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ABSTRACT. We develop the theory of tamed spaces which are Dirichlet spaces with distribution-
valued lower bounds on the Ricci curvature and investigate these from an Eulerian point of
view. To this end we analyze in detail singular perturbations of Dirichlet form by a broad
class of distributions. The distributional Ricci bound is then formulated in terms of an inte-
grated version of the Bochner inequality using the perturbed energy form and generalizing
the well-known Bakry-Emery curvature-dimension condition. Among other things we show
the equivalence of distributional Ricci bounds to gradient estimates for the heat semigroup
in terms of the Feynman-Kac semigroup induced by the taming distribution as well as conse-
quences in terms of functional inequalities. We give many examples of tamed spaces including
in particular Riemannian manifolds with either interior singularities or singular boundary

behavior.
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1. INTRODUCTION

A. Synthetic lower Ricci bounds have proven to be a powerful concept for analyzing the
geometry of singular spaces, solutions to PDEs in irregular or infinite-dimensional settings,
and the evolution of Markov processes. The most prominent versions of such synthetic Ricci
bounds are the FEulerian formulation in the setting of Dirichlet spaces by Bakrnymery and
the Lagrangian formulation in the setting of metric measure spaces by Lott—Villani and Sturm.
Bakry and Emery, in their seminal paper [8], characterized synthetic lower Ricci bounds
K € R for a given strongly local Dirichlet space (X, &, m) in terms of the generalized Bochner
inequality

Dy(f) > K -T(f). (L1)
Here I" denotes the carré du champ associated with € and I's the iterated carré du champ.
For the canonical Dirichlet space with X = M, m = volg, and &(f) = 5 [;,|[Vf|*dm on a
Riemannian manifold (M, g) this reads as

1
SAIVFE = (VF,VAS) > K- [V
which in turn is well known — due to Bochner’s equality — to be equivalent to
Ricg > K - g .

A synthetic notion of lower Ricci curvature bounds in the setting of metric measure spaces
based on optimal transport has been developed by Lott and Villani and the third author in
[30, 43, 44] leading to a huge wave of research activities shaping a far reaching theory of metric
measure spaces with lower Ricci bounds. In particular, Ambrosio, Gigli and Savaré in a series
of seminal papers [4, 5, 3] developed a powerful first order calculus on such spaces leading
to natural notions of (modulus of the) gradient, energy functional (called Cheeger energy),
and heat flow. For so-called infinitesimally Hilbertian spaces the Cheeger energy is quadratic
and defines a Dirichlet form and (under minimal assumptions) the Eulerian and Langrangian
approaches to synthetic Ricci bounds have been shown to be equivalent [6, 16, 7], providing in
particular a Bochner inequality for metric measure spaces. A huge number of contributions by
numerous authors have established many sharp analytic and geometric results for such metric
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measure spaces including e.g. estimates for volume growth and diameter, gradient estimates,
transport estimates, Harnack inequalities, logarithmic Sobolev inequalities, isoperimetric in-
equalities, splitting theorems, maximal diameter theorems, and further rigidity results, see
e.g. [2, 28, 12, 19, 26, 27, 17] and references therein. Moreover, deep results on the local
structure of metric measure spaces with synthetic Ricci bounds have been obtained recently
[32], [11] and an impressive second order calculus has been developed [21].

B. The aim of the present work is to develop a generalization of the concept of synthetic
lower Ricci bounds that goes far beyond the framework of uniform bounds. Indeed, many
important properties and quantitive estimates which typically are regarded as consequences
of uniform lower Ricci bounds also hold true in much more general settings.

Our notion of “tamed spaces” will refer to Dirichlet spaces (X, &, m) which admit a distri-
bution-valued lower Ricci bound, formulated as a canonical generalization of (1.1). Roughly
speaking, we are going to replace the constant K in (1.1) by a distribution x and to consider
the inequality in distributional sense, that is, as

/Xsf’Fz(f) dm > (x, o T(F))

for all sufficiently regular f and ¢ > 0. (For the precise — and slightly more restrictive —
formulation, see Definition 1.1 below as well as (1.5).)
The distributions « to be considered will lie in the class 9’;1(1)6. Here F~! denotes the dual

space of the form domain F = ®(€) and &"(;1(1)0 denotes the class of x’s for which there exists
an exhaustion of X by quasi-open subsets G, * X such that k coincides on each G,, with
some element in &"C_;i (The option to exhaust X by quasi-open sets instead of exhausting it
merely by open sets will lead to a significant enlargement of our scope. This will be important

e.g. in Example (ii) below.)

Already in the case of Riemannian manifolds, our new setting contains plenty of important
examples which are not covered by any of the concepts of “spaces with uniform lower Ricci
bounds”.

(i) “Singularity of Ricci at 0o”: Smooth Riemannian manifolds with Ricci curvature bounded
from below in terms of a continuous — but unbounded — function which globally lies in
the Kato class, see e.g. recent results for such manifolds [35], [9].

(ii) “Local singularities of Ricci”: Riemannian manifolds with (synthetic) Ricci curvature
bounded from below in terms of a locally unbounded function which lies in L? for some
p>n/2.

Such “singular” manifolds for instance are obtained from smooth manifolds by ground
state transformations (see e.g. [22]), conformal transformations, or time changes with
singular weight functions.

(iii) “Singular Ricci induced by the boundary”: Riemannian manifolds with boundary for
which the second fundamental form is bounded from below in terms of a (possibly
unbounded) function which lies in LP w.r.t. the boundary measure for some p > n — 1.
Such manifolds with boundaries in particular appear as closed subsets of manifolds
without boundaries.

(iv) “Singular Ricci at the rim”: Doubling of a Riemannian surface with boundary leads to a
(nonsmooth) Riemannian surface which admits a uniform (synthetic) lower Ricci bound
if and only if the initial surface has convex boundary.

Indeed, however, out setting allows for much more examples.
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(a) In each of the examples (i), (ii), and (iii), the bounds can be far more singular than Kato
class functions. Our setting for instance allows for highly oscillating bounds which are
nowhere locally integrable. More generally, in (ii) it allows for measure-valued bounds
and even for distribution-valued bounds. In particular, examples will be provided where
these distributions can not be represented as signed measures.

(b) Instead of dealing with Riemannian manifolds, in each of the examples (i), (ii), and (iii),
we can deal with general metric measure spaces or (even slightly more general) with
strongly local, quasi-regular Dirichlet forms.

(c) Extending example (iii) to the setting of Dirichlet forms allows us to take into account
curvature effects of the boundary for a detailed analysis of Neumann Laplacians and heat
flows with reflecting boundary conditions.

Even more, an analogous curvature concept (including the curvature effects of the
boundary) will also be applied to the analysis of Dirichlet Laplacians and heat flows with
vanishing boundary conditions.

C. We will formulate our synthetic lower Ricci bounds in the setting of Dirichlet spaces.
These spaces always will be assumed to be quasi-regular and strongly local and to admit
a carré du champ. Among the most prominent examples are the canonical Dirichlet spaces
induced by infinitesimally Hilbertian metric measure spaces. Indeed, defining the Cheeger

energy as

&=y /X 1V f2 dm

in terms of the minimal weak upper gradient |V f|, each such (X,d,m) induces a Dirichlet
space as above. To simplify our presentation, here in this Introduction we will not distinguish
between semigroups acting on equivalence classes and semigroups defined pointwise or quasi-
everywhere.

Given a Dirichlet space (X, &, m) and a distribution x € Er";kl)c,
late our synthetic lower Ricci bound will be the taming energy £ — a singular zero-order
perturbation of € — and the taming semigroup (P/);>o. The latter allows for a straightfor-

ward definition via the Feynman-Kac formula as
P f(w) =, [ f(By)] (1.2)

properly associated with (X, €&, m) and

the crucial quantities to formu-

in terms of the stochastic process (P%Bt)zex >0
in terms of the local continuous additive functional (Af)s>o associated with x (existence and
uniquenss of which we will prove at Lemma 2.11). We say that the distribution ~ is moderate
if
_AR

sup supE, {e t] < 00.

t€0,1] zeX
In this case, (Pf);>0 defines a strongly continuous, exponentially bounded semigroup on
L?(X,m) and thus it generates a lower bounded, closed quadratic form (&€%,D(&%)). The
latter indeed can be identified (see Theorem 2.47) with the relaxation of the quadratic form

ER(F) 1= E(f) + E1(thn, F2)

defined on a suitable subset of |J,, Fg, where (G,), denotes an exhaustions of X by quasi-
open sets G, such that x € S’IGn and where 9, := (—Lg, +1)"!x. We also provide a condition

(see Theorem 2.49) on k which guarantees that & is closable, in which case €¥ is its closure.
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More generally, for p € Ry we say that x € F! is p-moderate if p s is moderate.

qloc
Definition 1.1. We say that a Dirichlet space (X, €, m) is tamed if there exists a moderate
distribution x € EF;kl)C such that the following Bochner inequality, briefly BE;(k,o0), holds
true:

1
e52 (o T(F)M/? +/ —— T(f,Lf)dm <0 1.3
for all f and ¢ > 0 in appropriate functions spaces (see Subsection 3.1 for more details).
In this case, x will be called distribution-valued lower Ricci bound or taming distri-
bution for the Dirichlet space (X, &, m).

Theorem 1.2. A moderate distribution k € Sr(;l(l)c

if and only if the following gradient estimate, briefly GE(k,0), holds true:
D(R)? < PEP(D()Y?) (1.4)

is taming for the Dirichlet space (X, &, m)

forall f €F.

Note that in the case of a constant , (1.4) reads as T'(P,f)1/? < e=#t/2Pp, (F(f)1/2) which is

the well-known, “improved version” of the gradient estimate in the Bakry—Emery theory. As
in the latter theory, the “l-versions” of Bochner inequality and gradient estimate imply the
“2-versions”, see Theorem 3.6, Proposition 3.7 and Theorem 6.9 below.

Theorem 1.3. Let a Dirichlet space (X, &, m) be given and a 2-moderate k € 3"(;1(1)0.

» Then the following properties are equivalent:
(i) the 2-Bochner inequality BEa(k,00): Vf and ¢ > 0 in appropriate spaces,

8“(@,F(f))+2/gol“(f,Lf) dm < 0; (1.5)
(i) the 2-gradient estimate GEa(k,00): Vf € &,
P(R) < PETP). (16)

» These properties follow from the corresponding “improved” versions (1.3) and (1.4).
» The converse implication (the celebrated “self-improvement”) holds if k is a signed measure
such that k= satisfies the compatibility condition w.r.t. k™.

The Bochner inequalities and gradient estimates discussed so far are particular cases (for
p = 1,2 and N = oo) of the more general Bochner inequalities BE,(x,/N) and gradient
estimates GE,(x, N) depending in addition on a parameter N € [1, oo], interpreted as synthetic
upper bound on the dimension. For BEx(k, V), for instance, (1.5) will be tightened to

& (p,T(f)) +2/g0f‘(f, Lf)dm < —%(Lf)Q

and for GEa(k, N), (1.6) will be tightend to T'(P.f) + % f[f PE(LP_sf)*ds < PF(T(f)) (see
also Theorem 3.6 for different yet equivalent formulations). For these more general functional
inequalities, the assertions of the previous Theorem hold true in analogous form.

D. Besides the fundamental gradient estimates, tamed spaces share many important prop-
erties with spaces which admit uniform lower Ricci bounds. One of the crucial qualitative
properties is
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Lemma 1.4. Assume that the Dirichlet space (X, €, m) is tamed by a signed measure K € ff;l(l)c
which is in the extended Kato class 1 (X). Then T'(f)Y/? € F for each f € D(L).

This opens the door for defining Hessians and further objects of a second order calculus. A
selection of important quantitative properties is listed below.

Theorem 1.5. Assume that the Dirichlet space (X, E,m) is tamed by a 2-moderate distribu-

tion Kk € ?(;léc. Then the following functional inequalities hold true, say fort <1,

(i) Local Poincaré inequality: — Pi(f?) — (P,f)? < Ct P(T'f);
(ii) Reverse local Poincaré inequality:  P(f?) — (P.f)? > t/CT(P.f);

! r
(iii) Local log-Sobolev inequality: — P;(flog f) — P, flog(P,f) < / PPl <J;f) ds;
0
. : . tT(PS)
(iv) Reverse local log-Sobolev inequality: Pi(flog f) — P, f log(P.f) > R ds.
0 Psl‘i Ptfsf

We also could derive a remarkable conservativeness criterion which until recently was
not known even in the “classical” setting of spaces with uniform lower Ricci bounds (more
precisely, neither for Dirichlet spaces with Ricci bounds in the sense of Bakry—Emery nor
for metric measure spaces with Ricci bounds in the sense of Lott-Sturm-Villani). Recently,
a similar result has been obtained in [9] for smooth manifolds with Ricci curvature bounded
below by a function in the Kato (or more generally Dynkin) class.

Theorem 1.6. Assume that the Dirichlet space (X, E,m) is tamed and “intrinsically com-
plete” in the sense that 3 (pn)n CF: 0< ¢ N1, 1 >T(p) \(0m-a.e. on X. Then (X, E,m)
18 conservative.

E. Singular Ricci bounds occur especially if one wants to analyze diffusions on non-convex
subsets of the state space of a given Dirichlet space (or metric measure space or Riemannian
manifold). Here both Neumann and Dirichlet boundary conditions are of interest. Neumann
boundary conditions are easier to treat since the resulting diffusions can be incorporated into
the previous setting.

To simplify the presentation, let us focus now on the Riemannian case. Let (M,g) be a
Riemannian manifold — as usual complete and without boundary — and let M be a closed
subset. Indeed, we do not assume that g is smooth but only M has a smooth differential
structure, nor do we assume that M is smooth. Thus the Ricci tensor (if defined at all) may
have singularities inside of M, and the same can happen with the curvature of the boundary.
For technical reasons, we will assume that M is regularly exhaustible, i.e. it can be exhausted
by domains with smooth boundary on which g is smooth and which have some uniform control
on the moderateness of the distributions induced by Ricci and the boundary curvature, see
Thm. 4.5 below for a precise formulation. Consider (M, g) as a Riemannian manifold with
boundary, put m = volg, and let o denote the surface measure of M. Moreover, define

1

Em(f) = 2/MO IVf?dm  with D(Ey) := WHEHMO).

Then we have the following result, see Thm. 4.5 below.

Theorem 1.7. Assume that k : M® — R is a lower bound on the Ricci curvature of (M°, g)
(where defined) and that £ : OM — R is a lower bound for the second fundamental form of
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OM (where defined). Moreover, assume that (M, g) is reqularly exhaustible, in particular that
the distribution

k=km+/lo € 3”(;1(1)0.

(1.7)
is moderate. Then the Dirichlet space (M, Em, m) satisfies BE1(k, 00).

Corollary 1.8. In the setting of the previous Theorem, the Neumann heat semigroup (P;)i>0
on (M, g) satisfies

VRS < BV
with (Pf/Z)tZO defined according to (1.2) in terms of (P)i>0 and k from (1.7).

For smooth manifolds with boundary such a result was first proven by Hsu [24].

We will provide several concrete examples of tamed manifolds with singularities both in the
interior or in the boundary in Section 4.

Dealing with the Dirichlet heat semigroup is more sophisticated. No gradient estimate of the
previous type will remain true if we impose Dirichlet boundary conditions on the semigroups
on both sides. Instead, the domination has to be based on the Neumann heat semigroup.

Theorem 1.9. In the setting of the previous Theorem with k € Cy(M°) and £ € C,(OM), the
Dirichlet heat semigroup (PP)i>0 on (M°,g) satisfies

VPO f| < PPy

with (Pf/Q)tZO as in the previous Corollary, that is, defined in terms of the Neumann heat
semigroup (Py)i>0 and k from (1.7), provided either n =2 or ¢ > 0.

F. The structure of the present work is the following. Section 2 is devoted to a detailed and
comprehensive investigation of singular zero-order perturbations of Dirichlet forms, which will
play a crucial role in the definition of distribution-valued synthetic lower Ricci bounds. After
reviewing basic notions of Dirichlet forms theory, we attach a Feynman-Kac semigroup to any
quasi-local distribution and single out those (called “moderate distributions” in the sequel)
for which such semigroup is exponentially bounded in L*°. It is then extremely important
the bridge between moderate distributions and, in the terminology of [15], “smooth in the
strict sense” measures, as this allows us to define the perturbed energy form £* associated to
a moderate distribution x by sophisticated approximation and relaxation procedures.

The next four sections, representing the core of the paper, deal with definition, examples and
properties of tamed spaces. More precisely:

e relying on the good class of moderate distributions singled out in Section 2, in Section 3
we introduce the taming condition for Dirichlet spaces as an L'-Bochner inequality for
the perturbed energy form and, using the semigroup approach of Bakry—Emery theory
as blueprint, we characterize this condition in terms of an L'-gradient estimate. The
equivalence between the L?-versions of Bochner inequality and gradient estimate is
also established, as well as the implication GE; = GE,, thus providing a preliminary
Eulerian picture of tamed spaces;

e in Section 4 we provide the reader with a sample of motivating and diversified examples
which show that our distributional approach to synthetic Ricci bounds comes to embed
highly irregular spaces ruled out by previous theories. In this sense, the singularities
covered by the taming condition concern both the behaviour of the curvature in the
interior of the space and the roughness of the boundary;
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e aim of Section 5 is to deduce suitable “tamed” versions of local (reverse) Poincaré
inequality and local (reverse) logarithmic Sobolev inequality;

e for an even stronger parallelism between the by-now classical Bakry—Emery setting
and the tamed one, in Section 6 we prove that for moderate distributions given by
signed measures in the (extended) Kato class the taming condition is self-improving,
in the spirit of [37]. The strategy of proof follows indeed Savaré’s contribution, but
caveats and technical difficulties are numerous and the arguments do not immediately
carry over.

In the final Section 7 we introduce the notion of “sub-tamed space” as a generalization of
the taming condition. The main motivation behind this is the fact that semigroups with
Dirichlet boundary conditions fail to be tamed spaces, yet they may be sub-tamed. Following
the arguments in Section 3 and 5 it is not difficult to see that sub-tamed spaces share the
same (properly modified) properties of tamed ones. Moreover, we show that to check whether
a Dirichlet space is sub-tamed it is sufficient to verify the taming condition for the “doubled”
Dirichlet space associated to it. We conclude the discussion by proving that the doubling
of a compact Riemannian surface with boundary is a tamed space with taming distribution
expressed in terms of pointwise lower bounds for the Ricci curvature on the interior of the
surface and for the second fundamental form on the boundary.

2. SINGULAR ZERO-ORDER PERTURBATIONS OF DIRICHLET FORMS

The goal of this chapter is to study perturbations of Dirichlet spaces (X, &, m) by singular zero-
order terms. These zero-order perturbations will be given in terms of distributions x which are
locally — or just quasi-locally — in the dual space of the form domain F. Indeed, the extension
from 1 to 9’;1(1)0 will be of fundamental importance. For instance, this approach includes
all perturbations by signed measures which are smooth in the strict sense. It also includes
perturbations by distributions which can not be represented by signed Radon measures.

The initial Dirichlet forms will always be assumed to be strongly local and quasi-regular.

2.1. The (Unperturbed) Dirichlet Form. Throughout this chapter, we fix a strongly
local, quasi-regular Dirichlet space (X, &, m). That is, X is a topological Lusin space, m is
a Borel measure with full topological support on X, and € is a quasi-regular, strongly local
Dirichlet form on L?(X,m) with domain F = D(€&). Moreover, we assume that the Dirichlet
space admits a carré du champ. That is, there exists a symmetric bilinear map I' : F x F —
LY(X,m) satisfying the Leibniz rule

I'(fg,h) = fT(g,h) +9gL(f,9)  (Vf,g,h € FNLF(X,m))
such that
1
(f.9) =3 [ T(fg)dm  (vh.g€9)
X

The generator of the Dirichlet form (€,F) will be denoted by (L,D(L)). The associated re-
solvent and semigroup on L?(X, m) will be denoted by (Ga)a>0 and (T;)¢>0, resp., such that
formally

Go=(a— L)*1 = / e Ty dt, T, = et
0
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on L?(X, m). The latter extends to a positivity preserving, m-symmetric, bounded semigroup
(T)¢>0 on each LP(X, m) with HTt < 1 for each p € [1,00] and strongly continuous on
LP(X,m) if p < 0.

