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Abstract
We establish a partial C1,α regularity result for minimizers of the optimal p-compliance problem

with length penalization in any spatial dimension N ≥ 2, extending some of the results obtained
in [15, 9]. The key feature is that the C1,α regularity of minimizers for some free boundary type
problem is investigated with a free boundary set of codimension N −1. We prove that every optimal
set cannot contain closed loops, cannot contain quadruple points, and it is C1,α regular at H1-a.e.
point for every p ∈ (N − 1, +∞).

1. Introduction

1.1. General overview

A spatial dimension N ≥ 2 and an exponent p ∈ (1,+∞) are given. Let Ω be an open bounded set in
RN and let f belong to Lq0(Ω) with

q0 = (p∗)′ if 1 < p < N, q0 > 1 if p = N, q0 = 1 if p > N, (1.1)

where p∗ = Np/(N − p) and (1/p∗) + (1/(p∗)′) = 1. We define the energy functional Ef,Ω over W 1,p
0 (Ω)

as follows
Ef,Ω(u) = 1

p

∫
Ω
|∇u|p dx−

∫
Ω
fu dx.

Thanks to the Sobolev embeddings (see [21, Theorem 7.10]), Ef,Ω is finite on W 1,p
0 (Ω). It is well known

that for any closed proper subset Σ of Ω the functional Ef,Ω admits a unique minimizer uf,Ω,Σ over
W 1,p

0 (Ω\Σ). Also uf,Ω,Σ is a unique solution to the Dirichlet problem−∆pu = f in Ω\Σ

u = 0 on Σ ∪ ∂Ω,
(1.2)

which means that uf,Ω,Σ ∈W 1,p
0 (Ω\Σ) and∫
Ω
〈|∇uf,Ω,Σ|p−2∇uf,Ω,Σ,∇ϕ〉 dx =

∫
Ω
fϕ dx (1.3)

for all ϕ ∈W 1,p
0 (Ω\Σ), where 〈·, ·〉 denotes the Euclidean inner product. However, if a closed set Σ ⊂ Ω

has zero p-capacity (for the definition of capacity, see Section 2), then uf,Ω,Σ = uf,Ω,∅ (see Remark 2.15).
The dependence of uf,Ω,Σ on p is neglected in this paper and in the sequel, when it is appropriate, in
order to lighten the notation, we shall simply write uΣ instead of uf,Ω,Σ. For each closed proper subset
Σ of Ω we define the p-compliance functional at Σ by

Cf,Ω(Σ) = −Ef,Ω(uΣ) = 1
p′

∫
Ω
|∇uΣ|p dx = 1

p′

∫
Ω
fuΣ dx.

∗LJLL UMR 7598, Université de Paris, France. e-mail: bulanyi@math.univ-paris-diderot.fr

1



In two dimensions, following [15], we can interpret Ω as a membrane which is attached along Σ∪∂ Ω to
some fixed base and subjected to a given force f . Then uΣ is the displacement of the membrane. The
rigidity of the membrane is measured through the p-compliance functional which is equal to the product
of the coefficient 1

p′ and the work
∫

Ω fuΣ dx performed by the force f .
We study the following shape optimization problem.

Problem 1.1. Let p ∈ (N − 1,+∞). Given λ > 0, find a set Σ ⊂ Ω minimizing the functional Fλ,f,Ω
defined by

Fλ,f,Ω(Σ′) = Cf,Ω(Σ′) + λH1(Σ′)

among all sets Σ′ in the class K(Ω) of all closed connected proper subsets of Ω.

In Proposition 2.24 it will be proved that there is a solution to Problem 1.1. Also, according to [8],
the connectedness of admissible sets in the statement of Problem 1.1 is necessary for the existence of a
solution to this problem.

It is worth noting that any closed set Σ′ ⊂ Ω with H1(Σ′) < +∞ is removable for the Sobolev space
W 1,p

0 (Ω) if p ∈ (1, N − 1] (see Theorem 2.6 and Remark 2.15), namely, W 1,p
0 (Ω\Σ′) = W 1,p

0 (Ω) and this
implies that Cf,Ω(Σ′) = Cf,Ω(∅). Thus, defining Problem 1.1 for some exponent p ∈ (1, N −1], we would
get only trivial solutions to this problem: every point x0 in Ω and the empty set. On the other hand, if
Σ′ ⊂ Ω is a closed set such that Σ′ ∩ Ω is of Hausdorff dimension one and with finite H1-measure, then
Σ′ is not removable for W 1,p

0 (Ω) if and only if p ∈ (N − 1,+∞) (see Corollary 2.8 and Remark 2.15).
Therefore, Problem 1.1 is interesting only in the case when p ∈ (N − 1,+∞).

We assume that f 6= 0 in Lq0(Ω), because otherwise the p-compliance functional Cf,Ω(·) would be
reduced to zero, and then each solution to Problem 1.1 would be either a point x0 ∈ Ω or the empty set.

One of the main questions about minimizers of Problem 1.1 is the question of whether a minimizer
containing at least two points is a finite union of C1 curves. In dimension 2 and for p = 2 in [15], the
authors established that locally inside Ω a minimizer of Problem 1.1 containing at least two points is a
finite union of C1,α curves that can only meet at their ends, by sets of three and with 120◦ angles. Again,
in dimension 2, this result was partially generalized in [9] for all exponents p ∈ (1,+∞), namely, it was
proved that if Σ is a solution to Problem 1.1, then it cannot contain closed loops (i.e., homeomorphic
images of the circle S1), it is Ahlfors regular if it contains at least two points (up to the boundary for a
Lipschitz domain Ω), Σ∩Ω cannot contain quadruple points (i.e., there is no point x ∈ Σ∩Ω such that
for some fairly small radius r > 0 the set Σ ∩ Br(x) is a union of four distinct C1 arcs, each of which
meets at point x exactly one of the other three at an angle of 180 degrees, and each of the other two at
an angle of 90 degrees), and Σ∩Ω is C1,α regular at H1-a.e. point for every p ∈ (1,+∞). The main tool
that was used in [15] to establish the ε-regularity theorem (if a minimizer Σ of Problem 1.1 is sufficiently
close, in a ball Br(x0) such that Br(x0) ⊂ Ω and in the Hausdorff distance, to a diameter of Br(x0), then
there exists a constant a ∈ (0, 1) such that Σ∩Bar(x0) is a C1,α arc) is a so-called monotonicity formula
that was inspired by Bonnet on the Mumford-Shah functional (see [5]). This monotonicity formula was
also a key tool in the classification of blow-up limits in [15] (in the case when N = p = 2), because it
implies that for any point x0 ∈ Σ there exists the limit

lim
r→0+

1
r

∫
Br(x0)

|∇uΣ|2 dx = e(x0) ∈ [0,+∞).

According to [15], all blow-up limits at any x0 ∈ Σ ∩ Ω are of the same type: either e(x0) > 0 and all
blow-up limits at x0 must be a half-line, or e(x0) = 0. In the latter case, either there is a blow-up at
x0 which is a line, and then all other blow-ups at x0 must also be a line, or there is no line, and then
all blow-ups at x0 are propellers (i.e., a union of three half-lines emanating from x0 and making 120◦

angles). More precisely, given any point x0 ∈ Σ∩Ω we only have one of the following three possibilities:

(i) x0 belongs to the interior of a single smooth arc; in this case x0 is called a regular (or flat) point.
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(ii) x0 is a common endpoint of three distinct arcs which form at x0 three equal angles of 120◦; in this
case x0 is called a triple point.

(iii) x0 is the endpoint of one and only one arc; in this case x0 is called a crack-tip.

However, the approach in [15] does not work for the cases when p 6= 2. The main obstruction to a
full generalization of the result established in [15] is the lack of a good monotonicity formula, when the
Dirichlet energy is not quadratic (p 6= 2).

Notice that in two dimensions and for p 6= 2 some monotonicity formula can still be established for the
p-energy. Indeed, assume for simplicity that f ∈ L∞(Ω), N = 2, p ∈ (1,+∞), Σ is a closed proper subset
of Ω, x0 ∈ Ω, 0 ≤ r0 < r1 ≤ 1, (Σ∪∂Ω)∩∂Br(x0) 6= ∅ for all r ∈ (r0, r1) and γ ∈ [γΣ(x0, r0, r1), 2π]\{0},
where

γΣ(x0, r0, r1) = sup
{
H1(S)
r

: r ∈ (r0, r1), S is a connected component of ∂Br(x0)\(Σ ∪ ∂Ω)
}
.

Assume also that 2 > λp/γ, where λp denotes the Lp version of the Poincaré-Wirtinger constant and is
defined by

λp = min
{‖g′‖Lp(0,1)

‖g‖Lp(0,1)
: g ∈W 1,p

0 (0, 1)\{0}
}
.

The value of λp was computed explicitly, for example, in [16, Corollary 2.7] and [38, Inequality (7a)],
where the following equality was established

λp = 2
(

1
p′

) 1
p
(

1
p

) 1
p′

Γ
(

1
p′

)
Γ
(

1
p

)
,

in which Γ is the usual Gamma function. Then we can prove that the function

r ∈ (r0, r1) 7→ 1
rβ

∫
Br(x0)

|∇uΣ|p dx+ Cr2−β

is nondecreasing with β = λp/γ and C = C(p, λp, ‖f‖∞, |Ω|, γ) > 0. However, if Br1(x0) ⊂ Ω and
Σ ∩ Br1(x0) is a diameter of Br1(x0), then γΣ(x0, 0, r1) = π and λp/γ is strictly less than one for all
γ ∈ [γΣ(x0, 0, r1), 2π] if p ∈ (1, 2) ∪ (2,+∞). So the resulting power of r in this monotonicity formula is
not large enough and this formula cannot be used to prove C1,α estimates as in the case N = p = 2. On
the other hand, we do not know if there is a similar monotonicity formula for the p-energy in dimension
N ≥ 3, but we guess that there is no. Thus, we do not have a tool that would allow us to establish a
classification of blow-up limits in the case when p 6= 2. For this reason, as in [9], we prove a partial C1,α

regularity result for the solutions to Problem 1.1. Although we guess that any minimizer of Problem 1.1
with at least two points is a finite union of C1,α curves.

Suppose that Σ is a solution to Problem 1.1. As will be explained a little later, in order to establish
the desired partial regularity result for Σ (Theorem 1.3) and to prove that Σ cannot contain closed
loops (Theorem 1.4), we first prove the following: under some conditions (depending on N and p, where
p > N − 1) on the integrability of the source f , there exist constants b ∈ (0, 1) and C > 0 such that if
Σ ∩ Br(x0) remains fairly flat for all r ∈ [r0, r1], Br1(x0) ⊂ Ω, r1 is sufficiently small, r0 > 0 is small
enough with respect to r1, then∫

Br(x0)
|∇uΣ|p dx ≤ C

(
r

r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b for all r ∈ [r0, r1] (E)

(see Lemma 3.6). Notice that one of the key differences between the approaches used in [15] and in [9]
is the method of proving (E). In [15], the idea was to use the aforementioned monotonicity formula, but
in [9], in view of the lack of a good monotonicity formula when the Dirichlet energy is not quadratic,
another method was used to prove (E), which in many places is similar to the one we use in the present
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paper. However, in the proof of (E) in [9], the crucial factor was that in dimension 2 an affine line
(1-dimensional plane) is a set of codimension 1. More precisely, in [9] a reflection method was used to
estimate a weak solution to the p-Laplace equation in B1(0)\({0} × (−1, 1)), which vanishes p-q.e. on
{0} × (−1, 1) (see [9, Lemma 4.4]). This method is no more valid for a weak solution to the p-Laplace
equation in B1(0)\({0}N−1×(−1, 1)), which vanishes p-q.e. on {0}N−1×(−1, 1), if N ≥ 3. In the present
paper, in any spatial dimension N ≥ 2, we first use a certain barrier function, that we constructed in
Lemma A.1, but which is in some sense weaker and slightly simpler than those that were constructed in
[27, 28], in order to estimate a nonnegative p-harmonic function in B1\({0}N−1 × (−1, 1)), continuous
in B1 and vanishing on {0}N−1 × (−1, 1). Then we deduce the same kind of estimate for merely a weak
solution to the p-Laplace equation in B1\({0}N−1 × (−1, 1)) vanishing p-q.e. on {0}N−1 × (−1, 1).

It is worth noting that our proofs of the partial regularity and the absence of quadruple points
differ from those used in [9]. Many proofs in [9] are based on the fact that (only) in dimension 2 the
“free boundary” Σ is of codimension 1, thus many standard arguments and competitors are available.
Let us emphasize the most important places where the proofs used in [9] do not extend in a trivial
manner to higher dimensions. Firstly, in the proof of the Ahlfors regularity in the “internal case” in
[9] (see [9, Theorem 3.3]), the set (Σ\Br(x)) ∪ ∂Br(x) was used as a competitor for a minimizer Σ of
Problem 1.1, which contains at least two points. But in dimension N ≥ 3 we cannot effectively use such
a competitor, because ∂Br(x) has infinite H1-measure. Secondly, as mentioned earlier, in [9], a reflection
method was used to estimate a p-harmonic function in (B1\[a1, a2]) ⊂ R2 that vanishes on [a1, a2]∩B1,
where [a1, a2] is a diameter of B1, which is no more available if N ≥ 3 for a p-harmonic function in
(B1\[a1, a2]) ⊂ RN which vanishes on [a1, a2] ∩ B1, where [a1, a2] is a diameter of B1. Thirdly, in the
density estimate in [9], when the minimizer Σ is εr-close, in a ball Br(x) and in the Hausdorff distance,
to a diameter [a, b] of Br(x), the set Σ′ = (Σ\Br(x)) ∪ [a, b] ∪W was used as a competitor for Σ, where
W = ∂Br(x)∩{y : dist(y, [a, b]) ≤ εr} (see [9, Proposition 6.8]). However, in dimension N ≥ 3 we cannot
effectively use the above competitor Σ′, because it has infiniteH1-measure. Fourthly, in dimension N ≥ 3
we cannot effectively use the same type of competitors as in the proof of [9, Proposition 7.3] (where the
fact that the minimizer is a set of codimension 1 was used to construct such competitors) in order to
establish the absence of quadruple points in Ω for solutions to Problem 1.1.

The optimal p-compliance problem can also be formulated under length constraints. Namely, consider
the following problem.

Problem 1.2. Let p ∈ (N − 1,+∞). Given L > 0, find a set Σ ⊂ Ω minimizing the p-compliance
functional Cf,Ω among all sets Σ′ in the class AL(Ω) of all closed connected subsets of Ω satisfying the
constraint 0 < H1(Σ′) ≤ L.

This problem was studied in [12, 30, 31], and in [12] it was proved that it admits a solution. However,
the question of whether every its solution is a finite union of C1 curves is still open even in dimension 2
and for the linear case p = 2. Taking into account the peculiarity of Problem 1.2, it seems that the main
difficulty in solving this question consists in the fact that for Problem 1.2 we have no some kind of “the
local minimization” of the one-dimensional Hausdorff measure, in contrast to Problem 1.1. Nevertheless,
by establishing the regularity result for the solutions to Problem 1.1, we automatically establish the
same result for some solutions to Problem 1.2. Indeed, if Σ ⊂ Ω is a solution to Problem 1.1 such
that diam(Σ) > 0, then Σ solves Problem 1.2 provided that L = H1(Σ). It is worth mentioning that,
according to the Γ-convergence result established in [12], in some sense the limit of Problem 1.1 as
p→ +∞ corresponds to the minimization of the functional

K(Ω) 3 Σ 7→
∫

Ω
dist(x,Σ ∪ ∂Ω)f(x) dx+ λH1(Σ),

which, as well as in its constrained form, was widely studied in the literature (the reader may consult
[11, 13, 32, 35, 37, 10, 39, 25, 36]). It is known that minimizers of this functional may not be C1 regular
(see [36]).
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1.2. Main results

In this paper, we establish a partial regularity result and some topological properties for minimizers of
Problem 1.1 in any spatial dimension N ≥ 2 and for every p ∈ (N − 1,+∞), thus generalizing some of
the results obtained in [15, 9]. Several of our results will hold under some integrability condition on the
source f . We define

q1 = Np

Np−N + 1 if 2 ≤ p < +∞, q1 = 2p
3p− 3 if 1 < p < 2. (1.4)

It is worth noting that q1 ≥ q0. The condition f ∈ Lq1(Ω) for p ∈ [2,+∞) is natural, since q1 in this
case seems to be the right exponent which implies an estimate of the type

∫
Br(x0) |∇u|

p dx ≤ Cr for the
solution u to the Dirichlet problem

−∆pv = f in Br(x0), v ∈W 1,p
0 (Br(x0)),

the kind of estimate we are looking for to establish regularity properties on a minimizer Σ of Problem 1.1.
The main regularity result established in this paper is the following.

Theorem 1.3. Let Ω ⊂ RN be open and bounded, p ∈ (N − 1,+∞), f ∈ Lq(Ω) with q > q1, where q1

is defined in (1.4). Then there exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a
solution to Problem 1.1. Then for H1-a.e. point x ∈ Σ∩Ω one can find a radius r0 > 0 depending on x

such that Σ∩Br0(x) is a C1,α regular curve.

It is one of the first times that the regularity of minimizers for some free boundary type problem is
investigated with a free boundary set of codimension N − 1. Notice that in Theorem 1.3, when we say
that a solution Σ to Problem 1.1 is C1,α regular at H1-a.e. point x ∈ Σ ∩ Ω, we mean that the set of
points Σ ∩ Ω around which Σ is not a C1,α regular curve has zero H1-measure. Thus, Theorem 1.3 is
interesting only in the case when diam(Σ) > 0, which happens to be true at least for some small enough
values of λ (see Proposition 2.25).

We have also proved that if Σ is a solution to Problem 1.1, then Σ cannot contain closed loops (i.e.,
homeomorphic images of the circle S1).

Theorem 1.4. Let Ω ⊂ RN be open and bounded, p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1, where
q1 is defined in (1.4). Let Σ be a solution to Problem 1.1. Then Σ cannot contain closed loops (i.e.,
homeomorphic images of the circle S1).

Furthermore, we have proved that if Σ is a solution to Problem 1.1, then Σ ∩ Ω cannot contain
quadruple points, namely, there is no point x ∈ Σ ∩ Ω such that for some fairly small radius r > 0 the
set Σ∩Br(x) is a union of four distinct C1 arcs, each of which meets at point x exactly one of the other
three at an angle of 180 degrees, and each of the other two at an angle of 90 degrees.

Proposition 1.5. Let Ω ⊂ RN be open and bounded, p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1

defined in (1.4). If Σ is a solution to Problem 1.1, then Σ ∩ Ω cannot contain quadruple points.

After all, when we are talking about one dimensional sets, it is not so obvious how horrible they
can be. Incidentally, in codimension 2 it seems like a good idea to understand whether the minimizer
contains knots, since our story of loops suggests the question.

1.3. Discussion of the proofs

Let us now outline the proofs of our main results.

Decay of the p-energy under flatness control.
To prove the partial C1,α regularity result and the absence of closed loops, we first establish a decay
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behavior of the p-energy r 7→
∫
Br(x0) |∇uΣ|p dx under flatness control on Σ at x0 ∈ Ω, namely, we prove

(E) (see Lemma 3.6). For this we use the following strategy consisting of four steps.
Step 1. We prove that there exist α, δ ∈ (0, 1) and C > 0, depending only on N and p, such that
for any weak solution u to the p-Laplace equation in B1(0)\({0}N−1 × (−1, 1)) vanishing p-q.e. on
{0}N−1 × (−1, 1), the estimate∫

Br(0)
|∇u|p dx ≤ Cr1+α

∫
B1(0)

|∇u|p dx

holds for all r ∈ (0, δ] (see Lemma 3.1).
Step 2. Arguing by contradiction and compactness, we establish a similar estimate as in Step 1 for
a weak solution to the p-Laplace equation in Br(x0)\Σ that vanishes on Σ ∩ Br(x0) in the case when
Σ ∩ Br(x0) is fairly close in the Hausdorff distance to a diameter of Br(x0). Recall that the Hausdorff
distance for any two nonempty sets A, B ⊂ RN is defined by

dH(A,B) = max
{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}
.

For each nonempty set A ⊂ RN , we immediately agree to define dH(∅, A) = dH(A, ∅) = +∞ and
dH(∅, ∅) = 0. Let α, δ, C be as in Step 1. We prove that for each % ∈ (0, δ] there exists ε0 ∈ (0, %) such
that if u is a weak solution to the p-Laplace equation in Br(x0)\Σ vanishing p-q.e. on Σ∩Br(x0), where
Σ is a closed set such that (Σ ∩Br(x0)) ∪ ∂Br(x0) is connected and

1
r
dH(Σ ∩Br(x0), L ∩Br(x0)) ≤ ε0

for some affine line L ⊂ RN passing through x0, then the following estimate holds∫
B%r(x0)

|∇u|p dx ≤ (C%)1+α
∫
Br(x0)

|∇u|p dx

(see Lemma 3.2).
Step 3. Recall that we want to establish a decay estimate for the solution uΣ to the Dirichlet problem

−∆pu = f in Ω\Σ, u ∈ W 1,p
0 (Ω\Σ) in a ball Br(x0) ⊂ Ω whenever Σ is sufficiently close, in Br(x0)

and in the Hausdorff distance, to a diameter of Br(x0). For that purpose, we first control the difference
between uΣ and its p-Dirichlet replacement in Br(x0)\Σ, where by the p-Dirichlet replacement of uΣ in
Br(x0)\Σ we mean the solution w ∈ W 1,p(Br(x0)) to the Dirichlet problem −∆pu = 0 in Br(x0)\Σ,
u− uΣ ∈W 1,p

0 (Br(x0)\Σ). Then, for some sufficiently small a = a(N, p) ∈ (0, 1), using the estimate for
the local energy

∫
Bar(x0) |∇w|

p dx coming from Step 2 and also the estimate for the difference between
uΣ and w in Br(x0)\Σ, we arrive at the following decay estimate for uΣ:

1
ar

∫
Bar(x0)

|∇uΣ|p dx ≤ 1
2

(
1
r

∫
Br(x0)

|∇uΣ|p dx

)
+ Crγ(N,p,q),

where γ(N, p, q) ∈ (0, 1) provided that q > q1, f ∈ Lq(Ω) and q1 is defined in (1.4) (see Lemma 3.3 and
Lemma 3.5).

Step 4. Finally, by iterating the result of Step 3 in a sequence of balls {Balr1(x0)}l, we obtain the
desired decay behavior of the p-energy r 7→

∫
Br(x0) |∇uΣ|p dx under flatness control on Σ at x0 ∈ Ω.

