
Quantitative estimates for parabolic optimal control problems

under L∞ and L1 constraints in the ball:

Quantifying parabolic isoperimetric inequalities

Idriss Mazari∗

February 13, 2021

Abstract

In this article, we present two different approaches for obtaining quantitative inequali-
ties in the context of parabolic optimal control problems. Our model consists of a linearly
controlled heat equation with Dirichlet boundary condition (uf )t − ∆uf = f , f being the
control. We seek to maximise the functional JT (f) := 1

2

˜
(0;T )×Ω

u2
f or, for some ε > 0 ,

J ε
T (f) := 1

2

˜
(0;T )×Ω

u2
f + ε

´
Ω
u2
f (T, ·) and to obtain quantitative estimates for these max-

imisation problems. We offer two approaches in the case where the domain Ω is a ball. In
that case, if f satisfies L1 and L∞ constraints and does not depend on time, we propose a
shape derivative approach that shows that, for any competitor f = f(x) satisfying the same
constraints, we have JT (f∗)−JT (f) & ‖f − f∗‖2L1(Ω), f

∗ being the maximiser. Through our
proof of this time-independent case, we also show how to obtain coercivity norms for shape
hessians in such parabolic optimisation problems. We also consider the case where f = f(t, x)
satisfies a global L∞ constraint and, for every t ∈ (0;T ), an L1 constraint. In this case, assum-

ing ε > 0, we prove an estimate of the form J ε
T (f∗)−J ε

T (f) &
´ T

0
aε(t)‖f(t, ·)− f∗(t, ·)‖2L1(Ω)

where aε(t) > 0 for any t ∈ (0;T ). The proof of this result relies on a uniform bathtub
principle.
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1 Introduction

This Introduction is structured as follows: in Subsection 1.1, we present the scope of our article;
in Subsection 1.1.1, we give an informal statement of our results while in Subsection 1.2.1 we give
several bibliographical references on qualitative properties for optimal control problems, shape
derivatives for parabolic problems and quantitative inequalities. In Subsection 1.3, we give basic
information regarding the Schwarz rearrangement, which will be a key tool in our analysis, and we
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give bibliographical references for parabolic isoperimetric inequalities. In Subsection 1.2, we state
our main results, Theorems II and III (Theorem I deals with the uniqueness of solutions to our
optimal control problem and is also stated in this Section). In Subsection 1.4 we present the plan
of our paper and, finally, in Subsection 1.5, we gather the notations we will use throughout the
paper.

1.1 Scope of the article

1.1.1 Goal of this article: informal statement of the problems and of the results

In this article, our goal is to present two different approaches for obtaining quantitative inequal-
ities for optimal control problems, which will also be dubbed quantitative isoperimetric parabolic
inequalities. Before explaining how this fits in the growing field of qualitative questions in optimal
control theory, let us vaguely state the type of results we wish to establish, and sketch the two
approaches that will be put forth. By quantitative inequalities, we mean the following: we consider
a controlled parabolic partial differential equation assuming the general form

ut − Lu = f in (0;T )× Ω, (1.1)

L being an elliptic operator; this equation is supplemented with some initial condition and some
boundary conditions. In this setting, f is the control and depends a priori both on time and
space. It is assumed to satisfy some constraints, which will be taken into account by assuming that
f ∈X , where X is some subset of a function space. The cost to be optimised is some functional
JT : X 3 f 7→ JT (f). The control problems reads

max
f∈X

JT (f). (1.2)

The quantitative inequality we aim at can take two different forms:

• For time independent controls. In the context where all controls f ∈X write f = f(x),
and if the solution of (1.2) is some f (assumed to be unique for simplicity), the goal is to
establish the following kind of estimate

∀f ∈X ,JT (f)− JT (f) 6 −C(T )‖f − f‖2L1(Ω) (1.3)

for some constant C(T ) > 0. The right-hand side quantity is natural in the context of
quantitative inequalities for shape optimisation problems [21] and optimal control problems
[29], and is akin to the Fraenkel asymmetry. We refer to Subsection 1.2.1.

• For time-dependent controls. In the context where the controls are time dependent i.e.
f = f(t, x) and when the solution of (1.2) is some f∗, the goal is to establish something of
the form

∀f ∈X ,JT (f)− JT (f∗) 6 −
ˆ T

0

ω(s)‖f(s, ·)− f∗(s, ·)‖2L1(Ω) (1.4)

for a function ω : [0;T ] → IR+ such that for any s ∈ (0;T ), ω(s) > 0. As will be explained
more in detail in Subsection 1.2.1 and commented upon in the Conclusion, see Section 6.2,
this is a stronger norm than the usual one.

To the best of our knowledge, neither type of quantitative estimates have been derived despite
their natural interest.
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Obviously, one can not expect to prove (1.3) or (1.4) for all optimal control problems. What
we propose here is to establish both these inequalities for a linearly controlled heat equation in the
ball under L1 and L∞ constraints. The main equation under consideration is set in Ω = B(0;R)
and writes 

∂uf
∂t −∆uf = f in (0;T )× Ω ,

uf (t = 0) = u0 > 0 in Ω ,

uf (t, ·) = 0 on ∂Ω.

(1.5)

We will also assume that the initial condition u0 ∈ C 2(Ω) ∩ W 1,2
0 (Ω), u0 > 0, which is fixed,

is radially symmetric and non-increasing. In the time-independent case (when f = f(x)), the
functional we seek to maximise is defined by

JT (f) :=
1

2

¨
(0;T )×Ω

u2
f (t, x)dxdt. (1.6)

In the time dependent case (when f = f(t, x)), the functional we seek to maximise is

J εT (f) :=
1

2

¨
(0;T )×Ω

u2
f (t, x)dxdt+

ε

2

ˆ
Ω

u2
f (T, x)dx (1.7)

for some ε > 0. The main reason behind supplementing the functional with a final time term is to
ensure the non-degeneracy of the switch function associated to the optimisation problem.

As a final comment, let us remark that the constant C(T ) appearing in (1.3) and the weight ω
are constructed in a non-explicit way.

Remark 1. Although we prove our results for maximisation of functionals, we believe the same
strategies work for the minimisation of the functional. For both problems, both inequalities may
have interesting consequences for inverse problems.

Remark 2. Obviously, if the optimal control f∗ for the time-dependent case does not depend on

time, which will be the case here, (1.4) implies (1.3) with C(T ) =
´ T

0
ω(s)ds. However, the reason

why we present two proofs is the possibility of generalising the methods used to prove (1.3). In
the conclusion, we explain why we believe this inequality can be extended to other types of control
problems, such as bilinear control problems, or how, in general domains, technical assumptions on
second order shape derivatives may enable one to derive it. In short, the proof of (1.3) relies on
two properties of the control problem: the first one is shape derivatives, for which the trickiest part
is to prove coercivity of second order derivatives in general domains; the second one is the convexity
of the problem, which is something extremely general.

The proof of (1.4) is specific to the case of the ball and it is unclear whether or not it may be
adapted to other domains. Indeed, the parabolic isoperimetric inequalities used in its proof [5, 6, 33]
may not hold in general domains, in the sense that explicit characterisation of maximisers may
not be attainable.

1.2 Statement of the main results

Let Ω = B(0;R) be a centred ball in dimension n. We assume that we are given an initial condition
satisfying

u0 > 0 , u0 ∈ C 2(Ω) ∩W 1,2
0 (Ω) , u0 is radially symmetric and non-increasing. (1.8)

3



For a function f ∈ L2((0;T )× Ω) we consider the solution uf of
∂uf
∂t −∆uf = f in (0;T )× Ω ,

uf (t = 0) = u0 ,

uf (t, ·) = 0 in (0;T )× ∂Ω.

(1.9)

The functional we wish to optimise in the time-independent case is

JT (f) :=
1

2

¨
(0;T )×Ω

u2
f (T, ·). (J)

For a given L1 constraint V0 ∈ (0; Vol(Ω)), the sets of admissible controls are

M(Ω) :=

{
f ∈ L∞(Ω) , 0 6 f 6 1 ,

ˆ
Ω

f = V0

}
(Adm)

and

MT (Ω) :=
{
f ∈ L∞ ((0;T )× Ω) for a.e. t ∈ (0;T ), f(t, ·) ∈M(Ω).

}
(AdmT )

The first problem we address is

max
f∈M(Ω)

JT (f). (I1)

The second problem is set in the time-dependent case and the functional we seek to optimise is,
for some ε > 0,

J εT (f) :=
1

2

¨
(0;T )×Ω

u2
f (T, ·) +

ε

2

ˆ
Ω

u2
f (T, ·). (1.10)

The second problem we address is

max
f∈MT (Ω)

J εT (f). (Iε2)

Finally, we fix throughout the paper the notation

f∗ := 1B∗ (1.11)

where B∗ is the unique centred ball of volume V0, and define u∗ as the solution of (1.9) associated
with f ≡ f∗.

Remark 3. The existence of solutions of (I1) and (Iε2) are easy consequence of the direct methods
of the calculus of variations.

As an easy corollary of [5, Theorem 3], f∗ is a maximiser of both (I1) and (Iε2). To prove our
results, the first step is the following Theorem:

Theorem I. f∗ is the unique solution of (I1) and of (Iε2).

It is not the main goal of this paper, but the result is in itself interesting and relies on topological
properties of some classes of functions defined via rearrangements. We refer to Section 3 for the
proof.

Let us now pass to the two main results of this article. We choose to state first the time-
dependent case, as the result holds without any restriction on the dimension. In this case, we need
to take ε > 0. The reason behind this is technical, and amounts, to put it shortly, to forcing the
switch function of the problem to be non-degenerate. We comment on this in the Conclusion.
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Theorem II. If ε > 0, there exists a constant C(ε, T ) > 0 such that

∀f ∈MT (Ω) ,J εT (f)− J εT (f∗) 6 −C(ε, T )

ˆ T

0

(
−∂p

∗
ε

∂ν

)
∂B∗
‖f(t, ·)− f∗‖2L1(Ω). (1.12)

In the estimate above p∗ε solves
∂p∗ε
∂t + ∆p∗ε = −u∗ in (0;T )× Ω ,

p∗ε(T, ·) = εu∗(T, ·) ,
p∗ε(t, ·) = 0 on (0;T )× ∂Ω

(1.13)

and is the switch function of (Iε2).

Remark 4. Actually, when ε > 0, we can even prove that there exists a constant A(ε, T ) > 0 such
that

∀t ∈ (0;T ) ,

(
−∂p

∗
ε

∂ν

)
∂S∗

6 −A(ε, T ). (1.14)

We however choose to keep the partial derivative of the switch function as it seems to us to be a
more precise result.

We then pass to the time-independent case, where the main innovation will be the use of shape
derivatives. We include this result not only for the sake of completeness but also because this
method seems, at this stage, generalisable to other domains, while it may not be the case for
Theorem II.

Theorem III. Assume n = 2.
For any T > 0 there exists a constant C(T ) > 0 such that

∀f ∈M(Ω) ,JT (f)− JT (f∗) 6 −C(T )‖f − f∗‖2L1(Ω). (1.15)

1.2.1 Bibliographical references

Let us now present the frameworks into which we think our present work fits.

Qualitative questions in optimal control problems The question of qualitative properties of
optimal control problems has recently drawn a lot of attention. Indeed, in many situations, explicit
computation of the optimal control is nearly impossible, and a line of research has emerged that
deals with the question of knowing what optimal controls nearly look like, or whether or not these
controls are (un)stable in a sense that has to be specified. Among all these qualitative queries, one
may single out the following:

• Insensitising controls. The question of insensitising controls is a very natural one, and is
a possible solution to the following question: given that it is often the case that one can not
practically realise the exact control strategy and that some imperfections may arise, how can
a robust control strategy be constructed? In that context, the goal is to find an insensitising
optimal control. This question has been studied, for instance, in [1, 28] and, more recently,
in [18].

• The turnpike property. The turnpike property states that, when dealing with time evolv-
ing optimal control problems, it is sometimes possible to actually find a nearly static optimal
strategy or, in other words, that the optimal control remains close, in some sense that has
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to be quantified, to the solution of a stationary optimal control problem. First motivated
by applications in economics [17], this field has been rapidly growing over the last decade
and has found applications in many contexts (e.g. control of non-linear differential equa-
tions, control of the wave equation, control of semilinear heat equations, machine learning)
[42, 13, 19, 26, 37, 39, 40, 43]. It has recently been derived for bilinear optimal control
problems using quantitative inequalities for stationary optimisation problems [31].

Shape derivatives for time-evolving problems Our work presents what is to the best of
our knowledge the first detailed analysis of a second order shape derivative for a time-evolving
optimal control problems (in the sense that a coercivity norm for the second order shape derivative
is obtained), albeit it deals with shape derivatives with respect to a subdomain. Although the
literature devoted to time-evolving optimal control problems is scarce, we would like to point to
[34] where a speed-method approach is presented, and to the recent preprint [11] where shape
derivatives (with respect to the underlying domain Ω) are computed and used to obtain numerical
simulations of a shape optimisation problem.

Quantitative inequalities The study of quantitative inequalities in shape optimisation prob-
lems is an enormous field. To mention a few works, we point to the seminal [21] for the quantitative
isoperimetric inequality, and to [9] for quantitative spectral inequalities. Regarding quantitative
inequalities for (stationary) control problems we refer to [8] for a quantitative inequality for the
natural Dirichlet energy, to [12] for a quantitative spectral inequality (with respect to the poten-
tial) in IRn (both these works are done under Lp constraints), to [29] for a quantitative spectral
inequality in the ball under L1 and L∞ constraints and to [31] for a generalisation of this inequality
to other domains, and for an application to the turnpike property.

Let us comment on the type of estimates usually obtained: given a functional F : Ω 7→ F(Ω),
a typical problem reads

inf
Ω ,Vol(Ω)=V

F(Ω). (1.16)

Let us assume that, up to a translation, the unique minimiser of this functional is a ball B of
volume V (this is the case when F(Ω) = Per(Ω)), then the inequality obtained in [21] reads: there
exists a constant C > 0 such that, defining the Fraenkel asymmetry of Ω as

A(Ω) = inf
x∈IRn

Vol
(
(x+ B)∆Ω

)
(1.17)

there holds
F(Ω)−F(B) > CA(Ω)2. (1.18)

In the case of estimate (1.3), the coercivity obtained is akin to this measure of asymmetry if the
maximiser f writes f = 1E : by defining JT (E) := JT (1E) with a slight abuse of notation, if we
choose a competitor f of the form f = 1E then estimate (1.15) rewrites

JT (E)− JT (E) > C(T ) Vol
(
E∆E

)2
. (1.19)

On the other hand, (1.12) may seem more surprising. If, indeed, we assume that f∗(t, x) =
1E∗(t)(x) and if the competitor f is chosen to assume the form f(t, x) = 1E(t)(x) for some subset

E of Ω then, seeing E := ∪t∈(0;T ){t} × E(t) and E
∗

:= ∪t∈(0;T ){t} × E∗(t) as subsets of the
cylindrical domain (0;T )× Ω, the ”natural quantity” that one should obtain should be the squared

asymmetry of E with respect to E
∗
, that is, Vol(E∆E

∗
)2. The Jensen inequality enables to recover
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this discrepancy. This stronger norm may be a consequence of having chosen a volume constraint
for every t. It is unclear at this stage whether or not replacing the constraint

for a.e. t ∈ (0;T ),

ˆ
Ω

f(t, ·) = V0 (1.20)

with a global constraint ¨
(0;T )×Ω

f = V0 (1.21)

would yield the coercivity norm (¨
(0;T )×Ω

|f∗ − f |

)2

. (1.22)

We refer to the Conclusion, Section 6.2.