All “quasi”-notions in the sequel are understood w.r.t. the fixed initial Dirichlet form &.
Quasi-regularity of & implies that each f € F admits a quasi-continuous version f (and two
such versions coincide q.e. on X). Thus in particular, for each f € (J ]Lp(X, m) and

t > 0, there exists a quasi-continuous version Ty f of T;f (uniquely determined q.e.).
We also fix an m-reversible, continuous, strong Markov process (IP’;,;, Bt) (with life time

[

pE(1,00

z€X,t>0
¢) which is properly associated with € in the sense that

T;f = P.f m-a.e. on X, V Borel function f € L*(X,m), (2.1)

see [15, Theorems 1.5.2, 1.5.3 and 3.1.13]. Here and in the sequel, (Rq)a>0 and (P;)¢>0 denote

the resolvent and semigroup, resp., induced by the Markov process (]P)x, Bt)x €X.t50° That is,

Pufa) = BL[f(B)]. Raf(e)i= B[ [t (B) ]

where, following the convention in [15], we assume that f(B;) = 0 whenever ¢t > (.
In the following we will denote for a Borel function f: X — R,

g-sup f(x) := inf{ sup f(x): N is 8—p01ar},
x zeX\N

m—sgpf(ar) = inf{ :;I\DNJC(HT) rm(N) = 0} = HfHLOO(X,m)'

For developing the concept of tamed spaces, Riemannian manifolds are our most important
source of inspiration. Unless explicitly stated otherwise, Riemannian manifolds are always
assumed to be smooth, complete and without boundary.

Example 2.1. Every Riemannian manifold (M, g) defines in a canonical way a Dirichlet space
(M, €m,m). The canonical choice is m := volg and

En(f) = [ IVSPam, D(Ew) = W32 (M.

This Dirichlet space is always quasi-regular and strongly local and it admits a carré du champ,
namely, T'(f) = |[Vf[%.

Moreover, thanks to the completeness of M, we always have VVD1 2(M) = WH2(M). However,
the Dirichlet space will not necessarily be conservative — unless the Ricci curvature of (M, g)
is bounded from below.

Example 2.2. The construction in Example 2.1 applies without any change also to incomplete
manifolds. (Only the assertions on equality of Sobolev spaces and on conservativeness no
longer hold.) The crucial point is that the form domain is chosen to be VVO1 ’2(|\/|), which in a
certain sense means that Dirichlet boundary conditions are incorporated.

Typically, incomplete manifolds appear by restricting a manifold to an open subset D C M.
Then

D(Ep) = {f e®(Em): f=0q.e. on I\/I\D} = W,?(D)
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and Ep = &y on D(Ep). The Dirichlet space (D,ED,mD) will satisfy our basic assump-
tions (quasi-regularity, strong locality, existence of carré du champ) without any regularity
assumption on 0D. (Indeed, one can even extend this construction to quasi-open sets D C M.)

Example 2.3. Typically, manifolds with boundary appear by restricting a manifold to a
closed subset F' C M.
For a Riemannian manifold (M, g) with boundary, there are two “canonical” constructions of
a Dirichlet space (I\/I, Em,m).
e The Dirichlet space for the metric measure space (M,d, m) (see Example 2.5 below)
with d denoting the complete length geodesic metric induced by g on M:

1

Em(f) ::2/MVf|2dm, D(Em) := WH2(M).

e The reflected Dirichlet space (see Section 7.1) for the Dirichlet space (MO, EMo,m]Mo)
associated with the incomplete manifold (M?, g) according to the previous Example:
1

Em(f) :== 2/MO|Vf|2dm, D(En) := WH2(MO).

They will coincide if M has a Lipschitz boundary or more generally if W2(M) = W12(MP)
(but not in general, see [46, Remark 6.1 and Example 6.2]). Indeed, unless explicitly stated
otherwise, we always assume that a manifold with boundary has a smooth boundary.

Example 2.4. There are many ways to construct new Dirichlet spaces out of the Dirichlet
space (M, v, m) by means of a weight function ¢ € L° (M). The most important transfor-
mations are

e Time change:

1
)=y [ VA = [ 177 dm

e Drift transformation or change of measure:

# 1 2,2 2 _ 2 2
1) =y [ VAP, |f]]y = [ 1777 dm,
e Conformal transformation:
* 1 n— 2 n
&u(f) = 3 /M VAP 2 dm, | f ey = /M [f17 €™ dm.

The latter is nothing but the Dirichlet space for the (not necessarily smooth) Rie-
mannian manifold (M, g*) with g* := e?g.

Example 2.5. Let (X,d,m) be a complete and separable metric space, equipped with a
non-negative Radon measure m. We introduce the convex and l.s.c. Cheeger energy ([13, 4])

Ch(f) := inf{liminf;/ IDf.?dm : f, € Lipy(X), f, — f € LQ(X,m)},
X

n—oo

where the metric slope |Df| of a Lipschitz function f: X — R is defined by |[Df|(x) :=
limsup, ., |f(y) — f(x)|/d(z,y). We observe that the domain D(Ch) := {f € L*(X,m) :
Ch(f) < oo} is a dense linear subspace of L?(X,m). For any f € ®(Ch) the collection

S(f) = {G € L2(X,m) : 3(fa)nes € Lipy(X), fu— f» [Dful = G in L2<x,m>}
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admits a unique element of minimal norm, the minimal weak upper gradient |D f|,,, which is
minimal also with respect to the order structure (see [4]), i.e., [Df|y € S(f) and |Df|, < G
m-a.e. for every G € S(f). Hence, it is possible to represent Ch(f) in terms of |Df|,, as

Ch(s) =5 [ IDfE dm.

If Ch is a quadratic form in L?(X, m), we say that (X,d, m) is infinitesimally Hilbertian ([20]).
In particular, according to [37, Theorem 4.1], if (X,d, m) is an RCD(K, c0) space for some
K € R, meaning that it is an infinitesimally Hilbertian space with a bound from below on
the Ricci curvature in the sense of Lott-Sturm-Villani ([30, 43]), then € := 2Ch is a strongly
local and quasi-regular Dirichlet form which admits carré du champ

I(f) = Df? for every f € ©(Ch).
2.2. Feynman-Kac Semigroups Induced by Local Distributions.
2.2.1. First-Order Distributions. Let 7! denote the dual space of F and observe that
Y= (-L+ 1)y

defines an isometry between F and F~! with inverse given by x + (=L + 1) !x.

Example 2.6. Assume that X is locally compact and that the Dirichlet form & is regular.
Then every Radon measure p of finite energy integral (in the notation of [18] and [15], u € Sp)
defines — or can be interpreted as — a distribution x € ! via

(s9) = [odu Ve,

Conversely, every non-negative distribution x € F~! is given by a Radon measure of finite
energy integral.

Lemma 2.7. For each k € T~ there exists a unique continuous additive functional A® =
(Af)e>0 associated with k given by

t
1 .
At"‘:—/w(BS)derQ(MthrMﬂ’), t<C,
0

provided k = (=L + 1)1 for some quasi-continuous 1 € F. Here MY denotes the martingale
additive functional in the Fukushima decomposition

W(By) —¥(Bo) = M + N/, t<(,

w.7.t. (]P)x’Bt)xEXt>0 and MY the correponding functional w.r.t. the time-reversed process

such that in the Lyons-Zheng decomposition
1 1 -
$(B) = 9(Bo) = gM{' = oMY, t<(,

see [15, Theorems 4.2.6 and 6.7.2]. (Uniqueness of A" is up to equivalence of additive func-
tionals.)

Remark 2.8. In the particular case where x = f for some nearly Borel function f € L?(X,m),

t
a5 = /0 f(Byds,  t<c.
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The previous concepts can easily be restricted to a quasi-open set G C X by considering the
Dirichlet form with Dirichlet boundary conditions on X \ G (or in other words, the process
killed at the exit from G). More precisely, given a quasi-open set G C X, we put

Fa = {(pE?With@:Oq.e. onX\G}.

Its dual space will be denoted by 3"51. Let Lg denote the generator of the Dirichlet form
(€,%¢). The isometry (—Lg + Y2 . Fo — L*(G) extends to an isometry (—Lg + 1)1/2 :
L*(G) — FZ'. Thus

(~Le+1): Fg — F5!
is also an isometry.
Existence and uniqueness of continuous additive functionals A" associated with « € 3"(_;1 hold
as formulated before in Lemma 2.7 but now of course with the life time ¢ of the process
(Py, Bt)zex t>0 replaced by (g := ( A 7¢. In particular, the resolvent with Dirichlet boundary
condition Rgo = (—Lg+a)™1: &"C_;l — JF, is given by

CATG
Rgok(z) :=E, [/ et dAf] for m-a.e. x € X.
0

2.2.2. Local Distributions. Given two quasi-open sets G C G’ C X, the obvious inclusion
Fo C F implies that

Fo' 0T
Given any increasing sequence (G, ), of quasi-open sets in X, we define

F-1 ((Gn)n) =7z

Lemma 2.9. For each k € F~1 ((Gn)n) there exists a unique local continuous additive func-
tional A" = (Af)¢>0 associated with k. It is the limit of the additive functionals A®™™ associated
with k regarded as element of frrai for each n € N:

A = AP fort <tg, NC
and thus in particular AY = limy, oo Af™ fort < ¢.
Definition 2.10. Let k € F1((Gy)n). The Feynman-Kac semigroup (Pf)>o associated with
K s given by

Prf(x) = Eq [efAf f(Bt) 1{t<<}}

= 1 Jim B[ F(B) L parg, n))
for non-negative nearly Borel functions f on X. For givent and x, it is extended by Pf f(z) :=
PEft(z)—PF f~(x) to arbitrary nearly Borel functions f = f*— f~ for which Pf|f|(z) < oo.

A quasi-open nest is an increasing sequence of quasi-open sets G, C X such that X\ |J,, G»
is E-polar (or equivalently, that | J,, F¢,, is dense in F). Without restriction, we always may
assume that J,, G, = X. We say that « lies quasi-locally in 51 if k € 71 ((Gy)y) for some
quasi-open nest (Gy,), and we put

Fol = U 5 ((Gan)-

quasi-open nests (Gn)n
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Lemma 2.11. For each k € ?(;1(1)0;

associated according to the previous Lemma with k and some quasi-open nest (Gy,), does not
depend on the choice of the nest (up to equivalence of local continuous additive functionals as
introduced in [18, p. 226]). Thus also the semigroup (P} )i>0 does not depend on the choice of
the nest.

It defines a semigroup on the space of non-negative, nearly Borel functions on X. For t > 0,
the operator Pf is symmetric w.r.t. m and it maps m-equivalence classes onto m-equivalence
classes. It extends to a bounded linear operator on LP(X,m) provided || Pf| Ly 1r < 0o where

HPtHHLT’,LP = Sup{HPtRfHLp cfelP(X,m), f>0, fHLp < 1}'

Proof. Given two quasi-open nests (G.,), and (G)n, put G, := G, NGl Then also (Gp)n
is a quasi-open nest and A" is uniquely defined on this nest. Thus it is unique.

The semigroup property of (Pf*):>o follows from the (local) additivity of A®. The symmetry
w.r.t. m follows from the same property for the heat operator P; and from the fact that by
construction Ay is invariant w.r.t. time reversal. Invariance w.r.t. m-equivalence follows from
the same property for the heat operator P;. Finally, the norm estimate and the extendability
to LP follows from the simple fact that |Pf f| < PF|f|. O

the local continuous additive functional A® = (Af)t>0

Example 2.12. Following [18, p. 227], and [15, p. 163], let Floe OF JFqloc denote the set of
m-equivalence classes of functions which are locally in F in the broad sense. That is, ¥ € Froc
if there exist an increasing sequence (Gy), of quasi-open sets such that |J, G, = X (or,
equivalently, nearly Borel finely open sets such that X \ {J,, G is €-polar) and a sequence
(¥ )n in F such that ¢, = ¥ m-a.e. on G, for each n.

For ¢ € Floc, we define the distribution x = (=L + 1)% by testing against J,, Fg, . Then
Y EFe = L (—L+1DypeT .
Indeed, for each ¢ € Jg,
1
(k@) = / (§F(¢, ©)+ 1 @) dm

n

_ /G (57, ) +¥np) dm < C- [l

Therefore x € ?{;TIL and thus k € Er"(;hl) .- The claim for L1 follows analogously.
2.2.3. Moderate Distributions.

Definition 2.13. The distribution x € .’7"(;1(1)0 is called moderate, briefly k € ?(;léc’mod, iff

sup supE, [e*A?} < 00, (2.2)
tel0,1] zeX

where A" is extended by 0 for t > (. We say that k is p-moderate for p € (0,00) if pk is
moderate.

Remark 2.14. (i) A distribution x is moderate if and only if the associated Feynman-Kac
semigroup (Pf)¢>o defines an exponentially bounded semigroup on L, in the sense that

1P| oo e < C e (2.3)
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(ii) For k € 3";1(1)0 mod» the Feynman-Kac semigroup (Pf);>0 extends to an exponentially

bounded semigroup on LP(X,m) for each p € [1, c0]. Moreover, for each ¢ € (1, 00)

[P fI*(x) < PP(1£17) ().
(The right-hand side of the last formula is finite provided & is g-moderate and f € L?(X, m).
Otherwise, it is still well defined but might be +oc.)
(iii) If k1 is p;-moderate and ko is po-moderate then k := k1 + k9 is p-moderate for % = p%er%.
In particular, if x is p-moderate then it also g-moderate for each ¢ € (0, p]. More generally,
the set of moderate distributions is closed under convex combinations.

Proof. (ii) Put Ct := sup,cx P/1(x), which for sufficiently small ¢ > 0 will be finite accord-
ing to (2.3). Then obviously ||Pf|r= e = C¢ and by symmetry || P{|[z1 1 < Cy. Thus by
interpolation || Pf||r» » < C; for each p € (1, 00).

(i)
A it o A AT
B < m [T < T[]
] i

(2

for each sequence of positive numbers o; with >, a; = 1.

Example 2.15. Let (X, &, m) denote the classical Dirichlet space on R™, n > 2.
(i) For m,k > 0 put

V(@) = ka7 [2sin" (|2 7™) = sin” (2| ~")]

Then there exists k. € [%mQ, %mz] such that

e V is moderate for k € (0, k.);
e V is not moderate for k > k..

In particular, for k = %kc the function V' is moderate but not 2-moderate.
(ii) Similarly, for

V() = klal 272 [2sin (ja] ™) + 1]

there exists k. € (0,00) such that V' is moderate for k € [\/32,17”2, %mﬂ and not moderate

for k > k..

Proof. (i) According to [40, Theorem 1.4], the function V is moderate if k& < $m? and it
is not moderate if & > %mQ. According to the previous Remark, moderateness for some k
implies moderateness for &’ € (0, k). This proves the existence of a critical k. within the given
bounds.

(i) Since 2sin(r) + 1 > 2sin*(r) —sin™ (r) for all » € R, moderateness of the potential in (i)
implies moderateness of the potential in (ii).

To prove the unboundedness of P in the case of sufficiently large k, we follow the argumen-

71/m, R, = [(Qn - %)ﬂfl/m,

tation from [40, Theorem 3.1], now with r,, := [(2n — 1)7]
ky =k (V3 —1)R;272™ and thus with

Ao~ [k (V3 —1)+2m?] B2

which diverges to —oo if k > 5%”_21. g
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Proposition 2.16. We define W~1°(X) to be the dual space of
WhiH(X) = {f e L'(X,m) : fin) €T (Vn €N) and ilelg H|f[n]| + |Df[n]|HL1 < oo},

where fi,) = (f An)V (—n) denotes the truncation of f at levels +n. Then
WboX)c gt

qloc,mod"

Proof. We refer to [46, Section 2.1] for a proof of this result. O

2.3. Jensen and Holder Inequalities. Let us recall that, by Definition 2.10, the Schrédinger

semigroup associated with a quasi-local distribution x € ?(;lé . is given by

PYf() = Be e £(By)|

for any bounded function f, and f(B;) = 0 whenever ¢ > (.
Let us denote

Cf :=sup Pf1(x) = supE, [e‘Af} . (2.4)
rzeX reX

Then « is g-moderate by definition if and only if

sup Cf" < oo
te[0,1]

Lemma 2.17 (Holder estimates). Let k € T

Olloc(X) be moderate. If K is also g-moderate for

q € (0,00), then we have for any non-negative f (with p=q/(q—1)):
x "~ 1
[PEF < (CF) 1 (Buf) 7 (2:5)
If —k is %-modemte, then we have
—k\1/q " 1
Pl < (") T pEm) (2.6)
Proof. By Holder’s inequality, we have
_ AR AR 1/q 1/p
PEf(@)| = [Ba [ f(Bo)|| < Eu e B 1B
<\ 1/a 1/p
< (ar) " (pr)
The second statement follows from
a 4r11/q s 1/p
P (@)] = [Eo[£(B)]| < Bo| ™ | Ea | f(B1)]

< <Ct—gn) 1/q (Ptﬁfp> 1/p '
O

Lemma 2.18 (Jensen inequality). Let k € CT"(;hl)C(X) be moderate and let ® : RY — [0, c0] be

convex and 1-homogeneous. Then, for any bounded functions fi, ..., fg we have:

Q(PFfi(z), ..., Pl fa(z)) < PE(®(f1,-.. fa)(z) . (2.7)
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Proof. This follows immediately from the 1-homogeneity and convexity of ® by applying
Jensen’s inequality with the normalized expectation

Bo() = B, [ ] B[ ()]
OJ

2.4. Kato and Dynkin Classes. Recall that, as introduced in Section 2.1, (73):>0 denotes
the semigroup on L?(X, m) associated with the Dirichlet form &, while (P);>¢ denotes the
transition semigroup for the diffusion process associated with €. The respective Laplace trans-
forms (called resolvents) will be denoted by (G4)a>0 and (Ra)a>0, resp. Let f: X — R be
any Borel function, then P, f is a quasi-continuous version of T3 f, for each ¢t > 0, while R, f
is a quasi-continuous version of G, f, for each a > 0 (see [15, Proposition 3.1.9]).

Lemma 2.19. For a nearly Borel function f: X = R and a number p > 0, the following are
equivalent:

t
i arsup [ Pf|(0)ds <
t—0 T 0
lim m-sup Ga|f|(z) < p,
a—00 x
lim  g-sup Ralf|(z) < p.
a—+00 z
Definition 2.20. For p > 0, the extended Kato class K,(X) consists of those nearly Borel

functions f: X — R that satisfy the equivalent properties of the previous Lemma.
Moreover, we put

Ko(X) = [ Kp(X), K1 (X) = [JK(X), KeolX):= [ K(X).
p>0 p<1 p>0

Ko(X) is called Kato class and K (X) is called Dynkin class.

Definition 2.21. We say that a signed measure p on X belongs to the extended Kato class,
p € Ky(X), iff © does not charge E-polar sets and

lim g-supE, A} <p (2.8)
t—0 T
where A}’ denotes the positive continuous additive functional (PCAF, for short) associated
with |p|.
Remark 2.22. Each of the following conditions is equivalent to (2.8):
lim g-supU31l <p
a—00 T
where U1 (z) := IEgc[foC e dA;], z € X\ N, denotes the a-potential of the PCAF A = A#
associated with |u| (cf. [15], (4.1.4));
tn a0

where Uy € F denotes the a-potential of the measure |u| (cf. [15], (2.3.6)).
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Remark 2.23. Assume that the absolute continuity hypothesis holds. That is, the semigroup
(Pr)¢>0 is given in terms of a symmetric heat kernel (p(z,y))i>02,yex and the resolvent
(Ra)a>0 admits a density given by ro(x,y) = [;° e *py(2, y) dt. For a measure 1 on X define

Poa(z) = fy pi(,) dpi(y) and Rap(x) = f red, ) da(y). Then
t
peX,(X) — %1_1)1(1) q—sup/ Pu(z)ds<p <= ILm g-sup Rap(z) < p.
T 0 a—0o0 T
Lemma 2.24. For all p < 1, it holds:
(i) g-sup, E,[4Y] <p = qsup,E, [eAf] <+

p7
.. AH
(i) [Uaplle <p = [|Ra* || jn 1o < 55
where, for a Borel function f: X — R and for the PCAF A = A¥ associated with |u|, we

define RAf(x) :=E, [/000 e_ate_Aff(Bt)dt] (cf. [15], (4.1.5)).