Namely, there exist b ∈ (0, 1) and C > 0 such that if Σ ∩ Br(x0) remains fairly flat for all r in [r0, r1],
Br1(x0) ⊂ Ω and r1 is sufficiently small, r0 > 0 is small enough with respect to r1, then the following
estimate holds∫

Br(x0)
|∇uΣ|p dx ≤ C

( r
r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b for all r ∈ [r0, r1]

(see Lemma 3.6). Thus, if x0 ∈ Σ ∩ Ω and Σ ∩Br(x0) remains fairly flat for all sufficiently small r > 0,
then the energy r 7→ 1

r

∫
Br(x0) |∇uΣ|p dx converges to zero no slower than Crb for some b ∈ (0, 1) and
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C > 0. This will be used to prove the desired C1,α result, and the same kind of estimate will also be
used to prove the absence of closed loops.

Partial regularity.
We shall now try to explain how we use the decay of the p-energy under flatness control to prove
the partial C1,α regularity of the minimizers inside Ω. The first step in the proof is to show that every
minimizer Σ of Problem 1.1 with diam(Σ) > 0 is an almost minimizer for the length at any point in Σ∩Ω
around which Σ is flat enough and remains fairly flat on a large scale. More precisely, we need to prove
that there exists β ∈ (0, 1) such that for any competitor Σ′ being τr-close, in a ball Br(x0) ⊂ Ω and in
the Hausdorff distance, to a diameter of Br(x0) for some small τ ∈ (0, 1) and satisfying Σ′∆Σ ⊂ Br(x0),
it holds

H1(Σ ∩Br(x0)) ≤ H1(Σ′ ∩Br(x0)) + Cr1+β

whenever x0 ∈ Σ∩Ω, Σ is flat enough in Br(x0) and remains fairly flat on a large scale. In our framework,
the term Cr1+β may only come from the p-compliance part of the functional Fλ,f,Ω. Thus, we need to
prove that

Cf,Ω(Σ′)− Cf,Ω(Σ) ≤ Cr1+β

whenever x0 ∈ Σ ∩ Ω, Σ is flat enough in Br(x0) and remains fairly flat on a large scale, Σ′ ∈ K(Ω) is
τr-close, in Br(x0) ⊂ Ω and in the Hausdorff distance, to a diameter of Br(x0) for some small τ ∈ (0, 1)
and Σ′∆Σ ⊂ Br(x0). Hereinafter in this section, C denotes a positive constant that can only depend
on N, p, q0, q, ‖f‖q, |Ω| (q0 is defined in (1.1), q ≥ q0, f ∈ Lq(Ω)) and can be different from line to
line. Notice that one of the difficulties in obtaining the above estimate is a nonlocal behavior of the
p-compliance functional. Namely, changing Σ locally in Ω, we change uΣ in the whole Ω. This can
be overcome, using a cut-off argument. Actually, we have shown that if Σ′ is a competitor for Σ and
Σ′∆Σ ⊂ Br(x0), then

Cf,Ω(Σ′)− Cf,Ω(Σ) ≤ C
∫
B2r(x0)

|∇uΣ′ |p dx+ CrN+p′−Np
′

q

(see Corollary 2.21). However, the right-hand side in the above estimate depends on the competitor Σ′,
which pushes us to introduce the quantity

wτΣ(x0, r) = sup
Σ′∈K(Ω),Σ′∆Σ⊂Br(x0),

H1(Σ′)≤100H1(Σ), βΣ′ (x0,r)≤τ

1
r

∫
Br(x0)

|∇uΣ′ |p dx,

where βΣ′(x0, r) is the flatness defined by

βΣ′(x0, r) = inf
L3x0

1
r
dH(Σ′ ∩Br(x0), L ∩Br(x0)),

where the infimum is taken over the set of all affine lines (1-dimensional planes) L in RN passing
through x0. The quantity wτΣ(x0, r) is a variant of the one introduced in [15] and already used in [9].
Also notice that the assumption H1(Σ′) ≤ 100H1(Σ) in the definition of wτΣ(x0, r) is rather optional,
however, it guarantees that if Σ′ is a maximizer in this definition, then it is arcwise connected. Thus, if
Σ′ ∈ K(Ω), Σ′∆Σ ⊂ Br(x0), H1(Σ′) ≤ 100H1(Σ) and βΣ′(x0, 2r) ≤ τ , we arrive at the estimate

Cf,Ω(Σ′)− Cf,Ω(Σ) ≤ CrwτΣ(x0, 2r) + CrN+p′−Np
′

q .

Next, applying the decay estimate established in Step 4 above to the function uΣ̃, where Σ̃ is a maximizer
in the definition of wτΣ(x0, 2r), we obtain the following control

wτΣ(x0, 2r) ≤ C
( r
r1

)b
wτΣ(x0, r1) + Crb,
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provided that βΣ(x0, %) remains fairly small for all % ∈ [2r, r1], r1 > 0 is small enough, Br1(x0) ⊂ Ω and
r > 0 is sufficiently small with respect to r1 (see Proposition 5.6). Using also that b < N−1+p′−Np′/q,
altogether we get

H1(Σ ∩Br(x0)) ≤ H1(Σ′ ∩Br(x0)) + Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b

whenever Σ is a minimizer of Problem 1.1, βΣ(x0, %) remains fairly small for all % ∈ [r, r1], r1 > 0 is small
enough, Br1(x0) ⊂ Ω, r > 0 is sufficiently small with respect to r1, Σ′ ∈ K(Ω) is τr-close, in Br(x0) and
in the Hausdorff distance, to a diameter of Br(x0), Σ′∆Σ ⊂ Br(x0) and H1(Σ′) ≤ 100H1(Σ).

The next step is to find a nice competitor Σ′ for a minimizer Σ. More precisely, assume that
x0 ∈ Σ, Br(x0) ⊂ Ω, r is sufficiently small, βΣ(x0, r) is small enough and remains fairly small on a large
scale. The task is to find a competitor Σ′ such that Σ′∆Σ ⊂ Br(x0), Σ′ is τr-close, in Br(x0) and in
the Hausdorff distance, to a diameter of Br(x0) for some small τ ∈ (0, 1) and, in addition, the length
(i.e., H1-measure) of Σ′ ∩Br(x0) is fairly close to the length of a diameter of Br(x0). Recall that in two
dimensions we can take

Σ′ = (Σ\Br(x0)) ∪ (∂Br(x0) ∩ {x : dist(x, L) ≤ βΣ(x0, r)r}) ∪ (L ∩Br(x0))

provided βΣ(x0, r) = dH(Σ ∩ Br(x0), L ∩ Br(x0))/r. But in dimension N ≥ 3 such a competitor is not
effective, since it has Hausdorff dimension N − 1 ≥ 2. Notice that the main difficulty arising in the
construction of a nice competitor in dimension N ≥ 3 is that we do not know whether the quantity
H0(Σ ∩ ∂B%(x0)) is uniformly bounded from above for x0 ∈ Σ and % > 0. However, according to the
coarea inequality (see, for instance, [33, Theorem 2.1]), we know that for all % > 0,

H1(Σ ∩B%(x0)) ≥
∫ %

0
H0(Σ ∩ ∂Bt(x0)) dt.

If, moreover, % < diam(Σ)/2, then Σ ∩ ∂Bt(x0) 6= ∅ for all t ∈ (0, %], since x0 ∈ Σ and Σ is arcwise
connected (see Remark 2.17). Thus, assuming that % < diam(Σ)/2 and κ ∈ (0, 1/4], for any s ∈ [κ%, 2κ%]
we deduce the following

H1(Σ ∩B%(x0)) ≥
∫ %

0
H0(Σ ∩ ∂Bt(x0)) dt >

∫ (1+κ)s

s

H0(Σ ∩ ∂Bt(x0)) dt.

The latter inequality implies that there exists t ∈ [s, (1 + κ)s] for which

H0(Σ ∩ ∂Bt(x0)) ≤ 1
κ2 θΣ(x0, %), where θΣ(x0, %) = 1

%
H1(Σ ∩B%(x0)).

So if κ ∈ (0, 1/4], x0 ∈ Σ, r > 0 is sufficiently small and Br(x0) ⊂ Ω, then for all s ∈ [κr, 2κr] we can
construct the following competitor

Σ′ = (Σ\Bt(x0)) ∪
(H0(Σ∩∂Bt(x0))⋃

i=1
[zi, z′i]

)
∪ (L ∩Bt(x0)),

where t ∈ [s, (1 + κ)s] is such that H0(Σ ∩ ∂Bt(x0)) ≤ θΣ(x0, r)/κ2, L is an affine line realizing the
infimum in the definition of βΣ(x0, t), zi ∈ Σ∩∂Bt(x0) and z′i denotes the projection of zi to L∩Bt(x0).
The flatness βΣ′(x0, t) is less than or equal to βΣ(x0, t) by construction. Assuming in addition that
βΣ(x0, r) is fairly small and θΣ(x0, r) is also small enough, for the competitor Σ′ constructed above it
holds: βΣ′(x0, t) is sufficiently small, since βΣ′(x0, t) ≤ βΣ(x0, t) and βΣ(x0, %) remains small for all % in
(0, r) which are not too far from r (see (5.1)); the length of Σ′ ∩Bt(x0) is fairly close to the length of a
diameter of Bt(x0); the following estimate holds

H1(Σ ∩Bs(x0)) ≤ H1(Σ ∩Bt(x0)) ≤ H1(Σ′ ∩Bt(x0)) + Ct
( t
r

)b
wτΣ(x0, r) + Ct1+b.
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This allows us to prove the following fact: there exist ε, κ ∈ (0, 1/100) such that if Σ is a minimizer of
Problem 1.1, x0 ∈ Σ, r > 0 is sufficiently small, Br(x0) ⊂ Ω and the following condition holds

βΣ(x0, r) + wτΣ(x0, r) ≤ ε, θΣ(x0, r) ≤ 10µ (C)

with µ being a unique positive solution to the equation µ = 5 + µ1− 1
N (we shall explain a bit later

why we take this particular bound), then there exists s ∈ [κr, 2κr] for which H0(Σ ∩ ∂Bs(x0)) = 2
(see Proposition 5.8 (i)), the two points {ξ1, ξ2} of Σ ∩ ∂Bs(x0) belong to two different connected
components of

∂Bs(x0) ∩ {x : dist(x, L) ≤ βΣ(x0, s)s}

(see Proposition 5.8 (ii-1)), where L is an affine line realizing the infimum in the definition of βΣ(x0, s),
Σ ∩ Bs(x0) is arcwise connected (see Proposition 5.8 (ii-2)). Moreover, (Σ\Bs(x0)) ∪ [ξ1, ξ2] is a nice
competitor for Σ (see Proposition 5.8 (ii-3)). Using this result together with the decay behavior of the
local energy wτΣ, we prove that there exists a constant a ∈ (0, 1/100) such that if x0 ∈ Σ, r > 0 is small
enough, Br(x0) ⊂ Ω and the condition (C) holds with some sufficiently small ε > 0, then

βΣ(x0, ar) ≤ C(wτΣ(x0, r))
1
2 + Cr

b
2 and wτΣ(x0, ar) ≤

1
2w

τ
Σ(x0, r) + C(ar)b

(see Proposition 5.12 (i), (ii)). Next, we need to control the density θΣ from above on a smaller scale by
its value on a larger scale. Notice that in this paper we do not prove the Ahlfors regularity for a minimizer
of Problem 1.1 in the spatial dimension N ≥ 3 (for a proof in dimension 2, see [9, Theorem 3.3]), namely,
that there exist constants 0 < c1 < c2 and a radius r0 > 0 such that if Σ is a minimizer of Problem 1.1
with at least two points, then for all x ∈ Σ and r ∈ (0, r0), it holds

c1 ≤ θΣ(x, r) ≤ c2.

In dimension N ≥ 3 this problem seems very difficult and interesting. However, adapting some of the
approaches of Paolini and Stepanov in [32], we prove the following fact: for each a ∈ (0, 1/20] there exists
ε ∈ (0, 1/100) such that if x0 ∈ Σ, Br(x0) ⊂ Ω, r > 0 is sufficiently small and βΣ(x0, r) + wτΣ(x0, r) ≤ ε,
then

θΣ(x0, ar) ≤ 5 + θΣ(x0, r)1− 1
N

(see Proposition 5.11). Notice that if θΣ(x0, r) ≤ 10µ, then, using the above estimate, we get

θΣ(x0, ar) ≤ 5 + (10µ)1− 1
N ≤ 10(5 + µ1− 1

N ) = 10µ.

The factor 10 in the estimate θΣ(x0, r) ≤ 10µ is rather important, it appears in the proof of Corollary 5.14.
Altogether we prove that there exist constants a, ε ∈ (0, 1/100), b ∈ (0, 1) such that if x0 ∈ Σ, r > 0

is sufficiently small, Br(x0) ⊂ Ω and the condition (C) holds with ε, then for all n ∈ N,

βΣ(x0, a
n+1r) ≤ C(wτΣ(x0, a

nr)) 1
2 + C(anr) b2 and wτΣ(x0, a

n+1r) ≤ 1
2w

τ
Σ(x0, a

nr) + C(an+1r)b

(see Proposition 5.12). This, in particular, implies that the estimate βΣ(x0, %) ≤ C̃%α holds for some
α ∈ (0, 1), C̃ = C̃(N, p, q0, q, ‖f‖q, |Ω|, r) > 0 and for all sufficiently small % > 0 with respect to r (see
Proposition 5.13).

Finally, we arrive to the so-called “ε-regularity” theorem, which says the following: there exist con-
stants τ, a, ε, α, r0 ∈ (0, 1) such that whenever x ∈ Σ, 0 < r < r0, Br(x) ⊂ Ω,

βΣ(x, r) + wτΣ(x, r) ≤ ε and θΣ(x, r) ≤ µ,

then for some C̃ = C̃(N, p, q0, q, ‖f‖q, |Ω|, r) > 0, βΣ(y, %) ≤ C̃%α for any point y ∈ Σ ∩ Bar(x) and any
radius % ∈ (0, ar) (see Corollary 5.14). In particular, there exists t ∈ (0, 1) such that Σ∩Bt(x) is a C1,α
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regular curve. On the other hand, notice that, since closed connected sets with finite H1-measure are H1-
rectifiable (see, for instance, [18, Proposition 30.1]), βΣ(x, r)→ 0 as r → 0+ at H1-a.e. x ∈ Σ and hence
at H1-a.e. x ∈ Σ ∩ Ω, wτΣ(x, r) → 0 as r → 0+. Moreover, in view of Besicovitch-Marstrand-Mattila
Theorem (see [2, Theorem 2.63]),

θΣ(x, r)→ 2 as r → 0 + at H1-a.e. x ∈ Σ.

At the end, observing that for each N ≥ 2, the unique positive solution µ to the equation µ = 5 + µ1− 1
N

is strictly greater than 5, we bootstrap all the estimates and prove that every minimizer Σ of Problem 1.1
is C1,α regular at H1-a.e. point x ∈ Σ ∩ Ω.
Absence of loops.
If a minimizer Σ of Problem 1.1 contained a homeomorphic image Γ of the circle S1, then there would
exist a point x0 ∈ Γ ∩ Ω such that there would be a sequence of relatively open sets Dn ⊂ Σ satisfying:
x0 ∈ Dn for all sufficiently large n; Σ \Dn are connected for all n; diam(Dn) ↘ 0 as n → +∞; Dn are
connected for all n; there exists the affine line Tx0 such that x0 ∈ Tx0 and

1
r
dH(Σ ∩Br(x0), Tx0 ∩Br(x0))→ 0 as r → 0+

(see Lemma 4.1). So we could “cut out” Dn, for which H1(Dn) ≥ diam(Dn), and estimate the resulting
variation of the p-compliance in terms of (diam(Dn))1+b for all sufficiently large n, where b ∈ (0, 1) is
some fixed constant. Namely, we would obtain that for all sufficiently large n,

Cf,Ω(Σ\Dn)− Cf,Ω(Σ) ≤ C(diam(Dn))1+b and diam(Dn) ≤ H1(Σ)−H1(Σ\Dn),

where C is a positive constant independent of n, which would lead to a contradiction with the optimality
of Σ.

Absence of quadruple points.
The idea behind the proof is as follows. Assuming that a minimizer Σ of Problem 1.1 contains a
quadruple point x0 ∈ Σ ∩ Ω, one can change Σ in all sufficiently small neighborhoods of x0 in order to
obtain sequences (rn)n∈N, (Σn)n∈N such that: rn > 0, rn → 0 as n→ +∞; Σn are competitors for Σ;

Cf,Ω(Σn)− Cf,Ω(Σ) ≤ Cr1+b
n and C̃rn ≤ H1(Σ)−H1(Σn) (Q)

for all sufficiently large n, where C̃, C > 0 and b ∈ (0, 1) are constants independent of n. More precisely,
if a minimizer Σ of Problem 1.1 contained a quadruple point x0 ∈ Σ ∩ Ω, then there would be a radius
% ∈ (0,diam(Σ)/2) such that Σ ∩ B%(x0) would consist of exactly four distinct C1 arcs, each of which
would meet at point x0 exactly one of the other three at an angle of 180 degrees, and each of the other
two at an angle of 90 degrees. So there would be a cross K passing through x0 (K consists of two
mutually perpendicular affine lines passing through x0) such that

1
r
dH(Σ ∩Br(x0),K ∩Br(x0))→ 0 as r → 0+

(it is worth noting that the estimate (3.28) still holds if the affine line in Lemma 3.6 is replaced by a
suitable cross, see Lemma 6.2). Furthermore, Σ ∩ B%(x0) would be Ahlfors regular, which would imply
that for some positive constant C0 > 0, without loss of generality,

H1(Σ ∩Br(x0)) ≤ C0r for all r ∈ (0, %].

On the other hand, using the coarea inequality (see [33, Theorem 2.1]), for each r ∈ (0, %/2] we would
obtain that

H1(Σ ∩B2r(x0)) ≥
∫ 2r

0
H0(Σ ∩ ∂Bt(x0)) dt >

∫ 2r

r

H0(Σ ∩ ∂Bt(x0)) dt.
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Then there would exist t ∈ [r, 2r] such that

H0(Σ ∩ ∂Bt(x0)) ≤ 1
r
H1(Σ ∩B2r(x0)) ≤ 2C0.

So we could construct a nice competitor Σt for Σ. Namely, let Dt = K∩∂Bt(x0) and let S4(Dt) ⊂ Bt(x0)
be a closed set of minimum H1-measure in the ball Bt(x0) which connects the all four points of Dt (as
in [11], we shall call it a Steiner connection of the points of Dt; for more details on Steiner connections,
see, for instance [22, 34, 20]). Without loss of generality, we could also assume that Σ is fairly close, in
B%(x0) and in the Hausdorff distance to K. For each point zi ∈ Σ ∩ ∂Bt(x0), let γi denote the geodesic
in ∂Bt(x0) connecting zi with the point of Dt closest to zi. Let G denote the union of all arcs γi, and
let Σt be defined by

Σt = (Σ\Bt(x0)) ∪G ∪ S4(Dt).

Then we would obtain that there exists a positive constant C̃ > 0 independent of t such that

H1(Σ)−H1(Σt) ≥ C̃t,

where the facts that H1(Σ ∩ Bt(x0)) ≥ 4t, H1(G) ≤ δt for some fairly small δ ∈ (0, 1) and that
H1(S4(Dt)) =

√
2(
√

3 + 1)t ≈ 3.86t were used. Altogether we would obtain that there exist sequences
(rn)n∈N and (Σn)n∈N satisfying (Q). Next, letting n tend to +∞, we would obtain a contradiction with
the optimality of Σ.

1.4. Structure of the paper

In Section 2, we recall the basic definitions and notions used in the paper and prove some preparatory
results that will be used in Sections 3-6. In Section 3, we establish the decay behavior of the p-energy
under flatness control (we prove (E)), which will be used in Section 4 to prove Theorem 1.4 and in
Section 5 to prove Theorem 1.3. In Section 6, we prove Proposition 1.5. Finally, in Appendix A, we
prove several auxiliary results for the reader’s convenience.

2. Preliminaries

2.1. Conventions and Notation

Conventions: in this paper, we say that a value is positive if it is strictly greater than zero, and a value
is nonnegative if it is greater than or equal to zero. Euclidean spaces are endowed with the Euclidean
inner product 〈·, ·〉 and the induced norm | · |. By N we denote an integer greater than or equal to 2.
Throughout this paper, Ω will denote an open bounded set in RN .

Notation: we denote by Br(x), Br(x), and ∂Br(x), respectively, the open ball, the closed ball, and
the N -sphere with center x and radius r. If the center is at the origin, we write Br, Br and ∂Br the
corresponding balls and the N -sphere. For each set A ⊂ RN , the set Ac will denote its complement in
RN , that is, Ac = RN\A. We denote by dist(x,A), diam(A), A∆B, and |A|, respectively, the Euclidean
distance from x ∈ RN to A ⊂ RN , the diameter of A, the symmetric difference of A and B ⊂ RN , and
the N -dimensional Lebesgue measure of A. We shall sometimes write points of RN as x = (x′, xN ) with
x′ ∈ RN−1 and xN ∈ R. If U ⊂ RN is Lebesgue measurable, then for p ∈ [1,+∞) ∪ {+∞}, Lp(U) will
denote the space consisting of all real measurable functions on U that are pth-power integrable on U if
p ∈ [1,+∞) and are essentially bounded if p = +∞; Lp(U ;RN ) is the respective space of functions with
values in RN . By L1

loc(U) we denote the space of functions u such that u ∈ L1(V ) for all V ⊂⊂ U . The
norm on Lp(U) (Lp(U ;RN )) is denoted by ‖ · ‖Lp(U) (‖ · ‖Lp(U ;RN )) or ‖ · ‖p when it is appropriate. We
use the standard notation for Sobolev spaces. For an open set U ⊂ RN , denote by W 1,p

0 (U) the closure
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of C∞0 (U) in the Sobolev space W 1,p(U), where C∞0 (U) is the space of functions in C∞(U) with compact
support in U . Recall that W 1,p

loc (U) is the space of functions u such that u ∈ W 1,p(V ) for all V ⊂⊂ U .
We shall denote by Hd(A) the d-dimensional Hausdorff measure of A.

2.2. Definitions and some preparatory results

We begin by defining weak solutions to the p-Poisson equation,

−∆pu := −div(|∇u|p−2∇u) = f.

Definition 2.1. Let U ⊂ RN be open and bounded, p ∈ (1,+∞) and f ∈ L1
loc(U). We say that u is a

weak solution to the p-Poisson equation −∆pv = f in U provided u ∈W 1,p
loc (U) and∫

U

〈|∇u|p−2∇u,∇ϕ〉 dx =
∫
U

fϕ dx, (2.1)

whenever ϕ ∈ C∞0 (U). If u is a weak solution to the p-Poisson equation −∆pv = f in U and f = 0, then
we say that u is a weak solution to the p-Laplace equation in U .