1.3 Schwarz’s rearrangement and isoperimetric inequalities for parabolic
equations

In order to be able to comment on our results and methods of proof, we need to give the basic
definition underlying most of our methods, that of Schwarz’s rearrangement. The three books we
refer to for a comprehensive introduction to rearrangements are [23, 25, 36]. Here, since we are
already working in a ball Ω = B(0;R), we only give the definitions for functions defined on the
ball.

Definition 5. For a function ϕ ∈ L2(Ω) , ϕ > 0, its Schwarz rearrangement is the unique radially
symmetric non-increasing function ϕ# : Ω→ IR such that

∀t ∈ IR+ ,Vol ({ϕ > t}) = Vol
(
{ϕ# > t}

)
. (1.23)

We define its one-dimensional counter part ϕ† : [0;R]→ IR as

ϕ†(|x|) := ϕ#(x). (1.24)

The first property is that the Schwarz rearrangement preserves all the Lebesgue norms:

∀p ∈ (1; +∞) ,∀u ∈ Lp(Ω) , u > 0 ,

ˆ
Ω

up =

ˆ
Ω

(u#)p. (1.25)

Of great importance to us are two inequalities. The first one, the so-called Polyá-Szegö inequality
asserts that

∀ϕ ∈W 1,2
0 (Ω) , ϕ# ∈W 1,2

0 (Ω) and

ˆ
Ω

|∇ϕ#|2 6
ˆ

Ω

|∇ϕ|2. (1.26)

The equality case in this equality was fully derived in [10] (see also [20]), and quantitative versions
were given in [7, 14]. The second one is the Hardy-Littlewood inequality:

∀f , g ∈ L2(Ω) , f , g > 0 ,

ˆ
Ω

fg 6
ˆ

Ω

f#g#. (1.27)

This inequality can be rewritten in the following form: for a.e. τ ,

ˆ
{g>τ}

f 6
ˆ
{g#>τ}

f#. (1.28)
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A quantitative version of this inequality can be found in [15] (and [31] in a simpler case where
smoothness of the involved function f is assumed). In Propositions 29 and 14, we give uniform
versions of this quantitative inequality for families of functions.

Comparison principle for parabolic equations started with the work of Bandle [6], Vazquez
[41], using the seminal ideas of Talenti [38], and were later extended in a series of works by Alvino,
Lions and Trombetti [2, 5] and Rakotoson and Mossino [33]. By ”comparison principle for parabolic
equations” we mean results that enable one to compare the solution u of a parabolic equation of
the form

∂u

∂t
−∆u = f(t, ·) (1.29)

with the solution v of the symmetrised equation

∂v

∂v
−∆v = f#(t, ·). (1.30)

Both equations are supplemented with Dirichlet boundary conditions, and we wilfully ignore first
order terms. The correct comparison relation ≺ used for such comparisons is defined as:

f ≺ g if and only if for any r ∈ [0;R] ,

ˆ
B(0;r)

f# 6
ˆ
B(0;r)

g, (1.31)

and the typical result asserts that u#(t, ·) ≺ v(t, ·). In this paper, we will rely, for the uniqueness
result, Theorem I, on the method of proof of [33], which enables more easily to encompass the
equality case. We expand on their techniques in the proof of Theorem I, see Section 3.

1.4 Plan of the paper

This paper is structured as follows:

1. In Section 2 we gather several elementary information about the optimisation problems (ad-
joint, switch function, regularity of the solutions, convexity of the functionals).

2. In Section 3, we prove the uniqueness result stated in Theorem I.

3. Section 4 contains the proof of Theorem II and is independent of Section 5.

4. Section 5 corresponds to the proof of Theorem III. In it, we state our coercivity results for
second order shape derivatives. This Section is independent of Section 4.

5. The Conclusion, Section 6, contains discussion about possible extensions, as well obstructions
for generalising the results presented here.

1.5 Notational conventions

• For any g ∈ L2(Ω), g# denotes its Schwarz rearrangement and g† its one-dimensional coun-
terpart.

• B∗ = B(0; r∗) is the unique centred ball of volume V0. In other words, it is the only centred
ball satisfying 1B∗ ∈M(Ω).

• u∗ is the solution of (1.9) associated with the static control f ≡ f∗ = 1B∗ .

• For a function f that is discontinuous across a smooth hypersurface Σ with oriented normal
ν, but continuous in Ω\Σ, the jump of f across Σ is

JfK|Σ := lim
t→0+

(f(x+ tν(x))− f(x− tν(x))) . (1.32)
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2 Preliminary results

We gather here several results that will be used throughout the paper. We begin with some basic
regularity estimates on the solutions of the equation.

Proposition 6. For any α ∈ (0; 1), there exists Mα > 0 such that, for any f ∈ MT (Ω), we have
the estimate

‖uf (t, ·)‖C 0,α((0;T )×Ω) 6Mα. (2.1)

Furthermore, for any α ∈ (0; 1) and almost every t ∈ (0;T ), uf (t, ·) ∈ C 1,α(Ω).

Proof of Proposition 6. For the first point, we use [27, Corollary 7.31, p.182] which ensures that
for any p > 1, ˆ T

0

‖u(t, ·)‖W 2,p(Ω) +

∥∥∥∥∂u∂t
∥∥∥∥
Lp(Ω)

6 C(‖f‖L∞ + ‖u0‖C 2), (2.2)

where C depends on the dimension, on p and on Ω. It thus follows that, in particular, for any
p ∈ (1; +∞) there exists Cp such that

‖u‖W 1,p((0;T )×Ω) 6 Cp. (2.3)

It then suffices to apply the Sobolev embedding W 1,p((0;T )× Ω) ↪→ C 0,α(Ω) for p large enough.
The second point follows from the fact that, from the same estimate, for any p > 1 and

almost every t ∈ (0;T ), uf (t, ·) ∈ W 2,p(Ω). The conclusion follows by the Sobolev embedding
W 2,p(Ω) ↪→ C 1,α(Ω).

We then provide structural information about the functionals which we seek to optimise. In
Proposition 7, we establish convexity properties which will prove crucial while, in Proposition 8,
we compute the adjoint and the switch function of the equation.

Proposition 7. The map JT :M(Ω) 3 f 7→ JT (f) is strictly convex. In the same way, for any
ε > 0, the map J εT :MT (Ω) 3 f 7→ J εT (f) is strictly convex.

Proof of Proposition 7. We only prove the convexity of JT , the convexity of J εT following along
the same lines.

It follows from standard argument that the mapM(Ω) 3 f 7→ uf is twice Gâteaux-differentiable.
The convexity of the functional is equivalent to requiring that the second order Gâteaux derivative
be non-negative. For any admissible perturbation h at f (that is, such that for every t > 0 small
enough f + th ∈M(Ω)) the Gâteaux-derivative of uf in the direction h, denoted by u̇f , solves

∂u̇f
∂t −∆u̇f = h in (0;T )× Ω ,

u̇f = 0 on (0;T )× ∂Ω ,

u̇f (0, ·) ≡ 0.

(2.4)

From this equation on u̇f , we deduce that the Gâteaux-derivative of JT at f in the direction h is
given by

J̇T (f)[h] =

¨
(0;T )×Ω

u̇fuf . (2.5)

In the same way, the second order Gâteaux-derivative of uf in the direction h, denoted by üf ,
satisfies 

∂üf
∂t −∆üf = 0 in (0;T )× Ω ,

üf = 0 on (0;T )× ∂Ω ,

üf (0, ·) ≡ 0

(2.6)
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and thus
üf = 0. (2.7)

Furthermore, the second order Gâteaux-derivative of JT in the direction h, denoted by J̈T (f)[h, h],
is given by

J̈T (f)[h, h] =

¨
(0;T )×Ω

(u̇f )
2

+

¨
(0;T )×Ω

üfuf =

¨
(0;T )×Ω

(u̇f )
2 > 0 (2.8)

and the last inequality is strict unless h ≡ 0. Since the second-order Gâteaux-derivative of the
functional is non-negative, the functional is convex.

This convexity property is one of the fundamental point to carry out the proof of Theorem III.

Proposition 8. Let f ∈M(Ω). Let pf be the unique solution of
∂pf
∂t + ∆pf = −uf in (0;T )× Ω,

pf (T, ·) = 0 ,

pf (t, ·) = 0 on (0;T )× ∂Ω.

(2.9)

Then for any f ∈ M(Ω) and any admissible perturbation h at f , the Gâteaux-derivative of JT at
f in the direction h is given by

J̇T (f)[h] =

¨
(0;T )×Ω

h(x)pf (t, x)dtdx. (2.10)

In the same way, let us consider a parameter ε > 0. Let f ∈MT (Ω) and define pε,f as the unique
solution of 

∂pε,f
∂t + ∆pε,f = −uf in (0;T )× Ω,

pε,f (T, ·) = εuf (T, ·) ,
pε,f (t, ·) = 0 on (0;T )× ∂Ω.

(2.11)

Then for any f ∈ MT (Ω) and any admissible perturbation h at f , the Gâteaux-derivative of J εT
at f in the direction h is given by

J̇ εT (f)[h] =

¨
(0;T )×Ω

h(t, x)pf (t, x)dtdx. (2.12)

pf is dubbed the switch function for the functional JT , while pε,f is dubbed the switch function for
the functional J εT .

Proof of Proposition 8. We only prove this proposition in the case f ∈M(Ω), the time-dependent
case following along the same exact lines. Let us first note that, as a backward, linear heat equation,
existence and uniqueness of a solution to (2.9) is guaranteed.

To get (2.10), we start from the expression (2.5) of the first order Gâteaux-derivative of the
functional JT :

J̇T (f)[h] =

¨
(0;T )×Ω

u̇fuf , (2.13)

where u̇f solves (2.4). If we multiply this equation by the solution pf of (2.9) and integrate by
parts, we get ¨

(0;T )×Ω

u̇fuf =

¨
(0;T )×Ω

hpf . (2.14)

Since J̇T (f)[h] =
˜

(0;T )×Ω
u̇fuf , the conclusion follows.
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We conclude this section with some information about the function u∗ solution of (1.9) with
f ≡ f∗.

Proposition 9. The solution u∗ of (1.9) with f ≡ f∗ is radially symmetric. Furthermore, for
any r ∈ (0;R) and any t ∈ (0;T )

− ∂u∗

∂r
(t, r) > 0. (2.15)

Proof of Proposition 9. The radial symmetry of the solution is immediate. In radial coordinates,
and with a slight abuse of notation, u∗ satisfies

∂u∗

∂t −
1

rn−1
∂
∂r

(
rn−1 ∂u∗

∂r

)
= f∗ in (0;T )× (0;R) ,

u∗(t, R) = ∂u∗

∂r (t, 0) = 0 for any t ,

u∗(0, ·) = u0.

(2.16)

From Proposition 6 above we can differentiate u∗ with respect to r. Let us write

z :=
∂u

∂r
. (2.17)

It follows from (2.16) that z solves

∂z

∂t
− 1

rn−1

∂

∂r

(
rn−1 ∂z

∂r

)
= − (n− 1)z

r2
in (0;T )× (0;R) (2.18)

and that the following jump condition is satisfied at r = r∗:
s
∂z

∂r

{
(t, r∗) = − Jf∗K (r∗) = 1 > 0. (2.19)

Since u∗ > 0, the parabolic Hopf Lemma implies that for any t > 0,

z(t, R) < 0. (2.20)

Differentiating (2.16) with respect to r and remembering that u0 is non-increasing, we obtain that
z solves 

∂z
∂t −

1
rn−1

∂
∂r

(
rn−1 ∂z

∂r

)
= − (n−1)z

r2 in (0;T )× (0;R) ,

z(t, R) < 0 for any t ,

z(t, 0) = 0,q
∂z
∂r

y
(t, r∗) = 1 , t ∈ (0;T ),

z(0, ·) 6 0.

(2.21)

Let us then show that for any (t, r) ∈ (0;T )× (0;R)

z(t, r) < 0. (2.22)

First of all, multiplying (2.21) by the positive part z+ of z we get (keeping in mind that z+(t, R) = 0)

1

2

∂

∂t

ˆ R

0

rn−1z+(t, r)2dr+

ˆ R

0

rn−1

(
∂z+

∂r

)2

+(r∗)n−1z+(t, r∗) = −
ˆ R

0

(n− 1)z+(t, r)2

r3−n dr (2.23)

so that z+(t, ·) = 0. As a consquence, z 6 0. To argue that z < 0 in (0;T ) × Ω, we follow the
same procedure as for the strong parabolic maximum principle. If we first assume z 6 0 satisfies
an inequality rather than an equality, that is, that z satisfies

∂z

∂t
− 1

rn−1

∂

∂r

(
rn−1 ∂z

∂r

)
< − (n− 1)z

r2

11



then if by contradiction we assume that there exists (t0, r0), with r0 ∈ (0;R] and t0 ∈ (0;T ) such
that z(t0, r0) = 0, it follows that r0 < R. By the jump condition, r0 6= r∗. Since t0 < T , plugging
the optimality conditions, the contradiction follows. To exclude the case t0 = T it suffices to
consider the equation on [0;T + ε] , ε > 0 and to carry out the same reasoning in (0;T + ε). To
then pass from this case (strict inequality) to ours (the equality case), with

∂z

∂t
− 1

rn−1

∂

∂r

(
rn−1 ∂z

∂r

)
= − (n− 1)z

r2

it suffices to consider zε(t, r) := z(t, r) − εt and the conclusion follows from passing to the limit
ε→ 0+.

3 Proof of Theorem I: Uniqueness of maximisers

Proof of Theorem I. It follows from [33] that f∗ is a solution of (I1) and (Iε2). The uniqueness
property for (Iε2) implies uniqueness for (I1) so we focus on the time-dependent case. Let us define
u∗ as the solution of (1.9) associated with f ≡ f∗. We consider another solution f of (Iε2) and
the solution u of (1.9) associated. By convexity of the functional we can assume that f is a
characteristic function so that

f# = f∗. (3.1)

We proceed along a series of claims. The first one is :

Claim 10. If f solves (Iε2) and if u is the associated solution of (1.9) then for almost every
t ∈ (0;T ), there holds

u#(t, ·) = u∗(t, ·). (3.2)

Proof of Claim 10. It follows from [33] and the results recalled in the introduction that for almost
every t ∈ (0;T ) we have

u#(t, ·) ≺ u∗(t, ·). (3.3)

The relation ≺ was defined in Equation (1.31). Thus, from [3, Proposition 2] we have that for
almost every t ∈ (0;T ) we have

(u#)2(t, ·) ≺ (u∗)
2
(t, ·). (3.4)

Integrating this inequality in time and in space yields
¨

(0;T )×Ω

(
u#
)2

6
¨

(0;T )×Ω

(u∗)
2
. (3.5)

However, by equimeasurability of the Schwarz rearrangement (1.25) we have

¨
(0;T )×Ω

u2 =

¨
(0;T )×Ω

(u#)2. (3.6)

Since f is a maximiser of (Iε2) it follows that equality holds for almost every t in

ˆ
Ω

(
u#
)2

(t, ·) 6
ˆ

Ω

(u∗)
2

(t, ·). (3.7)

Thus we have for almost every t ∈ (0;T ),

ˆ
Ω

(
u#
)2

(t, ·) =

ˆ
Ω

(u∗)
2

(t, ·). (3.8)

12



Let us now introduce the set K (u∗) defined as

K (u∗) =
{
g ∈ L2(Ω) , g ≺ u∗

}
. (3.9)

From [4] this is a compact (for the weak L∞ − ∗ topology) and convex set whose set of extreme
points is

C (u∗) =
{
g ∈ L2(Ω) , g# = u∗

}
. (3.10)

Since x 7→ x2 is strictly convex, the map K (v) 3 g 7→
´

Ω
g2 is strictly convex. Besides, once again

because of the convexity of x 7→ x2, we have, for any g ∈ K (u∗),

(g#)2 = (g2)#.