1

Proof. These are well-known facts. (i) is the celebrated Khasminskii Lemma. For the reader’s
convenience, let us briefly sketch the proof of (ii). Appropriate generalizations of the resolvent
identity yield (cf. [15, Exercise 4.1.2])
ATH ATH ATH AT
Rof = Ra" f = Use(Bat ) = (1= Uge())RE f = (T=Ual. ) )R S,

using the fact that Uq f is the quasi-continuous version of Uy(f - ) (see [15, Lemma 4.1.5]).
This in turn implies

AH o
IR g < (1= 10 ) ) IRl

for each p € [1, 00|, provided that HUQ(. . ,u) HLP o <1 O
Corollary 2.25. For each 1 € K,(X) and each p' > p there exists o' € R such that for all f
/deMSp’E(f)Jro/ / f?dm.

X X
Proof. Given p and p’ as above, put y/ := %,u. Then ' € K, «(X) with p* = ﬁ < 1. Thus

< 00

7
182

for sufficiently large o which implies HRS;M H 12 72 < ©00. This in turn implies
e~ [ Falra | Panzo @)
X X
which can be rewritten as [y f2du < p'(f) + o [y f2dm with o/ := p’ a. O

Lemma 2.26. Every finite measure p € Koo (X) defines (or can be interpreted as) a distri-
bution k € T~ via

(9)i= [edu voeo.
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Proof. 1€ Koo(X) implies that the a-potential U, p is (essentially) bounded for some o > 0.
Let U, denote its quasi-continuous version. Note that 1 does not charge E-polar sets. Thus
according to [18, Theorem 2.2.2],

[ = EaloUn) < C- lels
since €, (Uppt) = [Uppdp < oo. O

2.4.1. Ezamples on R™. For the subsequent results, let (X, &, m) denote the classical Dirichlet
space on X = R" n > 1. Then pt(x y) = (27rt)*"/2 exp( |z — y|?/2t) is the heat kernel, and
the a-potential is given by R = Jon Jo € pe(2,y) dt du(y) for any measure p on R™
and any number a > 0. If n 2 3 the same formula with o = 0 will be used to define Rou(z),
which yields

Ropa) = e [ o=y~ duty)
F(;r/f/;l) In the case n = 2, we define instead Rou(x) f]Rn log(1/]z —yl) du(y)

provided the latter is well defined. In their seminal paper, Alzenman and Simon [1] derived
the following powerful characterization.

with ¢, =

Lemma 2.27. For each n > 2 and each p > 0:

peX,R") <= hm sup Rg <1Br(z)ﬂ>( ) < p.
—0 zern
This immediately also yields an analogous characterization for functions in Ko (R™).
Corollary 2.28. If f € LP(R™) with p > n/2, then f € Xo(R"™).
From [39, Corollary 4.8], we quote the following useful criterion (together with its proof).

Lemma 2.29. Let p > 0 be a measure on X = R",n > 1. If Rop is bounded and uniformly
continuous on R™ for some a > 0 (with o > 0 if n < 2), then p is in the Kato class Ko(R™).

Proof. Let us first note that P.f — f uniformly on R"™ as t — 0 for each bounded and
uniformly continuous f: R™ — R. Indeed, given such an f and € > 0 there exist § > 0 and
t > 0 such that |f(z) — f(y)| < € for all z,y with [z —y| < 0 and such that Pslgn\ p,(z)(7) < €
for all z and all s < ¢. Thus

Pof(2) = @) < P(Uny [ £@) = F@)]) @) + 2] o - Prllmm (@) < € (L42] ] o).

Also note that (as a consequence of the previous) SRgf — f uniformly on R" as § — oo.
Now assume that R, is bounded and uniformly continuous. By the resolvent equation and
the previous observation, we obtain

Roypp = Rap — B Rg (Roz/Jf) —0

uniformly R" on as § — oc. O

Corollary 2.30. Let X = R", n > 1. Then for each z € R™ and r > 0, the uniform
distribution on the sphere,

H = 08B, (z)>
is in the Kato class ICo(R™).
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Proof. Assume n > 3 or a > 0. Then the a-potential R, u is bounded and Lipschitz contin-
uous. Indeed, the maximum of R, u is attained on 0B, (z), and

Rop(z) = ro(0, )
for x € R"\ By(z). O
Note that in the case n > 3, for all x € R"”
Rop(z) = en(r v |z|)* ™
Corollary 2.31. Let X =R", n > 1. Then for each r € (0, 00),

H= Z 09B,(2)

ZEL™
is in the Kato class ICo(R™).

Proof. By the maximum principle, R, attains its maximum on |J, B, (z). Hence, by trans-
lation invariance the maximum is attained on 0B, (0). For x € 0B,(0),

Rop(z) = Z ra (0,2 + 2). (2.9)

ZEL™

For a > 0, the latter sum is bounded since 7,(0,y) ~ exp(—Cy - |y|) as y — 0.

On each compact subset K C R", the previous series (2.9) converges uniformly. Thus R, u is
uniformly continous on K. By invariance w.r.t. translations in Z", therefore, R,y is uniformly
continuous on R". O

Corollary 2.32. Let p =) yn 09B,(z) as in the previous Corollary and put Xo := Ry x
R"!. Then

po =y,
is in the Kato class Ko(Xo) (w.r.t. reflected Brownian motion).

Proof. If R? denotes the a-Green operator w.r.t. to reflected Brownian motion, then RO (110) =
(Rap) ‘Xo' O

2.4.2. Harnack-type Dirichlet spaces. Let (X, €, m) be a Harnack-type Dirichlet space in the
sense of Gyrya and Saloff-Coste [23]. That is, € is stricly local and regular, its intrinsic dis-
tance p induces the original topology of X, (X, p) is a complete metric space and the volume
doubling condition and a scale invariant Poincaré inequality on balls hold, see [23, Def. 2.29,
Thm. 2.31]. Assume in addition that the Dirichlet space admits a carré du champ. Actually,
for our purpose here it would be sufficient that the doubling and Poincaré inequalities — or,
equivalently, the parabolic Harnack inequality — hold on balls of radius < 1. An important ex-
ample are manifolds with non-negative Ricci curvature, or more generally manifolds equipped
with a Riemannian metric g that is uniformly equivalent to a metric g’ of non-negative Ricci
curvature, i.e.

1
Xg’gggkg’ for some A > 0,

see [36]. Harnack-type Dirichlet spaces satisfy upper and lower Gaussian bounds on the heat
kernel. Thus, criteria for the Kato class can be transferred from R". In particular, we have
the following.
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Lemma 2.33. Let (X, &, m) be a Harnack-type Dirichlet space and let

ke |J IP(Xm).
p>n/2

Then the distribution x := km € !

qloc Delongs to the Kato class Xo(X).

Next, we discuss how the Kato class behaves under restriction to sufficiently regular subdo-
mains. Let Y C X be an open connected subset, which is inner uniform in the sense of [23],
i.e. there are constants ¢,C’ > 0 such that any x,y € Y can be connected by a continuous
curve (V¢)efo,1] With length at most Cpy(z,y) such that for all z € ([0, 1])

p(z,0Y) > cmin{py(z,x), py(z,9)} . (2.10)

where py is the intrinsic length distance in Y induced by p. Moreover, assume that

. {m(Br(y) ny))
infd —————~~ ¢
m(B,(y)))
Lemma 2.34. Under the given assumptions, any signed measure on Y belongs to the Kato

class w.r.t. the Neumann heat flow on Y if and only if it belongs to the Kato class w.r.t. the
heat flow on X.

r>0,y€Y}>0.

Proof. Under the given assumptions, the distances dx and dy are comparable and so are
the volumes of balls mx (BX(y)) and my (B (y)). The restricted space (Y,m’Y7 EY . D(EY))
will also be a Harnack-type Dirichlet space, see [23, Theorem 3.10]. Thus, according to the
uniform upper and lower heat kernel estimates of Gaussian type, which are valid in such
Harnack-type Dirichlet space, the heat kernels on X and on Y are comparable in the sense
that for some constant C' > 0.

1

This implies that the Kato class w.r.t. the heat flow on Y coincides with the Kato class w.r.t.
the heat flow on X. g

Example 2.35. The assumptions of the previous Lemma are in particular satisfied for each
domain Y in a Riemannian manifold X provided the boundary of Y is locally given as the
graph of a Lipschitz function.

2.4.3. An LP-C'riterion for the Density of the Surface Measure. Let a complete n-dimensional
Riemannian manifold (M, g) be given with the property that

. V)l
VEKM o i [ Tangen ) =0
This property is always fulfilled if M = R"™ or if M is compact. It immediately carries over to
the analogous characterization of signed measures in the Kato class.
Let Y C M be an open, connected subset with a boundary which is Lipschitz in the following
weak sense: there exists a constant C' > 0, a covering (U;);=1,...x of Y by open sets U; in M
and C-Lipschitz maps ¢;: U; — R"~! such that

(¢i)«volgy < C' - volgn-1 on Uj;.
Note that this is satsified if 0Y N U; is given as the graph of a Lipschitz function.



TAMED SPACES - DIRICHLET SPACES WITH DISTRIBUTION-VALUED RICCI BOUNDS 21

Theorem 2.36. In additon to the previous assumptions on M and Y, assume that V €

LP(0Y,volgy) for some p >mn — 1. Then p := V volgy is a signed measure in the Kato class
ICo(M).

Proof. For r > 0 small enough, each ball B, (x) which intersects with 9Y is contained in one
of the U;. Thus with ¢ being the exponent dual to p,

where

/ L loy(dy) < / i loy (dy)
o VOolgy(dy) = —5y VOlgy (dY

By (2) d(z,y)1("=2) WeUs : [p(@)—p()|<r/C} |0(@) — o(y)]a"=2)

/ C . Can—2)

{zeR"—1:|z|<r/C} |Z’q(n72)

which in turn is finite (and converges to 0 as » — 0) provided —¢(n —2) +n —2 > —1. The
latter is equivalent to p > n — 1. O

< volgn-1(dz),

2.4.4. Kato Class and Moderate Distributions.

Proposition 2.37. Every signed measure in Ko(X) is moderate. More generally, a signed
smooth measure = ut — p~ is moderate if u= € Ki_(X).

Proof. Let k € F be given as k = u — p/ with u= € K1_(X) and let AT and A~ denote the
PCAF’s associated with ' and ;i resp. Then by Khasminskii’s lemma

g-sup E, [e_AjJrAt_} <(1- C’t)_l < 00
xr

with Cy := sup, E, [At_ ] which by assumption is less than 1 for all sufficiently small £ > 0.
This obviously implies (2.2). O
Proposition 2.38. If k = —Ly for some 1 € Foe with T'(p) € Ko(X), then k is moderate.
Proof. x = —Lt implies
AF = MY + M.
Hence (assuming for simplicity { = o0)
E. [eAtN] = [E, [eMtw -eMtw]

E, [eSM;”_g<M¢>t] 1/3 E, [€3M;P_g<Mw>t] 1/3 E, [69<Mw>t] 1/3

IN

- E, [69 Iy F(¢)(B5)ds]1/3 < C-elt
quasi-uniformly in x. O
Example 2.39. Let X = R" for n > 2 equipped with classical Dirichlet form € and Lebesgue

measure m.
(i) Then for ¢,m > 0, according to [40],

V(@) = [lz]| = - sin ([l 7™)

is moderate if and only if ¢ < 2 4+ m. In contrast to that, V € Ko(R") (or, equivalently,
V € KXoo(R™) ) if and only if £ < 2.
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(ii) More generally, given any ¢,m > 0 with £ < 2 + m, a dense set {z;};ey C R™ and an
absolutely summable sequence of numbers (k;);cn, the potential

oo
V(z) = Z ki ||z — 2| 7% - sin (Jlz = 2]~™)
i=1
will be moderate.
(iii) Note that for ¢ > n, these potentials will not be locally integrable. (Even worse, the
latter will be nowhere locally integrable.) In particular, the associated distributions will not
be given by signed Radon measures.

2.4.5. A Powerful Approzimation Property.

Lemma 2.40. For each Borel function f € L*(X, m) and each p > 0 there erists an increasing
sequence of finely open, nearly Borel sets (Gy)nen such that X \ U, G, is E-polar and

1g, f € X, (X) (Vn € N).

Proof. Assume without restriciton that f > 0, and for n € N consider the functions u,(z) :=
R, f(z) = By foc e~ " f(B;) dt] which are n-excessive and thus finely continuous. Define an
increasing sequence of finely open, nearly Borel sets by

Gn = {un < p} (Vn € N). (2.11)

Note that fX Up dm < %fx fdm < oo, which implies u,, < oo m-a.e. on X and thus in turn
up < 00 q.e. on X ([15, Theorem A.2.13]). Hence, (G,)nen is a quasi-open nest.
Moreover, for each n by construction

R,(1g,f) <p on G,
which (by fine continuity of the LHS) implies
R,(1g,f) <p on G,

where G,, denotes the fine closure of G,,. Since the LHS is n-harmonic in the finely open set
X\ Gy, by maximum principle this in turn implies ([15, Theorem A.1.22])

Ry(lg,f) <p qe. onX.
Hence, in particular, 1, f € K,(X). O

Corollary 2.41. The same as in the previous Lemma is true for each Borel function f €
Léloc(X’ m), where the latter is defined as the m-equivalence class of Borel functions f: X — R
for which there exists an increasing sequence of finely open, nearly Borel sets (Ep)nen such

that X\ Up,Ey, is E-polar and f € Ll(En,m{E ).

Proof. Given the finely open nest (E,),en, according to the previous Lemma, for each n
there exists an increasing seqeuence (G, i)ken of finely open sets such that E, \ U, Gn is
&-polar and

1g,, f€X,0-n(X) (Vk € N).
Without restriction, we may assume that cap;(X \ E,) < 1/n and cap;(E, \ Gpn) < 1/n.
Then

k
Gr = G

n=1
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defines an increasing sequence of finely open sets such that X \ | J,, Gi is €-polar and
lg, f e X,(X), VEeN
O

Recall that a measure i defined on the Borel o-field of X is called smooth in the strict sense
(in the notation of [15], € Sy) if it does not charge E-polar sets and if it admits a nest (G, )
of finely open Borel sets G, C X such that 1, 1 € Koo(X) and p(Gp) < oo for each n.

Proposition 2.42. FEvery measure p on X which is smooth in the strict sense defines (or
can be interpreted as) a distribution k € F-1 Indeed, given a nest (Gp)nen as above, Kk €

qloc”
FH(Gn)n) can be defined via
(9)i= [ @dn VYo € Fo(Ga).

Conversely, every non-negative distribution k € &"gléc defines a measure on X which is smooth
in the strict sense.

The first part of the previous Proposition easily extends to signed smooth measures in the
strict sense.

Recall that the Revuz correspondence

1 t
/ Fdu = lim Em[/ f(Bt)dAt] V Borel f: X — R
X t—0 t 0

establishes a one-to-one correspondence between smooth measures and PCAF’s. Under the
so-called absolute continuity hypothesis, this induces also a one-to-one correspondence between
smooth measures in the strict sense and PCAF’s in the strict sense, see [15, Theorem 4.1.11].

Corollary 2.43. Assuming the absolute continuity hypothesis, every PCAF (Ai)i>o in the

strict sense is uniquely associated to some k = k™ € 9;1(1)(;-

2.5. Singularly-Perturbed Energy Forms. Our next goal is to define the energy & as-
sociated with a distribution s € 9’;1(% .- And we will prove that this quadratic form is always
associated to the Feynman-Kac semigroup (P/*):>o already defined by means of the Feynman-
Kac formula in terms of the local additive functional A" associated with «. Our approach is
inspired by the work of Chen, Fitzsimmons, Kuwae, and Zhang [14] and partly based on their
result together with two approximation procedures. In contrast to them, we restrict ourselves
to strongly local, symmetric Dirichlet forms € but we admit a larger class of singular pertur-
bations. Moreover, with a more detailed analysis we succeed to identify the energy £~ as the
closure of the limiting objects and not just as the relaxations.

Lemma 2.44. Let k € 71 and put ¢ := (=L + 1) k. Assume that || + 2T () € K1 (X)
or, more generally, that T[] + 5(171_5)F(w) € K1_(X) for some 6 € (0,1). Then

e(f) == E(f) + £(/%, ) + /X £24pdm

with D (&) = D(E) = F defines a closed, lower bounded and densely defined quadratic form
on L*(X,m). The associated strongly continuous semigroup on L*(X,m) is given by (Pf)¢>0.
Moreover, the semigroup (Pf)i>0 on L*(X, m) extends to an ezponentially bounded semigroup
on LP(X,m) for each p € [1,00] (which again is strongly continuous provided p < o).
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Proof. To check the lower boundedness of the form £, we us the chain rule for the energy
measure fi(,;) and a simple application of the Cauchy-Schwarz inequality to deduce

() = (1=0e(f) 5 [ £T@dn+ [ 2 vam

for arbitrary é > 0. According to Corollaray 2.25, the right-hand side is bounded from below
provided 155 [3'(¢) + |1]] € K1 (X). The remaining results then are particular cases of the
more general basic result in [14]. O

Proposition 2.45. Given k € F71, put ¢ := (=L + 1)"'s. Then there exists a quasi-open
nest (Gg)e such that [[1| + 2T (¢)] L, € KX1-(X), for each £ € N. Given such a nest, define a
quadratic form (£%,D(E)) by D(EF) := Ue Fo(Ge) and

En(f) = Ef) + E(f2 0 /widm

Put N :=inf{E"(f) : f € D(EX),||fllz2 < 1}. Then the following are equivalent:

(i) A§ > —oo,

(ii) |PFllp2,2 = e for allt >0 and some A € R,

(iii) ||Pf||12,12 < oo for some t > 0.
In this case, A = X§ and the semigroup (Pf)i>o is strongly continuous and exponentially
bounded on L*(X, m). Moreover, the quadratic form (&%, D (&%) is lower bounded on L*(X,m).
Its relaxation (£7,D(E")) is the closed, densely defined, lower bounded quadratic form asso-
ciated with (Pf)i>0.
The quadratic form (€, D(E")) does not depend on the choice of the nest (Gy)een.

Here and in the sequel, a quadratic form @ with domain ®(Q) C L?(X,m) will always be
extended to L?(X, m) by assigning to it the value +o00 on L*(X,m) \ D(Q). The relazation of
a lower bounded quadratic form (Q,D(Q)) on L*(X, m) denotes the largest lower bounded
closed quadratic form (Q,®(Q)) on L*(X,m) which is dominated by (Q,D(Q)). It is ex-
plicitely given by
Q(f) i=inf { minf Q(ga) + (ga)nen € LA(X,m), gn = [}

n—od

and D(Q) == {f € L*(X,m) : Q(f) < oo}. The form (Q,D(Q)) is closable if and only if
Q=Q onD(Q).

Proof. Since I'(¢)) € LY(X,m) and ¢ € L'(X, m) + L°(X,m), the existence of a quasi-open
nest with the requested properties follows from Lemma 2.40 and the fact that essentially
bounded functions are contained in the extended Kato class. According to Lemma 2.44, each
of the forms (S”, Fo(Gy)) is lower bounded and closed. The semigroups (Pt“’é)tzo associated
with these lower bounded, closed forms are given by

PP f(z) = B, [~ 1(B))] (2.12)
(with life time 7¢, A ¢) and HPf’éHLgp = et with

A= inf {E7(f) « f € Fo(Go),||fll 2 <1}
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Obviously, these numbers are decreasing in ¢ and
. 1
A = lim \J".
0 {—00 0

Now for each t > 0, put A(t) := —3||PF| 2 12 with A(t) := —oo if ||Pf||;2,2 = oco. Since
(Gy)¢ is a nest, for non-negative f the functions Pf’g f are non-decreasing in ¢ and converge

monotonically to P f as £ — oo. Therefore, A(t) < )\S’Z for each ¢ and thus A(t) < Af.
On the other hand, for each ¢ > 0 and each C' > A(t), there exists f # 0 with || Pff]|p2 >

e Ct| f[| z2. Thus also |PFf|l2 < €| f| 12 for all large enough ¢ and therefore A& < C
which in turn implies \j < C. Hence, A\§ = A(t).
Now assume that A§ > —oo. Then the non-negative, densely defined, closed forms
(E"+ A5 1 - (172 F0(Go))
(extended to functionals on L?(X,m)) are decreasing in £. Hence, according to [34], the semi-

groups (et Pf’g)tzo associated with the respective forms will converge to a semigroup which
in turn is associated to a non-negative, densely defined, closed form which is obtained as the

relaxation of ‘
(E™+ A1 1172, | Fo(Go)).-
4

Uniqueness of (8””, @(8”)) follows from the fact that it is uniquely associated to the semigroup

(Pf)t>0 which will not depend on the choice of the nest (G); . O
Given k € 3";1(1)‘:, choose a quasi-open nest (G), such that x € N, F1(G,). For each n,

put ¥, = (—Lg, + 1)7'x and choose a quasi-open nest (G, ), in G, such that [[1,] +
2I'(¢n)] 16, , € K1-(Gy) for each £. Define the closed quadratic form (Emn, D(Em™)) as the
relaxation of the quadratic form

R (f) = E(f) + E(f2 ) + /X £ dm

with D(E%™) := |J, To(Gn). According to Proposition 2.45, (&mm, D(E7M)) is associated to
the strongly continuous semigroup

P f(z) = E, [e—A? f(Bt)} .