Definition 2.2. Let U ⊂ RN be open and bounded, p ∈ (1,+∞). We say that u is a weak subsolution
(supersolution) to the p-Laplace equation in U provided u ∈W 1,p

loc (U) and∫
U

〈|∇u|p−2∇u,∇ϕ〉 dx ≤ (≥) 0, (2.2)

whenever ϕ ∈ C∞0 (U) is nonnegative. If u is an upper (lower) semicontinuous weak subsolution (super-
solution) to the p-Laplace equation in U , then we say that u is p-subharmonic (p-superharmonic) in U .
If u is a continuous weak solution to the p-Laplace equation in U , then we say that u is p-harmonic in U .

Remark 2.3. We read |0|p−20 as 0 also when 1 < p < 2. If u ∈ W 1,p(U) is a weak solution to the
p-Poisson equation −∆pv = f in U , where f ∈ Lq0(U) with q0 defined in (1.1), then (2.1) holds for all
ϕ ∈W 1,p

0 (U).

The following basic result for weak solutions holds (see [26, Theorem 2.7]).

Theorem 2.4. Let U be a bounded open set in RN and let u ∈ W 1,p(U). The following two assertions
are equivalent.

(i) u is minimizing: ∫
U

|∇u|p dx ≤
∫
U

|∇v|p dx, when v − u ∈W 1,p
0 (U).

(ii) the first variation vanishes:∫
U

〈|∇u|p−2∇u,∇ζ〉 dx = 0, when ζ ∈W 1,p
0 (U).

Now we introduce the notion of the Bessel capacity (see e.g. [1], [41]).

Definition 2.5. For p ∈ (1,+∞), the Bessel (1, p)-capacity of a set E ⊂ RN is defined as

Capp(E) = inf
{
‖f‖p

Lp(RN ) : g ∗ f ≥ 1 on E, f ∈ Lp(RN ), f ≥ 0
}
,

where the Bessel kernel g is defined as that function whose Fourier transform is

ĝ(ξ) = (2π)−N2 (1 + |ξ|2)− 1
2 .
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We say that a property holds p-quasi everywhere (abbreviated as p-q.e.) if it holds except on a set
A where Capp(A) = 0. It is worth mentioning that by [1, Corollary 2.6.8], for every p ∈ (1,+∞), the
notion of the Bessel capacity Capp is equivalent to the following

C̃app(E) = inf
u∈W 1,p(RN )

{∫
RN
|∇u|p dx+

∫
RN
|u|p dx : u ≥ 1 on some neighborhood of E

}
in the sense that there exists C = C(N, p) > 0 such that for any set E ⊂ RN ,

1
C

C̃app(E) ≤ Capp(E) ≤ CC̃app(E).

The notion of capacity is crucial in the investigation of the pointwise behavior of Sobolev functions.
For convenience, we recall the next theorems and propositions.

Theorem 2.6. Let E ⊂ RN and p ∈ (1, N ]. Then Capp(E) = 0 if HN−p(E) < +∞. Conversely, if
Capp(E) = 0, then HN−p+ε(E) = 0 for every ε > 0.

Proof. For a proof of the fact that Capp(E) = 0 if HN−p(E) < +∞, we refer to [1, Theorem 5.1.9]. The
fact that if Capp(E) = 0, then HN−p+ε(E) = 0 for every ε > 0 follows from [1, Theorem 5.1.13].

Remark 2.7. Let p ∈ (N,+∞). Then there exists C = C(N, p) > 0 such that for any nonempty set
E ⊂ RN , Capp(E) ≥ C. We can take C = Capp({0}), which is positive by [1, Proposition 2.6.1 (a)],
and use the fact that the Bessel (1, p)-capacity is invariant under translations and is nondecreasing with
respect to set inclusion.

Recall that for all E ⊂ RN the number

dimH(E) = sup{s ∈ [0,+∞) : Hs(E) = +∞} = inf{t ∈ [0,+∞) : Ht(E) = 0}

is called the Hausdorff dimension of E.

Corollary 2.8. Let p ∈ (1,+∞), E ⊂ RN , dimH(E) = 1 and H1(E) < +∞. Then Capp(E) > 0 if and
only if p ∈ (N − 1,+∞).

Proof of Corollary 2.8. If p > N , then by Remark 2.7, Capp(E) > 0. Assume by contradiction that
Capp(E) = 0 for some p ∈ (N − 1, N ]. Taking ε = (p − N + 1)/2 so that 0 < N − p + ε < 1, by
Theorem 2.6 we get, HN−p+ε(E) = 0, but this leads to a contradiction with the fact that dimH(E) = 1.
On the other hand, if p ∈ (1, N − 1], then HN−p(E) < +∞ and by Theorem 2.6, Capp(E) = 0. This
completes the proof of Corollary 2.8.

Proposition 2.9. Let Σ ⊂ RN , x0 ∈ RN , 0 ≤ r0 < r1 and p ∈ (1, N ]. Assume that

Σ ∩ ∂Br(x0) 6= ∅ for all r ∈ (r0, r1).

Then there exists a constant C > 0, possibly depending only on N and p, such that

Capp({0}N−1 × [0, r1 − r0]) ≤ CCapp(Σ ∩Br1(x0)).

Proof. The proof is straightforward if p ∈ (1, N − 1], since in this case Capp({0}N−1 × [0, r1 − r0]) = 0
according to Corollary 2.8. Assume that p ∈ (N − 1, N ]. Let A(x0, r0) = Br0(x0) if r0 > 0 and
A(x0, r0) = {x0} if r0 = 0. For each x ∈ Σ ∩ (Br1(x0)\A(x0, r0)), we define Φ(x) = ({0}N−1, |x − x0|).
Since Φ is 1-Lipschitz, by [1, Theorem 5.2.1], there exists C = C(N, p) > 0 such that

Capp({0}N−1 × (r0, r1)) = Capp(Φ(Σ ∩ (Br1(x0)\A(x0, r0)))) ≤ CCapp(Σ ∩ (Br1(x0)\A(x0, r0))).

Notice that Capp({0}N−1×[r0, r1]) ≤ Capp({0}N−1×(r0, r1)), since Capp(·) is a subadditive set function
(see, for instance, [1, Proposition 2.3.6]) and Capp({0}N−1 × {ri}) = 0 for i = 0, 1 by Theorem 2.6. So
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Capp({0}N−1 × [r0, r1]) ≤ CCapp(Σ ∩ (Br1(x0)\A(x0, r0))) for some C = C(N, p) > 0. Then, using
the fact that the Bessel capacity is nondecreasing with respect to set inclusion and, if necessary, the
fact that it is invariant under translations, we recover the desired estimate. This completes the proof of
Proposition 2.9.

Corollary 2.10. Let Σ ⊂ RN , x0 ∈ RN , 0 ≤ r0 < r1 and p ∈ (1, N ]. Assume that Σ ∩ Br0(x0) 6= ∅ if
r0 > 0 and x0 ∈ Σ if r0 = 0. Assume also that (Σ ∩Br1(x0)) ∪ ∂Br1(x0) is connected. Then there exists
a constant C > 0, possibly depending only on N and p, such that

Capp({0}N−1 × [0, r1 − r0]) ≤ CCapp(Σ ∩Br1(x0)).

Proof of Corollary 2.10. It follows from the conditions of Corollary 2.10 that Σ ∩ ∂Br(x0) 6= ∅ for all
r ∈ (r0, r1). Then it only remains to use Proposition 2.9. This completes the proof of Corollary 2.10.

Proposition 2.11. Let r ∈ (0, 1] and Ar = {0}N−1 × [0, r]. The following assertions hold.

(i) If p ∈ (N − 1, N), then there exists a constant C = C(N, p) > 0 such that

rN−p ≤ CCapp(Ar).

(ii) If p = N , then there exists a constant C = C(N) > 0 such that(
log
(
C

r

))1−p
≤ CCapp(Ar).

Proof. Since diam(Ar) ≤ 1, (i) and (ii) follows from [1, Corollary 5.1.14].

Corollary 2.12. Let p ∈ (N − 1, N ] and Σ = ({0}N−1 × (−1, 1)) ∪ ∂B1. Then there exist r0, C0 > 0
such that

Capp(Σ ∩Br(x0))
Capp(Br(x0)) ≥ C0 (2.3)

whenever 0 < r < r0 and x0 ∈ Σ.

Proof of Corollary 2.12. Since Σ is arcwise connected and diam(Σ) = 2, setting r0 = 1, we observe
that Σ ∩ ∂Br(x0) 6= ∅ whenever 0 < r < r0 and x0 ∈ Σ. Then Proposition 2.9 says that for some
C = C(N, p) > 0,

Capp({0}N−1 × [0, r]) ≤ CCapp(Σ ∩Br(x0))

whenever 0 < r < r0 and x0 ∈ Σ. However, this, together with Proposition 2.11, [1, Proposition 5.1.2],
[1, Proposition 5.1.3] and [1, Proposition 5.1.4], proves that there exists a constant C0 > 0 such that
the desired estimate (2.3) holds for C0 whenever 0 < r < r0 and x0 ∈ Σ. This completes the proof of
Corollary 2.12.

Definition 2.13. Let the function u be defined p-q.e. on RN or on some open subset. Then u is said to
be p-quasi continuous if for every ε > 0 there is an open set A with Capp(A) < ε such that the restriction
of u to the complement of A is continuous in the induced topology.

Theorem 2.14. Let Y ⊂ RN be an open set and p ∈ (1,+∞). Then for each u ∈ W 1,p(Y ) there exists
a p-quasi continuous function ũ ∈ W 1,p(Y ), which is uniquely defined up to a set of Capp-capacity zero
and u = ũ a.e. in Y .

Proof. We refer the reader, for instance, to the proof of [9, Theorem 2.8], which actually applies for the
general spatial dimension N ≥ 2.
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Remark 2.15. A Sobolev function u ∈W 1,p(RN ) belongs toW 1,p
0 (Y ) if and only if its p-quasi continuous

representative ũ vanishes p-q.e. on Y c (see [3, Theorem 4] and [23, Lemma 4]). Thus, if Y ′ is an open
subset of Y and u ∈W 1,p

0 (Y ) such that ũ = 0 p-q.e. on Y \Y ′, then the restriction of u to Y ′ belongs to
W 1,p

0 (Y ′) and conversely, if we extend a function u ∈W 1,p
0 (Y ′) by zero in Y \Y ′, then u ∈W 1,p

0 (Y ). It is
worth mentioning that if Σ ⊂ Y and Capp(Σ) = 0, then W 1,p

0 (Y ) = W 1,p
0 (Y \Σ). Indeed, u ∈ W 1,p

0 (Y )
if and only if u ∈ W 1,p(RN ) and ũ = 0 p-q.e. on Y c that is equivalent to say u ∈ W 1,p(RN ) and ũ = 0
p-q.e. on Y c ∪Σ (since Capp(Σ) = 0 and Capp(·) is a subadditive set function, see [1, Proposition 2.3.6])
or u ∈ W 1,p

0 (Y \Σ). In the sequel we shall always identify u ∈ W 1,p(Y ) with its p-quasi continuous
representative ũ.

Proposition 2.16. Let D ⊂ RN be a bounded extension domain (see [41, Remark 2.5.2]) and let
u ∈ W 1,p(D). Consider E = D ∩ {x : u(x) = 0}. If Capp(E) > 0, then there exists a constant
C = C(N, p,D) > 0 such that ∫

D

|u|p dx ≤ C(Capp(E))−1
∫
D

|∇u|p dx.

Proof. For a proof, see, for instance, [41, Corollary 4.5.3, p. 195].

It is also worth recalling the following fact, which will be used several times in this paper.

Remark 2.17. Every closed and connected set Σ ⊂ RN satisfying H1(Σ) < +∞ is arcwise connected
(see, for instance, [18, Corollary 30.2, p. 186]).

2.3. Poincaré inequality

Proposition 2.18. Let Σ ⊂ RN , ξ ∈ RN and r > 0 be such that Σ ∩ ∂Bs(ξ) 6= ∅ for every s ∈ [r, 2r].
Let p ∈ (N − 1,+∞) and u ∈ W 1,p(B2r(ξ)) satisfying u = 0 p-q.e. on Σ ∩ B2r(ξ). Then there exists a
constant C = C(N, p) > 0 such that∫

B2r(ξ)
|u|p dx ≤ Crp

∫
B2r(ξ)

|∇u|p dx.

Proof. We refer the reader to the proof of [9, Corollary 2.12], which also applies for the present geometric
assumptions.

2.4. Estimate for Ef,Ω(uΣ)− Ef,Ω(uΣ′)
We begin by proving the following “localization lemma”.

Lemma 2.19. Let p ∈ (1,+∞) and f ∈ Lq0(Ω) with q0 defined in (1.1). Let Σ and Σ′ be closed
proper subsets of Ω and x0 ∈ RN . Assume that 0 < r0 < r1 and Σ′∆Σ ⊂ Br0(x0). Then there exists
C = C(p) > 0 such that for any ϕ ∈ Lip(RN ) satisfying ϕ = 1 over Bcr1(x0), ϕ = 0 over Br0(x0) and
‖ϕ‖∞ ≤ 1 on RN , one has

Ef,Ω(uΣ)− Ef,Ω(uΣ′) ≤ C
∫
Br1 (x0)

|∇uΣ′ |p dx+ C

∫
Br1 (x0)

|uΣ′ |p|∇ϕ|p dx+
∫
Br1 (x0)

fuΣ′(1− ϕ) dx.

Proof. We refer the reader to the proof of [9, Lemma 4.1], that actually applies for the general spatial
dimension N ≥ 2.

Lemma 2.20. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q ≥ q0, where q0 is defined in (1.1). Assume
that Σ is a closed arcwise connected proper subset of Ω such that for some x0 ∈ RN and 0 < 2r0 ≤ r1 ≤ 1
it holds

Σ ∩Br0(x0) 6= ∅, Σ\Br1(x0) 6= ∅. (2.4)

Then for any r ∈ [r0, r1/2], for any ϕ ∈ Lip(RN ) such that ‖ϕ‖∞ ≤ 1, ϕ = 1 over Bc2r(x0), ϕ = 0 over
Br(x0) and ‖∇ϕ‖∞ ≤ 1/r, the following assertions hold.
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(i) There exists C = C(N, p) > 0 such that∫
B2r(x0)

|uΣ|p|∇ϕ|p dx ≤ C
∫
B2r(x0)

|∇uΣ|p dx. (2.5)

(ii) There exists C = C(N, p, q0, q, ‖f‖q) > 0 such that∫
B2r(x0)

fuΣ(1− ϕ) dx ≤ C
∫
B2r(x0)

|∇uΣ|p dx+ CrN+p′−Np
′

q . (2.6)

Proof. Thanks to (2.4), Σ ∩ ∂Bs(x0) 6= ∅ for all s ∈ [r, 2r]. Then, since uΣ = 0 p-q.e. on Σ and
uΣ ∈ W 1,p(B2r(x0)), we can use Proposition 2.18, which says that there exists C = C(N, p) > 0 such
that ∫

B2r(x0)
|uΣ|p dx ≤ Crp

∫
B2r(x0)

|∇uΣ|p dx. (2.7)

Therefore, ∫
B2r(x0)

|uΣ|p|∇ϕ|p dx ≤ 1
rp

∫
B2r(x0)

|uΣ|p dx ≤ C
∫
B2r(x0)

|∇uΣ|p dx.

This proves (2.5).
Let us now prove (2.6). First, notice that thanks to (2.7) and the fact that 2r ≤ 1, there exists

C0 = C0(N, p) > 0 such that

‖uΣ‖W 1,p(B2r(x0)) ≤ C0‖∇uΣ‖Lp(B2r(x0)). (2.8)

Next, using the Sobolev embeddings (see [21, Theorem 7.26]) together with (2.8) and the fact that uΣ = 0
p-q.e. on Σ, we deduce that there exists C̃ = C̃(N, p, q0) > 0 such that

‖uΣ‖Lq′0 (B2r(x0))
≤ C̃rβ‖∇uΣ‖Lp(B2r(x0)), (2.9)

where
β = 0 if N − 1 < p < N, β = N

q′0
if p = N, β = 1− N

p
if N < p < +∞.

Thus, using the fact that |fuΣ(1 − ϕ)| ≤ |fuΣ|, Hölder’s inequality, the estimate (2.9) and Young’s
inequality, we get∫

B2r(x0)
fuΣ(1− ϕ) dx ≤ ‖f‖Lq0 (B2r(x0))‖uΣ‖Lq′0 (B2r(x0))

≤ |B2r(x0)|
1
q0
− 1
q ‖f‖Lq(Ω)‖uΣ‖Lq′0 (B2r(x0))

≤ CrN( 1
q0
− 1
q )+β‖∇uΣ‖Lp(B2r(x0))

= Cr
N
p′+1−Nq ‖∇uΣ‖Lp(B2r(x0))

≤ CrN+p′−Np
′

q + C‖∇uΣ‖pLp(B2r(x0)),

where C = C(N, p, q0, q, ‖f‖q) > 0. This concludes the proof of Lemma 2.20.

The following corollary follows directly from Lemma 2.19 and Lemma 2.20, thus, we omit the proof.

Corollary 2.21. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q ≥ q0, where q0 is defined in (1.1). Let Σ
and Σ′ be closed arcwise connected proper subsets of Ω and let x0 ∈ RN . Suppose that 0 < 2r0 ≤ r1 ≤ 1,
Σ′∆ Σ ⊂ Br0(x0) and

Σ′ ∩Br0(x0) 6= ∅, Σ′\Br1(x0) 6= ∅.

Then for every r ∈ [r0, r1/2],

Ef,Ω(uΣ)− Ef,Ω(uΣ′) ≤ C
∫
B2r(x0)

|∇uΣ′ |p dx+ CrN+p′−Np
′

q , (2.10)

where C = C(N, p, q0, q, ‖f‖q) > 0.
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2.5. Uniform boundedness of uf,Ω,Σ with respect to Σ
In this subsection, we prove a uniform bound, with respect to Σ, for the unique solution uf,Ω,Σ to the
Dirichlet problem (1.2). It is worth mentioning that the estimate (2.13) will never be used in the sequel,
however, we find it interesting enough to keep it in the present paper. Also notice that we can extend
uf,Ω,Σ by zero outside Ω\Σ to an element of W 1,p(RN ), we shall use the same notation for this extension
as for uf,Ω,Σ.

Proposition 2.22. Let Σ be a closed proper subset of Ω, p ∈ (1,+∞) and f ∈ Lq0(Ω) with q0 defined
in (1.1). Then there exists a constant C > 0, possibly depending only on N, p and q0, such that∫

Ω
|∇uf,Ω,Σ|p dx ≤ C|Ω|α‖f‖βLq0 (Ω), (2.11)

where

(α, β) = (0, p′) if 1 < p < N, (α, β) =
(
N ′

q′0
, N ′

)
if p = N, (α, β) =

(
p−N
N(p− 1) , p

′
)

if p > N. (2.12)

Moreover, if f ∈ Lq(Ω) with q > N
p if p ∈ (1, N ] and q = 1 if p > N , then there exists a constant

C = C(N, p, q, ‖f‖q, |Ω |) > 0 such that

‖uf,Ω,Σ‖L∞(RN ) ≤ C. (2.13)

Proof. To establish the estimate (2.13), we use [9, Lemma A.2] with U = Ω\Σ, which provides a constant
C = C(N, p, q, ‖f‖q, |U |) > 0 such that ‖uf,Ω,Σ‖L∞(RN ) ≤ C, but observing that C is increasing with
respect to |U |, we recover (2.13). Now let f ∈ Lq0(Ω). Using uf,Ω,Σ as a test function in (1.3), we get∫

Ω
|∇uf,Ω,Σ|p dx =

∫
Ω
fuf,Ω,Σ dx ≤ ‖f‖Lq0 (Ω)‖uf,Ω,Σ‖Lq′0 (Ω)

, (2.14)

where the above estimate comes by using Hölder’s inequality. Next, recalling that by the Sobolev inequal-
ities (see [21, Theorem 7.10]) there is C = C(N, p) > 0 such that ‖uf,Ω,Σ‖Lq′0 (Ω)

≤ C|Ω|γ‖∇uf,Ω,Σ‖Lp(Ω),
where

γ = 0 if 1 < p < N, γ = 1
N
− 1
p

if p > N,

and using (2.14), we recover (2.11) in the case when p 6= N . If p = N and 1 < q0 ≤ N , then for
ε ∈ (0, N − 1] such that 1

q′0
= 1

N−ε −
1
N , we get

‖uf,Ω,Σ‖Lq′0 (Ω)
≤ C‖∇uf,Ω,Σ‖LN−ε(Ω) (by the Sobolev inequality)

≤ C|Ω|
1
q′0 ‖∇uf,Ω,Σ‖LN (Ω) (by Hölder’s inequality).

The latter estimate together with (2.14) yields (2.11) in the case when p = N and 1 < q0 ≤ N . Assume
now that p = N and q0 > N . Then q′0 < N ′ ≤ N . Using Hölder’s inequality and the fact that

‖uf,Ω,Σ‖LN′ (Ω) ≤ C|Ω|
1
N′ ‖∇uf,Ω,Σ‖LN (Ω),

which was proved above, we obtain that

‖uf,Ω,Σ‖Lq′0 (Ω)
≤ |Ω|

1
q′0
− 1
N′ ‖uf,Ω,Σ‖LN′ (Ω) ≤ C|Ω|

1
q′0 ‖∇uf,Ω,Σ‖LN (Ω).

This, together with (2.14), yields (2.11) in the case when p = N and q0 > N , and completes the proof
of Proposition 2.22.
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2.6. Existence

Theorem 2.23. Let p ∈ (N − 1,+∞), f ∈ Lq0(Ω) with q0 defined in (1.1). Let (Σn)n ⊂ K(Ω) be a
sequence converging to Σ ∈ K(Ω) in the Hausdorff distance. Then uΣn −→

n→+∞
uΣ strongly in W 1,p(Ω).

Proof. For a proof, see [42] for the case N = p = 2 and [7] for the general case.

Proposition 2.24. Problem 1.1 admits a minimizer.

Proof. Let (Σn)n ⊂ K(Ω) be a minimizing sequence for Problem 1.1. We can assume that Σn 6= ∅ and
Cf,Ω(Σn)+λH1(Σn) ≤ Cf,Ω(∅) at least for a subsequence still denoted by n, because otherwise the empty
set would be a minimizer. Then, by Blaschke’s theorem (see [2, Theorem 6.1]), there exists Σ ∈ K(Ω) such
that, up to a subsequence still denoted by the same index, Σn converges to Σ in the Hausdorff distance
as n → +∞. Furthermore, by Theorem 2.23, uΣn converges to uΣ strongly in W 1,p

0 (Ω) and hence
Cf,Ω(Σn) → Cf,Ω(Σ) as n → +∞. Then, using Go la̧b’s theorem (see, for instance, [33, Theorem 3.3]),
we deduce that Σ is a minimizer of Problem 1.1.