As a consequence, the only solutions of the maximisation problem

sup
g∈K (u∗)

ˆ
Ω

g2 (3.11)

are exactly the elements of C (u∗).
On the other hand, (3.8) states that u(t, ·) is a solution of (3.11), so it follows that for almost

every t ∈ (0;T ) there holds
u#(t, ·) = u∗(t, ·). (3.12)

In particular, and this is the main point of this proof, the two following properties hold: first,

If f solves (Iε2) then for a.e. t ∈ (0;T ), u†(t, ·) = (u∗)†(t, ·). (3.13)

Second, we have, as a consequence the following fact:

If f solves (Iε2) then for a.e. t ∈ (0;T ),

ˆ
Ω

u(t, ·) =

ˆ
Ω

u#(t, ·) =

ˆ
Ω

u∗(t, ·). (3.14)

We then prove that if f solves (Iε2), then all the level sets of u are balls.

Claim 11. If f solves (Iε2), then all the level sets of u are balls.

Proof of Claim 11. We follow the approach of [33]. We first recall [33, Theorem 1.2]: if ϕ ∈
W 1,2((0;T ), L2(Ω)) then ϕ# ∈W 1,2((0;T ), L2(Ω)) and moreover there holds, if ϕ only has measure
sets of measure zero,

∂ϕ#

∂t
(t, s) =

∂w

∂s
(t, s) (3.15)

where w is defined by

w(t, s) =

ˆ
{ϕ(t,·)6ϕ#(t,s)}

∂ϕ

∂t
. (3.16)

We then consider (1.9). For any τ ∈ IR+, we multiply the equation by (u− τ)+ and integrate
by parts in space. We obtain in a classical way

0 6 − ∂

∂τ

ˆ
{u>τ}

|∇u|2(t, ·) =

ˆ
{u>τ}

(
f − ∂u

∂t
(t, ·)

)
. (3.17)

We write the repartition function of u as µ:

µ(t, τ) = Vol ({u(t, ·) > τ}) . (3.18)
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By the isoperimetric inequality and the co-area formula, taking Sn := nVol(B(0; 1))
1
n , we obtain,

as in [33],

Snµ(t, τ)1− 1
n 6

(
− ∂

∂τ

ˆ
{u(t,·)>τ}

|∇u|

)
(3.19)

6

(
−∂µ
∂τ

) 1
2

(
− ∂

∂τ

ˆ
{u(t,·)>τ}

|∇u|2
) 1

2

. (3.20)

This leads to

Snµ(t, τ)1− 1
n 6

(
−∂µ
∂τ

) 1
2

(
− ∂

∂τ

ˆ
{u(t,·)>τ}

|∇u|2
) 1

2

(3.21)

6

(
−∂µ
∂τ

) 1
2

(ˆ
{u(t,·)>τ}

(
f − ∂u

∂t
(t, ·)

)) 1
2

. (3.22)

Hence,

S2
nµ(t, τ)2− 2

n 6

(
−∂µ
∂τ

)ˆ
{u(t,·)>τ}

(
f − ∂u

∂t

)
. (3.23)

Here we recall that
´
{u(t,·)>τ}

(
f − ∂u

∂t

)
> 0 by (3.17).

As is customary we use the Hardy-Littlewood inequality to obtain

ˆ
{u(t,·)>τ}

f 6
ˆ µ(t,τ)

0

f† =: F (t, µ(t, τ)). (3.24)

Let us now define

k(t, τ) :=

ˆ τ

0

u†(t, s)ds (3.25)

and we obtain

ˆ
{u(t,·)>τ}

∂u

∂t
=
∂k

∂t
(t, µ(t, τ)). (3.26)

As such, for some constant cn > 0,

1 6 S−2
n

(
−∂µ
∂τ

)
µ(t, τ)

2
n−2

(
F (t, µ(t, τ))− ∂k

∂t
(t, µ(t, τ))

)
. (3.27)

Integrating this equation between τ0 and τ1 for any 0 6 τ0 6 τ1 yields

τ1 − τ0 6 S−2
n

ˆ µ(t,τ1)

µ(t,τ0)

s−2+ 2
n

(
F (t, s)− ∂k

∂t
(t, s)

)
ds. (3.28)

We hence get in a classical way [32] the following differential inequality

− ∂u†

∂τ
(t, τ) = −∂

2k

∂τ2
(t, τ) 6 S−2

n τ−2+ 2
n

(
F (t, τ)− ∂k

∂t
(t, τ)

)
. (3.29)

Let us now define

ku∗(t, τ) :=

ˆ τ

0

(u∗)
†

(t, ·). (3.30)
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We recall that u∗ is the solution of (1.9) associated with f ≡ f∗. Since f is radially symmetric
and decreasing, all the equalities in the above reasoning carried for u hold for u∗ with equalities
instead of inequalities and ku∗ solves

∂2ku∗

∂τ2
+ S−2

n τ−2+ 2
n
∂ku∗

∂t
= S−2

n τ−2+ 2
nF (t, τ). (3.31)

Finally, we set K = k − ku∗ . From Equation (3.13), we have, for any t ∈ (0;T ) and any
s ∈ (0; Vol(Ω)),

K(t, s) = 0. (3.32)

Since K ≡ 0, every equality in the above reasoning must in fact be an equality. In particular,
(3.19) is an equality, and hence all the level-sets of u are balls, which concludes the proof.

Remark 12. It would be interesting to investigate whether or not using the quantitative isoperi-
metric inequality could lead to quantitative estimates, but it is not at this point clear how to do
that. We refer to the Conclusion, Section 6.4.

As is customary in the study of equality cases in Talenti-like inequalities, we need to check that
the level sets are not just balls but rather concentric balls.

Claim 13. If f solves (Iε2) then the level sets of the associated solution u are concentric balls.

Proof of Claim 13. The core idea of the proof is similar to [24]. Let us first consider the solution
w of 

∂w
∂t + ∆w = −1 in (0;T )× Ω ,

w = 0 on (0;T )× Ω ,

w(T, ·) = 0.

(3.33)

It follows from the same arguments as in the proof of Proposition 9 that w is radially symmetric
and decreasing (for any t < T ), and so we obtain by the Hardy-Littlewood inequality that for
almost every t ∈ (0;T ), ˆ

Ω

fw 6
ˆ

Ω

f#w =

ˆ
Ω

f∗w. (3.34)

However multiplying Equation (3.33) by u and integrating by parts both in time and space
yields

¨
(0;T )×Ω

fw =

¨
(0;T )×Ω

(
∂u

∂t
−∆u

)
w

= −
ˆ

Ω

wu0 −
¨

(0;T )×Ω

u

(
∂w

∂t
+ ∆w

)
= −

ˆ
Ω

wu0 +

¨
(0;T )×Ω

u

= −
ˆ

Ω

wu0 +

¨
(0;T )×Ω

u∗ because of Claim 10

=

¨
(0;T )×Ω

f∗w by the same computations with u∗ instead of u.

However, and since w is radially symmetric and increasing, the Hardy-Littlewood inequality implies
that for almost every t ∈ (0;T ) and almost every τ we haveˆ

{w(t,·)>τ}
f 6
ˆ
{w(t,·)>τ}

f#. (3.35)
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Hence it follows that (3.35) must be an equality for almost every t. Thus since for almost every t
the function w is symmetric and radially decreasing we get

∀r ∈ (0;R) ,

ˆ
B(0;r)

f =

ˆ
B(0;r)

f∗. (3.36)

For the final step, let φ1 be the first Dirichlet eigenvalue of the laplacian in Ω. It is standard
to see that φ1 is radially symmetric and decreasing. Introduce the solution φ of

∂φ
∂t + ∆φ = −φ1 in (0;T )× Ω ,

φ = 0 on (0;T )× Ω ,

φ(T, ·) = 0.

(3.37)

The function φ is radially symmetric and decreasing as well for any t < T . As a consequence, all
level-sets of φ(t, ·) are level-sets of w(t, ·) and conversely, from which we deduce that, for almost
every t ∈ (0;T ) and almost every τ

ˆ
{φ(t,·)>τ}

f =

ˆ
{φ(t,·)>τ}

f# =

ˆ
{φ(t,·)>τ}

f∗. (3.38)

This gives in turn ˆ
Ω

fφ(t, ·) =

ˆ
Ω

f∗φ(t, ·). (3.39)

Multiplying (3.37) by u and integrating by parts gives in the same way

¨
(0;T )×Ω

uφ1 =

¨
(0;T )×Ω

fφ =

¨
(0;T )×Ω

f∗φ =

¨
(0;T )×Ω

u∗φ1 =

¨
(0;T )×Ω

u#φ1. (3.40)

The last equality comes from (3.13).
Invoking the Hardy-Littlewood inequality we obtain in the same fashion that for almost every

t ∈ (0;T )

∀r ∈ (0;R) ,

ˆ
B(0;r)

u =

ˆ
B(0;r)

u#. (3.41)

It follows that u = u# so that the conclusion is reached.

4 Proof of Theorem II

4.1 Plan of the proof and heuristics

This theorem relies on the following fact: assuming that we have a competitor f , to be compared
with f∗, and defining, for every t ∈ [0;T ],

δ(t) := ‖f(t, ·)− f∗‖2L1(Ω) (4.1)

we can set

MT (Ω, δ) =
{
g ∈MT (Ω) , for a.e. t ∈ [0;T ] , ‖g(t, ·)− f∗‖L1(Ω) = δ(t)

}
(4.2)
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and replace f with the solution f∗δ of

max
f∈MT (Ω,δ)

J εT (f). (4.3)

That such a solution exists follows by the same argument as in Lemma 19 below (see the proof in
Appendix A) but we can actually prove (and this is the part that is specific to Ω being a centred
ball) that the solutions to (4.3) admits the following explicit description: let, for any δ > 0, Aδ be
defined, in radial coordinates, as

Aδ = {r < r∗ − r−
δ
} t {r∗ < r < r∗ + r+

δ
} (4.4)

where r−
δ
, r+

δ
are the unique parameters such that

Vol(Aδ) = V0 ,Vol
(
Aδ∆B∗

)
= δ. (4.5)

Then we will show (Proposition 16)
fδ : t 7→ 1Aδ(t) (4.6)

is a solution of (4.3). Throughout the rest of this introduction to the proof, we keep the notation
fδ for this function.

Let us formally assume that ˆ T

0

δ(t)dt� 1 (4.7)

and define, for any ξ ∈ (0; 1), pε,ξ the adjoint state associated with f(t) = f∗ + ξ (fδ − f∗).
By parabolic regularity, pε,ξ should be a non-increasing function of r since the adjoint state p∗ε
associated to f∗ is decreasing. By the mean-value theorem, there exists ξ ∈ [0; 1] such that

J εT (fδ)− J εT (f∗) =

¨
(0;T )×Ω

pε,ξ (fδ − f∗) . (4.8)

A natural step is then to try and apply the quantitative bathtub principle to this quantity: since
pε,ξ is a radially symmetric, non-increasing function of r, then for any t ∈ (0;T ), f∗ is the only
solution of

sup
f∈M(Ω)

ˆ
Ω

fpε,ξ(t, ·). (4.9)

The hope is then to prove that there exists a constant C > 0 such that for any t ∈ (0;T ) there
holds

∀f ∈M(Ω) ,

ˆ
Ω

(f − f∗)pε,ξ 6 −C
(
−∂pε,ξ

∂r

)
(t, r∗)‖f(t, ·)− f∗‖2L1(Ω). (4.10)

However, the existence of such a uniform constant relies, in a crucial way, on ε: when ε > 0, it is
possible while, when ε = 0, other difficulties may arise. The key difficulty is that when ε > 0 we
can guarantee that

sup
t∈[0;T ]

∂p∗ε
∂r

(t, r∗) < 0 (4.11)

while for ε = 0 we can only guarantee

∀τ > 0 ,∃α(τ) > 0 , sup
t∈[0;T−τ ]

∂p∗ε
∂r

(t, r∗) 6 −α(τ). (4.12)

To give a synthetic presentation, we isolate the main tool of this proof in the following para-
graph.
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4.2 Uniform quantitative bathtub principle

Proposition 14. Let β > 0 and consider a family of function {pi}i∈I ∈ C 1,β(Ω) such that:

1. There exists M > 0 such that
sup
i∈I
‖pi‖C 1,β 6M. (4.13)

2. For any i ∈ I, pi is radially symmetric. Furthermore, there exists α > 0 such that, for any
r ∈ [0; r∗],

∀i ∈ I , pi(r)− pi(r∗) > α|r − r∗|. (4.14)

We also assume that for any i ∈ I, pi is decreasing in (r∗;R). In particular, the unique level
set of pi of volume V0 is B(0; r∗): there exists ci such that

B(0; r∗) = {pi > ci} , ∂B(0; r∗) = {pi = ci}. (4.15)

This in particular ensures that the minimum of pi in B(0; r∗) is only achieved on ∂B(0; r∗).
As another consequence, for this constant α > 0, we have

∀i ∈ I ,−∂pi
∂r

(r∗) > α > 0. (4.16)

Then there exists a constant ω > 0 such that

∀f ∈M(Ω) ,∀i ∈ I ,
ˆ

Ω

pi(f
∗ − f) > ω

(
−∂pi
∂r

(r∗)

)
‖f − f∗‖2L1(Ω). (4.17)

Proof of Proposition 14. Let us write T := {pi}i∈I . We first note that the assumption ensure that
for any p ∈ T , f∗ is the only solution of the problem

sup
f∈M(Ω)

ˆ
Ω

fp. (4.18)

We define

G : T ×
(
M(Ω)\{f∗}

)
3 (p, f) 7→

´
Ω
p(f∗ − f)

−∂pi∂r (r∗)‖f − f∗‖2L1(Ω)

(4.19)

and obviously proving (4.17) boils down to proving

inf
T ×(M(Ω)\{f∗})

G > 0. (4.20)

Let us consider a minimising sequence {pk , fk} ∈
(
T ×

(
M(Ω)\{f∗}

))IN
. Let us fix β′ ∈ (0;β).

By (4.13) there exists p∞ ∈ C 1,β′(Ω) radially symmetric such that

pk →
k→∞

p∞ in C 1,β′(Ω) , (4.21)

and as a consequence we have

‖p∞‖C 1,β′ = lim
k→∞

‖pk‖C 1,β′ 6M (4.22)

and (4.16) holds for p∞. In the same way, and passing to the limit in (4.14), f∗ is the only solution
of

sup
f∈M(Ω)

ˆ
Ω

p∞f. (4.23)
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Up to a subsequence we also have that there exists f∞ ∈M(Ω) such that

fk →
k→∞

f∞ weakly in L∞ − ∗. (4.24)

We distinguish between two cases related to the sequence {δk}k∈IN defined by

∀k ∈ IN , δk := ‖fk − f∗‖L1(Ω). (4.25)

The first case corresponds to the case where, up to a subsequence,

δk →
k→∞

δ∞ > 0. (4.26)

In that case, we define

M>δ∞(Ω) :=

{
f ∈M(Ω) , ‖f − f∗‖L1(Ω) >

δ∞
2

}
(4.27)

Following the same arguments as in [31, Proposition 22] we can see that the class M>δ∞(Ω) is
closed under the weak L∞ − ∗ convergence. Hence, it follows that

‖f∞ − f∗‖L1(Ω) >
δ∞
2
. (4.28)

This implies that

lim
k→∞

G (pk, fk) >
4

δ2
∞

G (p∞, f∞) > 0 (4.29)

since f∗ is the only maximiser of f 7→
´

Ω
fp∞ in M(Ω).