Note that for f > 0, this obviously is increasing in n. Hence, (£™),, constitutes a decreasing
sequence of closed quadratic functionals on L?(X, m).

Proposition 2.46. Given k € :T(iic, choose a quasi-open nest (Gp)pen such that kK €

N, FHGr). For eachn, let (E5™,D(ER™)) be the closed quadratic form constructed as above,
and define a quadratic form with ©(EF) :=J, D(E"") by
EX(f) := lim &®™(f).

n—oo
Put N == inf{E"(f) : f € D(E"),||fll2 < 1}. Then again, the properties (i), (i), and (iii)
of the previous Proposition are equivalent.
Moreover, if \§ > —oco then the semigroup (Pff)i>o is strongly continuous on L*(X,m) and
the form (é“,@(é”)) 18 lower bounded. Its relaxzation (8“,@(8”)) s uniquely characterized
as the lower bounded, densely defined, closed quadratic form associated with the semigroup

(Pf)i>o0-
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The construction of (8“, @(8”)) does not depend on the choice of the quasi-open nests (Gp)n
and (Gn7g)g.

Proof. Analogously to the proof of the previous Proposition. O

Let us now finally show that the two-fold relaxation in the construction of the closed form
(8“, ”}3(8”)) can be replaced by relaxation in one step.

Theorem 2.47. Given k € ff;léc, choose a quasi-open nest (Gy,),, such that x € (), FH(Gy).
For each n, put ¢, = (-Lg, + 1)*114 and choose a quasi-open nest (G )e in Gy such

that [|vn| + 20 (¥n)] LG, , € Ki—(Gn) for each L. Define a quadratic form (8“,@(8”)) with
(&%) :==Un UiZ1 Fo(Gnye) by

B = E() e + /X £24p dm (2.13)

for € U, Fo(Gne). Put X == inf{E"(f) : f € D(E"),|fll2 < 1}. Then again, the
properties (i), (ii), and (iii) of Proposition 2.45 are equivalent.

If \§ > —o0, then the semigroup (Pf)i>o is strongly continuous on L*(X,m) and the form
(é“,@(é”)) is lower bounded. Its relaxation is uniquely characterized as the lower bounded,
densely defined, closed quadratic form (€%, D(E")) associated with the semigroup (P )¢>0.

The form (€7, D(E")) does not depend on the choice of the nests (Gy)n and (Gp)e. It coin-
cides with the closed form constructed in the previous Proposition.

Proof. Let quasi-open nests (Gj,), and (G, )¢ be given as for the construction in the above
Theorem. Observe that the form (€%, D(€")) is well defined since

E(f2, ) +/Xf2 dm = £(f2,405) + /Xf2 ; dm

for f € (UZ’; ?()(Gn’[)> N (U?’;l ?O(ij)). Let £F denote the relaxation of the form &%
defined in (2.13). Moreover, for each n € N, let €™ denote the closed form constructed as
relaxation of the form €™ in Proposition 2.45, and let £~ denote the closed form constructed
as relaxation of lim,,_,o, €®™ in Proposition 2.46.
Then obviously

&r < &% on L*(X,m)
for each n and thus

EF < &% on L*(X,m)
for each n € N. This implies £" < £". .
On the other hand, for each f € D(£") and each n € N there exists g, € D(E™") with
[f = gnllrz <1/n and €%7(gn) < E(f) + 1/n. Hence, in particular, %" (g,) < £7(f) + 1/n
and thus also £%(gn) < "(f) +1/n for each n € N. This finally implies £%(f) < £%(f). That

is, the form & constructed in Proposition 2.46 coincides with the relaxation of the form &#
defined in (2.13). O

Let us add now a brief discussion on the question whether the form (3“, CD(E“)) in the previous
Theorem is closable (in which case (€%, D(&")) simply will be its closure). Let us first consider
the basic case of distributions x which are non-negative.
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Proposition 2.48. Assume that k € F}

qloc 1S non-negative (in other words, k is a smooth

measure in the restricted sense). Then the quadratic form (8“,@(8")) as introduced in the

previous Theorem with D (E%) ==, U2, Fo(Gne) and

)

E(F) = E(F) + E(F% ¥n) +/Xf2 Y dm

is closable. Its closure (E%,D(EX)) is given by D(ER) = {f eF: [y fdr < oo} and

e5(f) = E(f) + /X .

Here f denotes the quasi-continuous modification of f so that the integral w.r.t. the measure
K (which charges no E-polar sets) is well defined.

Proof. Choose a quasi-open nest (Gy), such that k € (), F1(Gy). For each n, put v, =
(—Lg, +1)"'x and choose a quasi-open nest (Gp¢); in Gy, such that [[¢,] 4 2T'(¢y)] 1, , €
K1-(Gy) for each ¢£. Observe that

8(f2,1/1n)+/xf2¢ndm:/xf2d/<c

for all n € N and all f € |J;2; Fo(Gn ). Hence, in particular,

@(é“)c{feff: /Xde/ﬁ<oo} = F",

1/2

Moreover, note that F* is closed w.r.t. the norm (£%(-) + || - 125)""". Thus (€%, D(E)) is

closable and its closure satisfies ®(£") C F*.

To prove equality in the last assertion, let f € F* be given; without restriction, f > 0.
Let f, and f,, denote the projections of f € F onto Fo(Gp) or on Fo(Gy ), resp. Then
obviously fn ¢ — fn as £ — oo and f,, — f as n — oo w.r.t. ;. Moreover, passing to suitable

subsequences (which we do not indicate in the notation), we obtain f,, = f, q.e. on X as
¢ — ocoand f, — f q.e.on X asn — oo (see 15, Theorem 2.3.4]). Hence, [y fgxdn — [y f2dk
and [y f2dk — [y f2dk and therefore finally &(f,¢) — &(f,) as £ — oo and &(f,) — &(f)
as n — oo. This proves that f is contained in the closure of ®(E). O

Theorem 2.49. Assume that k € f}“;kl)c admits a decomposition k = u+ ko with p, kg € ff;kl)c,

p >0 such that f + (Ko, f2) is form bounded w.r.t. E* with bound < 1 in the sense that
(o, )] S @& (f, 1)+ BISIF: (v € D(EM) (2.14)

for some a, 8 € Ry, < 1. Then the form (é“, @(8”)) as introduced in the previous Theorem
1s closable and

D(EX) = {fe?: /]ad,u<oo}.
X
Proof. Form boundedness with bound < 1 implies that

EX(f) := E(f) + (wo, f)
can be defined as closed form with ®(E%) = D(EF) (see [34]).

It remains to prove that the form £* defined in this way coincides with the form &n (as defined
in the previous Theorem) on the domain of the latter. Without restriction, we may choose the
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quasi-open nest (Gy,), and the quasi-open nests (G, ¢)¢ in Gy, in such a way that (in addition
to the requested properties as formulated in the previous Theorem) also p € ), F~1(G,,) and
lfnl +2T(dn)] La, , € K1-(Gy) for each n, £ where ¢, = (—Lg, 4+ 1)~ 'pu. Then following the

proof of the previous Proposition, we conclude that (&%) ¢ D(&#) and
1)+ (k0. f2) = () + [ PP+ € ) = ()
for all n € N and f € F5(G,,) where 90 = (—Lg, + 1) k. O

Corollary 2.50. Assume that k € ff;kl)c and that f + (Ko, f2) is form bounded w.r.t. & with
bound < 1. Then the form (8“,@(8”)) is closable and D(E") = TF.

Corollary 2.51. Assume that k € ?C;léc admits a decomposition Kk = u — v with u,v €

?(;léc, i, v >0 such that v belongs to the Kato class Io(u) (or extended Kato class Ki—_(p))
w.r.t. the Dirichlet form E*. Then the form (8“,@(8“)) is closable and ©(E") = {f €F:

Jx f2du < oo}.
3. TAMED SPACES

In this chapter, we introduce the notion of taming for a Dirichlet space, via an extension of
the classical L'-Bochner inequality to distribution-valued Ricci bounds. We show that it is
equivalent to an L'-gradient estimate for the semigroup and that it implies corresponding L?
versions of the Bochner inequality and gradient estimate. Moreover, we show that under a
metric completeness assumption on the space it implies stochastic completeness.
Throughout this chapter, we fix a strongly local, quasi-regular Dirichlet space (X, &, m) ad-
mitting a carré du champ I'. In particular, £(f) = 3 [y T'(f)dm for all f € F:=D(€).

3.1. The Taming Condition.

Definition 3.1 (L!-Bochner inequality). Given a moderate distribution k € 3";1(1” and N €
[1,00], we say that the Bochner inequality BE;(k, N) holds, if for all f € ©5(L) and all

non-negative ¢ € O (L*/?)
L(f,Lf) 2
L2010 (f)2d —/ —l g >/
/ eI'(f)/“dm TN e
where the right-hand side is read as 0 if N = oo.

L 2
F((f!f;)l/Q dm, (3.1)

Here the first integral is considered over the whole space X, whereas the second and third
integrals in (3.1) are intended to be taken over the set {I'(f) > 0}. This is consistent, since
I'(f,Lf) and, by locality of €, also Lf vanish a.e. on {I'(f) = 0}. Similarly in the sequel, we
will implicitely intend such integrals to be taken over the suitable set.

Definition 3.2 (Taming). We say that the Dirichlet space (X, &, m) is tamed if there exists
a moderate distribution Kk € EFc;lic such that BE;(k,00) holds. In this case, k will be called
distribution-valued lower Ricci bound or taming distribution for the Dirichlet space (X, €, m).
If moreover this k is also p-moderate for some p € [1,00), then the space is called p-tamed.
(PP ~/ 2)t20 will be called p-taming semigroup and EP%/2 will be called p-taming energy form

for (X, &,m).
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We will show that the taming condition is equivalent to gradient estimates involving the
semigroup and the taming semigroup.

Definition 3.3 (L!'-gradient estimates). For a moderate distribution r € Er"qloc
GE;(k,00) is satisfied if for any f € F and any t > 0:

(P Y2 < PEPT(H)Y (3.2)

Moreover, given N € [1,00), we say that GEi(k, N) is satisfied if for any f € F and any
t>0:

we say that

t LP_S 2 .
(P f)Y? + ;/0 Pﬂ%W) ds < PIPT(F)Y2? (3.3)

Note, that for N < oo, it is part of the assumption that the second term on the left-hand side
is finite.

Theorem 3.4. For a moderate distribution x € ?qloc and N € [1,00], the Bochner inequality

BE:(k, N) is equivalent to the gradient estimate GE1(k, N).
Proof. BE; = GE;: Fix f € F, ¢ € ©(L*/?), t > 0 and set

B(s) = / D(P V2P 2 dm, s e (0,4,

which is well defined since I'(P;_,f)'/? and P:/2go belong to L?(X, m). Moreover, the con-

tinuity in F of s = P,_sf and the continuity in L?(X,m) of s Pf/an ensure that @ is
continuous on [0,t]. In order to prove that ® is actually C([0,]) N C1([0,t)), notice that

I 11(Ptf(s+h)f)l/2 — T (P—sf)V/? L(P—sf,LP_sf)
11m = —
h—0 h L(P_sf)1/?
for s € [0,t) and,
F(Pt—(s+h)f)1/2 —T(P_ )22 - 11<Pt_(8+h)f — Ptsf)
h - h ’

Since the right-hand side is convergent in L'(X,m) as h — 0, by (3.4) and dominated con-
vergence we deduce that

(P (ssm f)Y? = T(Pi—s )2 T(Pr_sf,LPi_sf)

m-a.e. in X (3.4)

. _ . 2
}llli% W = (D)2 strongly in L*(X, m)
for s € [0,¢). Since in addition
Pn/2 Pn/2
lim —sth¥ = L"2P,p strongly in L*(X,m)
h—0 h

for all s > 0, we precisely get ® € C([0,]) N C1([0,t)) with

K K P 5f7LP Sf K
@’(s):/r(g )L PR o dm — / = f)i/2 ) P20 dm .

Now observe that P,_sf € ©¢(L), and Pf/Zgo € D(L*/?), so that by BE;(k, N) we obtain

2 (LP—sf)?
(s) > = | PrlRp_—t=s
(S) — N/ S SOF(Pt_Sf)l/Q dm?
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for all s € [0,¢) and integration in time together with symmetry of PH/2 in L?(X,m) yields
K/2 1/2 )1/2 pr/? (LP—sf)?
/th (T(£)M?) dm /th(Ptf dm > / / / T dmds.  (3.5)

By the arbitrariness of ¢, (3.3) follows.
GE; = BE;: Choose f and ¢ as in Definition 3.1, and fix ¢ > 0. Write (3.3) with 2~ > 0 in
place of ¢ and for a function of the form P;_,f, for some s € (h,t); then multiply both sides

of the inequality by P:f iap and integrate w.r.t. m, so that by the self-adjointness of Pi /% in
L?(X, m) we obtain

/P”/%F(P of)Y2dm — /”/zgor(Pt( pf)dm

LP t+h—s— 7"f ) K/2
P dmdr .
- N/ / D (Pranap f)/2 s-hr M
Arguing as in the first part of the proof, the left-hand side is absolutely continuous as a
function of s € (h,t), hence locally absolutely continuous in (0,t¢). Moreover, the integral in

the right-hand side of (3.5) is finite. Therefore, using Lebesgue density theorem, if we divide
by h > 0 the inequality above and let h | 0, we get

F(P —8f7 LPt—Sf)
K/2( pK/2 1/2 . K/2 t
/L (PS (p)F(Pt_Sf) dm /Ps % (B )/ dm

2 (LP—sf)?
S T s
N (Pt—sf)1/2

for a.e. s € (0,t). Since f € Dg(L) and ¢ € D(L*/?), if we let s,t | 0, then the left-hand side

above converges to
K L(f,Lf
/L P2oD(f)Y? dm — / 1/2) dm ,

while, up to extract a subsequence along which m-a.e. convergence is satisfied, by Fatou’s

lemma it holds )
liminf/P”/Q (LD f)? dm > /«p (L)) dm ,
0 TP, f)12 o)

whence (3.1). O

3.2. L?-Bochner Inequality and Gradient Estimate. We show that in analogy to The-
orem 3.4 an L2-version of the Bochner inequality is equivalent to an L2-gradient estimate.
Further we show that these two equivalent properties are implied by the taming condition
i.e. the L'-Bochner inequality, provided the taming distribution is also 2-moderate.

We set Dpeo (L) :={f € D(L¥) : f,L*f € L>®(X,m)}.

Definition 3.5 (L2?-Bochner inequality). Given a 2-moderate distribution x € F' and

qloc
N € [1,00], we say that the L?-Bochner inequality BEa(k, N) holds, if

[rreryan—2 [er(Lnan= o [ o, (36)
for all f € D5(L) and ¢ € D (L7).
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Theorem 3.6. For a 2-moderate distribution x € T and N € [1,00], the following are

qloc
equivalent:
(1) The Bochner inequality BEa(k, N) holds.
(2) The gradient estimate GEa(k, N') holds:
4 t
L(Pf)+ N/ PE(LP,_of)*ds < PF(T(f)), VieF, t>0. (3.7)
0
(2) We have:
4 t
L(P.f) + N/ (PE(LP—of))*ds < PA(T(f), VfeF, t>0. (3.8)
0

If moreover —k is also 2-moderate, then the previous properties are eqivalent to:
(27) We have:

D(PS) + g (LRI S PER(E), VP €5 t>0, (3.9

where Cy = supyejo C5 ™ and the constants C3* are given by (2.4).

Proof. (1) = (2).Fix f€F, p € D= (L"), t > 0 and set
v()i= [L(Pf)Ppdm,  se o)

The fact that P maps L (X, m) into itself ensures that ® is well defined, while the fact that
s — P,_sf is continuous with values in F and the weak-* continuity in L>°(X, m) of s — Pfp
ensure that ® is continuous on [0, t]. Since ¢ € D~ (L"), we have
Pr o — Pr
lim TohP T TP L"Psp  weakly-* in L>=(X,m) ,
h—0 h

for s € [0,t). Since in addition
1 F(Pt—(s-i—h)f) - F(Pt—sf)
im
h—0 h

for s € [0,t) one obtains ® € €([0,1]) N €([0,#)) with

= —2T(P,_of,LP,_,f) strongly in L*(X,m),

d'(s) = /I‘(PtSf)L”Pf(pdm—2/F(Ptsf, LP,_sf)PFpdm.

Now observe that P,_sf € D5(L). Moreover Pf¢ € D (L") because PF is continuous from

S
L>(X,m) into itself, L* and P commute and L"¢ € L*°(X, m) by assumption. Hence by (1)
we deduce that

4
¥(s) 2 3 [ PrelLPicf) dm,
for all s € [0,¢). By integration this yields
4 t
/cpr(F(f))dm—/goF(Ptf) dm > N/ /cpr(LPt_sf)Qdmds,
0

and by the arbitrariness of ¢, (3.7) follows.
(2) = (2?). This follows from Jensens’s inequality, see Lemma 2.18.
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(2°) = (1). Choose f and ¢ as in Definition 3.5, and fix ¢ > 0. Write the equations (3.8)
with A > 0 in place of ¢t and taking a function of the form P,_,f, for some s € (h,t); then
multiply both sides of the inequality by PF ; ¢, and integrate w.r.t. m:

4 h
[ prereapan- [ Pernnfam = [ [ 0P D) P dmdr

Arguing as in the the first part of the proof, we see that the left-hand side is absolutely
continuous as a function of s € (h,t), hence locally absolutely continuous in (0,t). Hence if
we divide by h > 0 the inequality above and let h | 0, we obtain

[ o pan -2 [ Pror@e P dn = [P P,

where we have used the continuity of the curve ¢ — Pffp € L2(X,m) in [0,00). At this point,
since f € D5(L) and ¢ € D~ (L"), we can let s,t | 0, thus getting (3.6).
(2) & (27). For f € F, Lemma 2.17 provides

1
>
cs"

PS(LP_ f)? (LP.f)?

Plugging this inequality into (3.7) we obtain (3.9). On the other hand, since C; " tends to 1
as t — 0, we can argue as in the proof of (2’) = (1) to see that (2”) implies (1). O

Proposition 3.7 (GE;(k, N) implies GEz(k, N)). Given a 2-moderate distribution k € S"qkl)c,
the condition GE;1(k, N) implies the condition GEa(k, N).

Proof. We start observing that a direct application of GE;(k, N) yields

2 2
T(Pf) = (F(Ptf)l/Q) <P“/2F(f)1/2 N/ H/Qm ds>

K/2 n LPt sf) K/2
— (F)t/ F 1/2 N/ /2 Pt Sf)l/gp / F(f)1/2 ds (3.10)

2 [t e (LPof)? >2
+<N/0 P; 7F(Pt_sf)l/2 ds | .

At this point, Jensen’s inequality and the 1-homogeneity of (s,t) ~ s/t guarantee, see
Lemma 2.18, that

(PYPLP_f)?
PEPD(P_ V2

v

H ) i LP.f)*
(PE2D(f)?)* < PFD(F) and Ps/2<r(<Ptt—sf>)”2>
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A further direct application of GE;(k, N) provides

LP sf) K/2
n/2 t— / 1/2
N/ P (P sf)l/QP I(f)”=ds

(LP_sf)? 2 [ (LP_.f)?
5/2 i— K/2 1/2 | = K/2
N/ NENILE <PS D(P—sf)/* + N/o P; LB ) dr ) ds

n/2
/ LPief) PrPT(P_of)'/? ds
P”/QFP V2

/4/2 LPt Sf) K/2 (LPtfrf)Q
/ / T E VR e

(LP—sf)? (LPf)?
_ K/2 5/2 i— K/2
- / (PE2LP,_f) ds—l—/ / (A sf)l/Z‘PT NIOLE drds

LP sf) (LPt—rf)2
/2 o 5/2 t— 5/2
N/ (PEPLP,_of)?ds + / / NEEGLE P! TP )12 drds

_ 4 x/2 2 2 w2 (LPsf)? )2
— N/O (PSIELP s f)*ds + (N/o P! NTIE ds | .