The next proposition says that, at least for some range of values of λ > 0, solutions to Problem 1.1
are nontrivial.

Proposition 2.25. Let p ∈ (N − 1,+∞), f ∈ Lq0(Ω), f 6= 0 and q0 is defined in (1.1). Then there
exists a number λ0 = λ0(N, p, f,Ω) > 0 such that if Problem 1.1 is defined for λ ∈ (0, λ0], then every
solution to this problem has positive H1-measure. Moreover, if p > N and Problem 1.1 is defined for an
arbitrary λ > 0, then the empty set will not be a solution to this problem.

Proof. For a proof in the case when N = 2, we refer the reader to [9, Proposition 2.17], the proof for the
general case is similar.

3. Decay of the p-energy under flatness control

In this section, we prove that if p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined in
(1.4), then there exist ε0, b, r ∈ (0, 1) and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0, where q0 is defined in (1.1),
such that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r0 ≤ r1 ≤ r,
Br1(x0) ⊂ Ω and that for each r ∈ [r0, r1] there exists an affine line L = L(r) passing through x0 such
that dH(Σ∩Br(x0), L ∩Br(x0)) ≤ ε0r. Assume also that Σ \Br1(x0) 6= ∅. Then for all r ∈ [r0, r1],∫

Br(x0)
|∇uΣ|p dx ≤ C

( r
r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b.

We begin by establishing a control for the functional r 7→
∫
Br
|∇u|p dx, where u is a weak solution

to the p-Laplace equation in B1\({0}N−1 × (−1, 1)) vanishing p-q.e. on {0}N−1 × (−1, 1). In [28] it
was shown that if u is a positive p-harmonic function in B1\({0}N−1 × (−1, 1)), continuous in B1 with
u = 0 on {0}N−1 × (−1, 1), then there exists δ = δ(N, p) ∈ (0, 1) such that u ∈ C0,β(Bδ), where
β = (p−N + 1)/(p− 1) and C0,β(U) denotes the space of Hölder continuous functions in the open set
U . Furthermore, β is the optimal Hölder exponent for u. In fact, comparing the function u with the
p-superharmonic and p-subharmonic functions constructed in [28, Lemma 3.4], [27, Lemma 3.7], it was
shown that there exists C = C(N, p) > 0 and δ = δ(N, p) ∈ (0, 1) such that

C−1 dist(x, {0}N−1 × (−1, 1))β ≤ u(x)
u(A1/2) ≤ C dist(x, {0}N−1 × (−1, 1))β (3.1)

whenever x ∈ Bδ, where A1/2 is a point in {|x′| = 1/2} ∩ ∂B1/2. The upper bound in (3.1) implies that
u ∈ C0,β(Bδ) (see [28, Corollary 3.7]), and the lower bound proves that β is optimal.
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However, for the purposes of this paper, the optimal regularity for a p-harmonic function vanishing
on a 1-dimensional plane is not necessary. It so happened that for every p ∈ (N − 1,+∞) we also
constructed a nice barrier function in order to estimate a nonnegative p-subharmonic function vanishing
on a 1-dimensional plane. More precisely, for any fixed γ ∈ (0, β) and some δ = δ(N, p, γ) ∈ (0, 1),
we constructed a p-superharmonic function in Lemma A.1, such that comparing this function with a
nonnegative p-subharmonic function u in B1\({0}N−1 × (−1, 1)), continuous in B1 and with u = 0 on
{0}N−1 × (−1, 1), we obtain the following control

u(x) ≤ Cu(A1/2) dist(x, {0}N−1 × (−1, 1))γ ,

where x ∈ Bδ and C = C(N, p, γ) > 0. If γ is close enough to β, using the above control, we deduce the
estimate (3.2) which is sufficient to obtain the desired decay behavior of the p-energy under flatness con-
trol. Finally, since our barrier function is slightly simpler than those in [28, Lemma 3.4], [27, Lemma 3.7]
and in order to make the presentation self-contained, we shall use it in the proof of Lemma 3.1.

Lemma 3.1. Let p ∈ (N − 1,+∞). There exist α, δ ∈ (0, 1) and C > 0, depending only on N and
p, such that if u ∈ W 1,p(B1) is a weak solution to the p-Laplace equation in B1\({0}N−1 × (−1, 1))
satisfying u = 0 p-q.e. on {0}N−1 × (−1, 1), then∫

Br

|∇u|p dx ≤ Cr1+α
∫
B1

|∇u|p dx for all r ∈ (0, δ]. (3.2)

Proof. To lighten the notation, we denote {0}N−1 × (−1, 1) by S.
Step 1. We prove the estimate (3.2) in the case when u is continuous and nonnegative in B1 with u = 0
on S. Let γ = 1

2

(
p−N+1

p + p−N+1
p−1

)
. By Lemma A.1, there exists δ0 = δ0(N, p) ∈ (0, 1) such that

û(x) = |x′|γ + x2
N is p-superharmonic in {0 < |x′| < δ0} ∩ {|xN | < 1}. On the other hand, according to

Lemma A.3, there exists ε = ε(N, p) ∈ (0, 1) and C = C(N, p) > 0 such that u ≤ Cu(Aε) in Bε, where Aε
denotes a point with dist(Aε, {0}N−1×R) = ε and Aε ∈ ∂Bε. Without loss of generality, we can assume
that δ0 ≤ ε. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p and
can be different from line to line. Using Harnack’s inequality (see, for instance, [24, Theorem 6.2]), we
deduce that u(Aε) ≤ Cu(A1/2) and hence u ≤ Cu(A1/2) in Bδ0 for a point A1/2 ∈ {|x′| = 1/2} ∩ ∂B1/2.
Next, since

û(x) =
(
δ0√

2

)γ
+ x2

N ≥
(
δ0√

2

)γ
if |x′| = δ0√

2
and û(x) = |x′|γ + δ2

0
2 ≥

δ2
0
2 if |xN | =

δ0√
2
,

the estimate u ≤ Cu(A1/2)û holds on ∂({|x′| < δ0/
√

2} ∩ {|xN | < δ0/
√

2}); see Figure 3.1. Notice also
that u(x) ≤ Cu(A1/2)û(x) if x ∈ S. Thus, using the comparison principle (see e.g. [24, Theorem 7.6]),
we obtain

u ≤ Cu(A1/2)û in {|x′| < δ0/
√

2} ∩ {|xN | < δ0/
√

2}. (3.3)

Now we set δ := δ0/10. According to Lemma A.4, u is a p-subharmonic function in B1. Then, using
Caccioppoli’s inequality (see e.g. [26, Lemma 2.9] or [24, Lemma 3.27]), which is applicable to nonnegative
p-subharmonic functions, and also using (3.3), for all r ∈ (0, δ], we deduce that∫

Br

|∇u|p dx ≤ ppr−p
∫
B2r

up dx

≤ Cup(A1/2)r−p
∫
B2r

ûp dx

≤ Cup(A1/2)r−p
∫
B2r

(rγ + r2)p dx

≤ Cup(A1/2)rγp+N−p

= Cup(A1/2)r1+α, (3.4)
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Figure 3.1: In the proof of Lemma 3.1 we estimate on ∂
({
|x′| < δ0√

2

}
∩
{
|xN | < δ0√

2

})
a nonnegative

p-harmonic function u in B1\({0}N−1 × (−1, 1)), continuous in B1 with u = 0 on {0}N−1 × (−1, 1).

where α = γp−p+N−1 is positive, since γ > (p−N+1)/p. On the other hand, by Harnack’s inequality,
u(A1/2) ≤ Cu(x) for all x ∈ B1/4(A1/2) and then

up(A1/2) = 1
|B1/4|

∫
B1/4(A1/2)

up(A1/2) dx

≤ C
∫
B1/4(A1/2)

up dx

≤ C
∫
B1

up dx

≤ C
∫
B1

|∇u|p dx, (3.5)

where we have used Proposition 2.18. Gathering together (3.4) and (3.5), we deduce (3.2).
Step 2. We prove (3.2) in the case when u ∈ W 1,p(B1) and u = 0 p-q.e. on S. Let us fix a sequence
(ϕn)n∈N ⊂ C∞(B1) such that for each n ∈ N, ϕn = 0 on S and, furthermore, ϕn → u in W 1,p(B1). Let
us briefly explain why such a sequence exists. For an arbitrary open set U with B1 ⊂⊂ U , according
to [21, Theorem 7.25], there exists ũ ∈ W 1,p

0 (U) such that ũ = u a.e. in B1. By [1, Theorem 6.1.4],
ũ = u p-q.e. in B1 and hence ũ = 0 p-q.e. on S. Then ũ ∈ W 1,p

0 (U\S) (see Remark 2.15). So there
exists a sequence (ϕn)n ⊂ C∞0 (U\S) such that ϕn → ũ in W 1,p(U). It remains to note that ϕn → u in
W 1,p(B1). Next, for each n ∈ N, let un be the unique solution to the p-Laplace equation in B1\S such
that un−ϕn ∈W 1,p

0 (B1\S). Notice that, by [26, Theorem 2.19], un is continuous in B1\S. On the other
hand, since ϕn is continuous in B1, according to [24, Theorem 6.27], we can show that un is continuous
in B1 if we can prove that there exist constants C0 > 0 and r0 > 0 such that

Capp((S ∪ ∂B1) ∩Br(x))
Capp(Br(x)) ≥ C0 (3.6)

whenever 0 < r < r0 and x ∈ S ∪ ∂B1. However, the estimate (3.6) in the case when p ∈ (N − 1, N ]
follows from Corollary 2.12; in the case when p > N , using Remark 2.7 and the fact that the Bessel
capacity is invariant under translations and is nondecreasing with respect to set inclusion, it is easy to see
that the estimate (3.6) holds for C0 = Capp({0})/Capp(B1) whenever x ∈ S∪∂B1 and 0 < r < 1. Thus,
for each n ∈ N, un is continuous in B1. Then, by Lemma A.4, u+

n = max{un, 0} and u−n = −min{un, 0}
are nonnegative p-subharmonic functions in B1 such that u+

n = u−n = 0 on S.
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Now let vn be the unique solution to the p-Laplace equation in B1\S such that vn−u+
n ∈W

1,p
0 (B1\S).

As before, by [26, Theorem 2.19] and [24, Theorem 6.27], vn is continuous in B1 and also vn = u+
n on

S ∪ ∂B1. Then, by the comparison principle, u+
n ≤ vn in B1. Let δ = δ(N, p), α = α(N, p) ∈ (0, 1) be

the constants from Step 1. Next, applying Caccioppoli’s inequality to u+
n , using the fact that u+

n ≤ vn

in B1 and applying the result of Step 1 to vn, for all r ∈ (0, δ] we deduce that∫
Br

|∇u+
n |p dx ≤ ppr−p

∫
B2r

u+p
n dx

≤ ppr−p
∫
B2r

vpn dx

≤ Cr1+α
∫
B1

|∇vn|p dx

≤ Cr1+α
∫
B1

|∇u+
n |p dx, (3.7)

where the last estimate comes from the fact that vn minimizes the functional v 7→
∫
B1
|∇v|p dx among

all v ∈ W 1,p(B1) such that v − u+
n ∈ W

1,p
0 (B1\S) (see Theorem 2.4) and u+

n is a competitor. Arguing
by the same way as for u+

n , we deduce that for all r ∈ (0, δ],∫
Br

|∇u−n |p dx ≤ Cr1+α
∫
B1

|∇u−n |p dx. (3.8)

Next, since ϕn → u in W 1,p(B1) and u solves the Dirichlet problem −∆pv = 0 in B1\S with its own
trace on S ∪ ∂B1, by [7, Theorem 3.5], un → u in W 1,p(B1) and hence u+

n → u+, u−n → u− in W 1,p(B1).
This, together with (3.7) and (3.8), implies that for all r ∈ (0, δ],∫

Br

|∇u|p dx =
∫
Br

|∇u+ −∇u−|p dx ≤ 2p−1
∫
Br

|∇u+|p dx+ 2p−1
∫
Br

|∇u−|p dx

≤ Cr1+α
∫
B1

|∇u+|p dx+ Cr1+α
∫
B1

|∇u−|p dx

≤ Cr1+α
∫
B1

|∇u|p dx.

This completes the proof of Lemma 3.1.

Now we establish an estimate for a weak solution to the p-Laplace equation in Br(x0)\Σ that vanishes
on Σ∩Br(x0) in the case when Σ is close enough, in Br(x0) and in the Hausdorff distance, to a diameter
of Br(x0).

Lemma 3.2. Let p ∈ (N − 1,+∞) and let α, δ ∈ (0, 1), C > 1 be as in Lemma 3.1. Then for each
% ∈ (0, δ] there exists ε0 ∈ (0, %) such that the following holds. Let Σ ⊂ RN be a closed set such
that (Σ∩Br(x0)) ∪ ∂Br(x0) is connected and assume that for some affine line L passing through x0,
dH(Σ∩Br(x0), L ∩ Br(x0)) ≤ ε0r. Then for any weak solution u ∈ W 1,p(Br(x0)) to the p-Laplace
equation in Br(x0)\Σ vanishing p-q.e. on Σ∩Br(x0), the following estimate holds∫

B%r(x0)
|∇u|p dx ≤ (C%)1+α

∫
Br(x0)

|∇u|p dx.
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Figure 3.2: The geometry in Lemma 3.2.

Proof. Since the p-Laplacian is invariant under scalings, rotations and translations, we can assume that
Br(x0) = B1 and L ∩Br(x0) = {0}N−1 × [−1, 1]. To simplify the notation, we denote {0}N−1 × [−1, 1]
by S. By contradiction, suppose that for some % ∈ (0, δ] there exist sequences (εn)n, (Σn)n and (un)n
such that for each n ∈ N: εn ∈ (0, %), εn ↓ 0 as n → +∞; Σn is closed, (Σn ∩B1) ∪ ∂B1 is connected,
dH(Σn ∩B1, S) ≤ εn implying that

dH(Σn ∩B1, S)→ 0 as n→ +∞; (3.9)

un is a weak solution to the p-Laplace equation in B1\Σn, un = 0 p-q.e. on Σn ∩B1 and∫
B%

|∇un|p dx > (C%)1+α
∫
B1

|∇un|p dx. (3.10)

Next, for each n ∈ N, we define vn ∈W 1,p(B1) as

vn(·) = un(·)(∫
B1
|∇un|p dx

) 1
p

. (3.11)

Notice that vn = 0 p-q.e. on Σn ∩B1 and∫
B1

|∇vn|p dx = 1. (3.12)

On the other hand, for each n ∈ N, Σn ∩ Bδ 6= ∅. This, together with the fact that (Σn ∩ B1) ∪ ∂B1

is connected, according to Corollary 2.10 and Proposition 2.11 in the case when p ∈ (N − 1, N ], and
according to Remark 2.7 in the case when p ∈ (N,+∞), implies that there exists a constant C̃ > 0
(independent of n) such that for each n ∈ N,

Capp(Σn ∩B1) ≥ C̃.

Using the above estimate together with Proposition 2.16 and with (3.12), we conclude that the sequence
(vn)n is bounded in W 1,p(B1). Hence, up to a subsequence still denoted by the same index, we have

vn ⇀ v weakly in W 1,p(B1) (3.13)

vn → v strongly in Lp(B1), (3.14)

for some v ∈ W 1,p(B1). Let us now show that v = 0 p-q.e. on S ∩ B1. For each t ∈ (0, 1), we fix a
function ψ ∈ C1

0 (B1) such that ψ = 1 on Bt and 0 ≤ ψ ≤ 1. Since (Σn ∩B1) ∪ ∂B1 is connected for
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each n ∈ N and dH(Σn ∩B1, S) → 0 as n → +∞, it follows (see Section 6 in [7]) that the sequence of
Sobolev spaces W 1,p

0 (B1\Σn) converges in the sense of Mosco to W 1,p
0 (B1\S). Notice that for each n ∈ N,

vnψ ∈W 1,p
0 (B1\Σn) and by (3.13), vnψ ⇀ vψ weakly in W 1,p(RN ). Then, using the definition of limit in

the sense of Mosco, we deduce that vψ ∈W 1,p
0 (B1\S). This implies that v = 0 p-q.e. on {0}N−1× [−t, t]

(see Remark 2.15). As t ∈ (0, 1) was arbitrarily chosen, v = 0 p-q.e. on S ∩B1.
We claim that v is a weak solution to the p-Laplace equation in B1\S, that is,∫

B1

〈|∇v|p−2∇v,∇ϕ〉 dx = 0 for all ϕ ∈ C∞0 (B1\S). (3.15)

In order to get the equality above, it suffices to show that |∇vn|p−2∇vn ⇀ |∇v|p−2∇v weakly in
Lp
′(B1;RN ). In fact, if ϕ ∈ C∞0 (B1\S), then {ϕ 6= 0} ⊂⊂ B1\S and thanks to (3.9), for all n large

enough, {ϕ 6= 0} ⊂⊂ B1\Σn, so we can write the following∫
B1

〈|∇vn|p−2∇vn,∇ϕ〉 dx = 0.

Next, letting n tend to +∞ in the above equality and using that |∇vn|p−2∇vn ⇀ |∇v|p−2∇v weakly
in Lp

′(B1;RN ), we would obtain (3.15). We first prove that, at least for a subsequence, ∇vn → ∇v
a.e. in B1. For each integer m ≥ 10, we define Ωm := {x ∈ B1 : dist(x, S) > 1/m}. Notice that
vn ⇀ v weakly in W 1,p(Ωm) and for all n large enough (with respect to m), vn is a weak solution
to the p-Laplace equation in Ωm. Then, according to [4, Theorem 2.1], there exists a subsequence
(vn(m,k))k∈N such that ∇vn(m,k) → ∇v a.e. in Ωm. For each m as above, let (vn(m+1,k))k∈N be a sub-
sequence of (vn(m,k))k∈N satisfying ∇vn(m+1,k) → ∇v a.e. in Ωm+1. Thus, for the diagonal subsequence
(vn(m,m))m∈N, ∇vn(m,m) → ∇v a.e. in B1. So, at least for a subsequence, ∇vn → ∇v a.e. in B1. On
the other hand, since (vn)n is bounded in W 1,p(B1), there exists w ∈ Lp′(B1;RN ) such that, up to a
subsequence still denoted by the same index, |∇vn|p−2∇vn ⇀ w weakly in Lp′(B1;RN ). Then, using the
fact that, up to a subsequence, |∇vn|p−2∇vn → |∇v|p−2∇v a.e. in B1 (we read |0|p−20 as 0 also when
1 < p < 2) and using Mazur’s lemma (see [40, Theorem 2, p.120]), we deduce that w = |∇v|p−2∇v. We
can now conclude that |∇vn|p−2∇vn ⇀ |∇v|p−2∇v weakly in Lp

′(B1;RN ). This proves the claim.
We now want to prove the strong convergence of ∇vn to ∇v in Lp(Bδ;RN ). Since ∇vn ⇀ ∇v

weakly in Lp(Bδ;RN ), we only need to prove that ‖∇vn‖Lp(Bδ;RN ) tends to ‖∇v‖Lp(Bδ;RN ). By the weak
convergence, we already have that∫

Bδ

|∇v|p dx ≤ lim inf
n→+∞

∫
Bδ

|∇vn|p dx.

Thus, it remains to prove the reverse inequality with a limsup. For this, for an arbitrary ε ∈ (δ, 1), we
fix χε ∈ C∞0 (B1) such that 0 ≤ χε ≤ 1, χε = 1 on Bδ, χε = 0 on Bcε and ‖∇χε‖∞ ≤ 2/(ε − δ). Notice
that vnχε ∈ W 1,p

0 (B1\Σn). Then, since vn ∈ W 1,p(B1) is a weak solution to the p-Laplace equation in
B1\Σn and χε = 0 on Bcε,∫

Bε

χε|∇vn|p dx = −
∫
Bε

vn〈|∇vn|p−2∇vn,∇χε〉 dx.

On the other hand, from the fact that ‖∇χε‖∞ ≤ 2/(ε−δ), (3.12), (3.14) and since |∇vn|p−2∇vn weakly
converges to |∇v|p−2∇v in Lp

′(Bε;RN ), it follows that

lim
n→+∞

−
∫
Bε

vn〈|∇vn|p−2∇vn,∇χε〉 dx = −
∫
Bε

v〈|∇v|p−2∇v,∇χε〉 dx =
∫
Bε

χε|∇v|p dx,

where to get the latter equality we have used that v ∈ W 1,p(B1) is a weak solution to the p-Laplace
equation in B1\S, vχε ∈W 1,p

0 (B1\S) and χε = 0 on Bcε. So we obtain that

lim sup
n→+∞

∫
Bδ

|∇vn|p dx ≤ lim sup
n→+∞

∫
Bε

χε|∇vn|p dx =
∫
Bε

χε|∇v|p dx.
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Next, letting ε tend to δ+ and using Lebesgue’s dominated convergence theorem, we get

lim sup
n→+∞

∫
Bδ

|∇vn|p dx ≤
∫
Bδ

|∇v|p dx.

Thus, we have proved the strong convergence of ∇vn to ∇v in Lp(Bδ;RN ). Using (3.10), (3.11) and
passing to the limit, we therefore arrive at∫

B%

|∇v|p dx ≥ (C%)1+α. (3.16)

However, Lemma 3.1, together with (3.12) and (3.13), says the following∫
B%

|∇v|p dx ≤ C%1+α,

which leads to a contradiction with (3.16), since α, % > 0 and C > 1. This completes the proof of
Lemma 3.2.

Now we want to establish an estimate for a weak solution to the p-Poisson equation in Br(x0)\Σ that
vanishes on Σ∩Br(x0) in the case when Σ is sufficiently close, in Br(x0) and in the Hausdorff distance,
to a diameter of Br(x0). For that purpose, in the following lemma we control the difference between a
weak solution to the p-Poisson equation and its p-Dirichlet replacement in a ball with a crack.