The second case is the difficult one. We henceforth work under the assumption that

δk →
k→∞

0. (4.30)

We introduce the sequence of variational problem

∀k ∈ IN , sup
f∈M(Ω) ,‖f−f∗‖L1(Ω)=δk

ˆ
Ω

pkf. (4.31)

From the same arguments as in [31, Proposition 22] there exists a solution to this variational

problem. Furthermore since p#
k = pk the function 1Aδk is a solution of this problem, where Aδk is

defined, in radial coordinates

Aδk = {r < r∗ − r−δk} t {r
∗ < r < r∗ + r+

δk
} (4.32)

and r−δk , r
+
δk

are the unique parameters such that

Vol(Aδk) = V0 ,Vol(Aδk∆B∗) = δk. (4.33)

Hence we assume that
fk = 1Aδk . (4.34)

For a general δ > 0, we define Aδ in the same manner, that is,

Aδ = {r < r∗ − r−
δ
} t {r∗ < r < r∗ + r+

δ
} (4.35)
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where r−
δ
, r+

δ
are the unique parameters such that

Vol(Aδ) = V0 ,Vol
(
Aδ∆B∗

)
= δ. (4.36)

We also recall that we have, for the same exponent β′ > 0,

∀i ∈ I , ‖pi‖C 1,β′ 6M (4.37)

as this will be a crucial point. Let us then prove the following claim:

Claim 15. There exists δ1 > 0 and ω0 > 0 such that for any 0 6 δ 6 δ1 there holds

∀p ∈ T ∪ {p∞} ,
ˆ

Ω

p(f∗ − 1Aδ) > ω0

(
−∂p
∂r

(r∗)

)
‖1Aδ − f∗‖2L1(Ω). (4.38)

Assuming this Claim holds it follows that for any k large enough we have

G (pk, fk) > ω0, (4.39)

hence leading to the required contradiction. It thus only remains to prove Claim 15:

Proof of Claim 15. Let us define, for any δ > 0,

hδ := f∗ − 1Aδ = 1{r∗−r−δ <r<r∗}
− 1{r∗<r<r∗+r+

δ }
. (4.40)

The quantity we want to bound from below is
ˆ

Ω

hδpi. (4.41)

First of all, explicit computations show that there exists a constant c0 = c0(d, r∗) such that

r+
δ , r

−
δ ∼
δ→0

c0δ. (4.42)

We now write (4.42) in radial coordinates and obtain for any p ∈ T ∪ {p∞}

1

(2π)d

ˆ
Ω

hδp =

ˆ r∗

r∗−r−δ
p(r)rn−1dr −

ˆ r∗+r+
δ

r∗
p(r)rn−1dr.

Let us first notice that from (4.37) and (4.16), there exists ε > 0 such that, for any δ ∈ (0; ε),

∀p ∈ T ∪ {p∞} , inf
(r∗−δ;r∗+δ)

(
−∂p
∂r

)
> −1

2

∂p

∂r
(r∗). (4.43)

We now have thanks to the mean value theorem, that for any r ∈ (0;R), there exists yr−r∗ ∈ (r; r∗)
or (r∗; r) such that

p(r) = p(r∗) + p′(yr−r∗)(r − r∗). (4.44)

As a consequence

1

(2π)n

ˆ
Ω

hδp = p(r∗)

(ˆ r∗

r∗−r−δ
rn−1dr −

ˆ r∗+r+
δ

r∗
rn−1dr

)
(4.45)

+

(ˆ r∗

r∗−r−δ
rn−1|r − r∗|(−p′(yr−r∗))dr +

ˆ r∗+r+
δ

r∗
rn−1|r − r∗|(−p′(yr−r∗))dr

)
(4.46)
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> p(r∗)

(ˆ r∗

r∗−r−δ
rn−1dr −

ˆ r∗+r+
δ

r∗
rn−1dr

)
(4.47)

− 1

2

∂p

∂r
(r∗)

(ˆ r∗

r∗−r−δ
rn−1|r − r∗|dr +

ˆ r∗+r+
δ

r∗
rn−1|r − r∗|dr

)
by (4.43) (4.48)

The right hand side of (4.47) is 0 because

ˆ r∗

r∗−r−δ
rn−1dr −

ˆ r∗+r+
δ

r∗
rn−1dr =

1

(2π)n

ˆ
Ω

hδ = 0. (4.49)

Furthermore by explicit computations we obtain

ˆ r∗

r∗−r−δ
rn−1|r − r∗|dr ∼

δ→0
Cδ2,

and in the same way ˆ r∗+r+
δ

r∗
rn−1|r − r∗|dr ∼

δ→0
Cδ2. (4.50)

The conclusion follows immediately.

This concludes the proof of the Proposition.

We then present, in the following paragraph, the proof of the aforementioned Proposition 16
that deals with the characterisation of solutions of a penalised problem.

4.3 Characterisation of the solutions of an auxiliary problem

Let us consider a function δ : [0;T ] → [0; Vol(Ω)] and the class MT (Ω, δ) defined in (4.2), as well
as the function fδ defined by (4.6).

Proposition 16. For any ε > 0 and any positive function δ : [0;T ]→ [0; Vol(Ω)], fδ is a solution
of the variational problem

max
g∈MT (Ω,δ)

J εT (g). (4.51)

Proof of Proposition 16. This is a straightforward adaptation of the proof of the parabolic isoperi-
metric inequality whose main steps were recalled in Section 3. Let us consider a function g ∈
MT (Ω, δ) and u the associated solution of (1.9). With the same notations as in Section 3, proof
of Theorem I we obtain

S2
nµ(t, τ)2− 2

n 6

(
−∂µ
∂τ

)ˆ
{u(t,·)>τ}

(
g − ∂u

∂t

)
. (4.52)

However, by the Hardy-Littlewood inequality, if we define G(t, µ(t, τ)) :=
´ µ(t,τ)

0
1
†
Aδ(t) we obtain

ˆ
{u(t,·)>τ}

g 6 G(t, µ(t, τ)). (4.53)
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This is a penalised version of the Hardy-Littlewood inequality: it is indeed straightforward to see
that, for any function g ∈ M(Ω, δ(t)) = {g ∈ M(Ω) , ‖g − f∗‖L1(Ω) = δ(t)} and any measurable
positive function `, there holds ˆ

Ω

`g 6
ˆ

Ω

1Aδ(t)`
#. (4.54)

As a consequence, for some constant cn > 0,

1 6 S−2
n

(
−∂µ
∂τ

)
µ(t, τ)

2
n−2

(
G(t, µ(t, τ))− ∂k

∂t
(t, µ(t, τ))

)
. (4.55)

The rest of the proof follows along exactly the same lines.

4.4 Proof of Theorem II

In this subsection, we prove Theorem II with a fixed, positive parameter ε > 0.

Proof of Theorem II. We argue by contradiction and assume that there exists a sequence {fk}k∈IN ∈
(MT (Ω)\{f∗})IN such that

lim
k→∞

J εT (f∗)− J εT (fk)´ T
0

(
−∂p

∗
ε

∂r (t, r∗)
)
‖fk(t, ·)− f∗‖2L1(Ω)

= 0, (4.56)

where we recall that p∗ε is the solution of
∂p∗ε
∂t + ∆p∗ε = −u∗ in (0;T )× Ω ,

p∗ε(T, ·) = εu∗(T, ·) ,
p∗ε(t, ·) = 0 on (0;T )× ∂Ω.

(4.57)

In the same way, if f ∈ MT (Ω), pε,f stands for the solution of (4.57) with u∗ replaced by uf .
By Proposition 8, the derivative of J εT at f in a direction h is given by

J̇ εT (f)[h] =

¨
(0;T )×Ω

hpε,f . (4.58)

Let us then begin with the following Claim:

Claim 17. For any T, ε > 0 and any y0 ∈ (0; r∗), there exists α(y0; ε, T ) such that

inf
(0;T )×(y0;R)

(
−∂p

∗
ε

∂r
(t, r)

)
> α(y0; ε, T ) > 0. (4.59)

Proof of Claim 17. We define q∗ε (t, ·) := p∗ε(T − t, ·). Since u∗ is radially symmetric, qε is radially
symmetric as well and satisfies, in radial coordinates,

∂q∗ε
∂t −

1
rn−1

∂
∂r

(
rn−1 ∂q

∗
ε

∂r

)
= u∗(T − t, ·) in (0;T )× (0;R) ,

q∗ε (0, ·) = εu∗(T, ·) ,
q∗ε (t, R) =

∂q∗ε
∂r (t, 0) = 0.

(4.60)

It follows from standard Schauder estimates [27, Theorem 4.9, p.59] and Proposition 6 that
q∗ε ∈ C 1,α((0;T )× Ω). Besides, since u∗ > 0, we also have qε > 0 and, by the strong parabolic
maximum principle, q∗ε > 0 ∈ (0;T )× Ω.
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As a consequence of the Hopf Lemma and of the fact that ∂u∗

∂r (T,R) < 0, defining Φ∗ε :=
∂q∗ε
∂r ,

we obtain
∀t ∈ [0;T ] ,Φ∗ε(t, R) < 0. (4.61)

From Proposition 9, Φ∗ε(0, ·) 6 0 , < 0 in (0;R]. Differentiating (4.60), Φ∗ε thus solves
∂Φ∗ε
∂t −

1
rn−1

∂
∂r

(
rn−1 ∂Φ∗ε

∂r

)
= ∂u∗(T−t,·)

∂r − (n−1)Φ∗ε
r2 in (0;T )× (0;R) ,

Φ∗ε(0, r) < 0 if r > 0 ,Φ∗ε(t, 0) = 0 ,

Φ∗ε(t, R) < 0.

(4.62)

Since (Proposition 9) ∂u∗

∂r < 0 for almost every t, r > 0, Φ∗ε solves, in (0;T )× Ω, the differential
inequality

∂Φ∗ε
∂t
− 1

rn−1

∂

∂r

(
rn−1 ∂Φ∗ε

∂r

)
< − (n− 1)Φ∗ε

r2
in (0;T )× (0;R). (4.63)

We can then apply the maximum principle, as was done in Proposition 9, to ensure that for any
t ∈ (0;T ] and any r > y0,

Φ∗ε(t, r) < 0. (4.64)

As Φ∗ε(0, r
∗) = ε

∂u∗ε
∂r (T, r∗) < 0 it follows that

∀t ∈ [0;T ] ,Φ∗ε(t, r
∗) < 0. (4.65)

Since Φε is continuous in time, we can define

α(y0; ε, T ) := inf
t∈[0;T ],r∈(y0;R)

(−Φ∗ε(t, r)) > 0 (4.66)

and the conclusion follows.

Using this Claim we can come back to the sequence {fk}k∈IN ∈ (MT (Ω)\{f∗})IN satisfying
(4.56). Since f∗ is the unique maximiser of J εT , we must have

ˆ T

0

(
−∂p

∗
ε

∂r
(t, r∗)

)
‖fk − f∗‖2L1(Ω) →

k→∞
0. (4.67)

If this were not the case, it would follow that the sequence {fk}k∈IN converges weakly inMT (Ω)
to some f∞ 6= f∗. As a consequence, the sequence {ufk}k∈IN would converge in C 0((0;T )× Ω)
(using the uniform Hölder bounds from Proposition 6) to uf∞ , and so

J εT (fk) →
k→∞

J εT (f∞) > J εT (f∗). (4.68)

This would yield

lim
k→∞

J εT (f∗)− J εT (fk)´ T
0

(
−∂p

∗
ε

∂r (t, r∗)
)
‖fk(t, ·)− f∗‖2L1(Ω)

=
J εT (f∗)− J εT (f∞)´ T

0

(
−∂p

∗
ε

∂r (t, r∗)
)
‖f∞(t, ·)− f∗‖2L1(Ω)

> 0, (4.69)

a contradiction.
Hence we work under the assumption that (4.67) holds. From Claim 17 this implies

ˆ T

0

‖fk(t, ·)− f∗‖2L1(Ω) →
k→∞

0. (4.70)
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Hence, by Jensen’s inequality,

‖fk − f∗‖L1((0;T )×Ω) =

ˆ T

0

‖fk(t, ·)− f∗‖L1(Ω)dt →
k→∞

0. (4.71)

As a consequence of standard parabolic estimates (Proposition 6) we have, for any α ∈ (0; 1),

ufk →
k→∞

uf∗ = u∗ in C 0,α(Ω) (4.72)

Defining, for any k ∈ IN, pfkε as the solution of
∂p
fk
ε

∂t + ∆pfkε = −ufk in (0;T )× Ω ,

pfkε (T, ·) = εufk in Ω ,

pfkε (t, ·) = 0 in (0;T )× ∂Ω ,

(4.73)

This in in turn implies, by Schauder’s estimates [35, Theorem 48.2]

pfkε →
k→∞

p∗ε in C 1,α((0;T )× Ω). (4.74)

Hence, for any y0 ∈ (0; r∗), there exists k(y0) > 0 such that for any k > k(y0), by Claim 17, there
holds,

∀(t, r) ∈ (0;T )× (y0;R) ,

(
−∂p

fk
ε

∂r
(t, r)

)
> −1

2

∂p∗ε
∂r

(t, r) > 0, (4.75)

and, for any k > 0 large enough, B(0; r∗) is a uniquely defined level set of pfkε : there exists ck such
that

B(0; r∗) = {pfkε > ck}. (4.76)

As a consequence, choosing y0 small enough, we can ensure that all the assumptions of Proposition
14 are satisfied.

Finally, let us note that, by the same argument, these property also hold for any p
f∗+τ(fk−f∗)
ε

for any τ ∈ (0; 1) and any k large enough. In all the reasoning above, it suffices to add τ as another
parameter in the family.

This allows us to apply Proposition 14: there exists a constant ω > 0 such that

∀f ∈M(Ω) ,∀k large enough, ∀t ∈ (0;T ) ,∀τ ∈ (0; 1) ,ˆ
Ω

pf
∗+τ(fk−f∗)
ε (t, ·)(f∗ − fk(t, ·)) > ω

(
−∂p

∗
ε

∂r
(t, r∗)

)
‖fk(t, ·)− f∗‖2L1(Ω). (4.77)

Let us now apply, for any k large enough, the mean value theorem to the map

Tk = [0; 1] 3 τ 7→ J εT (f∗ + τ(fk − f∗)). (4.78)

There exists τ ∈ (0; 1) such that

J εT (fk − f∗) =

¨
(0;T )×Ω

pf
∗+τ(fk−f∗)
ε (fk − f∗) . (4.79)

Using (4.77) we get

J εT (fk−f∗) =

¨
(0;T )×Ω

pf
∗+τ(fk−f∗)
ε (fk − f∗) > ω

ˆ T

0

(
−∂p

∗
ε

∂r
(t, r∗)

)
‖fk(t, ·)−f∗‖2L1(Ω). (4.80)

This is a contradiction, and the Theorem follows.
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5 Proof of Theorem III: quantitative inequalities via shape
derivatives and bathtub principle

5.1 Presentation and plan of the proof

The proof relies on the use of shape derivatives and on the study of an auxiliary problem. The
structure of the proof is inspired by a previous work of the author [31] and we will refer to this
paper when needed. The main point is here to show an example of how shape derivatives may be
used for parabolic problems.

Let us define, for any δ > 0, the class

M(Ω, δ) :=
{
f ∈M(Ω) , ‖f − f∗‖L1(Ω) = δ

}
. (Adm(δ))

We first consider the auxiliary variational problem

inf
f∈M(Ω,δ)

JT (f) (Pδ)

and prove that it admits a solution fδ (Lemma 19 below). Once this is done, we prove (Lemma 20
below) that Theorem III is equivalent to proving that

lim inf
δ→0

(
JT (f∗)− JT (fδ)

δ2

)
> 0. (5.1)

Remark 18. At this stage, one may argue to explicitly characterize fδ as a radially symmetric
solution, and thus bypass the part about shape derivatives. However, as our goal is also to provide
a full analysis of shape hessians for time-dependent problems, and to present, in the Conclusion,
possible generalisations to other settings where the explicit characterisation of optimisers of such
a penalised problem are no longer available, we choose to not take advantage of that fact here.