Plugging these inequalities in (3.10), we obtain

| \/

4 t
NP < P - [ (PP s

0
which is exactly (3.8). O

3.3. Stochastic Completeness. We show that the taming condition, together with an ap-
propriate metric completeness assumption on the Dirichlet space, implies the stochastic com-
pleteness of the semigroup.

Definition 3.8 (Intrinsic completeness). We say that the Dirichlet space (X, &, m) is intrisi-
cally complete if there exists a sequence of functions () in ®(€) such that m({n; > 0}) < oo
aswell as 0 < < 1,T(mx) < 1, and np — 1, T'(nx) — 0 m-a.e. as k — oc.

Remark 3.9. This terminology is motivated by the fact that the existence of such cut-off
functions is strongly related to properties of the intrinsic metric of the Dirichlet form €. Recall
the latter is defined by

p(z,y) = sup {u(z) — u(y) : u € Fioc N C(X),dl(u) < dm} .

In general, p might be degenerate, in the sense that p(x,y) = 400 or p(z,y) = 0 for some
x # y. Let us assume that the topology induced by the pseudo-distance p is equivalent to the
original topology on X. When X is locally compact, (X, p) is a complete metric space if and
only if all balls B,(z) = {y € X : p(x,y) < r} are relatively compact, see [42, Theorem 2]. In
this case, cut-off functions as in Definition 3.8 can be constructed by considering functions of
the form

prap Y = (a—bp(z,y)),

for x € X and suitable a, b > 0. Indeed, by [41, Lemma 1] the distance function p, : y — p(z,y)
satisfies dI'(p,) < dm. Thus, pyap € D(E) N C(X) and dI'(pg,qp) < bdm.
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However, in contrast to conservativeness (or 'stochastic completeness’), completeness with re-
spect to the intrinsic (pseudo-) distance is not invariant under quasi-isomorphisms of Dirichlet
forms. Our more general, new notion of intrinsic completeness perfectly makes sense for arbi-
trary quasi-regular, strongly local Dirichlet forms on general state spaces and it is invariant
under quasi-isomorphisms of Dirichlet forms.

We consider here the following more general notion of taming.

Definition 3.10. We say that the Dirichlet space (X, €, m) is weakly tamed if there exists an
exponentially bounded semigroup (Q;) on L*(X,m). such that the following gradient estimate
holds:

DR f) <QuVI(f), foral fed. (3.11)

An example of the previous situation is given by a space (X, &, m) tamed by a moderate
distribution x € F! aloc’
condition GE;(k, oo)

Here the taming semigroup is Q; = Pf/ % and (3.11) is nothing but the

Theorem 3.11 (Stochastic completeness). Assume that the Dirichlet space (X, &, m) is in-
trinsically complete and weakly tamed. Then the heat semigroup (P;):>0o is stochastically
complete, i.e. we have P,1 =1 for all ¢ > 0.

Proof. 1t suffices to show that [ Pudm = [wudm for every non-negative u € L'(X, m) N
L?(X,m). To this end, let 1, be a sequence of cut-off functions as in Definition 3.8. Approxi-
mating u by P:(niu) we can assume that v € ®(L) C ©(€) and (thanks to (3.11)) also that
I'(u)Y/? € L' (X, m). Then we have, using the gradient estimate (3.11):

/nthudm—/ nrudm = // nxLPsudmds = — // Ping,u)dmds
< [ [ VFia./Taramas.

Now, as k — oo the last expression goes to zero, since 1/T'(u) € L'(X,m), and I'(n;) is
uniformly bounded and goes to 0. (|

4. EXAMPLES

4.1. A tamed manifold with lower Ricci bound that is nowhere Kato. We will
consider a time change of the Euclidean space which yields a Dirichlet space which is tamed
but the pointwise lower bound of the Bakry—Emery—Ricci curvature of which is nowhere locally
in the Kato class.

Forn € N;n > 2, let (X, d, m) be the Euclidean space R™ equipped with the classical Dirichlet
energy € and the n-dimensional Lebesgue measure m. For j € N choose increasing functions

2 1
37 OSTS§7

Yi(r) =< %Srﬁl
2, r>3

and put ¥(r) := limj_, ¥;(r). Given real numbers m, ¢ > 0, put

U(r) := r2t2m=t gin (r_m)
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and ¥*(x) := U (J(]z|)). Moreover, given a sequence (z;);cn of points in X and a summable
sequence (\;);en of positive numbers, put

P(x) = Z i - 0" (x — z).

Theorem 4.1. Assume 2 < /¥ < m + 2.
(i) Then the function
k= —(n—2)|VY[? — Ay
is a moderate distribution and it is not in the Kato class Ko(R™). If (2i)ien is dense

in R™, then k is even nowhere locally in the Kato class Ko(R™).
(ii) The Dirichlet space (X, E,m’) with m’ := > m satisfies BF(k, 00).

Remark 4.2. (X, &, m’) is the Dirichlet space of a weighted Riemannian manifold with M =
R", g’ = Vg, eiq, and m’ = e~ ("=2¥m,. If n = 2, this is indeed a Riemannian manifold.

Proof. Without restriction, we assume that ) . \; = 1.

(i) The singularity of |V1*| at the origin is of the order |2|*™~*. Thus under the assumption
¢ < m + 2 of the Theorem, |V¢*|? € Ko(R™). Since |Vy|*(x) < 3, Mi|VY*[2(z — 2;), this
implies that also |V)|? € Ko(R") and so will be p? [V1)|? for each p € R. Moreover, according
to Proposition 2.38 the latter in turn implies that —pAt is moderate. This proves that
—(n —2)|Vy|? — At is moderate. (Indeed, it is even p-moderate for each p € R.)

On the other hand, the singularity of Aw)* at the origin is of the order |z|=¢ which implies
that under the assumption ¢ > 2 of the Theorem, Ay* & Ko(R™). If the (2;);en are dense,
this in turn implies that A is nowhere locally in the Kato class Ko(R"™).

(ii) For j € N, put d ¢} (z) := ¥(J;(|z])). and
Pi(z) = Z Xi 5 (@ — ).

Then obviously Hz/)* — w;‘H 1o S 2 447272m and therefore also

1 = ] e < 2577277 (4.1)
Moreover,
V5 || oo < O - 574

which in turn immediately implies
V]| oo < Come - 571 (4.2)

Thus we have constructed a sequence of bounded Lipschitz functions ; that uniformly con-
verge to 1 as j — oo.

According to [46, Thm. 4.7], for each j € N, the Dirichlet space (X, &, m;) with m; := e2¥im
satisfies BE;(kj, 00) with kj := —(n — 2)|V;|? — At; (the distributional valued Laplacian
of 1; is indeed given by a function since 2 + 2m — £ > 2 — n). Following the argumentation
from the proof of [46, Thm. 4.7], one can pass to the limit in the associated gradient estimate
GE; (k;, 00) which yields the estimate GE1(k, o) for the Dirichlet space (X, €, m’) with m’ :=
e?¥ m. ]
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4.2. A manifold which is tamed but not 2-tamed.

Theorem 4.3. As before, let (X, €, m) be the classical Dirichlet space on R™, now with n = 2,
and choose 1) € C°°(R?\ {0}), supported in By(0) such that for z € B1(0) \ {0}

W)= a [ = glel > s () + (1= ) faf™ cos (jef )]

Then there exists a. € (0,00) such that k& := —At is moderate if a € (0, a.) and not moderate
if @ > a.. In the former case, the Dirichlet space (X, &, m') with m’ := e?¥m satisfies BE; (k, 00).

n—2

Indeed, this Dirichlet space is associated with the incomplete Riemannian manifold (R? \
{0}, g') with the (smooth) Riemannian tensor g’ = e*¥gp2 given as a conformal transformation
of the Euclidean tensor gz and degenerating at the origin. The Ricci curvature at  # 0 is
exactly given by k(z).

Proof. (i) Straightforward calculation yields
1 _ ;1 _ 2 —2—2m 1 . -m
5k(:c) = Ay(x) = m” |x| [2 + sin (|| )] + k1 (x)

with ki(z) = o - sin (Jz|™™) - |z[~2. According to Example 2.39, k; is S-moderate for all

B € R. Moreover, according to Example 2.15 (ii), ko(x) = am? |z|~272™ {% + sin (]a;|_m)} is

moderate for sufficiently small @ > 0 and not moderate for large a. Thus the assertion on

moderateness vs. non-moderateness of k follows.

(ii) To verify the BE;(k, 00) condition for the time-changed Dirichlet space, we approximate 1)

monotonically from above by 1, which we define by modifying the definition of ¢ as follows:
e truncate —%|az|_2m at level —/¢

e replace sin (|z|~™) by +1if [z[7™ > (20 + )«

e depending on the sign of (1 — 2=2), replace +|z|™ cos (|z|™™) by £|z|™ if |z|~™ >

(20 F 1)m.

0

4.3. Manifolds with boundary and potentially singular curvature. For smooth Rie-
mannian manifolds with boundary the taming distribution of (M, &y, m) is determined by
pointwise lower bounds on the Ricci curvature and a measure-valued contribution coming
from the curvature of the boundary as first shown by Hsu [24], see also the monograph of
Wang [47, Thm. 3.2.1], where gradient estimates in terms of the Schrédinger semigroup were
shown.

Let (M, g) be a smooth compact Riemannian manifold with boundary. Let m = volg denote
the volume measure and let o denote the surface measure of OM. Let us denote by M? the
interior of M, and define

1
Em(f) = 2/ IVF* dm  with F:=D(Ey) := WH2(M),
MO
the canonical Dirichlet form on M with Neumann boundary conditions.

Theorem 4.4. Let £ : M — R and ¢ : OM — R be continuous functions providing lower
bounds on the Ricci curvature and the second fundamental form of OM, respectively. Then
the space (M, Eu, m) is tamed by the moderate distribution k = k-m+1-ogwm, i.e. BE;(k, c0)
holds.
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Proof. By Theorem 2.36, x belongs to the Kato class and hence by Proposition 2.37 is
moderate. The gradient estimate GE;(k, c0) is shown in [25, Thm. 5.1]. O

In the setting of metric measure spaces, examples of tamed spaces with distributional curva-
ture coming from the boundary have been constructed by Sturm as subsets of RCD spaces
with locally semiconvex and sufficiently regular boundary, see [46, Thm. 6.14].

In the remainder of this section, we will discuss examples of tamed spaces with non-smooth
boundary giving rise to more singular taming distributions. For simplicity, these will be re-
alized as subdomains of Euclidean space. We approach these examples via approximation by
smooth domains. To this end, we first state a general stability result for the taming condition
in this context which also allows for interior singularities of the metric.

Here, we merely assume that M has a smooth differentiable structure and not necessarily
that g or M are smooth. However, we require that M can be exhausted up to a polar set
by smooth subdomains on which g is smooth as well as some uniform control on the taming
distributions of the subdomains.

Theorem 4.5. Let the Ricci curvature of (M, g) (where defined) be bounded below by & :
M? — R and let the second fundamental form of OM (where defined) by bounded below by
£ : OM — R. Moreover, assume that M is regularly exhaustible, i.e. there exists an increasing
sequence (X, )nen of domains X,, € M® with smooth boundary such that g is smooth on X,
and the following properties hold:

A1) The closed sets (Xy,), constitute a nest for Ey;

A2) For all compact sets K C MY there exists N € Ns.t. K C X, for all n > N;

A3) There are lower bounds ¢, : 9X,, — R for the curvature of 9X,, with ¢, = ¢ on
OM N 0X,, such that the distributions k, = kmx, + ¢, - 09x, are uniformly 1- and
2-moderate, i.e.

sup sup sup IEJ(C”) [e_aA?nﬂ] <o a=1,2.
n te€[0,1] z€Xn
Then the Dirichlet space (M, Em, m) satisfies BE; (k, 00) with the moderate distribution
k=kmy+Logwm -
Proof. Let (X,)nen be an exhausting sequence. Denote by &, the standard Dirichlet form
on X, with Neumann boundary conditions and by (Pt(n))t, and ((Bt(n))tzo, (P?)gex,,) the
associated semigroup and process. Let (Py);, and ((Bt)i>0, (Pz)zex,) be the corresponding
objects for M?. Denote by Z, = 0X,, N M? the relative boundary of X,, in M and by Tg:rz,

7z, be the first hitting time of Z, by B(™, resp. B. Al) entails that 7z, oo as n — 00
a.s. under P,.

By Theorem 4.4, (X,,, £, m) satisfies the taming condition BE; (k,,c0). We argue by passing
to the limit in the equivalent condition GE; (£, 00).

i) We first show convergence of the semigroups Pt(n). For every u € Cy(M) we have (viewing
u as a function on X,, by restriction)

P"u(z) — Pu(z) for all z € MO
Indeed, we have

Ptu(x) — Pt(n)u(x)’ S‘E(n) [U(Bt(n))]_{ (")>t}] — E$ [U(Bt)]-{‘rzn>t}]‘

T
T
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+ | ul| oo (Pén) [ <t] +Py[rz, < t]) .

Now, note that the two expectations coincide, since the processes B B can be realized such
that they coincide up to the hitting time of Z,. Hence, the first term in the right hand side
vanishes. Similarly, the latter two probabilities coincide and by assumption Al) 77, " oo
almost surely under P,, hence P, [Tzn < t} vanishes as n — 0o.

ii) Next, we show convergence of the tamed semigroups Pf"/ 2. For every non-negative g €
Cp(M) we have

Pf”/zg(az) — Ptn/Qg(ac) for all z € M.
Indeed, we have by construction that
K . _Aln/2
b /29(1’) =7 nh_{TOloEa: [6 A Q(Bt)1{72n>t}} .

On the other hand, arguing as above, we have

Kn /2 n _ rn /2 n n _ Kkn/2 n
P g(x) = B [ 4" g(Bf ))1{Téﬁ)>t}] +EM [ g(B] ))1{72@}]
_ ARn/2 n _ ARn/2 n
= B e B ) + B[ BN ]

and it suffices to argue that the last term vanishes. But, we have

Kn /2 n n _Aknq i n 1
B [ g(BIL oo o)) < B[4 2R [ < 4] 7 gl

T

— B [ 2R 1, < 1]l

By assumption A3), the first factor is uniformly bounded in n while as above the second
factor vanishes as n — oo.

iii) We now argue that s is moderate. Since the processes B™ and B can be assumed to
coincide up to 7z,, we have by construction of the Schrédinger semigroup

AH/Z

E, [e_ t ] = sup E, [e_AH/2
n

_ ARn/2
g, sy) = sup BV [
n

_Afn/2
l{ré:)>t}] = snga(;") [e A ] :

Thus assumption A3) above immediately yields

_2k/2
sup sup Ex[e A ] < 00,
te[0,1] r€Xeo
i.e. k is moderate.

iv) To establish the taming condition GE;(k,c0) for (M, ) we have to show that
I(Pu)> < PIPD(u)?

for all ¢ and all u in a dense class of functions in F. Let u be a function €'(M) and denote
by u also its restriction to any X. Let (7s)se[0,1] be a Lipschitz curve in M? and note that by
A2) its image is contained in all X,, for n suficiently large. The taming condition GE;(ky,,c0)
for (X,,, €M) yields that

1
1P u(m) = PMu(o)] < /0 P2 |57u] () sl ds
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Steps i) and ii) allow to pass to the limit n — oo in the left and right hand side respectively

and obtain the same estimate with P, and Pf/ ?. Hence, |V Pu| < P:/ QIVU\ in M°. To conclude
it suffices to note that any function in J can be approximated by restrictions of €! functions
to Mo. Indeed, by X,, being a quasi-open nest, |J;-; Fx, is dense in F. Further, any u € Fx,
can be extended to a function in W2(M) by regularity of the boundary of X,,. If u, is a
@ approximation of this extension in W12(MP), then obviously the restrictions of u, to Mg
converge to u in F. O

Next, we give an example of singular boundary behavior by considering a Euclidean domain
with cusp-like singularity of the boundary such that its curvature is controlled in LP.
Consider the domain Y C R? given by

Y = {($7yaz)€R3 : Z>¢(\/W)},

where ¢ : [0,00) — [0,00) is C? on (0,00) with ¢(r) = r — >~ « € (0,1) for r € [0,1] and
¢ constant for r > 2. Let us denote by €y the standard Dirichlet form on Y with Neumann
boundary conditions and let m the Lebesgue measure restricted to Y and ¢ the 2-dimensional
Hausdorff measure on 9Y.

Parametrizing the surface of revolution 9Y as {(rcosf,rsin6,¢(r)) : r > 0,0 € [0,27]}, one
readily computes the smallest eigenvalue of the second fundamental form of 9Y to be

0.0 =50

for r <1 and £ = 0 for r > 2 and where \(r) = /1 + |¢/(r)|? is the length element of the

revolving curve. Note that ¢(r, ¢) ~ —r~* for r small.

Theorem 4.6. The Dirichlet space (Y, Ey,my) satisfies BE;(k, 00) with the moderate distri-
bution

k=VFo,
where £ is the smallest eigenvalue of the second fundamental form of OY.

Proof. First observe that k is moderate. Indeed, one sees that

1 21
/ 0Pdo = / / 10(r, 0)[PA(r)rdrde .
aYN{r<1} o Jo

The latter is comparable to fol rl=ardr. Hence, £ € LP(OY,o) iff ap < 2. Further note that
JY is the graph of a Lipschitz function. Thus, choosing 1 < p < 2/«, Theorem 2.36 yields
that xk € Ko(R?) and since Y is inner uniform also x € Ko(Y), see Lemma 2.34, in particular
k is moderate. The taming condition will follow from Theorem 4.5. We claim that a regular
exhaustion is given by Yy, := {(z,y,y) : 2 > ¢n(\/2? + y?) } where ¢y, is C? with ¢y, (r) = ¢(r)
for » > 1/n and a degree 3 polynominal on [0, 1/n] with ¢/,(0) = 0 (i.e. we round the cusp of Y
at scale 1/n). One can check that /,,, the minimal eigenvalue of the second fundamental form
of Y, is controlled by —r~% uniformly in n and ||£, | z»(gy,,) is uniformly bounded in n for a p
as above. Moreover, 0Y,, are graphs of Lipschitz functions with constants bounded uniformly
in n. The proof of Theorem 2.36 gives that x,, = £,0sy is uniformly bounded in the Kato
class Ko(R?). One checks that Y, is inner uniform with constants independent of n and thus,
by Lemma 2.34, £, is also uniformly bounded in K¢(Y;,), i.e. lim;_o sup,, sup,, E(™ [Af"] =0,
which entails that x,, is uniformly 1- and 2-moderate, i.e. A3) holds. A2) is obvious. Finally,



40 MATTHIAS ERBAR, CHIARA RIGONI, KARL-THEODOR STURM, AND LUCA TAMANINI

since Y is inner uniform, its Neumann heat kernel is comparable to the Euclidean one, which
allows to check A1l). O

4.4. A tamed domain with boundary that is not semiconvex. We will construct here
another tamed space with boundary that has no lower bound on the second fundamental form
by adding to a Euclidean halfspace a sequence of smaller and smaller bumps.

Let Xg := {(acl, T9,23) € R3 : 23 > O} be a halfspace in R3. For r, h > 0 consider the function
frn : R = R given by

fr,h(t) = h . ( -1 - COS(ﬂ't/T‘))l[,nr](t) y
and define the set

Orh —{$ER3 :E1+132<7‘ 0>£L’3>frh<\/l‘%+l‘%)},

which will serve as the basic bump. Let w.p = £, r090,, denote the curvature measure of
the “lower” boundary of O,.;, i.e. the surface measure of that part of the boundary weighted
by the curvature of the boundary. For n € R?, let /‘Z,h denote its translation by the vector
(n,0) € R,

Let sequences (r;); in (0,1/2) and (&;); in R? be given such that the sets A; for i € N are
disjoint where A; := U,czn—1By, (2 + &) C R2. Choose h; € R4 with h; <r; such that

Z HGllu‘lHLoo Hi = Z Mijﬁz ’
2€Z2
where G{u denotes the 1-potential of ;1 in the half-space Xg. Consider then the set
Xoo :=Xp U U U (Omhi +z —|—§z) )
1€N z€7Z2

whose boundary is obviously is not semiconvex.

Theorem 4.7. The measure j1 := ), p; belongs to the Kato class Ko(Xo) and Ko(Xoo). The
Neumann heat semigroup on the set X satisfies BE1(—pu, 00).