Lemma 3.3. Let p ∈ (N − 1,+∞) and f ∈ Lq(Br1(x0)) with q > q0, where q0 is defined in (1.1). Let
Σ be a closed arcwise connected set in RN and 0 < 2r0 ≤ r1 ≤ 1 satisfy

Σ∩Br0(x0) 6= ∅, Σ \Br1(x0) 6= ∅ and Br1(x0)\Σ 6= ∅. (3.17)

Let u ∈ W 1,p(Br1(x0)) satisfying u = 0 p-q.e. on Σ∩Br1(x0) be a weak solution to the p-Poisson
equation −∆pv = f in Br1(x0)\Σ. Let w ∈ W 1,p(Br1(x0)) be the unique solution to the p-Laplace
equation in Br1(x0)\Σ such that w − u ∈W 1,p

0 (Br1(x0)\Σ). If 2 ≤ p < +∞, then∫
Br1 (x0)

|∇u−∇w|p dx ≤ CrN+p′−Np
′

q

1 , (3.18)

where C = C(N, p, q0, q, ‖f‖q) > 0.
If 1 < p < 2, then ∫

Br1 (x0)
|∇u−∇w|p dx ≤ C(I(u))p(rp−1

1 )2+p′− 2p′
q , (3.19)

where C = C(p, q0, q, ‖f‖q) > 0 and I(u) = 2
2
p

(∫
Br1 (x0) |∇u|

p dx
) 2−p

p .

Remark 3.4. Observe that for any N ≥ 2 and any p ∈ (N − 1,+∞), N + p′ − Np′/q is positive if
q > q0, where q0 is defined in (1.1).

Proof. We provide a proof of the estimate (3.18), for a proof of the estimate (3.19) see [9, Lemma 4.9].
For convenience, we define z = u− w. Thanks to (3.17) and the fact that z = 0 p-q.e. on Σ ∩ Br1(x0),
by Proposition 2.18, there exists C0 = C0(N, p) > 0 such that

‖z‖Lp(Br1 (x0)) ≤ C0r1‖∇z‖Lp(Br1 (x0)).

Since r1 ≤ 1, the above estimate leads to the following

‖z‖W 1,p(Br1 (x0)) ≤ C‖∇z‖Lp(Br1 (x0)), (3.20)
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where C = C(N, p) > 0. Then, using the Sobolev embeddings (see [21, Theorem 7.26]) together with
(3.20) and in the case when N < p < +∞ using also that z(ξ) = 0 for some ξ ∈ Σ ∩ Br1(x0), yielding
that |z(x)| = |z(x) − z(ξ)| ≤ C ′(2r1)1−Np ‖z‖W 1,p(Br1 (x0)) for some C ′ = C ′(N, p) > 0, we deduce the
following

‖z‖
L
q′0 (Br1 (x0))

≤ C̃rα1 ‖∇z‖Lp(Br1 (x0)), (3.21)

where C̃ = C̃(N, p, q0) > 0 and

α = 0 if 2 ≤ N − 1 < p < N, α = N

q′0
if p = N, α = 1− N

p
if N < p < +∞.

Next, according to [17, Lemma 2.2], there exists c0 = c0(p) > 0 such that,∫
Br1 (x0)

|∇z|p dx ≤ c0
∫
Br1 (x0)

〈|∇u|p−2∇u− |∇w|p−2∇w,∇z〉 dx,

and, since z ∈W 1,p
0 (Br1(x0)\Σ), we get∫

Br1 (x0)
|∇z|p dx ≤ c0

∫
Br1 (x0)

〈|∇u|p−2∇u− |∇w|p−2∇w,∇z〉 dx = c0

∫
Br1 (x0)

fz dx.

Applying Hölder’s inequality to the right-hand side of the above formula and using (3.21), we obtain∫
Br1 (x0)

|∇z|p dx ≤ c0‖f‖Lq0 (Br1 (x0))‖z‖Lq′0 (Br1 (x0))
≤ c0|Br1(x0)|

1
q0
− 1
q ‖f‖Lq(Br1 (x0))‖z‖Lq′0 (Br1 (x0))

≤ Cr
N( 1

q0
− 1
q )+α

1

(∫
Br1 (x0)

|∇z|p dx

) 1
p

for some C = C(N, p, q0, q, ‖f‖q) > 0. Therefore,∫
Br1 (x0)

|∇z|p dx ≤ Cp
′
r
Np′( 1

q0
− 1
q )+p′α

1 = Cp
′
r
N+p′−Np

′
q

1 .

This completes the proof of Lemma 3.3.

Using together Lemma 3.2 and Lemma 3.3, we obtain the following estimate for the solution uΣ to
the Dirichlet problem −∆pu = f in Ω\Σ, u ∈ W 1,p

0 (Ω\Σ). Notice that in the following statement
the definition of γ(p, q) also depends on N , but we decided not to mention it explicitly to simplify the
notation.

Lemma 3.5. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q0, where q0 is defined in (1.1). Then there
exist a ∈ (0, 1/2), ε0 ∈ (0, a) and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 such that the following holds. Assume
that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r0 ≤ r1 ≤ 1, Br1(x0) ⊂ Ω,

Σ∩Br0(x0) 6= ∅ and Σ \Br1(x0) 6= ∅.

In addition, suppose that there exists an affine line L ⊂ RN passing through x0 such that

dH(Σ∩Br1(x0), L ∩Br1(x0)) ≤ ε0r1. (3.22)

Then
1
ar1

∫
Bar1 (x0)

|∇uΣ|p dx ≤ 1
2

(
1
r1

∫
Br1 (x0)

|∇uΣ|p dx

)
+ Cr

γ(p,q)
1 , (3.23)

where

γ(p, q) = N − 1 + p′ − Np′

q
if 2 ≤ p < +∞, γ(p, q) = 3p− 3− 2p

q
if 1 < p < 2. (3.24)
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Proof. Let w ∈W 1,p(Br1(x0)) be the unique solution to the p-Laplace equation in Br1(x0)\Σ such that
w − uΣ ∈ W 1,p

0 (Br1(x0)\Σ). Let I(·) be as in Lemma 3.3. Using (2.11) and Hölder’s inequality, it is
easy to see that

I(uΣ) ≤ C1 (3.25)

for some C1 = C1(N, p, q0, q, ‖f‖q, |Ω|) > 0. Then, applying Lemma 3.3 and using (3.25), we get∫
Br1 (x0)

|∇uΣ −∇w|p dx ≤ Cr1+γ(p,q)
1 , (3.26)

where C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 and γ(p, q) is defined in (3.24). Now let α, δ ∈ (0, 1) and C̃ > 1,
depending only on N and p, be as in Lemma 3.1, where C̃ is such that the estimate (3.2) holds with C

replaced by C̃. Define a = min
{
δ, (2−pC̃−1−α) 1

α

}
. For each N ≥ 2 and p ∈ (N − 1,+∞), the constant

a is fixed. Applying Lemma 3.2 with r = r1 and % = a, we obtain some ε0 ∈ (0, a) such that under the
condition (3.22),

1
a

∫
Bar1 (x0)

|∇w|p dx ≤ C̃1+αaα
∫
Br1 (x0)

|∇w|p dx ≤ 2−p
∫
Br1 (x0)

|∇w|p dx. (3.27)

Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q0, q, ‖f‖q, |Ω|
and can be different from line to line. Since for any nonnegative numbers c and d, (c+d)p ≤ 2p−1(cp+dp),
we have

1
a

∫
Bar1 (x0)

|∇uΣ|p dx ≤ 2p−1

a

∫
Bar1 (x0)

|∇w|p dx+ 2p−1

a

∫
Bar1 (x0)

|∇uΣ −∇w|p dx

≤ 1
2

∫
Br1 (x0)

|∇w|p dx+ 2p−1

a

∫
Br1 (x0)

|∇uΣ −∇w|p dx

≤ 1
2

∫
Br1 (x0)

|∇w|p dx+ Cr
1+γ(p,q)
1

≤ 1
2

∫
Br1 (x0)

|∇uΣ|p dx+ Cr
1+γ(p,q)
1 ,

where we have used (3.27), (3.26), and to obtain the last estimate, Theorem 2.4. The proof of Lemma 3.5
follows by dividing the resulting inequality by r1.

Finally, by iterating Lemma 3.5 in a sequence of balls {Balr1(x0)}l, we obtain the desired decay
behavior of the p-energy r 7→

∫
Br(x0) |∇uΣ|p dx under flatness control on Σ at x0 ∈ Ω.

Lemma 3.6. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then
there exist ε0, b, r ∈ (0, 1) and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0, where q0 is defined in (1.1), such
that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r0 ≤ r1 ≤ r,
Br1(x0) ⊂ Ω and that for each r ∈ [r0, r1] there exists an affine line L = L(r) passing through x0 such
that dH(Σ∩Br(x0), L ∩Br(x0)) ≤ ε0r. Assume also that Σ \Br1(x0) 6= ∅. Then for all r ∈ [r0, r1],∫

Br(x0)
|∇uΣ|p dx ≤ C

( r
r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b. (3.28)

Proof. Let a ∈ (0, 1/2), ε0 ∈ (0, a) and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 be the constants given by
Lemma 3.5. The definition of q1 and the assumption q > q1 have been made in order to guarantee that
γ(p, q) > 0, where γ(p, q) is defined in (3.24). Let us now define

b = min
{
γ(p, q)

2 ,
ln(3/4)
ln(a)

}
, r̄ =

(
1
4

) 1
b

.
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Notice that for all t ∈ (0, r̄],

1
2 t
b + tγ(p,q) ≤ (at)b. (3.29)

Indeed, since 0 < 2b ≤ γ(p, q), b ≤ ln(3/4)/ ln(a) and a, r ∈ (0, 1), tγ(p,q) ≤ t2b ≤ rbtb and 3/4 ≤ ab, so

1
2 t
b + tγ(p,q) ≤ 1

2 t
b + rbtb ≤ 3

4 t
b ≤ (at)b.

It is worth noting that Σ ∩Br0(x0) 6= ∅, which comes from the assumption

dH(Σ ∩Br0(x0), L(r0) ∩Br0(x0)) ≤ ε0r0.

Under the assumptions of Lemma 3.6, we can apply Lemma 3.5 in all the balls Balr1(x0), l ∈ {0, ..., k},
where k ∈ N is such that ak+1r1 < r0 ≤ akr1. Next, we define Ψ(r) = 1

r

∫
Br(x0) |∇uΣ|p dx, r ∈ (0, r1]

and prove by induction that for each l ∈ {0, ..., k},

Ψ(alr1) ≤ 1
2lΨ(r1) + C(alr1)b. (3.30)

It is clear that (3.30) holds for l = 0. Assume that (3.30) holds for some l ∈ {0, ..., k−1}. Then, applying
Lemma 3.5 and using the induction hypothesis, we get

Ψ(al+1r1) ≤ 1
2Ψ(alr1) + C(alr1)γ(p,q) ≤ 1

2

(
1
2lΨ(r1) + C(alr1)b

)
+ C(alr1)γ(p,q).

Thanks to (3.29), we finally conclude that

Ψ
(
al+1r1

)
≤ 1

2l+1 Ψ(r1) + C
(
al+1r1

)b
.

Thus (3.30) is proved. Now let r ∈ [r0, r1] and l ∈ {0, ..., k} be such that al+1r1 < r ≤ alr1. Then

Ψ(r) ≤ 1
a

Ψ(alr1) ≤ 1
a

1
2lΨ(r1) + C

a
(alr1)b ≤ 2

a
(al+1)bΨ(r1) + C ′(al+1r1)b

≤ C ′′
(
r

r1

)b
Ψ(r1) + C ′′rb,

where C ′′ = C ′′(a,N, p, q0, q, ‖f‖q, |Ω|) > 0. Since a is fixed for each N ≥ 2 and p ∈ (N−1,+∞), we can
assume that C ′′ depends only on N, p, q0, q, ‖f‖q and |Ω|. This completes the proof of Lemma 3.6.

4. Absence of loops

In this section, we prove Theorem 1.4. The next lemma will be used in the proof of Theorem 1.4.

Lemma 4.1. Let Σ be a closed connected set in RN with H1(Σ) < +∞. Then the following assertions
hold.

• If Σ contains a simple closed curve Γ, then H1-a.e. point x ∈ Γ is a “noncut” point, namely, there
exists a sequence of relatively open sets Dn ⊂ Σ satisfying

(i) x ∈ Dn for all sufficiently large n;

(ii) Σ \Dn are connected for all n;

(iii) diamDn ↘ 0 as n→ +∞;

(iv) Dn are connected for all n.

• “flatness” : for H1-a.e. point x ∈ Σ there exists the “tangent” line Tx to Σ at x in the sense that
x ∈ Tx and

1
r
dH(Σ∩Br(x), Tx ∩Br(x)) → 0

r→0+
.
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Proof. By [33, Lemma 5.6], H1-a.e. point x ∈ Γ is a noncut point for Σ (i.e., a point such that Σ \{x} is
connected). Then, by [32, Lemma 5.3], it follows that for each noncut point there are connected neigh-
borhoods Dn that can be cut leaving the set connected and diam(Dn)↘ 0, so (i)-(iv) are satisfied for a
suitable sequence Dn. Let us now prove the second assertion of Lemma 4.1. First, notice that, there is a
Lipschitz surjective mapping g : [0, L]→ Σ, where L = H1(Σ) (see, for instance, [18, Proposition 30.1]).
Furthermore, in [29, Proposition 3.4], it was proved that H1(Σ\Σ0) = 0, where

Σ0 = {x ∈ Σ : t ∈ (0, L), g′(t) exists, |g′(t)| = 1 whenever g(t) = x, g−1(x) is finite

and if g(t) = g(s) = x, then g′(t) = ±g′(s)},

and that for all x ∈ Σ0,
1
r

max
y∈Σ∩Br(x)

dist(y, Tx ∩Br(x)) → 0
r→0+

, (4.1)

where Tx = x+ Span(g′(t)), x = g(t). In order to prove that

1
r

max
y∈Tx∩Br(x)

dist(y,Σ ∩Br(x)) → 0
r→0+

, (4.2)

we shall follow the same approach as in [6, Proposition 2.2]. Observe that for each x ∈ Σ0 there exists
a mapping h 7→ ξ(h) such that ξ(h)→ 0 when h→ 0 and g(t+ h) = g(t) + hg′(t) + hξ(h) when |h| > 0
is small enough, where g(t) = x. Next, let δ ∈ (0, 1) be given. We can choose a sufficiently small r0 > 0
such that |ξ(h)| < δ/2 for all h ∈ (−r0, r0)\{0}. Then for each r ∈ (0, r0) and each z ∈ Tx∩B(1−δ/2)r(x),
there exists λ ∈ [(δ/2−1)r, (1−δ/2)r] such that z = g(t)+λg′(t). So, defining y = g(t+λ) and observing
that g(t + λ) = g(t) + λg′(t) + λξ(λ), we deduce that y ∈ Σ ∩ Br(x) and |z − y| < δr/2. This implies
that maxz∈Tx∩Br(x) dist(z,Σ∩Br(x)) < δr for all r ∈ (0, r0) and, therefore, proves (4.2). Observing that
(4.1) and (4.2) together prove the second assertion of Lemma 4.1, we complete the proof.

Proof of Theorem 1.4. For the sake of contradiction, assume that for some λ > 0 a minimizer Σ of Fλ,f,Ω
over K(Ω) contains a simple closed curve Γ ⊂ Σ. Notice that there is no a relatively open subset in Σ
contained in both Γ and ∂Ω, because otherwise, according to Lemma 4.1, there would be a relatively
open subset D ⊂ Σ such that D ⊂ ∂Ω and Σ\D would remain connected, but, observing that in this
case uΣ\D = uΣ and H1(D) > 0, we would obtain a contradiction with the optimality of Σ. Thus, by
Lemma 4.1, there is a point x0 ∈ Γ ∩ Ω which is a noncut point for Σ and such that Σ is flat at x0.
Therefore for x0 there exist the sets Dn ⊂ Σ and the tangent line Tx0 to Σ at x0 as in Lemma 4.1. Let
ε0, b, r, C be the constants of Lemma 3.6 and let Bt0(x0) ⊂ Ω with t0 < r. We define rn := diamDn so
that Dn ⊂ Σ∩Brn(x0). The flatness of Σ at x0 implies that for any given ε > 0 there is δ ∈ (0, t0] such
that

dH(Σ∩Br(x0), Tx0 ∩Br(x0)) ≤ εr for all r ∈ (0, δ].

For each n ∈ N, we define Σn := Σ \Dn, which, by Lemma 4.1, remains closed and connected. We fix
ε = ε0/2 and r ∈ (0, δ]. Next, we want to apply Lemma 3.6 to Σn, but we have to control the Hausdorff
distance between Σn ∩Br(x0) and a diameter of Br(x0). We already know that Σ is εr-close, in Br(x0)
and in the Hausdorff distance, to Tx0 ∩Br(x0) for all r ∈ (0, δ]. Furthermore, if rn ≤ ε0r/2, then

dH(Σn ∩Br(x0), Tx0 ∩Br(x0)) ≤ dH(Σn ∩Br(x0),Σ ∩Br(x0)) + dH(Σ ∩Br(x0), Tx0 ∩Br(x0))

≤ rn + ε0r

2 ≤ ε0r

2 + ε0r

2 = ε0r.

Thus, if 2rn/ε0 < δ/2, we can apply Lemma 3.6 to Σn for the interval [2rn/ε0, δ], which says that∫
Br(x0)

|∇uΣn |p dx ≤ C
(r
δ

)1+b ∫
Bδ(x0)

|∇uΣn |p dx+ Cr1+b for all r ∈
[

2rn
ε0

, δ

]
,
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where C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 (q0 is defined in (1.1)). Hereinafter in this proof, C denotes a
positive constant that does not depend on rn and can be different from line to line. Next, using the
above estimate for r = 2rn/ε0 and using also (2.11), we get∫

B 2rn
ε0

(x0)
|∇uΣn |p dx ≤ Cr1+b

n

for each n ∈ N such that 2rn/ε0 < δ/2. Recall that the exponent b given by Lemma 3.6 is positive
provided q > q1, which is one of our assumptions. Now, since Σ is a minimizer of Problem 1.1 and Σn
is a competitor for Σ, we get the following

0 ≤ Fλ,f,Ω(Σn)−Fλ,f,Ω(Σ) ≤ Ef,Ω(uΣ)− Ef,Ω(uΣn)− λrn

≤ C
∫
B2rn (x0)

|∇uΣn |p dx+ Cr
N+p′−Np

′
q

n − λrn (by Corollary 2.21)

≤ C
∫
B 2rn

ε0
(x0)
|∇uΣn |p dx+ Cr

N+p′−Np
′

q
n − λrn

≤ Cr1+b
n + Cr

N+p′−Np
′

q
n − λrn.

Notice that N + p′ − Np′/q > 1 if and only if q > Np/(Np − N + 1), which is always true under the
assumption q > q1. Therefore, letting n tend to +∞, we arrive to a contradiction. This completes the
proof of Theorem 1.4.

5. Proof of partial regularity

In this section, we prove that every solution Σ to Problem 1.1 is locally C1,α regular at H1-a.e. point
x ∈ Σ ∩ Ω.

We recall that K(Ω) is the class of all closed connected proper subsets of Ω. The factor λ in the
statement of Problem 1.1 affects the shape of an optimal set minimizing the functional Fλ,f,Ω over K(Ω),
and, according to Proposition 2.25, we know that there exists a number λ0 = λ0(N, p, f,Ω) > 0 such
that if λ ∈ (0, λ0], then each minimizer Σ of the functional Fλ,f,Ω over K(Ω) has positive H1-measure.
Throughout this section, we assume that λ = λ0 = 1 for simplicity. This is not restrictive regarding to
the regularity theory.

As mentioned in Section 1.1, our approach differs from the one used in [9] to prove the partial
regularity result in dimension 2. Since we deal with general dimensions, in Propositions 5.8, 5.12, 5.13
we assume, in addition, that the quantity θΣ (see Definition 5.3) at the corresponding scale is bounded
from above by 10µ, where µ is a unique positive solution to the equation µ = 5 + µ1− 1

N , compared
to Propositions 6.8, 6.11, 6.12 in [9]. This condition allows us to construct a nice competitor for the
minimizer Σ and derive the estimate (5.23), which we use to prove the assertion (i) of Proposition 5.8.
All in all, we prove the estimate (5.16), which is crucial in the proof of Proposition 5.12. To prove the
assertion (iii) of Proposition 5.12, we need to control the density θΣ on a smaller scale by its value on
a larger scale. Adapting some of the approaches of Paolini and Stepanov in [32], we prove that for each
a ∈ (0, 1/20] there exists ε ∈ (0, 1/100) such that if x0 ∈ Σ, Br(x0) ⊂ Ω, r > 0 is sufficiently small
and βΣ(x0, r) + wτΣ(x0, r) ≤ ε, then the estimate (5.31) holds. Altogether we prove Corollary 5.14 and,
finally, we prove Theorem 1.3.

5.1. Control on defect of minimality

We begin with the definition of the flatness.
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Definition 5.1. For each closed set Σ ⊂ RN , each point x ∈ RN and radius r > 0, we define the flatness
of Σ in Br(x) as follows

βΣ(x, r) = inf
L3x

1
r
dH(Σ∩Br(x), L ∩Br(x)),

where the infimum is taken over the set of all affine lines (1-dimensional planes) L passing through x.

Notice that if βΣ(x, r) < +∞, then it is easy to prove that the infimum above is actually the
minimum, and in this case βΣ(x, r) ∈ [0,

√
2] and βΣ(x, r) =

√
2 if and only if Σ ∩ Br(x) is a point

in ∂Br(x). Furthermore, it is worth noting that if κ ∈ (0, 1) and βΣ(x, κr) < +∞, then the following
inequality holds

βΣ(x, κr) ≤ 2
κ
βΣ(x, r) (5.1)

(for a proof of the inequality (5.1), we refer the reader to the proof of [9, Proposition 6.1], which actually
applies for the general spatial dimension N ≥ 2).

Now we introduce the following notions of the local energy and the density, which will play a crucial
role in the proof of partial regularity.

Definition 5.2. Let Σ ∈ K(Ω) and τ ∈ [0,
√

2]. For each x0 ∈ Ω and r > 0, we define

wτΣ(x0, r) = sup
Σ′∈K(Ω),Σ′∆Σ⊂Br(x0)

H1(Σ′)≤100H1(Σ), βΣ′ (x0,r)≤τ

1
r

∫
Br(x0)

|∇uΣ′ |p dx. (5.2)

The condition H1(Σ′) ≤ 100H1(Σ), together with the facts that H1(Σ) < +∞, Σ′ ∈ K(Ω) in the
definition of wτΣ above, guarantees that Σ′ is arcwise connected (see Remark 2.17).

Definition 5.3. Let Σ ⊂ RN be H1-measurable. For each x0 ∈ Σ and r > 0, we define

θΣ(x0, r) = 1
r
H1(Σ ∩Br(x0)).

Remark 5.4. Assume that Σ ∈ K(Ω), τ ∈ [0,
√

2], x0 ∈ Ω and βΣ(x0, r) ≤ τ . Then there exists a
solution to problem (5.2). Indeed, Σ is a competitor in the definition of wτΣ(x0, r). Thus, according to
Proposition 2.22, wτΣ(x0, r) ∈ [0,+∞). We can then conclude using the direct method in the Calculus
of Variations, standard compactness results and Go la̧b’s theorem (see, for instance, [33, Theorem 3.3]).