We then recall that f∗ = 1B∗ . We consider, for smooth enough vector fields Φ, the deformed
set B∗Φ := (Id+ Φ)(B∗) and, with a slight abuse of notation, we write

JT (B∗Φ) := JT (1B∗Φ).

We will prove (Proposition 21) that whenever Φ is ”small” enough (in a sense made precise in the
section devoted to shape derivatives) there holds

JT (B∗)− JT (B∗Φ) > C Vol(B∗Φ∆B∗)2 (5.2)

for some constant C > 0.
We also prove a quantitative bathtub principle (Proposition 29), and finally conclude as in [31]

by comparing any competitor with one of the level sets of the switch function, and then this level
set with the set B∗. The key to conclude here is the convexity of the cost functional JT .

To proceed, we need some basic informations about the optimality conditions for Problem (I1).

Optimality conditions for (I1) We recall, from Proposition 8 that for any admissible per-
turbation h ∈ L∞(Ω) (that is, such that, for any ε > 0 small enough, f∗ + εh ∈ M(Ω)) the
Gâteaux-derivative of uf in the direction h, thereafter noted u̇ solves

∂u̇
∂t −∆u̇ = h in (0;T )× Ω ,

u̇ = 0 on (Ω;T )× ∂Ω ,

u̇(0, ·) ≡ 0

(5.3)
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and that, introducing the solution pf of
∂pf
∂t + ∆pf = −uf in (0;T )× Ω ,

pf = 0 on (0;T )× ∂Ω ,

pf (T, ·) ≡ 0.

(5.4)

we get the following expression for the Gâteaux-derivative of JT :

J̇T (h) =

¨
(0;T )×Ω

hpf =

ˆ
Ω

h(x)

(ˆ T

0

pf (t, x)dt

)
dx. (5.5)

Let us define

Ψ(x) :=

ˆ T

0

pf (t, x)dt. (5.6)

Hence it follows that

J̇T (h) =

ˆ
Ω

hΨ. (5.7)

5.2 Reduction to an auxiliary problem

We now justify the study of the auxiliary problem

inf
f∈M(Ω,δ)

JT (f) (Pδ)

where M(Ω, δ) was defined in (Adm(δ)).

Lemma 19. For any δ > 0, the variational problem (Pδ) has a solution fδ.

This Lemma is an adaptation of [31, Proposition 22]; for the sake of readability, its proof is
only given in Appendix A. Throughout the rest of the proof of Theorem III we adopt the following
notation:

For any δ > 0, fδ is a solution of (Pδ). (5.8)

We now explain why we will focus on the study of fδ as a competitor; it is the subject of the
following Lemma:

Lemma 20. Theorem III is equivalent to proving that

lim inf
δ→0

JT (f∗)− JT (fδ)

δ2
> C0 > 0 (5.9)

for some positive constant C0.

The proof of this result is an adaptation of [31, Lemma 23] and mostly relies on the uniqueness
of maximisers. We postpone the proof to Appendix A. The rest of the proof of Theorem III is
going to be devoted to the proof of Estimate (5.9), see Proposition 5.5 below. To prove it, we
need a local inequality for deformations of the optimal set B∗ and a quantitative bathtub principle
which will be used in combination with the convexity of the functional.
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5.3 Quantitative inequalities for deformations of B∗: using shape deriva-
tives

Let us consider a C 1 set E of volume V0 such that E∩∂Ω = ∅ and a smooth, compactly supported
in Ω, vector field Φ. We define

EΦ := (Id+ Φ)(E). (5.10)

We recall that we see JT as a shape functional by defining, with a slight abuse of notations,

JT (E) := JT (1E). (5.11)

Our goal is the following proposition:

Proposition 21. There exist a constant C > 0, a parameter η > 0 and p ∈ (1; +∞) such that,
for any compactly supported vector field Φ satisfying ‖Φ‖W 2,p there holds

JT (B∗)− JT (B∗Φ) > C Vol (B∗Φ∆B∗)2
. (5.12)

The proof of this Proposition follows the synthetic presentation of quantitative inequalities
for deformations of optimal sets presented in [16]; their proof holds for shape optimisation of the
domain Ω, and we have presented in [31] how to adapt their method to the optimisation of a
subdomain E ⊂ Ω. Let us present the main steps of the proof of Proposition 21:

1. The first one is to prove that B∗ is a critical shape in the following sense: computing, for
any compactly supported vector field Φ ∈ W 2,p the first order shape derivative J ′T (B∗)[Φ]
we need to prove that, if Φ additionally satisfies the linearised constraint

ˆ
∂B∗

(Φ · ν) = 0 (5.13)

then there holds
J ′T (E∗)[Φ] = 0. (5.14)

This allows to consider, for the computation and analysis of second-order shape derivatives,
vector fields Φ that are normal to ∂B∗, and also to define a Lagrangian associated with a
Lagrange multiplier

LT (E) := JT (E) + µVol(E), (5.15)

which satisfies, for any compactly supported vector field Φ ∈W 2,p not necessarily satisfying
(5.13)

L′T (B∗)[Φ] = 0. (5.16)

2. As a second step, we compute the second order shape derivative of the Lagrangian L′′T (B∗)[Φ,Φ]
and prove an L2 coercivity estimate, i.e that there exists a constant c0 > 0 such that

∀Φ ∈W 2,p(Ω; IR2) ,

ˆ
∂B∗

φ · ν = 0⇒ L′′T (B∗)[Φ,Φ] 6 −c0‖Φ · ν‖2L2(∂B∗). (5.17)

This is done using a comparison principle previously used for elliptic equations [30, 29], and
our contribution here is to show how it extends to the case of parabolic equations.

3. We then define for a compactly supported vector field Φ ∈W 2,p the map

jΦ : [0; 1] 3 t 7→ LT (B∗tΦ) + C(Vol(B∗tΦ)− V0)2 (5.18)
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for some C large enough such that

j′′Φ(0) 6 −c̃0‖Φ · ν‖2L2(∂B∗) (5.19)

and prove that there exists a modulus of continuity η, that is, a continuous function η :
IR+ → IR+ such that ω(0) = 0, such that

|j′′Φ(t)− j′′Φ(0)| 6 η (‖Φ‖W 2,p) ‖Φ · ν‖2L2(∂B∗), (5.20)

and conclude using the Taylor-Lagrange formula

jΦ(1)− jΦ(0) =

ˆ 1

0

j′′Φ(s)ds 6 (−c̃0 + ω (‖Φ‖W 2,p)) ‖Φ · ν‖2L2(∂B∗). (5.21)

All these steps rely on fine properties of first and second order shape derivatives. We begin with
the computations of the shape derivatives of the Lagrange multiplier associated with the volume
constraint and of the diagonalisation of the associated shape hessian at E∗.

5.3.1 Computation of first and second order shape derivatives, computation of the
Lagrange multiplier and diagonalisation of the shape Hessian

Computation and analysis of the first order shape derivative Let us define, for any
subdomain E of Ω the function uE as the solution of (1.9) associated with f = 1E . It should be
noted that the shape differentiability of first and second order of the shape functional JT : E 7→
JT (E) follows from the same arguments as in [11], and so does the computation of the first order
shape derivative. The computations are a straightforward adaptation of [11] and we only give
here a heuristic approach. Let us, then, consider a C 1 shape, and a W 2,p compactly supported
vector field E. The shape derivative of E 7→ uE in the direction Φ is denoted by u′ for the sake
of notational simplicity. The differentiation of the main equation of (1.9) gives, in a weak form,
that, for any test function v,

−
¨

(0;T )×Ω

∂v

∂t
u′ +

¨
(0;T )×Ω

〈∇u′,∇v〉 =

¨
(0;T )×∂E

v (Φ · ν) . (5.22)

Remark 22. Alternatively, at a formal level: the differentiation of the initial condition yields

u′(0, ·) ≡ 0. (5.23)

The differentiation of the main equation gives

∂u′

∂t
−∆u′ = 0. (5.24)

Finally, the structural condition given by the weak formulation of (1.9) is that there is no jump of
the normal derivative on ∂B∗ or, mathematically, that

s
∂uE
∂ν

{∣∣∣∣
∂E

= 0. (5.25)

We refer to Subsection 1.5 for the definition of the jump. Differentiating (5.25) yields

s
∂u′

∂ν

{∣∣∣∣
∂E

= − (Φ · ν) . (5.26)
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In conclusion, u′ satisfies 
∂u′

∂t −∆u′ = 0 in (0;T )× Ω ,

u′(t, ·) = 0 on (0;T )× ∂Ω ,r
∂u′

∂ν

z∣∣∣
∂E

= − (Φ · ν) ,

u′(0, ·) ≡ 0.

(5.27)

Furthermore, if we consider the adjoint state p1E , which we abbreviate as pE for notational
simplicity, given by Equation (5.4) we obtain

J ′T (E)[Φ] =

¨
(0;T )×Ω

uEu
′

= −
¨

(0;T )×Ω

(
∂pE
∂t

+ ∆pE

)
u′

= −
¨

(0;T )×∂E

s
∂u′

∂ν

{
pE

=

¨
(0;T )×∂E

(Φ · ν) pE .

Let us single out this last identity:

J ′T (E)[Φ] =

ˆ
∂E

(Φ · ν)

(ˆ T

0

pE

)
. (5.28)

This allows us to obtain the following result:

Lemma 23. B∗ is a critical shape in the following sense: for any compactly supported vector field
Φ ∈W 2,p(Ω; IR2) ˆ

∂B∗
(Φ · ν) = 0⇒ JT (B∗)[Φ] = 0. (5.29)

Proof of Lemma 23. From Proposition 9, u∗ is a radially symmetric function. Hence, the associated
adjoint state p∗ = pB∗ is also radially symmetric, so that the map

Ψ : B(0;R) 3 x 7→
ˆ T

0

p∗(t, x)dt (5.30)

is radially symmetric. Letting Ψ∂B∗ := Ψ|∂B∗ we obtain

J ′T (B∗)[Φ] = Ψ∂B∗

ˆ
∂B∗

(Φ · ν) = 0. (5.31)

It follows that the Lagrange multiplier associated with the volume constraint is µ = −Ψ∂B∗

and we can hence define the Lagrangian

LB∗(E) := JT (E)−Ψ∂B∗ Vol(E) (5.32)

and observe that, since Vol′(E)[Φ] =
´
∂E

(Φ · ν) we have, for any compactly supported vector field

Φ ∈W 2,p(Ω; IR2)
L′B∗(B∗)[Φ] = 0. (5.33)

As a consequence of [22, Theorem 5.9.2 and the remark below], the second-order shape derivative
in a direction Φ only depends on the normal trace of Φ and we hence work under the Assumption:

Φ is normal to ∂B∗. (Aν)
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Computation of the shape hessian and diagonalisation of the shape hessian at the ball
We can now turn to the computation of the second order shape derivative. We once again choose
a C 2 shape E and a compactly supported vector field Φ ∈ W 2,p(Ω; IR2). It is well-known [22,
Proposition 5.4.18] that

Vol′′(E)[Φ,Φ] =

ˆ
∂E

H (Φ · ν)
2
, (5.34)

where H is the mean curvature of ∂E. Furthermore, differentiating (5.28) and using once again
[22, Proposition 5.4.18] we obtain

J ′′T (E)[Φ,Φ] =

ˆ
∂E

(Φ · ν)

(ˆ
(0;T )

p′

)
+

ˆ
∂E

(Φ · ν)
2

(
H

ˆ T

0

pE +

ˆ T

0

∂pE
∂ν

)
(5.35)

where p′ satisfies 
∂p′

∂t + ∆p′ = −u′ in (0;T )× Ω,

p′ = 0 on (0;T )× Ω ,

p′(T, ·) ≡ 0 in Ω.

(5.36)

In particular, the shape hessian of the Lagrangian at the ball is given by

L′′B∗(B∗)[Φ,Φ] =

ˆ
∂B∗

(Φ · ν)

(ˆ
(0;T )

p′

)
+

ˆ
∂B∗

(Φ · ν)
2

(
H Ψ

∣∣
∂B∗ +

ˆ T

0

∂p∗

∂ν

)
− Ψ

∣∣
∂B∗

ˆ
∂B∗

H (Φ · ν)
2

so that simplifying the terms involving the mean curvature we are left with

L′′B∗(B∗)[Φ,Φ] =

ˆ
∂B∗

(Φ · ν)

(ˆ
(0;T )

p′

)
+

ˆ
∂B∗

(Φ · ν)
2
ˆ T

0

∂p

∂ν
. (5.37)

Let us now diagonalise it. Since Φ is a vector field that is normal to S∗ := ∂B∗ from Assumption
(Aν) it follows that we can decompose it, in angular coordinates, as

Φ · ν =

∞∑
k=1

αk cos(k·) + βk sin(k·). (5.38)

Remark 24. The fact that the sum involving the cosines starts at k = 1 is a consequence of the
fact that to compute the optimality condition for second order shape derivative we need to work in
the space satisfying the linearised constraint or, in this case, to assume that

ˆ
∂B∗

Φ · ν = 0. (5.39)

Let us first define u′k (resp. v′k) as the solution of (5.27) associated with Φ · ν = cos(k·) (resp.
sin(k·)). It is straightforward to see that these two functions write

u′k(r, θ) = yk(r) cos(kθ) , v′k(r, θ) = yk(r) sin(kθ) (5.40)

where yk solves, for any k ∈ IN∗,
∂yk
∂t −

1
r
∂
∂r (r ∂yk∂r ) = −k

2

r2 yk in (0;R) ,

Jy′kK (r∗) = −1 ,

yk(R, ·) = 0 ,

y′k(0) = 0.

(5.41)

30



Let us also introduce g′k (resp. w′k) the solution of (5.36) associated with Φ · ν = cos(k·) (resp.
sin(k·)). It is straightforward to see that these two functions write

g′k(r, θ) = zk(r) cos(kθ) , w′k(r, θ) = zk(r) sin(kθ) (5.42)

where zk solves, for any k ∈ IN∗,
∂zk
∂t + 1

r
∂
∂r (r ∂zk∂r ) = k2

r2 zk − yk in (0;R) ,

zk(R, ·) = 0 ,

zk(T ) = 0.

(5.43)

Furthermore, since p∗ is a radially symmetric function let us introduce the function p such that

p∗(t, r, θ) = p(t, r). (5.44)

This allows to recast the second order shape derivative (5.37) through the following Lemma:

Lemma 25. If Φ · ν is of the form (5.38) then there holds

L′′B∗(B∗)[Φ,Φ] =
r∗

2

∞∑
k=1

ωk
{
α2
k + β2

k

}
(5.45)

where for every k ∈ IN∗ we have defined

ωk :=

ˆ T

0

zk(t, r∗)dt+

ˆ T

0

∂p

∂r
(t, r∗)dt. (5.46)

Proof of Lemma 25. We can write (5.37) as

L′′B∗(B∗)[Φ,Φ] =

ˆ 2π

0

(Φ · ν)

(ˆ
(0;T )

p′

)
+

ˆ 2π

0

(Φ · ν)
2
ˆ T

0

∂p∗

∂ν

=

∞∑
k,k′=1

ˆ 2π

0

ˆ T

0

(αkαk′ cos(kθ) cos(k′θ) + βkβk′ sin(kθ) sin(k′θ)

+ +αkβk′ cos(kθ) sin(k′θ)) zk(t, r∗)dtdθ

+

∞∑
k=1

ˆ 2π

0

ˆ T

0

1

2

(
α2
k + β2

k

) ∂p
∂r

(t, r∗)dt.