Proof. (i): For each i, the quantity
HGO Z Mz+5z
7’7/7

depends continuously on h. Thus there exist h; > 0 such that ), HGI 1 H [ < 00 as requested.
Hence, G{u is bounded. Moreover, GYp is uniformly continuous since it is the uniform limit
of uniformly continuous functions. An easy argument (based on reflection symmetry) allows
to carry over the criterion of Lemma 2.29 to the heat semigroup on the half space. Finally,
we note that X is an inner uniform domain in the sense of [23]. Hence, Lemma 2.34 shows
that p belongs also to Ko(Xo).

(2): Consider the sets

X =XoUlJ U (Orip +2+&) N By,

i=12€7?
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where B, is essentially the ball of radius n in R? suitably modified near the {x3 = 0} so that
X, has smooth boundary. Note that X,, contains only the “bumps” at above scale r,, of X.
Thus, by Theorem 4.4 X,, satisfies BE;(—py, 00) with

n
U = Z Hi + An s

i=1
where ), is essentially 1/n - O+ with S the upper hemisphere of radius n. The relative
boundary Z,, of X,, in X, consists of a countably many discs of sizes r; with ¢ > n together
with S;*. We want to apply the stability result Theorem 4.5 (with M? = X, and k = 0).
Thus we need to check that the sets X,, provide a regular exhaustion. Note that the capacity
of Z, in Xy vanishes as n — oo if r; are chosen appropriately and hence does its capacity
in X, i.e. condition A1) is satisfied. Condition A2) is readily checked. One checks that the
Green potential Gou, is bounded and uniformly continuous uniformly in n (note that the
contribution of A, is negligible as n — oco. By the argument of Lemma 2.29 and taking into
account the inner uniformity of X, we infer that lim;_,¢ sup, sup,, E; [Aff "] = 0 yielding that
the u, are uniformly moderate and 2-moderate, i.e. condition A3) holds. Thus we conclude
that X, satisfies BE}(—pu, 00). O

4.5. A Tamed Manifold with Highly Irregular Boundary. Our next example will pro-
vide a domain X, C Xg = R xR, such that the curvature measure p of its boundary 0.X is a
moderate distribution which is not in the Kato class. Even, more |u| is not a Radon measure.
The proof of the former property will be based on the following useful criterion.

Lemma 4.8. A distribution k € ?(;ICI)C(X) is moderate provided there exists a function ¢ with

Ly = Kk and ||[¢||r~ < 1 and such that p := ¢ k defines a signed measure in the Kato class
ICo(X).

Proof. Choose p > 1 such that ¢ := inf,[1+py](z) > 0. Put u := 1+pp and v := £ = lfpwn.
Then (—L + v)u = 0 which implies

cP/1<Plu=u<C,

and thus ¢ —sup, P/1(z) < C/c < oo for all t > 0. Hence, v is moderate. In other words, the

distribution x; := %1/ is p-moderate. On the other hand, the distribution kg := k—Kk1 = ﬁzw/@
is a signed measure in the Kato class. Therefore, in particular it is p’-moderate for p’ € (1, 00)
being dual to p. Thus according to Remark 2.14 (iii), k = k1 + K2 is moderate. O

The domain X, for the example mentioned above will be constructed as the limit of a
sequence of domains X, C Xo = R x R4, n € N, The building blocks of our construction of
X, will be defined in terms of the functions Hy : R — Ry for £ € N given by

1

He(s) = iy

1+ cos((2041)7s)) - 1j_1,1)(s).
Define a measure fiy on R in terms of the curvature H;'/(1 + Hé2)3/ 2 and the arclength
(1+ H?)'/2 of the curve (s,H(s)) g by

cos((20+ 1) s)
1+ (%_H)2 sin?((2¢ + 1)7 s)

seR

fe(ds) = ds.
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Put Y; := {(z,y) € R? : y > Hy(z)} and define a measure p; on 0Y; as the push forward of
the measure iy under the map s +— (s, Hy(s)). Let ¥y := Gouy be the logarithmic potential
of iy in R?, that is,

1 cos T8 cos ™S$s
Uy((z,y)) == _/1log ((x—8>2+<y—1 i (%(_(*_25)_‘2_732) )>2) 1+ (2&_15(22:1;(1()264? 1)ms) o

Lemma 4.9. Uniformly in x,y and £ > 2:
logﬁ

l
Proof. Since ¥, vanishes at oo and since it is harmonic on R?\ Z, by the maximum principle
U, has to attain its extrema on Z := 9Y; N ([—1,1] x R). By symmetry, we conclude that
U, attains its maximum at the points (£1,0) and its minimum at the point (0, H;(0)). Note
> 1o§£ by explicit
calculations. Thus in the sequel, we may assume that ¢ is sufficiently large. To estimate
) uniformly in E at the point (— 1 ,0), we decompose the interval [—1,1] into 2¢ intervals
I =[-1 + ( )2“1, -1+ (j + )ZZ+1] of length 2£+1 as well as a 1eft end interval Iy =
[—1,-1 +3 1 2€+1 of length 2€+1 and a right end interval Ips; of length 1 i 2£+1 Then in the
deﬁmng integral for Uy, for each j = 1,...,/ the negative contributions of s € I5;_; dominate
in absolute value the positive contributions of s € I;. Thus uniformly in ¢ > 2

1+cos((20+1)ms)\2\ cos((20+ 1)7s)
U,((~1,0)) < —/IOUIW 10g<(1+s)2+< T )) T P ds

< 2/ log ds < C - log ¢
ToUI2411 1+ 4

for suitable C. To estimate

Ve((.y)| < C-

W, (0, Hy(0)) = — / $og (s2 4 (Aot Umslysy __col@PrUns)
-1 (20+1)%m 1+ (gf) sin®((2¢ + 1) s)
we argue similar. We now decompose the interval [—1, 1] into 441 intervals I; = | (22i£—+11)7 2€;L11)]
for j = —2¢,...,20 of length 2€+1 and two boundary intervals I_ 41y = [~1,—1 + (2£+1)]
and oo 41) = [1 - 2(2“1) 1] of length 5 (2”1) Then in the defining integral for ¥,(0, H,(0)),
for each 7 = 1,...,/ the positive contributions of s € I;_; dominate in absolute value the

negative contributions of s € I5;. Similarly, the positive contributions of s € I_5;4; dominate
in absolute value the negative contributions of s € I_o;.

‘ 2
Note that s? + (%) < 1 for sufficiently large £ and |s| < 1 — 1/¢2. Thus
1 —cos((20+ 1)ms)\2
g (2 + )) <
o8\t (204 1)%72 =0

for all s € [~14-1/¢?,1—1/¢?]. Therefore, the contributions of s € Iy (9p41)N[—1+1/¢* 1—1/¢?]
are positive.
Thus with J := Io U [-1,—1+ 1/¢?]U [l — 1/¢2,1] and large enough ¢,

— [ 1oe (2 1 —cos((20+1)ms)\?2 cos((2¢ + 1) s)
U(0, He(0)) > /Jl g( +( 20+ 1)2n2 ) ) I+ (2£+1) (20 + D s)
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_C_/] log <82+<1—cos((2€+1)7rs)>2> ds

- 02 (204 1)272
C log ¢
> —— —C'—=.
- 02 l
This proves the claim. O

Let us now define the functions v, for n € N by symmetrized, rescaled and translated versions
of the W,:

)
Tn Tn

r—R r+ R
Un((,9) = U, (0, L) — oy, (F2 1)
Tn Tn
with £, := 4", 7, = 27" R, = 227" and we put &’ := At,. Similarly, we define functions

hy and h, by

b (s) = Hgn<s - R”) - Hgn(S+Rn), By = Zn:h;f
=1

Tn Tn

and we put X} := {(z,y) € R? : y > h}(x)} as well as X,, := {(x,y) € R : y > h,,(z)}. Then

for each n the measure ;, is supported by 0.X,. Indeed, it is the curvature measure of X.

Similarly, the measure k™ = > | k} is the curvature measure of X,, and supported by 0X,.

Moreover, define

b= Y, =D Hh h=> hi, (4.3)
n=1 n=1

= n=1 =

and Xoo = {(z,y) € R? : y > h(x)}. Then the boundary curvature of X is given by x = At.
Note that X, is not a monotone limit of the X,,,n € N. Instead,

Xoo N Ry xR) = (UXa) N (Re xRY),  Xoo (Ry xRy) = (()X0) 0 (Ry x Ry).

Lemma 4.10. There exists C7 such that
(2, y)| < C1 |z
uniformly in (z,y) € R? and n € N.

Proof. For each i, the function (x,y) — 9;i(z,y) is bounded by Cid™" it vanishes at r = 0,
and it is harmonic for |z| < R; —r; =3 -27". Thus for |z| < R; — 1, =327,

[Yi(z,y))| < Cid™" - a.
Given z, choose n such that 27" < |z| < 2'7". Then

> Iile,y) < Oz
=1
uniformly in (z,y) € R? and n € N. On the other hand, by boundedness of the 1;,

0 oo
T izy)<C Y i< <O al

i=n+1 i=n+1

This proves the claim. ([l
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Theorem 4.11. The distribution k defined in (4.3) is moderate. It is not given by a signed
Radon measure (and in particular, not by a signed measure in the Kato class). Moreover, the
Neumann heat flow in X satisfies BE1(k, 00).

Proof. (i) According to the previous Lemma 4.9, [|¢y,||fc < Cnd™" for all n and thus for

fixed p > 1,
|

for sufﬁmently large j. Fix such a j and put w’ Zn - . Decompose k into &' := > 7  k*

n=yj n

o0
<C 47" <1

and k" Zn 1 5. Obviously, £” is a signed measure in the Kato class. By Lemma 4.8, the
distributlon k' is p-moderate, prov1ded pY'k’ is Kato. In order to prove the latter, note that
AW, is a signed measure and that

|GLA|[| . <
uniformly in ¢ € N. Indeed, |A¥,| converges weakly to the uniform distribution on the interval
[—1,1] x {0} as £ — co. By rescaling, we obtain

|Gl

1
n|HL°<> < loga =C"n

uniformly in n € N. Moreover, according to Lemma 4.10, on the support of |s|, that is, on
[Ry, — 7, Ry + 7] x {0}, the function +' is bounded by Co(R,, + r,) < Cp23~". Thus

G2 ([ kal) [ oo < Cam2*™

for each n and therefore the 1-potential Gqv of the measure v := 3 .. p|¢/'x;| is bounded

and uniformly continuous on R?. According to Lemma 2.29, this proves that v lies in the Kato
class and thus so does p1)'x’. Hence, ' is p-moderate and thus x is moderate by Remark 2.14
(ii).

On the other hand, of course, x will not be a signed Radon measure since for each § > 0 and
sufficiently large N = N(0),

|6l(B5(0)) = > [sp|(R*) > > 1=0oc
n>N n>N
where Bs(0) denotes the §-neighborhood of the origin in R2.
(ii) Note that all "wiggles” on the positive z-axis lie below the curve y = c|z|* for a suitable
constant ¢. Thus we can approximate X, by an increasing sequence of smooth domains X,
as follows. Choose an decreasing sequence of functions ¢, € C2(R) with support [0,3 - 27"
and with ¢, (z) = c|z|* for z € [0,5-27"71]. Then define

X, = {(z,y) €R? 1y > hp(2) + ¢n(2)} N By ,

where B, is essentially the ball of radius n in R2. Note that X,, contains only the first n pairs
of “wiggles”. The Neumann heat semigroup on X,, satisfies BE(ky, + Rp, 00), where &y, is the
curvature measure associated with the relative boundary Z,, of 5(” in Xo. To conclude, it
suffices to check that the sets X,, provide a regular exhaustion and apply Theorem 4.5 (with
M = X and k£ = 0). As in the previous example, one checks that the capacity of Z,, vanishes
as n — oo and thus A1) holds. A2) is obvious by construction. To check A3) (with &, + An
taking the role of x,, there), note first that ¢, can be chosen such that the density of &, w.r.t.

the Hausdorff measure goes to 0 as n — oo and hence ]Af n/ 2| < ¢t for arbitrary small ¢ > 0
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for n sufficiently large. Arguing as in step (i) to control &, = k] + &” with k], = Z?:j K
. . kn/2q .
instead of k, we see that the resulting bound on sup,¢g ;) sup, Eq [e‘At ] is independent of

n. Together with the bound on Af n/ 2, this shows the uniform moderateness of . Essentially

the same argument for 2k,, yields the uniform 2-moderateness. O

5. FUNCTIONAL INEQUALITIES FOR TAMED SPACES

In this section we derive local (reverse) Poincaré and logarithmic Sobolev inequalities for the
heat flow on tamed spaces. We use the notation

Fy 1= F N L(X, m).

Theorem 5.1 (Local (reverse) Poincaré inequality). Let (X, &, m) be a Dirichlet space with
a 2-moderate distribution k € fT;kl)C satisfying GE1(k,00). Then for any f € F and any t > 0
we have m-a.e. on X:

1 _

Cr-T(RS) < 5| B = (Bf)?] < T PI(S). (5.1)
with C} = %fg Crfds and C¥ : %fg (C":)*l ds where C¥ is the time-depending constant
defined in (2.4). Note that (CF)~ < Cy for all t > 0 and limsup,_,, C} < cc.

The first inequality in (5.1) is valid for any f € L*(X, m).

—

Proof. Let f,g € Fp,g9 > 0 be given. For any t > 0, we set f; := P.f, g+ :== P;g, and

O(s) := /X(fts)Qgsdm for s€]0,t].

A direct computation gives

d
I@(S) = / ( - 293ft—sasft—s + fi,?—sasgs) dm
S X

= [ (2Pufinsfio) =T g ) dm =2 [ 0T (i)

which in turn provides

/XPtngdm—/Xg(Ptf)Qdm:/ot ((i@(s)) ds:2/0t/xgsl“(fts)dmds.

At this point, applying first (3.3) and then (2.5), we obtain

[ aP (VEEF) o [ ap (22 E) am Der, [ 9P (Pe(rr) am.
X X X
which leads to

[ a(n?) - @) dmsz( / Cf_sd8> [ anx(p)an. (5.2)

On the other hand, applying first (2.5) and then (3.3), we get
2.5) (3.3)

[ap (Vi) an'S o [o(pryi@Ea) an S L [ ar(ppe.)an,

S S
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which in particular means

b1
[ = erpyanzo( [ Goas) [ gresan. (53)
X o Cs X
By a standard approximation argument, we extend the validity of (5.2), (5.3) to f € L?(X, m)
and f € J respectively and we conclude by the arbitrariness of g. O

Theorem 5.2 (Local (reverse) log-Sobolev inequality). Let (X, €, m) be a Dirichlet space with

a 2-moderate distribution k € 3'“;1(1)6 satisfying GE1(k,00). Then for any t > 0 and for any

f > 0 with the property that /f € F and flog(f) € L*(X,m), it holds m-a.e. on X:

. ¢
/ % ds < Py(flog f) — Piflog(Pf) < / PPy <F(f)>d5 ) (5-4)
0 Ps Ptfsf 0 f

The first inequality holds more generally for all non-negative f € L*(X,m) with flog(f) €
LY(X,m).

Proof. Let € > 0 be fixed and 1, : [0,00) — R be defined by 1)c(2) := (z+¢€) log(z+¢€) —elog(e).
Fort > 0,9 € L'NL®(X,m), g > 0, and f € L>®(X,m) such that f > 0, v/f € F, and
flog(f) € LY(X,m), we define

1116(8) = /ng we(ft—s) dm, for any 0 <s <t,

where g := Psg and f;—s := P;_sf. Notice that the continuity of s — g5 and s — f;_s in
L%(X,m) ensures that the map s — ¥(s) is continuous. Hence, a direct computation gives:

d
%\Pe(s) = ds/ngwe(ft—s) dm:/XLgswe(ft—s) dm_/ngwé(ft—s)Lft—sdm

. / TG fr a0 (fos) dm + / D (st (fis)s fos) dm
X X

- " . F(ft—S)

By Jensen’s inquality we have

(P2 T ()
P f+e

(z) =

(Bl VIBY) 1 () (B _ e (1)
E.[f(B;) + €] S]Ex[ F(B,) +e :|:Pr <f+€>(x)

This, together with the gradient estimate (3.3), ensures that

P3<F(ft_s)) < PS<M> < Pspt,is<F(f)> .

ft—s + € fi—s+€ f+e

Integrating over [0, t], we get

/thi/)e(f)dm—/xg@be(ft)dm:/Ot(i\llg(s)dsg/ot/XgPsts<J1:(f)€> dmds. (5.5)

At this point we notice that flog(f) € L'(X,m) implies f;log(f;) € L'(X,m) for any ¢t >
0, and so we can pass to the limit as ¢ — 0 in the left-hand side of (5.5). By monotone
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convergence, we can also pass to the limit in the right-hand side, obtaining

gP(flog(f))dm — [ g(P.flog(P.f))dm < gP,Pr )Y dmds |
/s Lo [, foarre (M)

In order to extend the result to general f > 0 with the property that /f € F and flog(f) €
L' (X, m), we approximate it by taking f, := f An and then we let n — oo, using the fact that
f* — f and P(f") = P,f in L', while T'(f") = I(f)1<,y m-a.e. Hence, the arbitrariness
of g allows to conclude the second inequality in (5.4).

The first bound in (5.4) can be obtained noting that by Jensen’s inequality and the gradient
estimate

k)2 2
Ps(F(fts)>(x):Ex[e—A:/2( /QF(fts))z(Bs) . (EI[Q*AS/ /f(ft—s)(Bs)]>
e A" fi_o(By) By [e=45" fi_o(By)]
GV NS ;) P v (Y
PP f AL

Thus, arguing as above, we get the desired estimate. ([l

6. SELF-IMPROVEMENT OF THE TAMING CONDITION

In this section we discuss the self-improvement of the taming condition, namely whether the
L2-Bochner inequality BEs(k, N) already implies the stronger L' version BE;(x, N). We will
give an affirmative answer in a slightly restricted setting assuming throughout this section,
that  is a signed measure in the Kato class Ky(X) (or extended Kato class I (X)).

We adapt here ideas developed in [37] in the case of constant lower Ricci bounds.

6.1. Measure-Valued Taming Operator and Bochner Inequality. The first step is to
extend the definition of the taming operator L” and the iterated carré du champ I'j to possibly
taking values in the space of measures.

Measure-valued taming operator. Recall that under the above assumption, Proposition
2.37 ensures that k is a moderated distribution, while from Corollary 2.50 it holds

D(EF) = 7.

We recall the following approximation procedure: given a non-negative kernel n € €2°(0, c0)
with [ n(r)dr =1, for any f € L*(X,m) and € > 0 we set

“'—loo”rerzoo”ss
S R COL S A TOE (61)

Notice that 0¥ is positivity preserving, and that P f € (L") for any € > 0. Moreover, for
f € L™(X,m) we have L"Br f € L>°(X,m), since

L"B.f = / n'(r/e)PF fdr .