We shall use the following proposition in order to establish a decay behavior for wτΣ(x0, r) whenever
Σ is flat enough in all balls Br(x0) with r ∈ [r0, r1].

Proposition 5.5. Let Σ ⊂ Ω be closed and arcwise connected, x ∈ Ω, τ ∈ [0, 1/10] and let βΣ(x, r1) ≤ ε
for some ε ∈ [0, τ ]. In addition, assume that 0 < r0 < r1, βΣ(x, r) ≤ τ for all r ∈ [r0, r1] and
Σ\Br1(x) 6= ∅. If r ∈ [r0, r1], then for any closed arcwise connected set Σ′ ⊂ Ω such that Σ′∆ Σ ⊂ Br(x)
and βΣ′(x, r) ≤ τ we have that

(i)
βΣ′(x, r1) ≤ 5τr

r1
+ ε, (5.3)

(ii)
βΣ′(x, s) ≤ 6τ for all s ∈ [r, r1]. (5.4)

Proof. Every ball in this proof is centered at x. Let L1, L and L′ realize the infimum, respectively, in
the definitions of βΣ(x, r1), βΣ(x, r) and βΣ′(x, r). Notice that

dH(Σ∩Br, L ∩Br) ≤ τr. (5.5)
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On the other hand,

dH(Σ′ ∩Br1 , L1 ∩Br1) ≤ dH(Σ′ ∩Br1 ,Σ∩Br1) + dH(Σ∩Br1 , L1 ∩Br1)

≤ dH(Σ′ ∩Br,Σ∩Br) + εr1, (5.6)

where the latter inequality comes because Σ′∆ Σ ⊂ Br and βΣ(x, r1) ≤ ε. In addition,

dH(Σ′ ∩Br,Σ∩Br) ≤ dH(Σ′ ∩Br, L′ ∩Br) + dH(L ∩Br, L′ ∩Br) + dH(Σ∩Br, L ∩Br)

≤ 2τr + dH(L ∩Br, L′ ∩Br), (5.7)

where we have used (5.5) and the assumption βΣ′(x, r) ≤ τ . Notice that, since Σ ∩ Br 6= ∅, Σ\Br1 6= ∅
and Σ is arcwise connected, there is a sequence (xn)n ⊂ Σ\Br converging to some point y ∈ ∂Br. We
conclude that y ∈ Σ′ ∩ Σ ∩ ∂Br because Σ′∆Σ ⊂ Br and Σ′, Σ are closed. If y ∈ L ∩ L′, then L = L′.
Assume that y 6∈ L. Let Π be the 2-dimensional plane passing through L and y, and let ξ ∈ L ∩ ∂Br be
such that |y − ξ| = dist(y, L ∩ ∂Br). Denote by γ the geodesic in the circle Π ∩ ∂Br connecting y with
ξ. Then

H1(γ) ≤ arcsin(βΣ(x, r))r ≤ arcsin(τ)r ≤ 3
2τr,

where we have used the assumption βΣ(x, r) ≤ τ and the fact that arcsin(t) ≤ 3t/2 for all t ∈ [0, 1/10].
Notice that if y ∈ L′, then dH(L ∩ Br, L′ ∩ Br) ≤ H1(γ), otherwise let ξ′ ∈ L′ ∩ ∂Br be such that
|y − ξ′| = dist(y, L′ ∩ ∂Br) and let γ′ be the geodesic in the circle Π′ ∩ ∂Br connecting y and ξ′, where
Π′ is the 2-dimensional plane passing through L′ and y. Then, using the assumption βΣ′(x, r) ≤ τ and
proceeding as before, we get

H1(γ′) ≤ 3
2τr.

Finally, we can conclude that

dH(L ∩Br, L′ ∩Br) ≤ H1(γ) +H1(γ′) ≤ 3τr.

This, together with (5.7), gives the following

dH(Σ′ ∩Br,Σ ∩Br) ≤ 5τr. (5.8)

Using (5.6) and (5.8), we get

dH(Σ′ ∩Br1 , L1 ∩Br1) ≤ 5τr + εr1.

Thus, we have proved (i). Now let s ∈ [r, r1] and let Ls be an affine line realizing the infimum in the
definition of βΣ(x, s). As in the proof of (i), we get

dH(Σ′ ∩Bs, Ls ∩Bs) ≤ dH(Σ′ ∩Bs,Σ∩Bs) + dH(Σ∩Bs, Ls ∩Bs)

≤ dH(Σ′ ∩Br,Σ∩Br) + dH(Σ∩Bs, Ls ∩Bs).

This, together with (5.8) and the fact that βΣ(x, s) ≤ τ , implies

dH(Σ′ ∩Bs, Ls ∩Bs) ≤ 5τr + τs ≤ 6τs,

concluding the proof of Proposition 5.5.

Hereinafter in this section, τ is a fixed constant such that τ ∈ (0, ε0/6], where ε0 is the constant of
Lemma 3.6. Notice that ε0 is fairly small.

Now we establish a decay behavior for wτΣ(x, ·), provided that βΣ(x, ·) is small enough.
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Proposition 5.6. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4).
Let ε0, b, r ∈ (0, 1), C > 0 be the constants of Lemma 3.6. Assume that Σ ∈ K(Ω), H1(Σ) < +∞,
0 < r0 ≤ r1/10 and Br1(x0) ⊂ Ω with r1 ∈ (0,min{r,diam(Σ)/2}). Assume also that

βΣ(x0, r) ≤ τ/2

for all r ∈ [r0, r1]. Then, for all r ∈ [r0, r1/10],

wτΣ(x0, r) ≤ C
(
r

r1

)b
wτΣ(x0, r1) + Crb. (5.9)

Proof. According to Remark 2.17, Σ is arcwise connected. From Remark 5.4 it follows that there is
Σr ⊂ Ω realizing the supremum in the definition of wτΣ(x0, r) which, by Remark 2.17, is arcwise connected.
Furthermore, Proposition 5.5 says that

βΣr (x0, r1) ≤ τ and βΣr (x0, s) ≤ 6τ ≤ ε0 for all s ∈ [r, r1].

Thus, we can apply Lemma 3.6 to uΣr , which yields

wτΣ(x0, r) = 1
r

∫
Br(x0)

|∇uΣr |p dx ≤ C
( r
r1

)b 1
r1

∫
Br1(x0)

|∇uΣr |p dx+ Crb ≤ C
( r
r1

)b
wτΣ(x0, r1) + Crb.

Notice that to obtain the last estimate we have used the definition of wτΣ(x0, r1) and the fact that
βΣr (x0, r1) ≤ τ .

Now we are in position to control a defect of minimality via wτΣ.

Proposition 5.7. Let p ∈ (N − 1,+∞) and f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4), and let
ε0, b, r ∈ (0, 1) be the constants of Lemma 3.6. Assume that Σ ∈ K(Ω), H1(Σ) < +∞, 0 < r0 ≤ r1/10,
Br1(x0) ⊂ Ω with r1 ∈ (0,min{r,diam(Σ)/2}). Assume also that

βΣ(x0, r) ≤ τ/2

for all r ∈ [r0, r1]. Then there exists a constant C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0, where q0 is defined in
(1.1), such that if r ∈ [r0, r1/10], then for any Σ′ ∈ K(Ω) satisfying Σ′∆Σ ⊂ Br(x0), H1(Σ′) ≤ 100H1(Σ)
and βΣ′(x0, r) ≤ τ ,

Ef,Ω(uΣ)− Ef,Ω(uΣ′) ≤ Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b. (5.10)

Proof. According to Remark 2.17, Σ and Σ′ are arcwise connected and by Corollary 2.21,

Ef,Ω(uΣ)− Ef,Ω(uΣ′) ≤ C
∫
B2r(x0)

|∇uΣ′ |p dx+ CrN+p′−Np
′

q , (5.11)

where C = C(N, p, q0, q, ‖f‖q) > 0. On the other hand, by Proposition 5.5,

βΣ′(x0, r1) ≤ τ and βΣ′(x0, s) ≤ ε0 for all s ∈ [r, r1].

Thus, applying Lemma 3.6 to uΣ′ , we obtain that∫
B2r(x0)

|∇uΣ′ |p dx ≤ C
(2r
r1

)1+b ∫
Br1 (x0)

|∇uΣ′ |p dx+ C(2r)1+b, (5.12)

where C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0. Hereinafter in this proof, C denotes a positive constant that can
only depend on N, p, q0, q, ‖f‖q, |Ω| and can be different from line to line. Using (5.11), (5.12) and the
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fact that rN+p′−Np
′

q < r1+b (because r ∈ (0, 1) and 0 < b < N −1 +p′−Np′/q), we deduce the following
chain of estimates

Ef,Ω(uΣ)− Ef,Ω(uΣ′) ≤ C
( r
r1

)1+b ∫
Br1(x0)

|∇uΣ′ |p dx+ Cr1+b

≤ Cr
( r
r1

)b 1
r1

∫
Br1 (x0)

|∇uΣ′ |p dx+ Cr1+b

≤ Cr
( r
r1

)b
wτΣ(x0, r1) + Cr1+b,

where the last estimate is obtained using the definition of wτΣ(x0, r1) and the fact that βΣ′(x0, r1) ≤ τ .
This completes the proof of Proposition 5.7.

5.2. Density control

The following proposition says that there exists a constant κ ∈ (0, 1/100) such that if Σ is a solution to
Problem 1.1, βΣ(x0, r), wτΣ(x0, r) are fairly small provided that Br(x0) ⊂ Ω with x0 ∈ Σ, and if θΣ(x0, r)
is also small enough, then there exists t ∈ [κr, 2κr] such that H0(Σ ∩ ∂Bt(x0)) = 2. This allows to
construct a nice competitor for Σ and derive the estimate (5.16) leading to the regularity.

Proposition 5.8. Let p ∈ (N − 1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then
there exist δ, ε, κ ∈ (0, 1/100) and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0, where q0 is defined in (1.1), such that
the following holds. Assume that Σ is a solution to Problem 1.1, x0 ∈ Σ, 0 < r < min{δ, diam(Σ)/2},
Br(x0) ⊂ Ω and

βΣ(x0, r) + wτΣ(x0, r) ≤ ε. (5.13)

Assume also that
θΣ(x0, r) ≤ 10µ, (5.14)

where µ is a unique positive solution to the equation µ = 5 + µ1− 1
N . Then the following assertions hold.

(i) There exists t ∈ [κr, 2κr] such that

H0(Σ ∩ ∂Bt(x0)) = 2. (5.15)

(ii) Let t ∈ [κr, 2κr] be such that H0(Σ∩∂Bt(x0)) = 2. Then

(ii-1) the two points of Σ∩∂Bt(x0) belong to two different connected components of

∂Bt(x0) ∩ {y : dist(y, L) ≤ βΣ(x0, t)t},

where L is an affine line realizing the infimum in the definition of βΣ(x0, t).

(ii-2) Σ∩Bt(x0) is arcwise connected.

(ii-3) If {z1, z2} = Σ∩∂Bt(x0), then

H1(Σ∩Bt(x0)) ≤ |z2 − z1|+ Ct
( t
r

)b
wτΣ(x0, r) + Ct1+b, (5.16)

where b ∈ (0, 1) is the constant given by Lemma 3.6.

Remark 5.9. If the situation of item (ii-1) occurs, we say that the two points lie “on different sides”.

Proof. Let ε0, b, r ∈ (0, 1) be the constants of Lemma 3.6 and let C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 be the
constant of Proposition 5.7. We define

ε = 1
µC

( τ
10

)10
, k = τ

200 . (5.17)
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Fix δ ∈ (0, r) such that δb ≤ ε and hence

wτΣ(x0, r) + δb ≤ 2ε. (5.18)

Step 1. Let us first prove (i). Thanks to (5.1) and (5.13), for all s ∈ [κr, r], it holds

βΣ(x0, s) ≤
2
κ
βΣ(x0, r) ≤

2ε
κ
. (5.19)

On the other hand, for all s ∈ [κr, r],

θΣ(x0, s) ≤
r

s
θΣ(x0, r) ≤

r

κr
θΣ(x0, r) ≤

10µ
κ
, (5.20)

where the last estimate is due to (5.14). Fix an arbitrary s ∈ [κr, 2κr]. By the coarea inequality (see,
for instance, [33, Theorem 2.1]),

H1(Σ ∩B(1+κ)s(x0)) ≥
∫ (1+κ)s

0
H0(Σ ∩ ∂B%(x0)) d% >

∫ (1+κ)s

s

H0(Σ ∩ ∂B%(x0)) d%, (5.21)

where the latter estimate comes from the fact that H0(Σ ∩ ∂B%(x0)) ≥ 1 for all % ∈ (0, r], since x0 ∈ Σ,
Σ is arcwise connected and r < diam(Σ)/2. Then there exists % ∈ [s, (1 + κ)s] such that

1
κs
H1(Σ ∩B(1+κ)s(x0)) ≥ H0(Σ ∩ ∂B%(x0)).

This, together with (5.20) and the fact that s ∈ [κr, 2κr], implies that

H0(Σ ∩ ∂B%(x0)) ≤ 1 + κ

κ
θΣ(x0, (1 + κ)s) ≤ 10(1 + κ)µ

κ2 . (5.22)

Let L realize the infimum in the definition of βΣ(x0, %) and let {ξ1, ξ2} = ∂B%(x0) ∩ L. For each
zi ∈ Σ ∩ ∂B%(x0), let z′i denote the projection of zi to [ξ1, ξ2]. Define W and Σ′ by

W :=
H0(Σ∩∂B%(x0))⋃

i=1
[zi, z′i], Σ′ := W ∪ [ξ1, ξ2] ∪ (Σ\B%(x0)).

Then Σ′ ∈ K(Ω), Σ′∆Σ ⊂ B%(x0) and from (5.19) it follows that βΣ′(x0, %) ≤ 2ε/κ. Furthermore,
using (5.20) and the facts that Σ is arcwise connected and r < diam(Σ)/2, it is easy to see that
H1(Σ′) ≤ 100H1(Σ). Since Σ′ is a competitor,

H1(Σ) ≤ H1(Σ′) + Ef,Ω(uΣ)− Ef,Ω(uΣ′),

and then, using Proposition 5.7, we get

H1(Σ ∩Bs(x0)) ≤ H1(Σ ∩B%(x0)) ≤ 2%+H1(W ) + C%
(%
r

)b
wτΣ(x0, r) + C%1+b

≤ 2(1 + κ)s+ 10(1 + κ)2µ

κ2 βΣ(x0, %)s+ C(1 + κ)s
(

(1 + κ)s
r

)b
wτΣ(x0, r) + C((1 + κ)s)1+b, (5.23)

where we have used that H1(W ) ≤ (H0(Σ ∩ ∂B%(x0)))βΣ(x0, %)%, (5.22) and the fact that % ≤ (1 + κ)s.
Now we define the next three sets

E1 := {t ∈ (0, 2κr] : H0(Σ ∩ ∂Bt(x0)) = 1}, E2 := {t ∈ (0, 2κr] : H0(Σ ∩ ∂Bt(x0)) = 2},

E3 := {t ∈ (0, 2κr] : H0(Σ ∩ ∂Bt(x0)) ≥ 3}.

We claim that either E1 = ∅ or E1 ⊂ (0, κr/200). Assume by contradiction that there exists some
t ∈ [κr/200, 2κr] such that H0(Σ∩∂Bt(x0)) = 1. Then the set

Σ′′ = Σ\Bt(x0)
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would be arcwise connected, Σ′′∆ Σ ⊂ Bt(x0), H1(Σ′′) < H1(Σ) and

βΣ′′(x0, r) ≤ 2κ+ ε < τ. (5.24)

Since Σ′′ is a competitor, H1(Σ) ≤ H1(Σ′′)+Ef,Ω(uΣ)−Ef,Ω(uΣ′′). On the other hand, we observe that
t ≤ H1(Σ ∩Bt(x0)), because t < diam(Σ)/2, x0 ∈ Σ and Σ is arcwise connected. Thus

t ≤ H1(Σ ∩Bt(x0)) ≤ Ef,Ω(uΣ)− Ef,Ω(uΣ′′). (5.25)

Notice that, by assumption, the estimate (5.10) holds with C, but looking at the proof of Proposition 5.7,
we observe that (2.10) in Corollary 2.21 also holds with C. Then, using (5.25), Corollary 2.21, the fact
that tN+p′−Np

′
q < t1+b (because t ∈ (0, 1) and 0 < b < N − 1 + p′ −Np′/q) and (5.24) together with the

definition of wτΣ(x0, r), we obtain the following chain of estimates

t ≤ H1(Σ ∩Bt(x0)) ≤ Ef,Ω(uΣ)− Ef,Ω(uΣ′′) ≤ C
∫
B2t(x0)

|∇uΣ′′ |p dx+ CtN+p′−Np
′

q

≤ C
∫
Br(x0)

|∇uΣ′′ |p dx+ Cr1+b

≤ CrwτΣ(x0, r) + Cr1+b,

leading to a contradiction with the fact that κr/200 ≤ t, since CrwτΣ(x0, r) + Cr1+b ≤ 2Crε < κr/200
by (5.18) and (5.17). Thus, either E1 = ∅ or

E1 ⊂ (0, κr/200). (5.26)

Next, by the coarea inequality,

H1(Σ ∩B2κr(x0)) ≥
∫ 2κr

0
H0(Σ ∩ ∂Bt(x0)) dt. (5.27)

Also, applying (5.23) with s = 2κr and using (5.17), (5.18) and the fact that βΣ(x0, %) ≤ 2ε/κ, we get
the following estimate

H1(Σ ∩B2κr(x0)) ≤ 4κr + κr

200 . (5.28)

Then, (5.26), (5.27) and (5.28) together imply

4κr + κr

200 ≥ H
1(E1) + 2H1(E2) + 3H1(E3)

≥ H1(E1) + 2(2κr −H1(E1)−H1(E3)) + 3H1(E3)

= 4κr −H1(E1) +H1(E3)

> 4κr − κr

200 +H1(E3)

and hence
H1(E3) < κr

100 . (5.29)

Notice that (5.26) and (5.29) yield the following estimate

H1(E2 ∩ [κr, 2κr]) > κr

2 .

This completes the proof of (i).
Step 2. We prove (ii). Let t ∈ E2∩[κr, 2κr]. Assume that (ii-1) does not hold for t. Let L be an affine line
realizing the infimum in the definition of βΣ(x0, t), {P1, P2} = L∩ ∂Bt(x0) and {z1, z2} = Σ∩ ∂Bt(x0).
Assume that dist(zi, {P1, P2}) = dist(zi, P2), i = 1, 2. Then we can take as a competitor the set

Σ′′′ = (Σ \Bt(x0)) ∪ γz1,P2 ∪ γz2,P2 ,
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where γzi,P2 is the geodesic in ∂Bt(x0) connecting zi and P2 for i = 1, 2. So

H1(Σ∩Bt(x0)) ≤ H1(γz1,P2) +H1(γz2,P2) + Ef,Ω(uΣ)− Ef,Ω(uΣ′′′).

Arguing as in the proof of the fact that E1 ⊂ (0, κr/200) in Step 1, we obtain the estimate

Ef,Ω(uΣ)− Ef,Ω(uΣ′′′) <
κr

200 .

In addition, thanks to (5.19) and to the fact that arcsin(s) ≤ 2s for all s ∈ [0, 1/10],

H1(γz1,P2) +H1(γz2,P2) ≤ 2t arcsin(βΣ(x0, t)) ≤
8εt
κ
.

But then
H1(Σ ∩Bt(x0)) < κr

100
and this leads to a contradiction because H1(Σ∩Bt(x0)) ≥ t ≥ κr. Therefore (ii-1) holds. Next, assume
that Σ∩Bt(x0) is not arcwise connected. Then, from Lemma 5.10, it follows that Σ \Bt(x0) is arcwise
connected. Thus, taking the set Σ \Bt(x0) as a competitor, by analogy with Step 1, we get

H1(Σ ∩Bt(x0)) < κr

200 ,

which, as before, leads to a contradiction. Thus (ii-2) holds. Since Σ∩∂Bt(x0) = {z1, z2}, where z1, z2 lie
“on different sides”, the set (Σ \Bt(x0))∪ [z1, z2] is a competitor for Σ, moreover, it fulfills the conditions
of Proposition 5.7 and hence (5.16) holds. This proves (ii) and completes the proof of Proposition 5.8.

Lemma 5.10. Let x0 ∈ RN , r > 0 and Σ ⊂ RN be an arcwise connected set such that Σ∩Br(x0) is not
arcwise connected and H0(Σ ∩ ∂Br(x0)) = 2. Then Σ\Br(x0) is arcwise connected.

Proof. Let {z1, z2} = Σ ∩ ∂Br(x0). It suffices to prove that for every point x ∈ Σ\Br(x0) there exist
two arcs γ1, γ2 ⊂ Σ\Br(x0) such that γi connects x with zi for i ∈ {1, 2}. Since Σ is arcwise connected
and Σ ∩ ∂Br(x0) = {z1, z2}, for every x ∈ Σ\Br(x0) there exists an arc γ ⊂ Σ\Br(x0) connecting x

with z1 or with z2. Assume by contradiction that for some x ∈ Σ\Br(x0) there is no arc γ ⊂ Σ\Br(x0)
connecting x with zi, where i ∈ {1, 2}. Let z̃i = z2 if i = 1 and z̃i = z1 if i = 2. Since Σ is arcwise
connected, there is an arc γ ⊂ Σ connecting x with zi. We can conclude that γ = γext ∪ γint, where
γext ⊂ Σ\Br(x0) is an arc connecting x with z̃i and γint ⊂ Σ ∩ Br(x0) is an arc connecting z̃i with zi.
On the other hand, if y ∈ Σ ∩ Br(x0), then there exists an arc in Σ ∩ Br(x0) connecting y with z̃i or
with zi. Therefore, Σ∩Br(x0) is arcwise connected, which leads to a contradiction. This completes our
proof of Lemma 5.10.

Now our purpose is to control the density θΣ from above on a smaller scale by its value on a larger
scale, provided that on a larger scale βΣ and wτΣ are small enough. Adapting some of the approaches of
Paolini and Stepanov in [32], we prove the following proposition.