All the crossed terms disappear for k 6= k′, and the conclusion follows by integrating in polar
coordinates.

We may now state the main result of this subsection:

Proposition 26. There exists a constant c0 > 0 such that for any Φ ∈W 2,p satisfying (Aν) there
holds

L′′B∗(B∗)[Φ,Φ] 6 −c0
ˆ
∂B∗

(Φ · ν)
2
. (5.47)

Proof of Proposition 26. Given Lemma 25 it suffices to prove that there exists a constant c0 > 0
such that

∀k ∈ IN∗ , ωk 6 −c0. (5.48)

Equation (5.48) is obviously provided the following Claim holds:
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Claim 27. The sequence {ωk}k∈IN∗ is decreasing. Furthermore, ω1 < 0.

Indeed, it then suffices to take c0 = − 2
r∗ω1 and we can then bound

L′′B∗(B∗)[Φ,Φ] =
r∗

2

∞∑
k=1

ωk(α2
k + β2

k) 6 −c0
∞∑
k=1

(α2
k + β2

k) = −c0
ˆ
∂B∗

(Φ · ν)
2
. (5.49)

We now focus on the proof of this last Claim.

Proof of Claim 27. Let us note that from Lemma 25 we have

∀k ∈ IN∗ , ωk − ω1 =

ˆ T

0

(zk − z1) (t, r∗)dt. (5.50)

The fact that {ωk}k∈IN is decreasing is thus guaranteed provided the following estimate holds:

∀k ∈ IN∗ , zk 6 z1. (5.51)

(5.51) will be proved using a comparison principle. If we want to compare zk and z1, we need to
compare, for any k ∈ IN∗, yk and y1. The first thing to observe is that

y1 > 0. (5.52)

Proof of (5.52). We already know that y1 satisfies
∂y1

∂t −
1
r
∂
dr (r ∂y1

dr ) = − 1
r2 y1 in (0;R) ,

Jy′1K (r∗) = −1 ,

y1(R, ·) = 0 ,

y′1(0, ·) = 0.

(5.53)

We consider the negative part y−1 of y1. We have

J(y−1 )′K(t, r∗)


= 0 if y1(t, r∗) > 0,

= 1 if y1(t, r∗) < 0,

> 0 if y1(t, ·) locally changes sign at r∗.

In any case, we obtain q
(y−1 )′

y
> 0. (5.54)

Multiplying the equation by y−1 and integrating by parts in space and time as in the proof of
Proposition 9 gives

1

2

ˆ
Ω

(y−1 )2(T, ·) +

¨
(0;T )×Ω

|∇y−1 |2 +

¨
(0;T )×∂B∗

y−1
q
(y−1 )′

y
+

¨
(0;T )×Ω

1

r
(y−1 )2 = 0. (5.55)

As a conclusion, y−1 ≡ 0, which concludes the proof.

Using this information, we can now prove:

∀k ∈ IN∗ , yk 6 y1. (5.56)
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Proof of (5.56). Let us define, for any k ∈ IN∗,

Ψk := yk − y1. (5.57)

Then, in (0;T )× Ω, Ψk solves

∂Ψk

∂t
−∆Ψk = −k

2

r2
yk +

1

r2
y1 6 −k

2

r2
(yk − y1) = −k

2

r2
Ψk, (5.58)

where the last inequality comes from the fact that y1 is non-negative. Furthermore,

JΨ′kK (t, r∗) = 0, (5.59)

so that, following exactly the main line of reasoning, we obtain

Ψk 6 0, (5.60)

which concludes the proof.

We now pass to the next step:
z1 > 0 in (0;T )× Ω. (5.61)

Proof of (5.61). The function z1 satisfies
∂z1
∂t + 1

r
∂
∂r (r ∂z1∂r ) = 1

r2 z1 − y1 in (0;T )× (0;R) ,

z1(R, ·) = 0 ,

z1(T, 0) = ∂rz1(t, 0) = 0.

(5.62)

Since y1 > 0 from (5.52) z1 solves, in particular,
∂z1
∂t + 1

r
∂
∂r (r ∂z1∂r ) 6 1

r2 z1 in (0;T )× (0;R) ,

z1(R, ·) = 0 ,

z1(T, 0) = ∂rz1(t, 0) = 0.

(5.63)

Let us now define z1 = z1(T − t, ·). Straightforward computations show that z1 solves

∂tz1 −
1

r
∂r(r∂rz1) > − 1

r2
z1. (5.64)

Multiplying this identity by z−1 and integrating by parts, we obtain in the same way

z1 > 0, (5.65)

as claimed.

We are now in a position to prove (5.51):

Proof of (5.51). We define, for any k ∈ IN, Zk := zk − z1. It is clear that Zk solves

∂Zk

∂t
+

1

r

∂

∂r

(
r
∂Zk

∂r

)
=
k2

r2
zk −

1

r2
z1 + y1 − yk. in (0;T )× (0;R) (5.66)

From Estimate (5.56) there holds

∂Zk

∂t
+

1

r

∂

∂r

(
r
∂Zk

∂r

)
>
k2

r2
zk −

1

r2
z1 in (0;T )× (0;R) (5.67)
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and so, from Estimate (5.61) we get

∂Zk

∂t
+

1

r

d

dr

(
r
dZk

dr

)
>
k2

r2
zk −

k2

r2
z1 =

k2

r2
Zk in (0;T )× (0;R). (5.68)

From the same reasoning, we obtain
Zk 6 0 (5.69)

and so
zk 6 z1 in (0;T )× (0;R). (5.70)

The proof of the first part of Claim 27 is thus finished, and it hence remains to prove that

ω1 < 0. (5.71)

Proof of (5.71). We recall that

ω1 =

ˆ T

0

z1(t, r∗)dt+

ˆ T

0

∂p

∂r
(t, r∗)dt.

First of all, is is easy to see that p is non-negative.
Let us define ϕ := ∂p

∂r . Straightforward computations show that ϕ solves
∂ϕ
∂t + 1

r
∂
∂r

(
r ∂ϕ∂r

)
= −∂u∂r + 1

r2ϕ in (0;T )× (0;R) ,

ϕ(t, R) 6 0 ,

ϕ(T, ·) ≡ 0.

(5.72)

If we define Φ := ϕ+ z1 we thus have

∂Φ

∂t
+

1

r

∂

∂r

(
r
∂Φ

∂r

)
=

1

r2
Φ− ∂u

∂r
>

1

r2
Φ. (5.73)

The last inequality comes from Proposition 9. Furthermore we have Φ(t, R) 6 0. As a consequence,
we have

Φ 6 0 in (0;T )× Ω. (5.74)

Furthermore, we necessarily have Φ(t, r∗) < 0 in a subset of positive measure of (0;T ), for otherwise
we have ∂u

∂r (t, r∗) = 0 on this subset, which is absurd given Proposition 9. As a conclusion, we
obtain

ω1 =

ˆ T

0

Φ(t, r∗)dr < 0, (5.75)

as claimed.
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With this Proposition available, we are in a position to prove Proposition 21. Let us recall
that, for a normal deformation Φ ∈W 2,p we have defined

jΦ(ξ) := LB∗(B∗tΦ) + C(Vol(B∗tΦ)− V0)2. (5.76)

Since B∗ is a critical shape we obtain
j′Φ(0) = 0 (5.77)

so that the Taylor-Lagrange formula with integral remainder writes, in the case where Vol(B∗Φ) =
V0,

LB∗(B∗Φ)− LB∗(B∗) =

ˆ 1

0

j′′ 6 j′′Φ(0) +

ˆ 1

0

|j′′Φ(ξ)− j′′Φ(0)| dξ. (5.78)

The key is now to prove the following Lemma:

Lemma 28. There exists a modulus of continuity, that is, a continuous function η : IR+ → IR+

such that ω(0) = 0, such that

|j′′Φ(t)− j′′Φ(0)| 6 η (‖Φ‖W 2,p) ‖Φ · ν‖2L2(∂B∗). (5.79)

Indeed, Lemma 28 implies Proposition 21 in the following way: assuming it holds then

LB∗(B∗Φ)− LB∗(B∗) =

ˆ 1

0

j′′ 6 j′′Φ(0) +

ˆ 1

0

|j′′Φ(ξ)− j′′Φ(0)| dξ (5.80)

6 −c0‖Φ · ν‖2L2(∂B∗) + η (‖Φ‖W 2,p) ‖Φ · ν‖2L2(∂B∗) (5.81)

6 −c0
2
‖Φ · ν‖2L2(∂B∗) for ‖Φ‖W 2,p small enough (5.82)

6 −c0
2

1

Per(∂B*)

(ˆ
∂B∗
|Φ · ν|

)2

by the Cauchy-Schwarz inequality (5.83)

6 −c̃0 Vol (B∗Φ∆B∗)2
. (5.84)

The proof of Lemma 28 is extremely similar to the proof of [31, Proposition 23] and is mostly
a technical adaptation of [16]. For this reason, we postpone it to Appendix A.3 and briefly sketch

here why this L2 norm of Φ · ν is, in contrast to the H
1
2 usually required in shape optimisation

[16], the optimal norm here. If we consider, for instance, at at given shape E the second order
shape derivative of the Lagrangian, we have

L′′B∗(E)[Φ,Φ] =

¨
(0;T )×∂E

p′ (Φ · ν)︸ ︷︷ ︸
=I1

+

ˆ
∂E

(Φ · ν)
2

(
H

ˆ T

0

pE +

ˆ T

0

∂pE
∂ν

)
−Ψ∂B∗

ˆ
∂E

H (Φ · ν)
2

︸ ︷︷ ︸
=:I2

(5.85)
where:

1. H is the mean curvature of ∂E,

2. pE solves 
∂pE
∂t + ∆pE = −uE in (0;T )× Ω ,

pE(T, ·) = 0 ,

pE(t, ·) = 0 on (0;T )× ∂Ω,

(5.86)

35



3. u′ solves 
∂u′

∂t −∆u′ = 0 in (0;T )× Ω ,

u′(0, ·) = 0 ,

J∂νu′K = −1 on (0;T )× ∂E,
u′(t, ·) = 0 on (0;T )× ∂Ω,

(5.87)

4. p′ solves 
∂p′

∂t + ∆p′ = −u′ in (0;T )× Ω ,

p′(T, ·) = 0 ,

p′(t, ·) = 0 on (0;T )× ∂Ω,

(5.88)

5. and

Ψ∂B∗ =

ˆ T

0

p∗(t, ·)

∣∣∣∣∣
∂B∗

is the Lagrange multiplier associated with the volume constraint.

Now, by the regularity estimates of Proposition 6 and by standard Schauder estimates, it is
natural to expect that

‖I2‖ 6M ‖Φ · ν‖2L2(∂E) . (5.89)

To prove that the same estimate holds for I1, it suffices, by continuity of the trace, to obtain

¨
(0;T )×Ω

|∇p′|2 6M

ˆ
∂E∗

(Φ · ν)2. (5.90)

However, this just follows from standard parabolic estimates, provided we can prove that

¨
(0;T )×Ω

(u′)2 6M

ˆ
∂E∗

(Φ · ν)2. (5.91)

To prove (5.91), we use u′ as a test function in the weak equation on u′ and obtain, by the
Cauchy-Schwarz inequality and the continuity of the trace,

∂

∂t

ˆ
Ω

(u′)2(t, ·) +

ˆ
Ω

|∇u′|2 =

ˆ
∂E

(Φ · ν)u′ (5.92)

6M‖Φ · ν‖L2(∂E)‖∇u′‖L2(Ω). (5.93)

Integrating this inequality in time yields the required result and we hence obtain

|L′′B∗(E)[Φ,Φ]| 6M‖Φ · ν‖2L2(∂E). (5.94)

As a consequence, the L2 norm should be the optimal coercivity norm.

5.4 Quantitative bathtub principle: using the convexity of the functional

In this section, we will fully exploit the convexity of the functional. We first heuristically explain
how we are going to make use of it.

36



Heuristics Let us assume that we are working with a competitor f ∈ M(Ω), and let us define
pf as the adjoint state associated to f (solution of (5.4)). Hence, for an admissible perturbation h
at f (i.e, such that f + th ∈ M(Ω) for any t > 0 small enough), the derivative of JT at f in the
direction h is given by (Proposition 8)

J̇T (f)[h] =

ˆ
Ω

h(x)

(ˆ T

0

pf (t, x)dt

)
dx. (5.95)

Since JT is convex (Proposition 7), we have

JT (f + h)− JT (f) > J̇T (f)[h]. (5.96)

As a consequence, let us assume that f = 1E . In order to maximise the right hand side of

(5.96), we need to choose h such that, defining Ψ :=
´ T

0
pf (t, ·)dt, and choosing c > 0 such that

Vol
(
{Ψ > c}

)
= V0 (assuming this set is uniquely defined and regular),

f + h = 1{Ψ>c} = 1E (5.97)

and so we obtain the lower bound

JT (1E)− JT (1E) >
ˆ
E

Ψ−
ˆ
E

Ψ. (5.98)

Now, as we will see, when f is close enough to f∗, E should be a normal deformation of B∗, and
the only thing left is thus to quantify ˆ

E

Ψ−
ˆ
E

Ψ. (5.99)

Indeed, using (5.98) we obtain

JT (1B∗)−JT (1E) > JT (1B∗)−JT (1E)+JT (1E)−JT (1E) > C Vol(E∗∆E)2 +JT (1E)−JT (1E).
(5.100)

Here, C > 0 is given by Proposition 21.
Since f := 1E is a maximiser of TΨ : f 7→

´
Ω
fΨ in M(Ω), it turns out that estimating (5.99)

amounts to providing a quantitative estimate for the linear optimisation problem

sup
f∈M(Ω)

TΨ(f) (5.101)

which is exactly the quantitative version of the bathtub principle.
The goal of the present paragraph is to give a uniform bathtub principle that was presented in

a slightly different form in the section devoted to Theorem II, see Proposition 14 above.

Proposition 29. Let β > 0 and let {ψi}i∈I ⊂ C 1,β(Ω; IR+)I be a closed subset of C 1,β′(Ω) for
some β′ < β. We assume that:

1. For every i ∈ I there exists a unique ci such that, up to a set of measure 0,

Ωi := {ψi > ci} = {ψi > ci} (5.102)

and
∀i ∈ I ,Vol(Ωi) = V0 , L = sup

i∈I
Per(Ωi) < +∞. (5.103)

We define, for any i ∈ I,
f i := 1Ωi .
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2. There exists M > 0 such that
sup
i∈I
‖ψi‖C 1,β 6MI . (5.104)

3. There exists µ > 0 such that

inf
i∈I

inf
∂Ωi

{
−∂ψi
∂ν

}
> µ. (5.105)

Then there exists a constant ω > 0 such that

∀i ∈ I , ∀f ∈M(Ω) ,

ˆ
Ω

(f i − f)ψi > ω‖f i − f‖2L1(Ω). (5.106)

The proof of this Proposition is very similar to that of Proposition 14.

Proof of Proposition 29. We just need to prove that, thanks to our assumption, we can bring
ourselves back to the proof of Proposition 14. This is done using the Schwarz rearrangement, as
was done in [31].

From the bathtub principle we have, for any i ∈ I, that f∗i := 1Ωi is the unique solution of

sup
f∈M(Ω)

ˆ
Ω

fψi. (5.107)

By the uniform Hölder continuity of {∇ψ}i∈I there exists ε > 0 that only depends on MI and
µ such that

∀x ∈ Ω ,∀i ∈ I , ψi(x) ∈
(
ci − ε; ci + ε

)
⇒ |∇ψi| (x) >

µ

2
, sup
ε∈(−ε;ε)

sup
i∈I

Per({ψi = ci + ε}) < +∞.