Lemma 6.1. Let |l € Stloc

negative v € |J,, Fa,, with (Gp)nen a quasi-open nest on which r is defined. Then there
exists a unique non-negative o-finite reqular Borel measure  on X such that p does not

be a linear functional on F such that (l,v) > 0 for any non-



48 MATTHIAS ERBAR, CHIARA RIGONI, KARL-THEODOR STURM, AND LUCA TAMANINI

charge E-polar sets, the quasi-continuous representative of any f € Fg,, is integrable w.r.t. u,
i.e. U, Fa, C L' (X, p), and

<l,v):/6du, VUEU?GH.
X n

Proof. By the Lax-Milgram theorem, for each n, there exists a unique v, € F¢, such that

(I,v) = Eq, (v,v) Jr/ vupdm, Vv e Jg, -
X

The function v, is 1-excessive for g, and in particular non-negative. By [29, Lemma 3.4] the
restricted forms (¢, ,Fq, ) are again quasi-regular Dirichlet forms. Then, by [31, Proposi-
tion 2.1] there exists a unique o-finite positive Borel measure u,, on G,, not charging €, -polar
sets such that

(l,v) = Eq, (v,vp) —I—/

v, dm = / U d iy, Yv € Jg,, -
X X

Note that by uniqueness and the inclusion F¢,, C Fg,, ., we have pi, 11 (ANGr11) = pn(ANG),)
for A C X. Since further €-polar subsets of G,, are ¢, -polar [29, Lemma 3.5], it is readily
checked that u(A) : =, lim p, (A N G),) yields the measure with the desired properties. O

Lemma 6.2. Let u € L' N L%®(X,m) be non-negative, and let g € L' N L?(X, m) be such that
for any non-negative p € D(L*) N L>(X, m) with L"p € L>(X, m) it holds

/uL”cpdm > —/ gpdm . (6.2)
X X

Then
ueDE") =7, 8”(u)§/ugdm. (6.3)
X

Moreover, there exists a unique o-finite reqular Borel measure p := py—gm, with py > 0, such
that every E-polar set is |u|-negligible, the quasi-continuous representative of any function in
F is in LY(X, |u|), and

— &% (u,p) = /XgEd,u, VoedJ. (6.4)

Proof. First, let us consider u := P (u) = [;° Pfuln(t/e)dt. The regularizing properties of
(B~)e=0 ensure that u, € D(LF) with L*ue € L' N L®(X, m). Inequality (6.2) ensures that for
every non-negative o € L2 N L>(X,m) it holds

/ L"ucpdm = / ul"Prodm > —/ 9B dm, (6.5)
X X X
which implies that L*u. + PBFg > 0. By choosing ¢ := u, in (6.5), we get

8“(ue)=—/XuEL”uedm</Xue‘B?gdm-

Thus (6.3) follows by passing to the limit as € | 0. Similarly, we obtain:

—8“(u,gp)+/gg&dm20, Voed, p>0. (6.6)
X
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Thus applying Lemma 6.1 to the linear functional [ € 9’&}) . given by

(l,v) == —E&"(u,v) ~|—/ vgdm, veF,
X

yields the representation via a suitable measure pu. O

In the following we will denote by M* the space of u € D(EF) = F such that there exists a
o-finite Borel measure p = py — p— with gt non-negative and charging no &-polar sets such
that (6.4) holds. We will write L¥u := p. Moreover, we set

M% :=M"NTF, and Fpg:={f € TF: f,I'(f) € L(X,m)}.
We have the following calculus rule.
Corollary 6.3. For every u € M, and f € D(L) N Fpy we have fu € M5, with
L%(fu) = fL 4 ul fm 4 20 (u, f)m . (6.7)

Proof. Observe that f € L™(X, |u|), with 4 = L%u and that f coincides with f |u|-a.e.
Let f, be a sequence in UpJg, for some admissible sequence of quasi-open sets Gy which
approximates f w.r.t. &;. Further let ¢ € UpJg, be bounded. Note that also uf, and 9 f,
belong to UpFq,, and hence to . Thus, we have

SR (s ) = —E(fats ) — (R, four))
= &y futh) — Efuth) + /X W (fot) dm — (s, Frut))

= &%, fu) — E(foruth) + /X T (f. 1) dim
:/&fndeue(fn,mpH/ 2T (fn, 1) dm . (6.8)
X X

Choosing in particular ¢ = f,u yields
—&R(fru) = / fn2adeu — &(fn,ulfrn) +/ 2 foul’ (fr, u) dm
X X

and since f is essentially bounded and @ € L'(X, |u|), passing to the limit n — oo shows that
fu € F. Since EF is a closed form, this also shows that E%( fu, ) — E*(fu, ). Similarly, we
then deduce that (6.8) holds for f in place of f,, and a further integration by parts yields

—eﬁ(fu,w):/Xz;defw/quLfdm+/Xz¢r(f,u)dm.

Finally, one readily extends the previous identity to arbitrary ¢ € & and Lemma 6.2 yields
the claim. 0

Measure-valued Bochner inequality. Let us now extend the definition of the perturbed
iterated carré du champ using the measure-valued taming operator.
Let us introduce the class of so-called test-functions

Dy = ffbg ﬂ@g(L) ,
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We recall from [37, Lemma 3.2] that Dy, is an algebra (i.e., closed w.r.t. pointwise multi-
plication) and, for every ® € C>*(R") with ®(0) = 0 and f = (fi)]; € (Dx)"” we have
O(f) € Do

Let us introduce the multilinear form I'§, defined by

K 1 K K
it el = g [ (DU (LT L) dm for(Jg,) € DTS, (69)
where D(T'5) :=D¢(L) x De(L) X Dpeo(L*). If f = g we write for short

D3lfi el =T30f, fie]
In this notation, the Bochner inequality (3.6) takes the form

Djlfiel = 5 [ elLf)dm,  for every (fp) € (TS, 2 0.
X

Lemma 6.4. If BEx(k, N) holds, then for every f € Dog we have T'(f) € ME, with

exr(r) < -2 [ (POTLY + 3 T(OLH?) dn (6.10)
and
SLT() —P(f Lfm > (L), (6.11)

Proof. First of all we recall that for every f € F,y we have I'(f) € L'(X,m) N L>®(X,m) C
LP(X,m) for any p € [1,00]. For f € Dy, we set

g:i=—2 (F(f, Lf)+ ;(Lf)2> and wuw:=T(f).

Thanks to BEa(k, N), the hypothesis (6.2) is satisfied with the so-defined g and u. Therefore

Lemma 6.2 ensures that I'(f) € &, I'(f) € MY, and the validity of (6.10) and (6.11). O
For every f € Do, we define the Borel measure I'5 , (f) by setting

K 1 K

5.07) 2= SLET() ~ T(, L. (6.12)

Observe that by Lemma 6.4 we have that

2 .
2. (f) = N('—f)2m + py,  with pg > 0.
Denoting by 5 (u) € L'(X, m) the density of its absolutely continuous part w.r.t. m, it holds
5+(f) = (fHm+T3 , (f),
) . . 2 ) ) . (6.13)
with I'5 | (f) L m, 45 (f) > N(Lf) m-a.e. in X, and I'5 | (f) > 0.

Finally, as in (6.9), we define for f,g € Dy,

5.(7.9) = {1507+ 9) = {7507 = 0) = 5 (LIT(.0) = T(A Lohm = Tlg. Lo

and, similarly,

1 1
% (f.9) = (f +9) = 5 (f —9), 5:(fr9) = (f,9)m+T5  (f,9)

In the next lemma we note a chain rule for I'; .
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Lemma 6.5. Let f = (fi)?_l € (D)™ and let € C*°(R™) with ®(0) = 0. Then
L5 (@ Z<I> (BT )

(6.14)
( > i) NF Y+ 3 0y (BB (E)T (S )T (f’“,fh)>m
i,7,k 2,5,k,h
where, for every f,g,h € Do, H[f](g,h) is defined by
17l ) = 3 (T DO ) + DT (7. 9)) = (7T (0.10) ) (6.15)
In the same way,
Z@ B (f 1)
(6.16)
( > i) NP+ Y OB EN(F )T <fk,fh>)m
1,5,k i,7,k,h

Proof. Recall that ®(f) € Do. We set for i,5 € {1,...,n}
g7 =T(f' ) eMs, £ =Lf €T,
¢i = Pi(F), @i = Di(F), diji = iu(f) € Do
We have I'(®(f)) = ¢" ¢;¢;, while Lemma 6.4 ensures that T'(®(f)) € M~,.

Since ¢;¢; € Do, the identity in (6.7) yields (with Einstein summation convention)

SLEr@(E) = 5

-~ 1-- /1 3
2'—5(9”@@) = 50i0L59"Y + <29”|-(¢z’¢j) + F(@%’,g”))m

From here one can proceed the calculation exactly as in the proof of [37, Lemma 3.3] to obtain
(6.14), and (6.16). O

6.2. Self-Improvement of the L?-Taming Condition. The following pointwise estimate
for the I' operator will be crucial to obtain self-improvement.

Theorem 6.6. If BEs(k,N) holds with k a signed measure in the extended Kato class
I1-(X). Then for any f,g,h € Do we have

17 < (3500 - 3L )rr), (6.17)
VEET9) < | 50) - 2LVEG) + 500 - SMoVED. 619
T < 4(250) - L0 )T, (6.19)

where all the inequalities are to be intended in the m-a.e. sense on X.

Proof. First of all we observe that I'(f),I'(g),I'(h) € Fp, thanks to Lemma 6.2. Then we take
the polynomial ®: R3 — R defined by

Of) = AL+ (f2—a)(f>—b)—ab, Na,beR.
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In particular we have
oi(f) =X Bf)=f—b,  B(f) =/ —aq,
Qo 3(f) = P3o(f) =1, ®; ;(f) = 0 otherwise.
If f € Do, then Lemma 6.5 yields ®(f) € Do, while inequality (6.13) provides

(@) > Z(LB(E), meae in X (6.20)

Now we recall the identity in (6.16), and we observe that both sides of the inequality depend
on \,a,b € R: we choose a dense subset @Q C R? of parameters (), a,b) such that inequality
(6.20) holds for every (A, a,b) € @ and m-a.e. in X. The continuous dependence of the left-
and the right-hand side of the inequality w.r.t. A, a,b allows to conclude that actually (6.20)
holds for every (A, a,b) € R? and for m-a.e. 2 € X. Therefore, up to a negligible set, for every
x € X we choose a := f2(z), b := f3(z), and X := nx(z) with n € R and y set equal to 1 on
{LFIT(f2, f3) > 0}, -1 elsewhere, in such a way that ®5(f)(z) = ®3(f)(z) = 0 and

(LO(F))* = (ALS' 4+ 20(f2, f2))* = n?(Lf")? + 40 (f2, £2)% + an|L T2, £2)] > n?(LfY)2,
whence
s (FY) + dnxHIF) (2, ) + 20 (FAT(P) + D2 £2)?) > %nZ(Lf1)2-

The arbitrariness of 7, together with the fact that I'(f2, f3)2 < T'(f2)I'(f3) and x? = 1, gives
the following inequality

2 2
(#11025%) < (507 = 2L UG, (6:21)
which proves (6.17). As for (6.18), we start noticing that
H{f](g,h) + H[gl(f,h) = T(T'(f, 9), ). (6.22)

Hence, a direct computation yields

2

2
P00 < [\ P50 - LV + 80 - 2PV IO VI, (629
Inequality (6.23) can be extended to arbitrary h € F, via approximation based on (6.1).
Choosing h = I'(f, g) yields (6.18). Inequality (6.19) then follows by taking g = f. O

As another preparation, we show that the class of test functions D, is dense in F. This will
follow from a variant of the reverse Poincaré inequality.

Proposition 6.7. Let (X, &, m) satisfy BEy(k, 00) with k € I1-(X) a signed measure with
decomposition k = kT — Kk~ for non-negative measures k*, k. Then (X,&,m) also satisfies
BE2(—k~, 00). Moreover, for every f € L*(X,m) N L>®(X, m) and every t > 0 it holds

1 o
P(Bf) = G IBTT Hlzee,noe - [ fllze - (6.24)

Proof. (i): To see that (X, &, m) satisfies BEo(—k~,00), we note that A = AF" 4+ A~r "
Hence, for any non-negative h and t > 0, we have Pfh < P, " h, so that GEa(k, 00) implies
GE2(—k~,00) and we conclude by the equivalence of BEs and GEg, Theorem 3.6.
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(ii): To show (6.24), let f,g € L*°(X,m) with g > 0. For any t > 0, we set f; := B,f,
gt := P " g, and define for s € [0, 1]

T(s) = /X(ft_s)QgS dm .

Then we have for all s € (0,1):

d

dsT(S):/X(_2ft Sl—ft s.gs+ft sl— " gs) dm = ft 3987ft s)_‘g_ni(fg—sags)

> 28(ft—5957ft—5) - ft sags = 2/ngr fi— s

Here we have used that €% (f2 ,,9s) = E(f7 4 9s) — (7, f249s) < E(f? 4, 9s). The L%
gradient estimate GEo(—k~, 00) then yields

/ P P (P dm—2/ /P (P, sf)dmds>2t/gF(Ptf)dm
and we conclude by the arbitrariness of g. O

Corollary 6.8. Let (X,&,m) satisfy BEo(k,00) with k € T}
tended Kato class I1—(X). Then the set Dy, is dense in F.

qloc @ signed measure in the ex-

Proof. As a direct consequence of (6.24) we have that

feL?*NL®X,m) = PfeDs, Vt>0.
This in particular provides the density of Dy, in F. ([l
Now, we can prove the main result of this section.

Theorem 6.9 (BEx(k, N) implies BE;(k, N)). Let (X, &, m) be a Dirichlet space satisfying
BEy(k,N) for k € ! qloc @ signed measure in the extended Kato class K1-(X). Then the
condition BE;(k, N') holds Moreover, for any f € F and o € [1/2,1] it holds

L(Pf)" < PA5(T(f)*) m-aee., (6.25)
and, if N < 0o, we have
r(Pf)” / Pa“( Ijit f})) (LP; f)2) ds < PP (D(f)%) . (6.26)

Proof. Recall that BE; is equivalent to the gradient estimate GE2. We will prove (6.26), which
gives in particular GE;(k, N) for o = 1/2, and recall that also BE; and GE; are equivalent.
Fix a € [1/2,1] and define the concave and smooth function n(r) := (e + r)* — €%, for e > 0
and r > 0. In particular, 7, is Lipschitz with

ne(r) < v, (r+enir) = ane(r) + ae®, . >ame, 2n,+ 4! > 0. (6.27)

Furthermore, for t > 0, 7, s € [0, ¢], we define the following curves

fT = PTf7 Ur = F(fT)v CS = Psova GE(S) = /XnE(ut—S)gs dm, (628)

where ( € Fp is a non-negative function, and f € D.. Let us point out that for every s
we have that fs € Do thanks to the gradient estimate GEa(k,oc0) and the fact that P! is
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bounded on L*. So, thanks to Lemma 6.2, it follows that u;—s € M% , and, in particular, that
ui—s € FN LY N L®(X, m). Hence, a direct computation gives

d

d .
&utfs = _QF(ftha Lftfs)a $776(UH) = _2772F(ft737 Lftfs) in L' N L2(X,m).

We are going to use these identities while differentiating G(-) with respect to s € (0,?):
GL9) = [ (-0l = 20T (s LG, ) (6.29)
According to the definition of €%, we have
J )L dm = & r-1). ) =l fu-2)Go).

The chain rule for I' yields
~E((u-2). ) = = [ PG
= _/ <F(Ut5,n£(ut5)<s) - F(uts)ng(uts)gs) dm
X

= _EE(Ut—svné(ut—s)Cs) + <’€7né(ut—s)ut—sCs> + /}(F(Ut—s)ng(ut—s)gs dm

(6:4) /X ﬁé(ut—s)és dl—f(ut—s) + </€, né(ut—s)ut—sCs> + L F(“t—s)ﬁg(ut—s)gs dm

Inserting these identities in (6.29), and recalling the definition of I'5 , (f) in (6.12), we find

Gi(s) =2 [ ()Gl (fime) + [ Tl o). dm
X X
+ <H) (né(ut—s)ut—s - ane(ut—s))Cs>-
Keeping in mind (6.13), we have
/Xné(ﬂt—s)gs drg,*(ft—s) > /){né(ut—s)Cs VS(ft—s) dm
while inequality (6.19), together with the fact that ! < 0, ensures that
2
/ F(Utfs)ng(utfs)gs dm > 4/ UQI(UH) ('75(]%75) - 7(Lftfs)2)utfsCs dm.
X X N
Summing up this chain of inequalities, we obtain
! ! K " K 2 2
Gi(s) = 2 | )5 (Fms) dm+4 | (i) (95 (fis) = - (Lfims)? -G dm
X X N
+ <"Q7 (né(utfs)utfs - ane(utfs))Cs>

= [ (attua) ) (35 -2) = J(Lfia?) o

+ ]Zif/xné(ut—s)(Lft—s)QCs dm + <f€, (né(ut—s)ut—s - ane(ut—s))Cs> '
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Now we observe that the first term is non-negative, while, since 7. > 0, for the second term

it holds
4 62040 [ (s
¥ ot an 5 [ e .

Ut—s

As for the last term, note that by (6.27),
|772(ut_s)ut_s — omg(ut_s)‘ = |e7]é(ut_s) + aea‘ < 20€®

and hence as € — 0:

t t
/ (K, (M (wt—s)up—s — ane(ug—s)) o )ds < 2ae°‘/ /Csd/i\ds —0.
0 0

By continuity of G and the monotone convergence of n.(r) — r® we can pass to the limit as
€ | 0, obtaining

[rurrescan> [ (v can (6.30)
X X

or, taking care of the dimension term,

(Pi—s
/Xr(f)li‘““g‘dmz/X(F(Ptf “¢dm +// s f) (Lfi—s)®Csdmds.  (6.31)

P t— sf
Then we use the density of Dy, in F (Corollary 6.8) in order to extend (6.30) and (6.31) to
an arbitrary f € F, and obtain (6.25) and (6.26), since ( is arbitrary. O

Pr0p051t10n 6.10. Assume that the Dirichlet space (X, E,m) is tamed by a signed measure

Kk € Srqloc which is in the extended Kato class Ki_(X). Then for any f € De(L) it holds

()2 eg.
Proof. Let us first consider f € Dy,. Directly from (6.19) we have

L(D(f)Y?) = F(FF((J;’;)) < 4<7§(f) - JQV(Lf)2>, m-a.e. on X,

and, integrating it, we get

L[ s [ (50— 2 an< [argn- [ Zantan
—5 J st [ (T + 3 an?) dn
—3 [t (1-3) [ an

which is finite for f € Do, C D¢ (L), since Lemma 6.4 ensures that I'(f) € MK .

As for the general case, let f € D¢(L), and, for any n € N and ¢ > 0, let us consider P;(f,),
where f,, := min{max{f, —n},n}. Proposition 6.7 guarantees that P.(f,) € D, hence the
previous argument ensures that I'(P;(f,))"/? € F. Now, recalling that LP,(f,,) — LP,(f) in
L?(X,m) as n — oo and that LP,(f) — Lf in L*(X,m) as t | 0, and similarly that P,(f,)
converges to P;(f) in €1 as n — oo, while P,(f) — f and LP,(f) — Lf in & and L?(X, m),
respectively, as t | 0, the conclusion follows by letting first n — oo, and then ¢ | 0, being € a
closed form. 0
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7. SUB-TAMED SPACES

As we have seen before, the concept of (distribution-valued) synthetic Ricci bounds has pow-
erful applications to semigroups with Neumann boundary conditions. In its standard form,
however, it will not apply to semigroups with Dirichlet boundary conditions.

Example 7.1. Let (X, &, m) be the canonical Dirichlet space with Dirichlet boundary con-
ditions on a bounded, connected, non-empty open subset X C M with Lipschitz boundary
of a smooth Riemannian manifold (M,g), i.e. £(f) = 3 [ [Vf|>dm with D(€) = Wol’2(X)
and m = Vol} «- Then there will exist no 2-moderate x such that this Dirichlet space satisfies
BE1 (H, OO) .

Proof. Assume that (X, &, m) is tamed with 2-moderate k. Consider the first eigenfunction
@ > 0 for the Dirichlet Laplacian such that —%Acp = Ap for some A > 0. Then

e V| = [VPy| < P Ve| < G (PIVe]?) .

with C; = || Pr1||}2

property of P; this in turn implies that P;|Vp|? € VVO1 2(X). Hence P;|V|? vanishes on the
boundary, and so does |V| by the previous estimate. This means that ¢ satisfies Neumann
boundary conditions too, and therefore, by [46, Proposition 6.4], it belongs to the “metric-
measure” Sobolev space W12(X) = D(Ch) built over the closure of X endowed with the
distance induced by M and the restricted measure (see Example 2.5); as for functions in
Wh2(X) integration by parts formula holds and 1 € W2(X), we get

1 1
=—— | A = — Vi, V1 =
/@dm 2/\/ pdm 2/\/< ' ydm =0

and this is in contradiction with ¢ > 0. O

< oo. By local regularity, |Vp|? € L?(X,m) and by the regularizing

7.1. Reflected Dirichlet Spaces and Sub-taming. In order to apply it to semigroups
with Dirichlet boundary conditions, we will extend the concept of (distribution-valued) syn-
thetic Ricci bounds and introduce the notion of “sub-tamed spaces”. Given a Dirichlet space
(X, &, m) we will construct the “sub-taming energy” in terms of the reflected Dirichlet space
(X, &, m).

To introduce the latter, let a strongly local, quasi-regular Dirichlet space (X, &, m) which
admits a carré du champ I be given. In particular, &(f) = 3 [x ['(f)dm for all f € F := D(€).
Locality of € allows to extend the definition of I' to Fyioc and thus to define the reflected
Dirichlet form

with
T:=9(8) := {f € L*(X,m) N Fqoc : / L(f)dm < oo}.
X

Regarded as a Dirichlet form on a suitable extension X of the space X, this indeed is again a
strongly local, quasi-regular Dirichlet form, [15, Remark 6.6.11]. The initial set X will be an
€-quasi-open subset of X (up to an &-polar set) and the measure m extends m in such a way
that m(X \ X) = 0.