Proposition 5.11. Let p ∈ (N − 1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then
there exists δ ∈ (0, 1) and for each a ∈ (0, 1/20] there exists ε ∈ (0, 1) such that the following holds.
Assume that Σ is a solution to Problem 1.1, x0 ∈ Σ, r ∈ (0,min{δ, diam(Σ)/2}), Br(x0) ⊂ Ω and

βΣ(x0, r) + wτΣ(x0, r) ≤ ε. (5.30)

Then the following estimate holds

θΣ(x0, ar) ≤ 5 + θΣ(x0, r)1− 1
N . (5.31)
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Proof. Let ε0, b, r ∈ (0, 1) be the constants of Lemma 3.6 and let C > 0 be the constant of Proposition 5.7.
Recall that τ ∈ (0, ε0/6]. We define δ, ε ∈ (0, 1) as follows

δ = min
{
r,

(
1

4C

) 1
b

}
, ε = a2c0τ

107 , (5.32)

where c0 > 0 is a constant that will be fixed later for the proof to work. It is worth noting that, according
to (5.1) and (5.30), for all s ∈ [ar, r], it holds

βΣ(x0, s) ≤
2
a
βΣ(x0, r) ≤

2ε
a
. (5.33)

Applying the coarea inequality (see, for instance, [33, Theorem 2.1]), we get

H1(Σ ∩Br(x0)) ≥
∫ r

0
H0(Σ ∩ ∂B%(x0)) d% >

∫ 2ar

ar

H0(Σ ∩ ∂B%(x0)) d%,

where the latter inequality comes from the fact that for all % ∈ (0, r], H0(Σ ∩ ∂B%(x0)) ≥ 1, since Σ is
arcwise connected (see Remark 2.17), x0 ∈ Σ and r < diam(Σ)/2. Then there exists % ∈ [ar, 2ar] such
that

H0(Σ ∩ ∂B%(x0)) ≤ 1
a
θΣ(x0, r). (5.34)

Next, we construct the competitor Σ′ for Σ such that Σ′∆Σ ⊂ B%(x0), H1(Σ′) ≤ 100H1(Σ) and
βΣ′(x0, %) ≤ βΣ(x0, %). Let L ⊂ RN be an affine line realizing the infimum in the definition of βΣ(x0, %).
We denote by A1 and A2 the two points in ∂B%(x0)∩L and denote by Gn the set of all points (x′, xN ) in
[−1, 1]N such that nxi ∈ Z for all i = 1, ..., N except for at most one (i.e., Gn is a uniform 1-dimensional
grid of step 1/n in [−1, 1]N ). Notice that Gn is arcwise connected and

H1(Gn) ≤ 2NN(n+ 1)N−1, dist(y,Gn) ≤
√
N

2n (5.35)

for all y ∈ [−1, 1]N . Let h : RN → RN be the rotation around the origin such that h(ReN ) = L − x0,
where {e1, ..., eN} is the canonical basis for RN . Next, we define Qin := Ai + βΣ(x0, %)%h(Gn), i = 1, 2.
In addition, we observe that

Σ ∩ ∂B%(x0) ⊂ ∂B%(x0) ∩
{
x ∈ RN : dist(x, L) ≤ βΣ(x0, %)%

}
⊂

2⋃
i=1

(
Ai + βΣ(x0, %)%h

(
[−1, 1]N

))
.

For each point zj ∈ Σ∩∂B%(x0), we denote by znj an arbitrary projection of zj to Q1
n∪Q2

n and by [zj , znj ]
the segment connecting these two points. Then the set

Sn = Q1
n ∪Q2

n ∪

(H0(Σ∩∂B%(x0))⋃
j=1

[zj , znj ]
)

contains all the points of Σ∩∂B%(x0), Sn∪ (L∩B%(x0)) is arcwise connected, and, using (5.35), we have
that

H1(Sn) ≤ 2N+1N(n+ 1)N−1βΣ(x0, %)%+
√
N

2n H
0(Σ ∩ ∂B%(x0))βΣ(x0, %)%.

Let S̃n be the projection of Sn to {x ∈ RN : dist(x, L) ≤ βΣ(x0, %)%}∩B%(x0). Since the projection onto
a nonempty closed convex set is a 1-Lipschitz mapping, it follows that H1(S̃n) ≤ H1(Sn). Moreover,
notice that S̃n ∪ (L ∩B%(x0)) is arcwise connected. Thus, defining

Σ′ = (Σ\B%(x0)) ∪ S̃n ∪ (L ∩B%(x0))

and choosing n = b(H0(Σ ∩ ∂B%(x0))) 1
N c, where b·c denotes the integer part, we observe that

H1(S̃n) ≤M0(H0(Σ ∩ ∂B%(x0)))1− 1
N βΣ(x0, %)%, (5.36)

37



where M0 = M0(N) > 0. Now we can set

c0 = (M0C)−1. (5.37)

Thanks to (5.34) and (5.36), we obtain

H1(S̃n) < M0

(
1
a
θΣ(x0, r)

)1− 1
N

βΣ(x0, %)%.

This, together with (5.33), (5.32), (5.37) and the fact that 2% ≤ 4ar < diam(Σ) ≤ H1(Σ), implies the
following

H1(Σ′) < 100H1(Σ).

Also notice that Σ′ ⊂ Ω is closed, arcwise connected, Σ′∆Σ ⊂ B%(x0),

βΣ′(x0, %) ≤ βΣ(x0, %) ≤ 2ε
a
< τ

(see (5.33), (5.32)). So we can apply Proposition 5.7 to Σ and Σ′. Thus, by the optimality of Σ and
Proposition 5.7,

H1(Σ) ≤ Ef,Ω(uΣ)− Ef,Ω(uΣ′) +H1(Σ′) ≤ C%
(%
r

)b
wτΣ(x0, r) + C%1+b +H1(Σ′).

Altogether we have

H1(Σ∩Bar(x0)) ≤ H1(Σ∩B%(x0)) ≤ C%
(%
r

)b
wτΣ(x0, r)+C%1+b+2%+M0

(
1
a
θΣ(x0, r)

)1− 1
N

βΣ(x0, %)%.

Next, recalling that % ∈ [ar, 2ar], r < δ, (2a)b < 1 and (5.33), we obtain

θΣ(x0, ar) ≤ 2C
(
wτΣ(x0, r) + δb

)
+ 4 + 4εM0

a

(
1
a
θΣ(x0, r)

)1− 1
N

.

However, this, together with (5.30), (5.32) and (5.37), yields the estimate

θΣ(x0, ar) ≤ 5 + θΣ(x0, r)1− 1
N

and completes the proof of Proposition 5.11.

5.3. Control of the flatness

The next proposition asserts that if βΣ(x, r) and wτΣ(x, r) are pretty small and θΣ(x, r) is controlled from
above by 10µ, where µ is a unique positive solution to the equation µ = 5 + µ1− 1

N , then βΣ, wτΣ stay
small and θΣ remains controlled from above by 10µ on smaller scales, and, in addition, in some sense wτΣ
controls the square of βΣ.

Proposition 5.12. Let p ∈ (N−1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then there
exist constants a, r0 ∈ (0, 1/100), b ∈ (0, 1), 0 < δ1 < δ2 < 1/100 and C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0
with q0 defined in (1.1) such that the following holds. Assume that Σ is a solution to Problem 1.1, x ∈ Σ,
0 < r < min{r0,diam(Σ)/2}, Br(x) ⊂ Ω,

wτΣ(x, r) ≤ δ1, βΣ(x, r) ≤ δ2 and θΣ(x, r) ≤ 10µ, (5.38)

where µ > 0 is a unique positive solution to the equation µ = 5 + µ1− 1
N . Then

(i)
βΣ(x, ar) ≤ C(wτΣ(x, r)) 1

2 + Cr
b
2 ; (5.39)
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(ii)
wτΣ(x, ar) ≤ 1

2w
τ
Σ(x, r) + C(ar)b; (5.40)

(iii)
wτΣ(x, anr) ≤ δ1, βΣ(x, anr) ≤ δ2, θΣ(x, anr) ≤ 10µ for all n ∈ N. (5.41)

Proof. Let C0 be the constant such that the estimate (3.28) holds with C0, and let C1 be the constant
such that the estimate (5.16) holds with C1. Without loss of generality, we can assume that C0 < C1.
Let b ∈ (0, 1) be the constant of Lemma 3.6, and let a, δ, ε, κ ∈ (0, 1/100) be such that δ, ε, κ are the
constants of Proposition 5.8 and, at the same time, a, δ, ε are the constants of Proposition 5.11 with

a = min
{
κ,

(
1

2C0

) 1
b

}
.

Now we can set

δ2 := aε

2 , δ1 :=
(
aδ2

50C1

)2
, C := 24C1

a
(5.42)

and fix r0 ∈ (0, δ) such that
Cr

b
2
0 ≤

δ1
2 . (5.43)

Step 1. Let us first prove (i). By Proposition 5.8, there exists t ∈ [κr, 2κr] such that Σ∩∂Bt(x) = {z1, z2},
z1 and z2 lie “on different sides” (see Remark 5.9). According to Proposition 5.8 (ii-3), we get

H1(Σ∩Bt(x)) ≤ |z1 − z2|+ C1t
( t
r

)b
wτΣ(x, r) + C1t

1+b := |z1 − z2|+M.

Recall that, by Proposition 5.8 (ii-2), Σ ∩ Bt(x) is arcwise connected. Let Γ ⊂ Σ∩Bt(x) be an arc
connecting z1 with z2. Then, using Lemma A.5, we obtain

max
y∈Γ

dist(y, [z1, z2]) ≤ (2t(H1(Γ)− |z1 − z2|))
1
2 ≤ (4κrM) 1

2 .

Since Σ∩Bt(x) is arcwise connected, Σ ∩ ∂Bt(x) = {z1, z2} and H1(Γ) ≥ |z1 − z2|,

sup
y∈(Σ∩Bt(x))\(Γ∩Bt(x))

dist(y,Γ) ≤ H1(Σ∩Bt(x)\Γ) ≤ H1(Σ∩Bt(x))− |z1 − z2| ≤M.

Thus
max

y∈Σ∩Bt(x)
dist(y, [z1, z2]) ≤ (4κrM) 1

2 +M

but this yields the following estimate

dH(Σ∩Bt(x), [z1, z2]) ≤ (4κrM) 1
2 +M, (5.44)

because Σ∩Bt(x) is arcwise connected and Σ escapes ∂Bt(x) either through z1 or through z2. Without
loss of generality, assume that [z1, z2] is not a diameter of Bt(x), otherwise we can pass directly to the
estimate (5.47). So let L̃ be the line passing through x and collinear to [z1, z2]. Now observe that if Π
is the 2-dimensional plane passing through L̃ and [z1, z2], then the intersection of Π with ∂Bt(x) is the
circle S on Π with center x and radius t. Then, denoting by ξ1 and ξ2 the two points in L̃ ∩ ∂Bt(x) in
such a way that dist(ξi, {z1, z2}) = dist(ξi, zi) for i = 1, 2, we get

dH([z1, z2], L̃ ∩Bt(x)) ≤ H1(γz1,ξ1) = H1(γz2,ξ2), (5.45)

where γzi,ξi is the geodesic in S connecting zi with ξi. Since dist(x, [z1, z2]) ≤ (4κrM) 1
2 +M (see (5.44)),

H1(γz1,ξ1) ≤ arcsin
(

(4κrM) 1
2 +M

t

)
t ≤ 2((4κrM) 1

2 +M), (5.46)
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where the latter estimate holds because ((4κrM) 1
2 +M)/t < 1/10 and arcsin(s) ≤ 2s for all s ∈ [0, 1/10].

Using (5.44) together with (5.45) and (5.46), we obtain that

dH(Σ∩Bt(x), L̃ ∩Bt(x)) ≤ 3((4κrM) 1
2 +M)

and hence βΣ(x, t) ≤ 3((4κrM) 1
2 + M)/t. Next, since t ∈ [κr, 2κr] and a ∈ (0, κ], if ar = λt for some

λ ∈ (0, 1], then 2/λ ≤ 4κ/a and, thanks to (5.1),

βΣ(x, ar) = βΣ(x, λt) ≤ 4κ
a
βΣ(x, t) ≤ 12

ar
((4κrM) 1

2 +M). (5.47)

On the other hand, since κ,wτΣ(x, r), r ∈ (0, 1/100) and b ∈ (0, 1), we can conclude the following

(4κrM) 1
2 ≤

(
C1r

2wτΣ(x, r) + C1r
2+b) 1

2 ≤ C1r(wτΣ(x, r)) 1
2 + C1r

1+ b
2 (5.48)

and, moreover,
M = C1t

( t
r

)b
wτΣ(x, r) + C1t

1+b ≤ C1r(wτΣ(x, r)) 1
2 + C1r

1+ b
2 . (5.49)

By (5.47)-(5.49),
βΣ(x, ar) ≤ C(wτΣ(x, r)) 1

2 + Cr
b
2 ,

with C = 24C1/a. Using (5.38), the above estimate, (5.42) and (5.43), we get

βΣ(x, ar) ≤ C(δ1) 1
2 + Cr

b
2
0 < δ2.

Next, observe that a < 1/100 and βΣ(x, s) is fairly small for all s ∈ [ar, r], so we can apply Proposition 5.6
with r0 = ar and r1 = r to get the following

wτΣ(x, ar) ≤ C0a
bwτΣ(x, r) + C0(ar)b ≤ 1

2w
τ
Σ(x, r) + C(ar)b ≤ δ1

2 + δ1
2 = δ1,

where we have used that a ≤ (1/2C0) 1
b , C0(ar)b < C(ar)b < Cr

b
2
0 , (5.38) and (5.43). We have proved

the assertions (i), (ii) and that wτΣ(x, ar) ≤ δ1, βΣ(x, ar) ≤ δ2.
Step 2. We prove (iii). Recall that a, δ, ε ∈ (0, 1/100) are the constants of Proposition 5.11 and, by
definition, δ1 < δ2 = aε/2. Then, according to (5.38),

βΣ(x, r) + wτΣ(x, r) ≤ ε.

Thus, applying Proposition 5.11 and using again (5.38), we get

θΣ(x, ar) ≤ 5 + θΣ(x, r)1− 1
N ≤ 5 + (10µ)1− 1

N ≤ 10
(
5 + µ1− 1

N

)
= 10µ.

At this point, we have shown that (5.38) holds with r replaced by ar. So, repeating the arguments
above, we observe that (5.38) holds with r replaced by a2r. Therefore, iterating, we deduce (iii). This
completes the proof of Proposition 5.12.

Now we prove that there exist a critical threshold δ0 ∈ (0, 1/100) and an exponent α ∈ (0, 1) such
that if βΣ(x, r) + wτΣ(x, r) falls below δ0 and if θΣ(x, r) is small enough for x ∈ Σ∩Ω and fairly small
r > 0, then βΣ(x, %) ≤ C%α for all sufficiently small % > 0, where C > 0 is a constant independent of x
but depending on r. This leads to the C1,α regularity.

Proposition 5.13. Let p ∈ (N − 1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Let
a ∈ (0, 1/100) be the constant of Proposition 5.12. Then there exist constants δ0, r0 ∈ (0, 1/100) and
α ∈ (0, 1) such that the following holds. Assume that Σ is a solution to Problem 1.1. If x ∈ Σ and
0 < r < min{r0,diam(Σ)/2} satisfy Br(x) ⊂ Ω,

βΣ(x, r) + wτΣ(x, r) ≤ δ0 and θΣ(x, r) ≤ 10µ (5.50)

with µ being a unique positive solution to the equation µ = 5 + µ1− 1
N , then

βΣ(x, %) ≤ C%α for all % ∈ (0, ar) (5.51)

and for some constant C = C(N, p, q0, q, ‖f‖q, |Ω|, r) > 0, where q0 is defined in (1.1).
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Proof. Let a, δ1, r0 ∈ (0, 1/100), b ∈ (0, 1) and C > 0 be as in Proposition 5.12. We define

δ0 := δ1, γ := min
{
b

2 ,
ln(3/4)
ln(a)

}
, r0 := min

{
r0,

(
1
4

) 1
γ

}
.

It is easy to check that for all t ∈ (0, r0],
1
2 t
γ + tb ≤ (at)γ . (5.52)

Indeed, since 0 < 2γ ≤ b, γ ≤ ln(3/4)/ ln(a) and a, r0 ∈ (0, 1), tb ≤ t2γ ≤ rγ0 tγ and 3/4 ≤ aγ , so
1
2 t
γ + tb ≤ 1

2 t
γ + rγ0 t

γ ≤ 3
4 t
γ ≤ (at)γ .

We prove by induction that for all n ∈ N,

wτΣ(x, anr) ≤ 1
2nw

τ
Σ(x, r) + C(an+1r)γ . (5.53)

Clearly, (5.53) holds for n = 0. Suppose (5.53) holds for some n ∈ N. Then, applying (5.40) with r

replaced by anr and using the induction hypothesis, we get

wτΣ(x, an+1r) ≤ 1
2w

τ
Σ(x, anr) + C(an+1r)b

≤ 1
2n+1w

τ
Σ(x, r) + C

2 (an+1r)γ + C(an+1r)b

≤ 1
2n+1w

τ
Σ(x, r) + C(an+2r)γ ,

where the last estimate comes by using (5.52). This proves (5.53). Now let % ∈ (0, ar) and let l ≥ 1 be the
integer such that al+1r < % ≤ alr. Then, using if necessary (5.1), we see that βΣ(x, %) ≤ 2βΣ(x, alr)/a.
Furthermore, Proposition 5.12 (i) says that

βΣ(x, alr) ≤ C(wτΣ(x, al−1r)) 1
2 + C(al−1r) b2 .

On the other hand, using (5.53) and the fact that wτΣ(x, r) < 1, we get

wτΣ(x, al−1r) ≤ 1
2l−1w

τ
Σ(x, r) + C(alr)γ ≤ C ′

(3
4

)l+1
+ C ′(al+1r)γ ≤ C ′aγ(l+1) + C ′%γ

≤ C ′
(%
r

)γ
+ C ′%γ

for some C ′ = C ′(N, p, q0, q, ‖f‖q, |Ω|) > 0. So we can control βΣ(x, %) as follows

βΣ(x, %) ≤ 2
a
βΣ(x, alr) ≤ 2C

a
(wτΣ(x, al−1r)) 1

2 + 2C
a

(al−1r) b2

≤ C ′′
(%
r

) γ
2 + C ′′%

γ
2 + C ′′%

b
2

≤ C̃%
γ
2 (γ ≤ b/2),

where C̃ = C̃(N, p, q0, q, ‖f‖q, |Ω|, r) > 0. Setting α = γ/2 and C := C̃, we complete the proof of
Proposition 5.13.

Corollary 5.14. Let Σ be a solution to Problem 1.1 and a, α, δ0, r0, µ be the constants as in the
statement of Proposition 5.13. Assume that x ∈ Σ, 0 < r < min{r0,diam(Σ)/2}, Br(x) ⊂ Ω,

βΣ(x, r) + wτΣ(x, r) ≤ ε and θΣ(x, r) ≤ µ

with ε := δ0/200. Then for any point y ∈ Σ∩Bar/10(x) and radius % ∈ (0, ar/10) the following estimate
holds

βΣ(y, %) ≤ C%α,

where C = C(N, p, q0, q, ‖f‖q, |Ω|, r) > 0. In particular, there exists t0 ∈ (0, 1) such that Σ∩Bt0(x) is a
C1,α regular curve.
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Proof of Corollary 5.14. Recall that a ∈ (0, 1/100). Let y ∈ Σ∩Bar/10(x) and Lx realize the infimum
in the definition of βΣ(x, r). Notice that dH(Σ∩Br/10(y), Lx ∩Br/10(y)) ≤ 5εr. Let L be the affine line
passing through y and collinear to Lx. It is easy to see that dH(Lx ∩Br/10(y), L ∩Br/10(y)) ≤ 5εr and
hence

dH
(
Σ ∩B r

10
(y), L ∩B r

10
(y)
)
≤ dH

(
Σ ∩B r

10
(y), Lx ∩B r

10
(y)
)

+ dH
(
Lx ∩B r

10
(y), L ∩B r

10
(y)
)
≤ 10εr.

Thus βΣ(y, r/10) ≤ δ0/2. Next, let Σ′ realize the supremum in the definition of wτΣ(y, r/10). Such Σ′

exists due to the condition βΣ(y, r/10) ≤ δ0/2 ≤ τ (see Remark 5.4). Then we have that

wτΣ

(
y,

r

10

)
= 10

r

∫
B r

10
(y)
|∇uΣ′ |p dz ≤ 10

r

∫
Br(x)

|∇uΣ′ |p dz ≤ 10wτΣ(x, r) < δ0
2 ,

where we have used the facts that Br/10(y) ⊂ B(1+a)r/10(x), βΣ(y, r/10) and βΣ(x, r) are pretty small,
namely, proceeding as in the proof of Proposition 5.5, we can show that βΣ′(x, r) ≤ τ . Thus

βΣ

(
y,

r

10

)
+ wτΣ

(
y,

r

10

)
< δ0.

On the other hand, θΣ(y, r/10) ≤ 10θΣ(x, r) ≤ 10µ. Then, according to Proposition 5.13, βΣ(y, %) ≤ C%α

for all % ∈ (0, ar/10). Since the point y was arbitrarily chosen in Σ∩Bar/10(x), there exists t0 ∈ (0, ar/10)
such that Σ∩Bt0(x) is a C1,α regular curve (see, for instance, [19, Proposition 9.1]).

Proof of Theorem 1.3. Let ε0, b, r ∈ (0, 1), C > 0 be the constants of Lemma 3.6. Since closed connected
sets with finite H1-measure are H1-rectifiable (see [18, Proposition 30.1, p. 186]), then (see Lemma 4.1)
for H1-a.e. point x in Σ there exists the affine line Tx passing through x such that

1
r
dH(Σ∩Br(x), Tx ∩Br(x)) →

r→0+
0. (5.54)

On the other hand,
θΣ(x, r) →

r→0+
2 (5.55)

for H1-a.e. x ∈ Σ, in view of Besicovitch-Marstrand-Mattila Theorem (see [2, Theorem 2.63]). Let
x ∈ Σ∩Ω be such a point that (5.54) and (5.55) hold with x. According to (5.54),

βΣ(x, r) → 0
r→0+

. (5.56)

We claim that wτΣ(x, r) → 0 as r → 0+. Indeed, by (5.56), for any ε ∈ (0, ε0) there is tε ∈ (0, r) such
that

βΣ(x, r) ≤ ε for all r ∈ (0, tε]. (5.57)

We assume that Btε(x) ⊂ Ω, tε < diam(Σ)/2 and ε < τ/2. Recall that τ ∈ (0, ε0/6]. Then, by
Proposition 5.6, for all r ∈ (0, tε/10],

wτΣ(x, r) ≤ C
( r
tε

)b
wτΣ(x, tε) + Crb. (5.58)

On the other hand, by Remark 5.4 and Proposition 2.22, wτΣ(x, tε) < +∞. Thus, letting r tend to 0+
in (5.58), we get

wτΣ(x, r) → 0
r→0+

. (5.59)

By (5.56) and (5.59),
βΣ(x, r) + wτΣ(x, r) →

r→0+
0.