(5.108)
Let us fix such an ε.

We now reduce ourselves to the case of radially symmetric function:

Reduction to radially symmetric functions For any i ∈ I, let us consider the distribution
function Li of ψi. From (5.108), Li is C 1 in (ci − ε; ci + ε) and so, letting ψ#

i be the Schwarz
rearrangement of ψi, we have

ˆ
∂{ψi>ci}

1∣∣∣∂ψi∂ν

∣∣∣ = −L ′i (ci) =

ˆ
∂B(0;r∗)

1∣∣∣∂ψ#
i

∂ν

∣∣∣ .
Given the uniform perimeter bound (5.108) on the level sets close to {ψi = ci}, it thus follows that

there exists a constant C > 0 and ε > 0 such that {ψ†i }i∈I satisfies, in a (r∗ − ε; r∗ + ε),

∀i ∈ I ,

∣∣∣∣∣dψ†idr
∣∣∣∣∣ > Cµ. (5.109)

We can then observe the following thing: by equimeasurability of the Schwarz rearrangement, we
have, for every f ∈ M(Ω), the following property: if ‖f − f i‖L1(Ω) = δ then, defining Aδ as the
unique annulus such that Vol(Aδ) = V0 ,Vol(Aδ∆B∗) = δ, the Haryd-Littlewood inequality and
the equimeasurability of the rearrangement ensure that

ˆ
Ω

(f i − f)ψi >
ˆ

Ω

(f∗ − 1Aδ)ψ
#
i . (5.110)
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Hence, it suffices to prove that ˆ
Ω

(f∗ − 1Aδ)ψ
#
i > ωδ2 (5.111)

where ω does not depend on i. Thanks to (5.109), the rest of the proof follows along the same
exact lines as Proposition 14.

5.5 Combining the bathtub principle and shape derivatives

To conclude the proof of Theorem III, it thus only remains to prove the following proposition:

Proposition 30. Estimate (5.9) holds.

Proof. We argue by contradiction and assume that Estimate (5.9) does not hold. Let us then
consider a sequence {fk}k∈IN such that

JT (f∗)− JT (fk)

‖fk − f∗‖2L1(Ω)

→
k→∞

0. (5.112)

As in the proof of Theorem II, the only closure point of {fk}k∈IN (in a weak L∞ − ∗ sense) is f∗.
We introduce, for any k ∈ IN,

δk := ‖fk − f∗‖L1(Ω). (5.113)

Up to replacing fk with fδk , we can assume that fk = fδk .
Let us define, for any k ∈ IN, pk as the adjoint state (solution of (5.4)) with f = fk. From

standard parabolic regularity and Proposition 6, for any β ∈ (0; 1) there exists Mβ such that for
any t ∈ [0;T ]

‖pk‖C 2,β(Ω) 6Mβ , (5.114)

and hence, since fk →
k→∞

f∗, we obtain

pk
C 2,β((0;T )×Ω)→

k→∞
p∗ (5.115)

where p∗ is the adjoint state associated with f = f∗.
Let, for any k ∈ IN,

Ψk :=

ˆ T

0

pk. (5.116)

From the same arguments,

Ψk
C 2,β(Ω)→
k→∞

Ψ∗ :=

ˆ T

0

p∗. (5.117)

Ψ∗ is radially symmetric, it is decreasing and its only level set of volume V0 is B∗. Furthermore,
from the same arguments as in Claim 17, we also have

∀η > 0 , inf
r>η

∣∣∣∣∂Ψ∗

∂r

∣∣∣∣ (r∗) = `(η) > 0. (5.118)

Let, for any k ∈ IN, ck be such that Vol ({Ψk > ck}) > V0 ,Vol ({Ψk > ck}) 6 V0.
Since fk →

k→∞
f∗ and since JT (fk) > JT (1{Ψk>ck}) by convexity of the functional, it follows

that
{
1{Ψk>ck}

}
k∈IN

converges weakly to f∗. Since f∗ is an extreme point of M(Ω), this con-

vergence occurs in L1. We choose η > 0 small enough so that, for any k ∈ IN large enough,
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{ψk = ck} ∩ {0 < r < η} = ∅. This is possible because Ψ∗ is radially symmetric and de-
creasing: indeed, argue by contradiction and assume that there exists a sequence {xk}k∈IN con-
verging to 0 such that for any k ∈ IN, Ψk(xk) = ck. Let c be the limit of the sequence
{ck}. Since Vol({Ψk > ck}) = V0, there exists η′ > 0 such that for any k ∈ IN there ex-
ists yk , ‖yk‖ > η′ such that Ψk(yk) > ck. Passing to the limit, there exists y′ > 0 such that
Ψ∗(y′) > c = limk→∞Ψk(xk) = Ψ∗(0) and so Ψ∗ can not be decreasing. Hence such an η > 0
exists.

As a consequence, for such an η we have, for any k large enough,

inf
x ,‖x‖>η

|∇Ψk| (x) >
`(η)

2
. (5.119)

Thus, the level set {Ψk = ck} is a C 1 curve and

inf
{Ψk=ck}

|∇Ψk| >
`(η)

2
. (5.120)

Since {Ψk}k∈IN is uniformly bounded in C 2(Ω), these sets have uniformly Lipschitz boundaries. It
follows that the sequence of sets {{Ψk > ck}}k∈IN converges in Hausdorff distance to {Ψ∗ > c∗} =
B∗ where c∗ = Ψ∗(r∗).

Finally, for any k ∈ IN large enough, Ek := {Ψk = ck} is a normal deformation of B∗. Indeed, as-
suming that it is not, there exists a sequence {xk}k∈IN ∈ (∂B∗)IN and two sequences {ti,k}i=1,2,k∈IN

converging to 0 such that Ψk(xk + ti,kν(xk)) = ck, i = 1, 2. This gives the existence of a tk,
converging to 0 as k →∞, such that 〈∇Ψk(xk + tkν(xk)), ν(xk)〉 = 0, which yields a contradiction
when passing to the limit. Thus, ∂Ek converges W 2,p to ∂B∗ for all p > 1, and in C 2, β ∈ (0; 1),
and the sequence {Per({Ψk = ck})}k∈IN is bounded.

We can now prove Estimate (5.9): from the convexity of the functional and the fact that, for
any k ∈ IN, fk solves (Pδk), there exists a subset Fk of Ω such that fk = 1Fk . Let Ek = {Ψk > ck}
be the unique level-set of Ψk of measure V0. By convexity of the functional,

JT (1Ek)− JT (fk) >
ˆ

Ω

(1Ek − 1Fk)Ψk. (5.121)

We are now in a position to apply Proposition 29: with the ω given in Proposition 29, we thus
have

JT (1Ek)− JT (fk) > ωVol(Fk∆Ek)2. (5.122)

Then, as Ek is a normal deformation of B∗ we can apply Proposition 21 and obtain, for C > 0
given by Proposition 21,

JT (1B∗)− JT (1Ek) > C Vol(Ek∆B∗)2. (5.123)

We obtain the existence a C ′ > 0 such that

JT (1B∗)− JT (1Ek) > C ′
(
Vol(Ek∆B∗)2 + Vol(Fk∆Ek)2

)
. (5.124)

However, by the triangle inequality in L1 and the arithmetic-geometric inequality,

Vol(B∗∆Fk)2 6
1

2

(
Vol(Fk∆Ek)2 + Vol(Ek∆B∗)2

)
. (5.125)

The conclusion follows.
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6 Conclusion

6.1 Structure of the problem, structure of the proof

In this paper, we have investigated two possible approaches to quantitative inequalities for time-
evolving optimal control problems. While Theorem II, dealing with time-dependent controls, is
more powerful than Theorem III, it is likely that its proof does not generalise easily to other
domains. Indeed, the first step of the proof is to identify, explicitly, the maximisers of an auxiliary
optimisation problem, which can not be done in general, non-spherical domains.

On the other hand, the proof of Theorem III is susceptible of applying to other cases. Let us
specify what we mean: considering a controlled heat equation

∂uf
∂t
−∆uf = f (6.1)

with Dirichlet boundary conditions, and where f ∈ M(Ω), let f∗ be a solution of (I1). The
convexity of the functional JT (Proposition 7) holds independently of the geometry of the domain
an so any maximiser f∗ writes 1E∗ for some subset E∗ of Ω. In order to carry out the proof of
Theorem III in this new domain, several things are in order:

1. The regularity of optimal sets: each set E∗ such that f∗ = 1E∗ is a solution of (I1) needs to
be smooth enough that shape derivatives of the criterion may be computed. It is unclear at
this stage whether or not the classical regularity works valid in the stationary case may be
applied to obtain such regularity.

2. The coercivity of shape Lagrangians: defining I∗ := {E∗ ⊂ Ω ,1E∗ solves (I1)} and assuming
that each E∗ ∈ I∗ is smooth enough to compute first and second order shape derivatives,
one needs to check that, defining the Lagrangian LE∗ associated with the volume constraint,
there exists a constant α > 0 such that, for any E∗ ∈ I∗ and any admissible vector field Φ
at E∗, there holds

LE∗(E
∗)[Φ,Φ] > α‖Φ · ν‖2L2(∂E∗). (6.2)

This kind of estimate seems to be extremely challenging to obtain in general, as indicated by
the fact that, in this paper, such a coercivity was obtained by explicit diagonalisation of the
shape hessian. Such diagonalisation may not be available in general.

If these two assumptions are satisfied, then we believe that the method of proof of Theorem III
may adapt.

6.2 The optimal coercivity norm for other types of constraints

As mentioned in the Introduction, an interesting question is that of knowing whether or not the
coercivity norm obtained in Theorem II remains unchanged when considering other types of L1

constraints. Indeed, let us consider the following variation: defining

M̃(Ω) :=

{
f ∈ L∞((0;T )× Ω) , 0 6 f 6 1 a.e.,

¨
(0;T )×Ω

f = V0

}
(6.3)

we investigate the optimisation problem

sup
f∈M̃(Ω)

JT (f). (6.4)
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Here, the convexity of the functional JT is still valid, so that a solution of this new problem writes
f∗ = 1E∗ , with E∗ a measurable subset of E∗. Then, if one were to compare f∗ with a competitor
f = 1E , it would be more natural to expect the “classical ”discrepancy norm

Vol(E∗∆E)2 =

(¨
(0;T )×Ω

|f − f∗|

)2

(6.5)

to be optimal. We do not believe this to be true, however, and we believe that the correct
discrepancy norm remains ˆ T

0

Vol(E∗(t)∆E(t))2dt. (6.6)

To give some explanation as to why we believe this is to be expected, we can once again consider
the case of the ball Ω = B(0;R). Once again, the rearrangement arguments used throughout the
paper remain valid, and, for almost every t ∈ (0;T ), E∗(t) is a centred ball of radius r(t) > 0. We
expect several difficulties in treating this problem (most notably, we expect the (non)-degeneracy
of r, or, in other terms, the control of the set {r = 0}, to be very hard to obtain) but the
methods of Theorem II should once again provide a quadratic estimate at each time t, yielding
the aforementioned stronger estimate. We underline once again that, at the present moment, it is
unclear to us how one may fully analyse this type of global constraint.

6.3 Theorem II: on the Assumption ε > 0

One may also argue that the assumption ε > 0 is artificial. At this stage, and since we use in a
crucial manner the uniform non-degeneracy of the switch function (Claim 17), we are not yet in a
position to give a proof that would bypass this assumption. However, it should be noted that our
proof makes use of very strong regularity properties in order to derive the uniform bathtub principle.
It would be interesting to see if, using the general quantitative Hardy-Littlewood inequality [15]
one could bypass the strength required in the present proof to obtain the case ε = 0 (and, in
general, it would be extremely interesting to use [15] to see if Theorem II could be obtained in
more general domain).

6.4 Using the quantitative isoperimetric inequality to obtain our results

We touch on another way which it would be interesting to investigate, that of using the quantitative
isoperimetric inequality in order to obtain Theorem II. It would amount, in the approach of [33]
(see Section 3), to supplementing the isoperimetric inequality in (3.19). We expect that this would
lead to a control of the isoperimetric deficit A(t, τ) of the level sets {uf (t, ·) > τ} in the sense that

we could give a lower bound of the form
´ T

0

´ ‖uf‖L∞
0

A(t, τ)2dτdt, but is unclear how this would
then translate to a control of the isoperimetric deficit of f .

6.5 Minimisation problems

We believe the proof for minimisation problems works in exactly the same way, as we also have an
explicit description of minimisers using rearrangement techniques.
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6.6 Technical obstructions and possible generalisations for bilinear con-
trol problems

Finally, we touch upon bilinear control problems. Let us assume that we are working with the
state equation 

∂uf
∂t −∆uf = fuf in (0;T )× Ω ,

uf (t = 0) = u0 > 0 , u0 6= 0 ,

uf (t, ·) = 0 on (0;T )× ∂Ω.

(6.7)

The maximisation problem reads the same:

sup
f∈MT (Ω)

1

2

¨
(0;T )×Ω

u2
f . (6.8)

Here we con once again explicitly characterise the maximisers using rearrangement techniques.
However: the convexity of the functional is no longer obvious, and it can be checked that the
switch function is here given

Ψ = pfuf (6.9)

where pf solves 
∂pf
∂t + ∆pf = −fpf − uf ,
pf (T, ·) = 0 ,

pf (t, ·) = 0 on (0;T )× ∂Ω.

(6.10)

Here we see our first difference with our approach, which is that the switch function can merely
be expected to be C 0,α, which is in contrast with the C 2,α regularity we obtained in our paper.
Maybe it is possible to bypass this problem using the tools of [15].
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A Proof of technical lemmas

A.1 Proof of Lemma 19

Proof of Lemma 19. This Lemma relies on two elements: the first one is the weak continuity of
JT , given in the following claim

Claim 31. Assume {fk}k∈IN ∈M(Ω)IN converges weakly L∞ − ∗ to f∞. Then

JT (fk) →
k→∞

JT (f∞). (A.1)

Proof of Claim 31. This proof relies on standard parabolic estimates.

The second element is the following property of the class M(Ω, δ):

Claim 32. The class M(Ω, δ) is weakly L∞ − ∗ compact.

Proof of Claim 32. For any f ∈M(Ω, δ), let us define

h := f − f∗.

