp is α-Hölder when restricted to Ei, i.e.,

ρ(Vp, Vq) ≤ Cd(p, q)α for every p, q ∈ Ei,

where C := C(n, `(p), λ) is the constant as in Lemma 3.1. Notice that here we have
used (16) to verify the assumption (8). We now claim that, up to taking a larger
aperture λ′ > λ, we have that

Ei \Qα(p, Vp, λ
′) = ∅.

Suppose for a contradiction that this does not hold. Let p, q ∈ Ei be such that the
assumptions of Lemma 3.3 hold; then we have the inclusion

B
(
q,
r

2

)
∩ Cr/2α (q) ⊂ B(p, 2r) \Qα(p, Vp, λ)

assuming that q /∈ Qα(p, Vp, λ
′), with λ′ satisfying (13). Consequently, using the

estimates (17) and (18), we deduce that

(`(p)− ε)(r/2)km ≤ Hkm
(
Ei ∩B

(
q,
r

2

)
∩ Cr/2α (q)

)
≤ Hkm (E ∩B (p, 2r) \Qα(p, Vp, λ)) ≤ 2kmεkm ,

which gives a contradiction since ε < 1
4km+1

`(p). Hence the claim holds and by

Lemma 2.25 it follows that

Ei \Qα(p,N(νh(p)), λ′) = ∅ for all 1 ≤ h ≤ 2n+ 1− k. (19)

As a consequence of (19) we have that for all i ≥ 1 and 1 ≤ h ≤ 2n+ 1− k

lim
j→∞

ρi,h,j(p) = 0.
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If we now apply Lusin theorem to each νh and Egoroff theorem to the sequence
(ρi,h,j)j∈N we find that we can write

Ei = Ei,0
⋃⋃

β≥1
Ki,β

 ,

with Ei,0 Hkm-negligible, Ki,β compact, νh
∣∣
Ki,β

continuous and ρi,h,j going to zero

uniformly in Ki,β with respect to j. Using Lemma 3.2 we obtain that

νh
∣∣
Ki,β

is actually α-Hölder continuous. By applying the Whitney theorem (see Theorem
2.12) on Ki,β we obtain the functions

fi,β,h ∈ C1,α
H (Hn)

with fi,β,h
∣∣
Ki,β

= 0, ∇Hfi,β,h
∣∣
Ki,β

= νh and |∇Hfi,β,h| 6= 0 on Ki,β. The set

Si,β,h := {p ∈ Hn : fi,β,h(p) = 0, |∇Hfi,β,h| 6= 0}

is a 1-codimensional (C1,α
H ,H)-regular surface containing Ki,β so we can consider the

following intersection:

Si,β :=
2n+1−k⋂
h=1

Si,β,h.

By Proposition 2.10 we have that Si,β is a k-codimensional (C1,α
H ,H)-regular surface

that contains the set Ki,β. Moreover, we have

E ⊂ E0 ∪ (∪i≥1 ∪β≥1 Si,β),

with E0 = (E \ E∗) ∪ ∪∞i=1Ei,0 and Hkm(E0) = 0. Hence E is C1,α-rectifiable. �

3.2. Extension to Carnot groups. Let G = H1 ⊕ · · · ⊕Hι be a Carnot group of
dimension q and homogeneous dimension

Q =

ι∑
j=1

j · dim(Hj).

In analogy with the Heisenberg case, we say that a homogeneous subgroup T ⊂ G
of codimension k ≤ dim(H1) is vertical if

T = TH ⊕H2 ⊕ · · · ⊕Hι,

where TH ⊂ H1 has dimension dim(H1)−k. As a consequence, the definition of the
Grassmannian (Definition 2.16) can be immediately extended, but there is an issue
that we mentioned already in the paper: if S is a vertical subgroup of codimension
at least 2, then there is no guarantee that a horizontal complement exists which,
in turn, means that it may not even belong to the Grassmannian.
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Remark 3.5. The issue discussed above does not apply to the particular case of
codimension one since a horizontal complement always exists and is generated by
a single element. Indeed, if we replace

km with Q− 1 and k with q − 1,

then all technical results can be proved using the same argument, except for Lemma
3.2 which is trivial because the distance between the horizontal complements is given
by the distance between the two generating vectors which can be chosen using the
orthogonality condition.
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[6] V. Chousionis, K. Fässler, and T. Orponen, Boundedness of singular integrals on C1,α intrinsic
graphs in the Heisenberg group, Adv. Math. 354 (2019).

[7] G. David and S. Semmes, Singular integrals and rectifiable sets in Rn: Beyond Lipschitz graphs,
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