This, together with (5.55), Corollary 5.14 and the fact that for each integer N ≥ 2, the unique positive
solution µ to the equation µ = 5 + µ1− 1

N is strictly greater than 5, completes the proof of Theorem 1.3.
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6. Remark about singular points

In this section, we prove that if Σ is a solution to Problem 1.1, then Σ ∩ Ω cannot contain quadruple
points, namely, there is no point x ∈ Σ∩Ω such that for some fairly small radius r > 0 the set Σ∩Br(x)
is a union of four distinct C1 arcs, each of which meets at point x exactly one of the other three at an
angle of 180 degrees, and each of the other two at an angle of 90 degrees.

We shall say that a set K ⊂ RN is a cross passing through a point x ∈ RN if K consists of
two mutually perpendicular affine lines passing through x. For convenience, let us denote the cross
(R× {0}N−1) ∪ ({0}N−1 × R) passing through the origin by K0.

Lemma 6.1. Let p ∈ (N − 1,+∞). There exist α, δ ∈ (0, 1) and C > 0, depending only on N and p,
such that if u ∈W 1,p(B1) is a weak solution to the p-Laplace equation in B1\E, where

E = ((−1, 1)× {0}N−1) ∪ ({0}N−1 × (−1, 1)),

satisfying u = 0 p-q.e. on E, then∫
Br

|∇u|p dx ≤ Cr1+α
∫
B1

|∇u|p dx for all r ∈ (0, δ]. (6.1)

Proof. First, adapting the proof of Lemma A.3, one observes that there exist ε = ε(N, p) ∈ (0, 1) and
C = C(N, p) > 0 such that for any nonnegative p-harmonic function v in B1\E, continuous in B1 and
satisfying v = 0 on E, the following estimate holds

max
x∈Bε

v(x) ≤ Cv(Aε), (6.2)

where Aε is a point in ∂Bε such that dist(Aε, E) = ε. Next, assuming, as in Step 1 in the proof of
Lemma 3.1 that u is continuous and nonnegative in B1, by virtue of (6.2) and the fact that we add
the additional boundary condition (i.e., u = 0 on (−1, 1) × {0}N−1) compared with the situation in
Lemma 3.1, we observe that all the estimates established in the proof of Lemma 3.1 in Step 1 for a
nonnegative p-harmonic function in B1\({0}N−1 × (−1, 1)), that is continuous in B1 and vanishes on
{0}N−1×(−1, 1) are also valid for u. In the case when we only know that the weak solution u ∈W 1,p(B1)
vanishes p-q.e. on E, we can proceed in the same way as in Step 2 in the proof of Lemma 3.1 changing
{0}N−1 × (−1, 1) by E. These observations complete our proof of Lemma 6.1.

The following lemma says that the estimate (3.28) still holds if the affine line in Lemma 3.6 is replaced
by a suitable cross.

Lemma 6.2. Let p ∈ (N−1,+∞), f ∈ Lq(Ω) with q > q1, where q1 is defined in (1.4). Then there exist
ε0, r, b ∈ (0, 1), C = C(N, p, q0, q, ‖f‖q, |Ω|) > 0 such that the following holds. Let Σ ⊂ Ω be a closed
arcwise connected set. Assume that 0 < 2r0 ≤ r1 ≤ r, Br1(x0) ⊂ Ω and that for all r ∈ [r0, r1] there is
a cross K = K(r), passing through x0, such that dH(Σ∩Br(x0),K ∩ Br(x0)) ≤ ε0r. Assume also that
Σ \Br1(x0) 6= ∅. Then for every r ∈ [r0, r1],∫

Br(x0)
|∇uΣ|p dx ≤ C

(
r

r1

)1+b ∫
Br1 (x0)

|∇uΣ|p dx+ Cr1+b.

Proof. The proof follows by reproducing the proofs of Lemma 3.2, Lemma 3.5 and Lemma 3.6 with a
minor modification, namely, replacing the affine line by a suitable cross in the proofs of these lemmas,
such a reproduction is possible thanks to Lemma 6.1.

We are now ready to prove Proposition 1.5.
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Proof of Proposition 1.5. Assume by contradiction that for some λ > 0 a minimizer Σ of Problem 1.1
contains a quadruple point x0 ∈ Σ ∩ Ω. Let ε0, b, r, C be the constants of Lemma 6.2. Without loss of
generality, we can assume that 0 < t0 < min{r,diam(Σ)/2}, Bt0(x0) ⊂ Ω, the set Σ∩Bt0(x0) consists of
exactly four distinct C1 arcs, each of which meets at point x0 exactly one of the other three at an angle
of 180 degrees, and each of the other two at an angle of 90 degrees. Then there exists a cross K passing
through x0 such that for each ε > 0 there exists δ = δ(ε) ∈ (0, t0] such that for all r ∈ (0, δ],

dH(Σ ∩Br(x0),K ∩Br(x0)) ≤ εr. (6.3)

It is also worth noting that each C1 arc is Ahlfors regular of dimension 1 (see [18, Definition 18.9, p.108]),
which can be easily seen using its local parameterization. This implies that Σ∩Bt0(x0) is Ahlfors regular
of dimension 1. Therefore, without loss of generality, we can also assume that there exists a positive
constant C0 such that

H1(Σ ∩Br(x0)) ≤ C0r for all r ∈ (0, t0]. (6.4)

Let us now fix r ∈ (0, t0/2]. By the coarea inequality (see [33, Theorem 2.1]),

H1(Σ ∩B2r(x0)) ≥
∫ 2r

0
H0(Σ ∩ ∂B%(x0)) d% >

∫ 2r

r

H0(Σ ∩ ∂B%(x0)) d%,

where the latter estimate comes from the fact that H0(Σ∩ ∂B%(x0)) ≥ 1 for all % ∈ (0, 2r], since x0 ∈ Σ,
Σ is arcwise connected and 2r < diam(Σ)/2. Then there exists % ∈ [r, 2r] such that

1
r
H1(Σ ∩B2r(x0)) ≥ H0(Σ ∩ ∂B%(x0)).

This, together with (6.4), implies that

H0(Σ ∩ ∂B%(x0)) ≤ 2C0. (6.5)

Let (rn)n∈N be a sequence of radii such that: 2rn+1 < rn for each n ∈ N; rn → 0 as n → +∞;
2r0 < δ = δ(ε), where ε ∈ (0, 1) to be determined. By virtue of (6.5), there exists %n ∈ [rn, 2rn] such
that H0(Σ ∩ ∂B%n(x0)) ≤ 2C0. Following [11], for each n ∈ N, we define the set Dn = K ∩ ∂B%n(x0)
which consists of exactly four points. Denote by S4(Dn) ⊂ B%n(x0) a closed set of minimum H1-measure
in the ball B%n(x0) which connects the all four points of Dn (as in [11], we call it a Steiner connection
of these points; for more details on Steiner connections, see, for instance [22, 34, 20]). For each point
zi ∈ Σ ∩ ∂B%n(x0), denote by γi,n the geodesic in ∂B%n(x0) connecting zi with the point of the set Dn

closest to zi. For each n ∈ N, let Gn denote the union of all arcs γi,n, and let us define the competitor
Σn by

Σn = (Σ\B%n(x0)) ∪Gn ∪ S4(Dn).

Due to the condition (6.3), each arc γi,n has H1-measure less than or equal to arcsin (ε) %n. On the other
hand,

H1(Σ ∩B%n(x0)) ≥ 4%n and H1(S4(Dn)) =
√

2(
√

3 + 1)%n,

where we have used that H1(S4(Dn)) = H1(S4(K0 ∩ ∂B1))%n =
√

2(
√

3 + 1)%n. Thanks to (6.5) and the
fact that H1(γi,n) ≤ arcsin(ε)%n, H1(Gn) ≤ 2C0 arcsin(ε)%n. Next, choosing ε ∈ (0, ε0/2) small enough
and observing that

√
2(
√

3 + 1) ≈ 3.86, we can conclude that there is a constant C̃ > 0 independent of
n such that for each n ∈ N,

H1(Σ ∩B%n(x0))−H1(Σn ∩B%n(x0)) ≥ C̃%n. (6.6)

Now we want to apply Lemma 6.2 to Σn. If %n ≤ ε0r/2 and r ∈ (0, δ], then

dH(Σn ∩Br(x0),K ∩Br(x0))

≤ dH(Σn ∩Br(x0),Σ∩Br(x0)) + dH(Σ ∩Br(x0),K ∩Br(x0))

≤ %n + ε0r

2 ≤ ε0r

2 + ε0r

2 = ε0r,
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where we have used (6.3) and the fact that ε ∈ (0, ε0/2). So we can apply Lemma 6.2 to Σn, for the
interval [2%n/ε0, δ], provided that 2%n/ε0 ≤ δ/2, and we obtain that∫

Br(x0)
|∇uΣn |p dx ≤ C

(r
δ

)1+b ∫
Bδ(x0)

|∇uΣn |p dx+ Cr1+b for all r ∈
[

2%n
ε0

, δ

]
.

Hereinafter in this proof, C denotes a positive constant independent of n, which can be different from
line to line. Applying the above estimate for r = 2%n/ε0 and using (2.11), we have∫

B 2%n
ε0

(x0)
|∇uΣn |p dx ≤ C%1+b

n (6.7)

for all n ∈ N such that 2%n/ε0 ≤ δ/2. Recall that the exponent b given by Lemma 6.2 is positive provided
q > q1. Now, using the fact that Σ is a minimizer and Σn is a competitor for Σ, the estimate (6.6),
Corollary 2.21 and the estimate (6.7), we deduce the following

0 ≤ Fλ,f,Ω(Σn)−Fλ,f,Ω(Σ) ≤ Ef,Ω(uΣ)− Ef,Ω(uΣn)− λC̃%n

≤ C
∫
B2%n (x0)

|∇uΣn |p dx+ C%
N+p′−Np

′
q

n − λC̃%n

≤ C
∫
B 2%n

ε0
(x0)
|∇uΣn |p dx+ C%

N+p′−Np
′

q
n − λC̃%n

≤ C%1+b
n + C%

N+p′−Np
′

q
n − λC̃%n

for all n ∈ N such that 2%n/ε0 ≤ δ/2. Notice that N+p′−Np′/q > 1 if and only if q > Np/(Np−N+1),
which is fulfilled under the assumption q > q1. Finally, letting n tend to +∞, we arrive to a contradiction.
This completes our proof of Proposition 1.5.
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Appendix A. Auxiliary results

Recall that we write points of RN as x = (x′, xN ) with x′ ∈ RN−1 and xN ∈ R.

Lemma A.1. Let N ≥ 2, p ∈ (N − 1,+∞), β = (p − N + 1)/(p − 1) and γ ∈ (0, β). There exists
δ ∈ (0, 1), depending only on N, p and γ, such that û(x) = |x′|γ + x2

N is a supersolution to the p-Laplace
equation in {0 < |x′| < δ} ∩ {|xN | < 1}.

Proof. To simplify the notation, we denote {0 < |x′| < δ} ∩ {|xN | < 1} by Coδ,1. We need to prove that
there exists δ = δ(N, p, γ) ∈ (0, 1) such that

∆pû = ∆û|∇û|p−2 + (p− 2)|∇û|p−4∆∞û ≤ 0 in Coδ,1, (A.1)

where ∆û = ∆2û :=
∑N
i=1 ûxi,xi and ∆∞û :=

∑N
i,j=1 ûxi ûxj ûxi,xj . Since |∇û| 6= 0 in Coδ,1, (A.1) is

equivalent to the following

∆̂pû := ∆û|∇û|2 + (p− 2)∆∞û ≤ 0 in Coδ,1.
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Calculating the partial derivatives of û in Coδ,1, we have: ûxi = γxi|x′|γ−2, i ∈ {1, ..., N −1}; ûxN = 2xN ;
ûxi,xj = γ(γ − 2)xixj |x′|γ−4 + δijγ|x′|γ−2, where i, j ∈ {1, ..., N − 1} and δi,j is the Kronecker delta;
ûxN ,xN = 2. Next, we deduce that

∆û = γ(γ +N − 3)|x′|γ−2 + 2, |∇û|2 = γ2|x′|2γ−2 + 4x2
N and ∆∞û = γ3(γ − 1)|x′|3γ−4 + 8x2

N

in Coδ,1. This yields the following

∆̂pû = γ3(γp− p− γ +N − 1)|x′|3γ−4 + 4γ(γ +N − 3)|x′|γ−2x2
N + 2γ2|x′|2γ−2 + (p− 1)8x2

N (A.2)

in Coδ,1. Since 0 < γ < β, γ3(γp− p− γ +N − 1) < 0 and 3γ − 4 < γ − 2 < 0. Thus, analyzing (A.2), we
deduce that there exists δ = δ(N, p, γ) ∈ (0, 1) such that ∆̂pû ≤ 0 in Coδ,1. This completes the proof.

The following lemma will be used to prove Lemma A.3.

Lemma A.2. Let p ∈ (N − 1,+∞). Then there exists a positive integer q = q(N, p) such that the
following holds. Let x0 ∈ RN , r > 0 and L ⊂ RN be an affine line passing through x0. Then for
any nonnegative p-harmonic function u in Br(x0)\L, continuous in Br(x0) and satisfying u = 0 on
L ∩Br(x0), the following estimate holds

max
x∈B2−qr(x0)

u(x) ≤ 1
2 max
x∈Br(x0)

u(x).

Proof. Since the p-Laplacian is invariant under scalings, rotations and translations, we can assume that
Br(x0) = B1 and L ∩Br(x0) = {0}N−1 × (−1, 1). To lighten the notation, we denote {0}N−1 × (−1, 1)
by S. Let γ = (p−N + 1)/(2p− 2). Then, by Lemma A.1, there exists δ = δ(N, p) ∈ (0, 1/2) such that
û(x) = |x′|γ +x2

N is a weak supersolution to the p-Laplace equation in {0 < |x′| < 2δ}∩{|xN | < 1}, and
is continuous in RN . Hereinafter in this proof, C denotes a positive constant that can only depend on
N, p and can be different from line to line. Since

û(x) = δγ + x2
N ≥ δγ if |x′| = δ and û(x) = |x′|γ + δ2 ≥ δ2 if |xN | = δ,

the estimate
u ≤ C

(
max
B1

u

)
û

holds on ∂ ({|x′| < δ} ∩ {|xN | < δ}). Furthermore,

u(x) ≤ C
(

max
B1

u

)
û(x) if x ∈ S.

Then the comparison principle (see [24, Theorem 7.6]) says that

u ≤ C
(

max
B1

u

)
û in {|x′| ≤ δ} ∩ {|xN | ≤ δ}.

This implies that u(x) ≤ C
(

maxB1
u
)
|x|γ for all x ∈ Bδ, since |x′|γ + x2

N ≤ 2|x|γ for all x ∈ Bδ. Next,
choosing q = q(N, p) ∈ N such that 2−q ∈ (0, δ) and C2−qγ ≤ 1/2, we obtain the following

max
B2−q

u ≤ 1
2 max

B1

u,

which concludes the proof of Lemma A.2.

We prove the following Carleson estimate.
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Lemma A.3. Let p ∈ (N − 1,+∞). Then there exist ε = ε(N, p) ∈ (0, 1) and C = C(N, p) > 0 such
that the following holds. Let x0 ∈ RN , r > 0 and L ⊂ RN be an affine line passing through x0. Then
for any nonnegative p-harmonic function u in Br(x0)\L, continuous in Br(x0) and satisfying u = 0 on
L ∩Br(x0), the following estimate holds

max
x∈Bεr(x0)

u(x) ≤ Cu(Aεr(x0)),

where Aεr(x0) denotes a point such that dist(Aεr(x0), L) = εr and Aεr(x0) ∈ ∂Bεr(x0).

Proof. We follow the same strategy as in the proof of [14, Theorem 1.1]. Since the p-Laplacian is invariant
under scalings, rotations and translations, without loss of generality, we can assume that Br(x0) = B1,
L∩Br(x0) = {0}N−1 × (−1, 1). To simplify the notation, we denote the set {0}N−1 × (−1, 1) by S. Let
q = q(N, p) be the positive integer of Lemma A.2. Define ε = 2−q−2m with m ∈ N to be determined
(ε is small enough). Fix an arbitrary Aε such that dist(Aε, S) = ε and Aε ∈ ∂Bε. Notice that if
u(Aε) = 0, then by the Harnack inequality (see [24, Theorem 6.2]), u(x) = 0 for all x ∈ B1 and the proof
follows. Without loss of generality, we assume that u(Aε) = 1. By Lemma A.2, for each x0 ∈ S and
r ∈ (0,dist(x0, ∂B1)),

max
B2−qr(x0)

u ≤ 1
2 max
Br(x0)

u. (A.3)

On the other hand, by the Harnack inequality, there exists M = M(N, p) > 1 such that

u(x′, xN ) ≤

Mu(2x′, xN ) for x ∈ B1/4\S

Mu(Aε) = M for x ∈ {|x′| ≥ ε/2} ∩B2ε.

Suppose that there exists y0 ∈ Bε such that u(y0) ≥Mn+2 with n ∈ N to be determined. Then

dist(y0, S) ≤ 2−nε,

because otherwise u(y0) ≤ Mn+1u(Aε) = Mn+1. Let ỹ0 be the projection of y0 to S. Then, applying
(A.3), we have

max
B2−n+qmε(ỹ0)

u ≥ 2m max
B2−nε(ỹ0)

u ≥ 2mMn+2,

where we have also used the facts y0 ∈ B2−nε(ỹ0), u(y0) ≥ Mn+2. We now choose and fix m so that
2m ≥M2. Hence

u(y1) = max
B2−n+qmε(ỹ0)

u ≥Mn+4,

where y1 ∈ B2−n+qmε(ỹ0). Therefore dist(y1, S) ≤ 2−n−2ε and

max
B2−n−2+qmε(ỹ1)

u ≥ 2m max
B2−n−2ε(ỹ1)

u ≥Mn+6,

where ỹ1 is the projection of y1 to S. Clearly, there exists y2 ∈ B2−n−2+qmε(ỹ1) such that u(y2) ≥Mn+6.
So dist(y2, S) ≤ 2−n−4ε and

max
B2−n−4+qmε(ỹ2)

u ≥ 2m max
B2−n−4ε(ỹ2)

u ≥Mn+8,

where ỹ2 is the projection of y2 to S. Once again there exists y3 ∈ B2−n−4+qmε(ỹ2) satisfying the following:
u(y3) ≥Mn+8, dist(y3, S) ≤ 2−n−6ε and

max
B2−n−6+qmε(ỹ3)

u ≥ 2m max
B2−n−6ε(ỹ3)

u ≥Mn+10.

We obtain by induction a sequence of points (yk) such that

dist(yk, S) ≤ 2−n−2kε, yk ∈ B2−n−2(k−1)+qmε(ỹk−1)
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and
u(yk) ≥Mn+2(k+1), k ≥ 1.

We shall obtain a contradiction if we can make sure that each yk belongs to some closed ball contained
in B1. For each k ≥ 1,

|yk| ≤ |yk − ỹk−1|+ |ỹk−1 − yk−1|+ |yk−1|

≤ 2−n+qmε

k∑
l=1

2−2(l−1) + 2−nε
k−1∑
l=0

2−2l + |y0|

≤ (2−n+qm + 2−n)ε
∞∑
l=0

2−2l + ε.

By choosing n large depending on N and p, we can make |yk| ≤ 3
2ε. This completes the proof of

Lemma A.3.

The next lemma is classical, however, we could not find a precise reference in the exact following
form, thus we provide a proof for the reader’s convenience.

Lemma A.4. Let N ≥ 2, p ∈ (1,+∞), Σ ⊂ RN be a closed set and u ∈ W 1,p(B1) be a p-harmonic
function in B1\Σ, continuous in B1 with u = 0 on Σ∩B1. Then u+ = max{u, 0} and u− = −min{u, 0}
are p-subharmonic in B1.

Proof. Since u− = (−u)+ and (−u) is p-harmonic in B1\Σ, it is enough to prove that the function u+ is
p-subharmonic in B1. Let us fix an arbitrary nonnegative function ϕ ∈ C∞0 (B1) and for all ε, η ∈ (0, 1)
define ϕη,ε = ((η+(u−ε)+)ε−ηε)ϕ. Since u ∈W 1,p(B1) is p-harmonic in B1\Σ and ϕη,ε ∈W 1,p

0 (B1\Σ),∫
B1

〈|∇u|p−2∇u,∇ϕη,ε〉 dx = 0.

This implies that∫
B1

((η + (u− ε)+)ε − ηε)〈|∇u+|p−2∇u+,∇ϕ〉 dx+ ε

∫
B1∩{u>ε}

|∇u+|p(η + (u− ε)+)ε−1ϕ dx = 0

and hence ∫
B1

((η + (u− ε)+)ε − ηε)〈|∇u+|p−2∇u+,∇ϕ〉 dx ≤ 0. (A.4)

Letting η and then ε tend to 0+ in (A.4), by Lebesgue’s dominated convergence theorem, we get∫
B1

〈|∇u+|p−2∇u+,∇ϕ〉 dx ≤ 0,

which concludes the proof.

The next lemma is a refined version of [15, Lemma 5.14].

Lemma A.5. Let N ≥ 2 and let γ : [0, 1] → RN be a curve such that Γ := γ([0, 1]) ⊂ Br(x0). Assume
that ξ1 = γ(0) ∈ ∂Br(x0) and ξ2 = γ(1) ∈ ∂Br(x0). Then

max
y∈Γ

dist(y, [ξ1, ξ2]) ≤ (2r(H1(Γ)− |ξ2 − ξ1|))
1
2 .

Proof. Let z ∈ argmaxy∈Γ dist(y, [ξ1, ξ2]). Assume that h := dist(z, [ξ1, ξ2]) > 0 and |ξ1 − ξ2| > 0,
otherwise the proof follows. Let z′ ∈ RN be a point making (ξ1, z′, ξ2) an isosceles triangle such that
dist(z′, [ξ1, ξ2]) = h. Notice that h ≤ 2r, |ξ1 − ξ2|/2 ≤ r and hence

|z′ − ξ2| ≤ h+ |ξ1 − ξ2|2 ≤ 3r.
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On the other hand, H1(Γ) ≥ 2|z′ − ξ2|. Then, using the Pythagorean theorem, we get

h2 = |z′ − ξ2|2 −
|ξ1 − ξ2|2

4 =
(
|z′ − ξ2| −

|ξ1 − ξ2|
2

)(
|z′ − ξ2|+

|ξ1 − ξ2|
2

)
≤
(
H1(Γ)

2 − |ξ1 − ξ2|2

)
(3r + r)

= 2r(H1(Γ)− |ξ1 − ξ2|).

This completes the proof of Lemma A.5.
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