The condition that
´

Ω
=
´

Ω
f∗ rewrites ˆ

Ω

h = 0. (A.2)

Since f∗ = 1B∗ is the characteristic function of a set, we also have

h 6 0 in B∗ , h > 0 in (B∗)c. (A.3)

This, and Equation (A.2), allows to rewrite the condition ‖f − f∗‖L1(Ω) as

ˆ
B∗
|h| = −

ˆ
B∗
h =

ˆ
(B∗)c

h =

ˆ
(B∗)
|h| = δ

2
. (A.4)

Finally, −1 6 h 6 1 as a consequence of its definition.
Let us then consider a sequence {fk}k∈IN ∈M(Ω, δ)IN and define, for any k ∈ IN,

hk := fk − f∗. (A.5)

SinceM(Ω) is compact for the weak L∞−∗ convergence, let us assume that there exists f∞ ∈M(Ω)
such that

fk ⇀
k→∞

f∞ (A.6)

and define h∞ = f∞ − f∗. It is clear that

hk ⇀
k→∞

h∞. (A.7)

Since (A.3)-(A.4) are satisfied by hk for every k ∈ IN, it follows that they are satisfied by h∞. As
a consequence, ˆ

B∗
|h∞| = −

ˆ
B∗
h∞ =

ˆ
(B∗)c

h∞ =

ˆ
(B∗)
|h∞ | =

δ

2
(A.8)

and so
f∞ ∈M(Ω, δ), (A.9)

so that the Claim follows.
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Thus, to conclude the proof of the Lemma, it suffices to consider a minimising sequence
{fk}k∈IN ∈ M(Ω, δ)IN for the variational problem (Pδ). One can extract a wek L∞ − ∗ con-
verging subsequence that converges to f∞ ∈M(Ω, δ), and the Claim 31 enables one to pass to the
limit. As a conclusion we obtain

JT (f∞) = min
f∈M(Ω,δ)

JT (f). (A.10)

A.2 Proof of Lemma 20

Proof of Lemma 20. First of all, the fact that Theorem III implies the conclusion of Lemma 20 is
trivial. Conversely, assume Lemma 20 holds. Let us define the functional

GT :M(Ω)\{f∗} 3 f 7→ JT (f∗)− JT (f)

‖f − f∗‖2L1(Ω)

. (A.11)

Proving Theorem III is equivalent to proving

inf
f∈M(Ω)

GT (f) > 0. (A.12)

We consider a minimising sequence {fk}k∈IN∗ for GT . Let us consider a closure point f∞ of this
sequence. If f∞ 6= f∗ then from Claim 31 we have

lim
k→∞

JT (f∗)− JT (fk) = JT (f∗)− JT (f∞) = A > 0

where the last inequality is strict because f∗ is the unique maximiser of JT (Theorem I) and so,
using the trivial bound ‖f − f∗‖L1(Ω) 6 2 Vol(Ω) we obtain

lim
k→∞

GT (fk) >
JT (f∗)− JT (f∞)

2 Vol(Ω)
> 0. (A.13)

If on the other hand we have f∞ = f∗ then, f∗ being an extreme point of the convex set M(Ω),
the convergence fk ⇀

k→∞
f∗ is strong in L1(Ω) ([22, Proposition 2.2.1]). As a consequence we can

define the sequence
∀k ∈ IN , δk := ‖fk − f∗‖L1(Ω). (A.14)

It then follows that there holds

lim inf
k→∞

GT (fk) > lim inf
k→∞

JT (f∗)− JT (fδk)

δ2
k

(A.15)

> 0 (A.16)

if Estimate (5.9) holds, and this concludes the proof of the equivalence between the two results.

A.3 Proof of the coercivity estimate-Lemma 28

Proof of Lemma 28. To alleviate the proof, we first note that such a continuity is standard to prove
for the term C(Vol(B∗tΦ) − V0)2 and we hence omit it. Let us then define the function jΦ := LB∗

and prove this estimate for this term. First of all, standard computations show that jΦ is twice
differentiable in the sense of shapes. Furthermore, the second order shape derivatives at a given

47



shape E such that E ∩∂Ω = ∅, in the direction Φ, where Φ ∈W 2,p(Ω; IR2) is compactly supported
in Ω, is given by

L′′B∗(E)[Φ,Φ] =

¨
(0;T )×∂E

p′ (Φ · ν) +

ˆ
∂E

(Φ · ν)
2

(
H

ˆ T

0

pE +

ˆ T

0

∂pE
∂ν

)
−Ψ∂B∗

ˆ
∂E

H (Φ · ν)
2

(A.17)
where:

1. H is the mean curvature of ∂E,

2. pE solves 
∂pE
∂t + ∆pE = −uE in (0;T )× Ω ,

pE(T, ·) = 0 ,

pE(t, ·) = 0 on (0;T )× ∂Ω,

(A.18)

3. u′ solves 
∂u′

∂t −∆u′ = 0 in (0;T )× Ω ,

u′(0, ·) = 0 ,

J∂νu′K = −1 on (0;T )× ∂E,
u′(t, ·) = 0 on (0;T )× ∂Ω,

(A.19)

4. and p′ solves 
∂p′

∂t + ∆p′ = −u′ in (0;T )× Ω ,

p′(T, ·) = 0 ,

p′(t, ·) = 0 on (0;T )× ∂Ω,

(A.20)

5. and

Ψ∂B∗ =

ˆ T

0

p∗(t, ·)

∣∣∣∣∣
∂B∗

is the Lagrange multiplier associated with the volume constraint.

Let us now assume that E = B∗τΦ for a fixed compactly supported vector field Φ ∈W 2,p normal
to ∂B∗, and for some τ ∈ (0; 1). We first use a change of variables: let us define

Tτ := Id+ τΦ , JΣ,τ (Φ) := det(∇Tτ )
∣∣(T∇T−1

τ )ν
∣∣ ,

JΩ,τ := det(∇τΦ) , Aτ := JΩ,τ (Φ)(Id+ τ∇Φ)−1(Id+ τT∇Φ)−1,

uτ := uB∗τΦ
and ûτ := uB∗τΦ

◦ Tτ . By a change of variable, we see that ûτ satisfies
JΩ,τ

∂ûτ
∂τ −∇ · (Aτ∇ûτ ) = JΩ,τf

∗ in (0;T )× Ω ,

ûτ (t, ·) = 0 on (0;T )× ∂Ω ,

ûτ (0, ·) = 0,

(A.21)

while the function û′B∗τΦ,Φ
:= u′E,τΦ ◦ Tτ which we abbreviate as û′τ , satisfies
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JΩ,τ

∂û′τ
∂t −∇ · (Aτ∇û

′
τ ) = 0 in (0;T )× Ω ,

JAτ
∂û′τ
∂ν K∂B∗ = −JΣ,τ (Φ · ν) ,

û′τ = 0 on ∂Ω.

(A.22)

With the same notation, p̂τ , p̂
′
τ satisfy

JΩ,τ
∂p̂τ
∂τ +∇ · (Aτ∇p̂τ ) = −JΩ,τ ûτ in (0;T )× Ω ,

p̂τ (t, ·) = 0 on (0;T )× ∂Ω ,

p̂τ (T, ·) = 0,

(A.23)

and 
JΩ,τ

∂p̂′τ
∂t +∇ · (Aτ∇p̂′τ ) = −JΩ,τ û

′
τ in (0;T )× Ω

p̂′τ = 0 on ∂Ω ,

p̂′τ (T, ·) = 0.

(A.24)

Finally, we set Ĥτ := Hτ ◦ Tτ , Hτ being the mean curvature of B∗τΦ.
Using these notations, the difference which has to be controlled is hence

L′′B∗(B∗τΦ)[Φ,Φ]− L′′B∗(B∗)[Φ,Φ] =

¨
(0;T )×∂B∗

(Φ · ν) {JΣ,τ p̂
′
τ − p′B∗} (R1(τ,Φ))

+

¨
(0;T )×∂B∗

JΣ,τĤτ (p̂τ − pB∗) (Φ · ν)
2

(R2(τ,Φ))

+

¨
(0;T )×∂B∗

(
JΣ,τ

∂p̂τ
∂ν
− ∂pB∗

∂ν

)
(Φ · ν)

2
. (R3(τ,Φ))

We will control each of these three terms separately and we first recall several geometric esti-
mates from [16].

Proposition 33 (Geometric estimates, [16, Lemma 4.8]). For any p ∈ (1; +∞), for any Φ ∈
X1(B∗) ∩W 2,p(Ω; IR2) ∩W 1,∞(Ω; IR2) such that ‖Φ‖W 1,∞ 6 M0 fixed, there exists a constant Mp

such that, for any τ ∈ (0; 1):

•
‖ĴΣ,τ − 1‖L∞(∂B∗) 6Mp‖Φ · ν‖W 1,∞(∂B∗). (A.25)

•
‖Ĥτ −HB∗‖Lp(∂B∗) 6Mp‖Φ · ν‖W 2,p(∂B∗). (A.26)

•
‖Aτ − Id‖L∞ + ‖Aτ − Id‖W 1,p(Ω) 6MP ‖Φ‖W 2,p(B∗) (A.27)

Control of (R2(τ,Φ))-(R3(τ,Φ)) Our goal is to obtain the existence of a constant M > 0 and
of a modulus of continuity η such that

|R2(τ,Φ)|+ |R3(τ,Φ)| 6Mη(‖Φ‖W 2,p(Ω))‖Φ · ν‖2L2(∂B∗). (A.28)

From Proposition 33 and standard Schauder estimates, such an estimate follows if there exists a
modulus of continuity η such that, for some β ∈ (0; 1),

‖uτ − u∗‖C 0,β((0;T )×Ω) 6Mη(‖Φ‖W 2,p). (A.29)
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In turn, using Proposition 33 and the Hölder continuity of uτ (Proposition 6), (A.29) is implied
by the following: there exist a constant M > 0 and a modulus of continuity η such that

‖ûτ − u∗‖C 0,β((0;T )×Ω) 6Mη (‖Φ‖W 2,p) . (A.30)

Proof of (A.30). Straightforward computations show that zτ := ûτ − u∗ solves
JΩ,τ

∂zτ
∂τ −∇ · (Aτ∇zτ ) = f∗(JΩ,τ − 1) +∇ · ((Aτ − 1)∇u∗) + (JΩ,τ − 1)∂uB∗

∂t in (0;T )× Ω ,

zτ (t, ·) = 0 on (0;T )× ∂Ω ,

zτ (0, ·) = 0.

(A.31)
Standard Lp estimates imply that for any p ∈ (1; +∞) there exists a constant Mp such that

‖zτ‖W 1,p((0;T )×Ω) 6Mp (‖Φ‖W 2,p + ‖Φ‖W 1,∞) (A.32)

so that Sobolev embeddings conclude the proof.

Control of (R1(τ,Φ)) To control this term it suffices to show that there exists a constant Mp

such that ∥∥∥∥∥
ˆ T

0

p̂′τ − p′B∗

∥∥∥∥∥
L2(∂B∗)

6Mp‖Φ‖W 2,p‖Φ · ν‖L2(∂B∗). (A.33)

By the continuity of the trace it follows that it suffices to prove that

ˆ T

0

‖p̂′τ − p′B∗‖2W 1,2(Ω) 6Mp‖Φ‖2W 2,p‖Φ · ν‖2L2(∂B∗). (A.34)

Let us define z′τ := p̂′τ − p′B∗ . Straightforward computations show that
JΩ,τ

∂z′τ
∂t +∇ · (Aτ∇z′τ ) = −û′τ + u′B∗ −∇ · ((Aτ − 1)∇p′B∗) + (JΩ,τ − 1)

∂p′B∗
∂t ,

z′τ (T, ·) = 0 ,

z′τ (t, ·) = 0 on (0;T )× Ω

(A.35)

and so (A.34) follows from standard W 1,2 estimates if we can prove that

ˆ T

0

∥∥∥∥∂p′B∗∂t

∥∥∥∥2

L2(Ω)

+ ||∇p′B∗ ||2L2(Ω) 6Mp‖Φ · ν‖2L2(∂B∗) (A.36)

and that ˆ T

0

‖u′B∗ − û′τ‖2L2(Ω) 6Mpη(‖Φ‖W 2,p)2‖Φ · ν‖2L2(∂B∗) (A.37)

for some constant Mp. To prove these two inequalities, we begin with a first estimate:

¨
(0;T )×Ω

(
∂u′B∗

∂t

)2

+

¨
(0;T )×Ω

(u′B∗)
2 6M‖Φ · ν‖2L2(∂B∗). (A.38)

Proof of (A.38). For the sake of readability, we abbreviate u′B∗ as u′ here. Multiplying the equation
on u′ by u′ and integrating by parts, we obtain
ˆ

Ω

(u′)2(T, ·) +

¨
(0;T )×Ω

|∇u′|2 =

¨
(0;T )×∂B∗

(Φ · ν)u′ 6 ‖Φ · ν‖L2(∂B∗)‖u′(t, ·)‖L2((0.T )×∂B∗).

(A.39)

50



By continuity of the trace and by the Poincaré inequality, we obtain

¨
(0;T )×Ω

|∇u′|2 6
ˆ

Ω

(u′)2(T, ·) +

¨
(0;T )×Ω

|∇u′|2 6M‖Φ · ν‖L2(∂B∗)‖∇u′‖L2((0;T )×Ω). (A.40)

This first gives

‖∇u′‖L2((0;T )×Ω) 6M‖Φ · ν‖L2(∂B∗) (A.41)

which in turn implies ¨
(0;T )×Ω

(u′)2 6MT‖Φ · ν‖2L2(∂B∗). (A.42)

To obtain the estimates on
˜

(0;T )×Ω

(
∂u′B∗
∂t

)2

we proceed as follows: using
∂u′B∗
∂t as a test function

we obtain

¨
(0;T )×Ω

(
∂u′B∗

∂t

)2

+

ˆ
Ω

|∇u′B∗ |2(T, ·) =

¨
(0;T )×∂B∗

(Φ · ν)
∂u′B∗

∂t
(A.43)

=

ˆ
∂B∗

(Φ · ν) (u′B)(T, ·) (A.44)

6M‖Φ · ν‖L2(∂B∗)‖∇u′B∗‖L2(Ω)(T, ·), (A.45)

which gives the conclusion: indeed, we apply Young’s inequality 2ab 6 εa2 + b2

ε to the right hand
side and conclude.

Let us then turn to (A.36)

Proof of (A.36). Let us define q′(t, ·) := p′B∗(T − t, ·). Then q′ satisfies, with u′ = u′B∗ ,
∂q′

∂t −∆q′ = u′(T − t, ·) in (0;T )× Ω ,

q′(0, ·) = 0 ,

q′(t, ·) = 0 on (0;T )× ∂Ω,

(A.46)

so that by standard parabolic estimates for the heat equation we obtain, for some constant M

¨
(0;T )×Ω

(
∂p′B∗

∂t

)2

=

¨
(0;T )×Ω

(
∂q′

∂t

)2

6MT

¨
(0;T )×Ω

(u′)2 6MT‖Φ · ν‖2L2(∂B∗). (A.47)

Finally, let us prove (A.37).

Proof of (A.37). Let us recall that the weak formulation of the equations on û′τ and on u′ := u′B∗
are: for any test function v,

¨
(0;T )×Ω

JΩ,τ
∂û′τ
∂t

v +

¨
(0;T )×Ω

〈Aτ∇û′τ ,∇v〉 =

¨
(0;T )×∂B∗

JΣ,τ (Φ · ν) v (A.48)

and ¨
(0;T )×Ω

∂u′

∂t
v +

¨
(0;T )×Ω

〈∇u′,∇v〉 =

¨
(0;T )×∂B∗

(Φ · ν) v. (A.49)
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Substracting these two weak formulations and setting w′τ := û′τ − u′B∗ we obtain, on w′τ , the weak
formulation

¨
(0;T )×Ω

JΩ,τ
∂w′τ
∂t

v+

¨
(0;T )×Ω

〈Aτ∇w′τ ,∇v〉 =

¨
(0;T )×∂B∗

(JΣ,τ −1)v+

¨
(0;T )×Ω

(JΩ,τ −1)
∂u′

∂t
v

+

¨
(0;T )×Ω

〈(Aτ − Id)∇u′,∇v〉. (A.50)

Using v = w′τ as a test function we obtain in the same way, using Poincaré inequality and the
continuity of the trace for any t, up to a multiplicative constant that does not depend on Φ,

ˆ
Ω

(w′τ )2(t, ·) +

¨
(0;t)×Ω

|∇w′τ |2 6 ‖JΣ,τ − 1‖L2(∂B)‖∇w′τ‖L2((0;t)×Ω)(t) (A.51)

+ ‖JΩ,τ − 1‖L∞
∥∥∥∥∂u′∂t

∥∥∥∥
L2((0;t)×Ω)

‖∇w′τ‖L2((0;t)×Ω) (A.52)

+ ‖Aτ − 1‖L∞ ‖∇u′‖L2((0;t)×Ω) ‖∇w
′
τ‖L2((0;t)×Ω) . (A.53)

The conclusion then follows.
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