In the sequel, (Pz, Bt),ex >0 Will denote a fixed m-reversible, continuous, strong Markov
process (with life time () properly associated with (€,J). Killing this process at the first
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exit from X will yield a process with life time ¢ := ¢ A 7x which is properly associated with
(€,F). Generator, resolvent and semigroup associated to (€,F) henceforth will be denoted
by (L,D(L)), (Ga)aso and (T})¢>0, resp. The corresponding quantities associated to (&, )
will be denoted by (L,D(L)), (Ga)aso and (T;)i>0. In terms of the reflected Dirichlet form
(€,F) on L*(X,m), we will define the spaces of distributions F~! and i;léc as well as the

Feynman-Kac semigroups (Pf);>¢ for k € F! and the energy functionals &".

qloc

Definition 7.2. We say that the Dirichlet space (X, &, m) is sub-tamed if there exists a

moderate x € 5";@ . (called distribution-valued Ricci bound) such that the following Bochner

inequality BE;(k, 00) holds: for all f € Ds(L) and all non-negative ¢ € D (L"/?)

/["/2<pf(f)1/2dm — /@de >0. (7.1)

If moreover, this & is also p-moderate for some p € [1,00), then the space is called p-sub-tamed.

(ptpn/2)t20 will be called p-sub-taming semigroup and EP*/2 will be called p-sub-taming energy
form for (X, €, m).

Recall the remark after Definition 3.1 concerning the interpretation of the second integral in
(7.1).

Note that the energy form in (7.1) is defined as a perturbation of the reflected Dirichlet form
€ whereas the second term in (7.1) is defined in terms of the generator L of the original
Dirichlet form €.

More generally, we define p-versions of the Bochner inequality and the gradient estimate for
p € [1,00) and also with additional dimension parameter.

Definition 7.3 (LP-Bochner inequality and gradient estimate). Let p € [1,00), N € [1, 0]

and let x be a p-moderate distribution in ?(;lcl)c.

e We say that the Bochner inequality BE,(x, N) holds if for all f € D4(L) and all
non-negative ¢ € D(LP%/?)

[uerpam—p [Gr e tan= 2 [owspraptan, (1)

where the right-hand side is read as 0 if N = oo.
e We say that the gradient estimate GE,(x, V) is satisfied if for any f € F and ¢t > 0

- LP—52 SPK
P57 [ P () de < PO 73)

Note that the gradient along the original heat flow P; is controlled via the taming semigroup
P! */2 constructed from the reflected heat flow P.
As before, we have equivalence of the Bochner inequality and the corresponding gradient

estimate, and the L'-version is the strongest one in this scale of estimates.

Proposition 7.4. Let p € [1,00), N € [1,00] and let k be a p-moderate distribution in St;léc.

Then BE,(k, N) and GE,(k, N) are equivalent. Moreover, GE;(k, N) implies GE,(x, N).

Proof. The result is obtained following the argument for the proof of Theorem 3.4 and
Proposition 3.7 with the obvious modifications. ]
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Similar as in Section 5, the sub-taming condition implies functional inequalities for the

Proposition 7.5 (Local (reverse) Poincaré inequality). Let (X, €&, m) be a Dirichlet space
sub-tamed by a 2-moderate distribution x € ! | i.e. GE{(k, o) holds. Then for any f € F
and any ¢t > 0 we have m-a.e. on X:

o TR < o (
t

with C} = %fg Crds and CF := (C";)*l ds where Cf is the time-depending constant
defined in Section 2.3. Note that (C})~ ' < C} for all t > 0 and limsup,_,, C} < oo. The first
inequality in (7.4) is valid for any f € L*(X,m).

Proof. Given f,g € F, with g > 0, we first observe that

/Ptgf dm — / (P.f) dm_2/ /gP VI (P ) dmds .

From here, arguing as in the proof of Theorem 5.1 with appropriate modifications yields the
desired result. O

qloc?

() — (Bf)?) <CF - PI(), (7.4)

Proposition 7.6 (Local (reverse) log-Sobolev inequality). Let (X, &, m) be a Dirichlet space
with a 2-moderate distribution s € S'ghljc satisfying GE;(k,00). Then for any ¢ > 0 and for

any f > 0 with the property that v/f € F and flog(f) € L'(m), it holds m-a.e. on X:
TR _ t__ r
/ _gitf)ds < Pi(flog f) — P.flog(P.f) < / PSPt“_s<(f)>ds , (7.5)
o PP, f 0 f
The first inequality holds more generally for all non-negative f € L'(X, m) with flog(f) €
LY(X,m).

Proof. The proof follows similar to the one of Theorem 5.2 with appropriate modifications,
starting from the interpolation

U, (s) ::/Psglbs(Ptsf) dm

with 1. (2) := (2 + €)log(z + &) — elog(e) and for g € L' N L>®(m), g > 0, and f € L>=(X,m)
such that f >0, v/f € F, and flog(f) € LY(X,m). O

7.2. Doubling of Dirichlet Spaces and Sub-taming. As before, let a strongly local,
quasi-regular Dirichlet space (X, &, m) which admits a carré du champ I' be given. In the
following we will write €1(f) := E(f) + || f[|z2(x,m) for any f € F.

Let (X, &,m) denote the reflected Dirichlet space defined on some extension of X such that
the latter is a quasi-open subset of X with m(Z) = 0, where Z := X\ X.

Define the doubled space X by gluing two copies of X along their common “boundary”:
X=X x {+,—}/~

with (m o) ~ (y,7) if and only if (z,0) = (y,7) or if z =y € Z. Putting X := X x {+} and
X~ :=X x {—}, allows for a representation as a disjoint union

X=XTUX Uz



TAMED SPACES - DIRICHLET SPACES WITH DISTRIBUTION-VALUED RICCI BOUNDS 59

in terms of the “boundary” Z and two copies of X.

We endow X with the quotient topology: let us denote by
¢: Xx{+ -} - X=X x {+,—}/~

the quotient map, then A € X is open if and only if q_l(fl) is an open subset of X x {+, —}.
It is worth to notice that for any A C X it holds

g ! (q(A x {+, —})) =Ax{+,-}. (7.6)

Let us also define a measure t on X which coincides with m/2 on each of the copies X* and
which gives no mass to Z, namely

(4) 1= gmlg™ (A) N X) + gm(g~ (4) NX)

for all Borel set A C X, where with a little abuse of notation m is defined on X* in the obvious
way. Finally, given a function f : X — R, define functions f* : X — R by f*(z) := f(q(z,+))
and f~(z) := f(q(z,—)). (Note that these are not the positive and negative parts!) Then

fel’X,m) «— frHf el Xm <« f* e L*(X, m).

ol Ix
Definition 7.7. The doubled Dirichlet space (X, &, 1) is defined as a Dirichlet form on

X, ) by F=D(&):={fel?Xm): ft+f €T, ft —f €T} and
e = 8("”?) (550
Proposition 7.8. (i) F = {f € L*(X,i) : f* €T, f*=f &-ge. onZ} and
é(f) = JE() + 520 (7.7)
Here f* denote the quasi-continuous versions of the functions f* € F. By polarization,
£(7,0) = SE(*9") + 58700, (7.5)

(ii) Let {F,}nen be a sequence of subsets in X, and let F,, = q(F, x {+-Hc X, for any
n € N. Then {F, }neN is an &-nest in X if and only if {Fy}nen is an &-nest in X.

(iii) A function f: X = R is é- -quasi-continuous if and only if both the functions f¥,f~ :
X — R are &-quasi-continuous and fT = f~ E-q.e. on Z.

Proof. (i) Obviously, Fc {f € L X ) fF e, ft=f&qe on Z}. To see the reverse
inclusion, note that f* = f~ &-q.e. on Z for f € L*(X,f). Hence, fT — f~ € F provided
f* € F. Moreover it holds &(fT — f~) = E(fT — f~), which in turns implies (7.7). For more
details we refer to [15, Theorem 3.3.8].

(ii) First of all, let {F},},en be an E-nest in X. Directly from the definition of the quotient
map and (7.6), we get that {F }nen 18 an increasing sequence in X made of closed set.
Let us see that (J,,cy ?F is &1-dense in . Since f* e JFfor any f € F, we can find two
sequences {5V nen, {fi fnen C UneN Fp which are &;-converging to f, f, respectively.
Hence, we consider the sequence in F given by fn(z,0) := f9(z), for z € X, 0 € {+,—},
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and fn(z,%) = 1z f(2,£) for 2 € Z. This sequence {fn}nen C Upen Fp, is actually
&1-converging to f: indeed, recalling that X = X+ U X~ U Z with #(Z) = 0, by (7.7) it holds
1(fu = £) = UL = 17+ 8 =50+ [ (5 =57 F + 1 = £ ) e
=&(ff —fH+elfn — )
Viceversa, if {F,}nen is an &-nest in X, then also {F }nen is an increasing sequence in X,
while the definition of quotient topology guarantees that each Fi, is actually closed. Now,
starting from a function f € &F, we can define f € F simply by posing f(z,+) := f(z) for any

2 € X. Then the &;- density of | J,,cx ?F in F allows to find a sequence { fntnen C Upen S’Fn
&1-converging to f, and {fF} C Unen rfF provides a sequence &;-converging to f.

(iii) Let f be an &-quasi-continuous function on X and let {F,},en be an &-nest such that
f|F, is finite and continuous on F,, for each n € N. Since the quotient map ¢ is surjective,
there exists a sequence {Fy,}nen C X such that F, = q(F, x {+,—}) for any n € N, and
{F,}pen is an E-nest in X. Thus, from the fact that f € 3" it follows that f* € F with
ft = f~ E-q.e. on Z, and that fi|F are finite and continuous on Fj, for each n € N.

Conversely, if a function f on X is such that f* are &-quasi-continuous, then there exist two
E-nests {F} }nen and {F,; }nen such that f*|z+ and f~|;- are finite and continuous on I
and F,, respectively. Now, using the fact that the refined sequence {FjJr N F,; }iken is still a
nest on X, we have that the sequence {Fjx};ren, where Fjj := q((F’f NET) x {+, —}), is
an &-nest on X such that f |F;, is finite and continuous on each Fj, by the very definition
of f* and the fact that f* = f~ &-q.e. on Z. O

Lemma 7.9. (X, é, m) is a strongly local, quasi-reqular Dirichlet space and it admits a carré
du champ which will also be denoted by T'.

Proof. The strong locality of & follows from (7.8) and the strong locality of €. Also the
existence of a carré du champ can be concluded from (7.8). In the following we show the
quasi-regularity of &, giving a detailed proof of properties (i)-(iii) in [15, Definition 1.3.8].

(i) Let {Fn}neN be an E-nest in X made of compact sets and put F,, := ¢(F, x {+,—}) C X.
Hence, (ii) in Proposition 7.8 ensures that {F,},en is an &-nest in X. Moreover, each E, is
compact, being the image through a quotient map of a compact set.

(i) Denote by D the €;-dense subset of F, whose elements have €-quasi-continuous m-version,
and define D := {f € L2(X,m) : f£ e D, ft = f~ &-q.e. on Z} C F. Directly from (iii) in
Proposition 7.8 we know that every element in D has an &- quasi-continuous m-version. Now,
let f € F be fixed. Since f* € 7, the quasi-regularity of & guarantees the existence of two
sequences {ff bnen, {fi7 }neN C D &j-converging to f+ and f~, respectively. Therefore, for
any n € N, we define f,: X — R by setting f,,(x,0) := f7(x) for ze€X,o¢e{+,~} and
folz, %) :== f(z, %), for x € Z. Hence it holds f,F = f,F, f = f, € D and f,F = f, €-q.e. on
Z, shovvlng that f, € D. Arguing as in the proof of (11) in Proposition 7.8, we can conclude
that &;(f, — f) = 0 as n — oo, and this implies the &-density of D in 7.

(iii) Let {fp}nen C F be a sequence whose elements have an &- -quasi-continuous m-version,
fr, and let N C X such that {f;"}nen separates the points of X \ N. The fact that the
quotient map is surjective together with Proposition 7.8 ensures that ¢(N x {+,—}) € X is
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an &-polar set. Thus we define the sequence f,: X — R by setting fn(z,0) = o fn(z) for
re€X, o€ {+,~}and fu(z,£) := fulx) for x € Z. In particular, ff = £f, € F and
]“r = f €-q.e. on Z, ensuring that {f,}nen C F. At this point, Proposition 7.8 grants that
each f, has an & -quasi-continuous m—representatlve fpn. The only thing left to prove is the fact

that {f }nen C F separates points in X\ (N x {+, —1}). Let (z,0), (y,7) € X\ q(N x {+,—})
be any couple of distinct points: in the case in which x # y, the existence of f, such that

fulz,0) # fa(y,7) is ensured by the fact that {f, }nen separates the points of X \ N, while
if x = y we have f,(z,+) = —fn(z,—) for any f, such that f,(x,0) # 0. O

Lemma 7.10. The strongly continuous semigroup (Tt)tzo for the doubled Dirichlet space
(X, &,m) is given in terms of the reflected semigroup (Ty)t>0 and the original (“absorbed”)
semigroup (T)i>0 as

Dot ) = (5T ) @+ (£ 55w (7.9

for f € LQ(X,ﬁl), where q denotes the quotient map.
Conversely, for h € L*(X,m) and g € L?(X, m),

Tih(z) = Tih(q(z,£)), zeX;  Tig(x) = +Tg(q(z,+)), zeX (7.10)
with (symmetric and anti-symmetric, resp.) evtensions h,§ € L2(X, ) given by h(z,+) :=
h(z) for x € X and §(x,+) := £g(x) for x € X, g(z,£) :=0 for z € Z.

Proof. For gluing of metric measure spaces, this was proven in [33, Theorem 3.10]. Our
setting here is slightly more general but the same arguments apply. Indeed, let us first note
that T3(fT — f~) = 0 E&-q.e. on X\ X, hence (7.9) is meaningful. Secondly, for (7.9) to hold it
is sufficient to check that the Dirichlet forms associated to 7} and 7] defined on L2(X, ) by

1ot 1) = T ) @) 1 (£ ) @)

(which is well defined thanks to what previously said) coincide, i.e. (&, F) = (&, D(€’)), where
A 1
D(&) = {f e LA(X,m) : Ellim—/ f(Tif = f)dm < oo},
t t Jx
1
&'(f) = lim—t/ f(Tf — f) dm.
X

To this aim we shall use the following identity, which can be readily verified following the
algebraic manipulations in [33, Lemma 3.8]:

3 [ -pan=—1 [ A (n(Ep ) - L

+_ +_ - +_
_t/Xf 2 Tt(f 2f )_f 2f )dm‘

If f € D(&), then by taking the limit as ¢ | 0 in the identity above and interchanging limit
and sum on the right-hand side (this is possible as t — —% Jx f (Tt’ - f) dm is non-increasing
and non-negative and the same is true with T}, T} in place of T]) we obtain

() e e <o

(7.11)
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whence ft+ f~ € Fand f+ — f~ € F, namely f € F. Moreover &’ (f) &(f) by the identity
above and the very definition of €. On the other hand, if f e F then ff+f € 3F and
ft—f~ € F by construction and this means that the limits as ¢ | 0 of both summands on the
right-hand side of (7.11) exist, thus the limit of the left-hand side too, which means f € D(&’)

and again &'(f) = &(f).
Finally, the validity of (7.10) is straightforward by construction. O

Corollary 7.11. Let (P,, Bt)ng( >0

tinuous, strong Markov process (with life time f ) properly associated with the doubled Dirichlet
space (X, E,m) and define 7 : X — X as w(q(x,£)) := x. Then the process (Pz, Bt),ex 150
given by

denote the unique (in the sense of [15] ) m-reversible, con-

— 1 1 P _ .
P, = B q( +) —|— q(a: ) B; = W(Bt)

is m-reversible, continuous, strong Markov and properly associated with the reflected Dirichlet
space (X, E,m).

Proof. By construction, for all Borel function h € L?(X,m) and for all x € X it holds
_ _ 1. .

~ N

1
Eo[1(B)] = 5Eqa1) [h o m(Bi)] + 5Eq@a, ) [ o m(By)]
1 1.
= SBihom)(ae, +) + 5 Pi(hom)(a(z, -)),
where P, denotes the semigroup induced by (I@’x, Bt);cefi >0- This is related to the semigroup

Ty associated with & via Py(h o) = (Ty(h o 7))~ th-a.e. where (Ty(h o 7)™ is an €-quasi-
continuous m-version of T;(h o 7) (recall (2.1)). Hence
- _ 1

E,[h(By)] = i(ft(h o))~ (gq(z,+)) + %(Tt(h o))~ (q(x,—)), for m-a.e. v € X.

Now observe that since (T}(h o 7)™ is &-quasi-continuous, by Proposition 7.8-(iii) we know
that ((Ty(hom))™)* = (Ty(ho 7))~ (q(-, %)) are E-quasi-continuous and by (7.10) this yields

Ey [h(By)] = (Tih)™ (z) = Pih(z), for m-a.e. v € X, (7.12)

where P, denotes the semigroup induced by the Markov process properly associated with
(X, &, m). As such a process is m-reversible, continuous and strong Markov, the same holds
for (]P):v’Bt)a:EX,tEO'

In particular, the Markov property is inherited for the following reason. Let (%)i>0 be a

filtration w.r.t. which the strong Markov property holds for (IP,, Bt) Then (%)>0 is

z€Xt>0°
admissible for (B;),cx +>0, since for any Borel set A C X

By (A) = BN (nH(A)) = By N (a(A x {+,-})) € A,

and it is easy to see that

L 1. . 1- X
Po(Bi €| 7)) = Pyuy(Been ' (+) | F) + §Pq(m,—)(3t en ()| F)

2

is the conditional distribution for B; given .%;. For any (%)i>0-stopping time o, the strong
Markov property applies to the right-hand side above, whence Py, 1)(Biyo € 1) | Fy) =
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]IS’BU (B e m71(4)) I@’q(xi)—a.s. As an involution ¢ : X — X, t(q(x, %)) := q(z, F), is naturally
associated with X and 7 o ¢ = 7, note that
Pyay(Be € n 7 ()| F0) = Bypa, ) (Br € 7 (4) | F4) = By 1) (U(Br) € 71 (-) | F),
By (Bren () =B, 5 (Bren(-) =By (B € x'(-)).
This means that I@q(m,Jr)(EHJ e )| F) = PBU(Bt € 7 1(+)) holds both I@’q(z7+)—a.s.

and I@’q(mv_)-a.s. and thus a fortiori P,-a.s. For the same reason and using the second identity
on both lines above we also have I@’q(%_)(BHU en ()| F) = I@’L(Ba)(ét € n1(")) Pp-aus.
Hence we deduce that

_ 1. R B 1 R 3 _ _
Po(Bito €| Fo) = 5Pp (Brem1(+) + 5P, (Br€n 1 (+)) =Pp, (B, € )
holds true P,-a.s.

Finally, the fact that (P, Bt)zEX +>0 is properly associated with (X, &, m), i.e. that E;[h(By)]
is an &-quasi-continuous m-version of T;h, is a consequence of the first identity in (7.12). O

Example 7.12. Let a metric measure space (X, d, m) be given and a dense open subset Y C X
with m(Z) = 0 where Z := X\ Y. Define the doubled space X = Y+ U Y~ U Z as before (now
with X and Y in the place of X and X, resp.) by gluing two copies of X along their common
boundary. Define a metric on X by

d(z,y) := Zlgg {d(m,z) —i—d(z,y)}

if (z,y) € (Yt xY7)U (Y™ x Y*) and d(z,y) == d(z,y) if (z,y) € (XT x X*) U (X~ x X7).
Moreover, define as before a measure m on X which coincides with m on each of the copies

Y+ and which gives no mass to Z.
If the mm-space (X,d, m) gives rise to the Dirichlet space (X, &, m), then the doubled mm-

space (X, a,ﬁl) gives rise to the doubled Dirichlet space (X, é,ﬁl), as shown in [33, Lemma
3.3].

Now let us have a closer look on distributions on the doubled space.

Lemma 7.13. (i) Each x € ! defines in a canonical way a distribution # € F~! by
f=(-L+ 14 where (z,+):=(x), ¢¥:=(-L+1)"

(ii) Each quasi-open nest (Gp), in X defines in a canonical way a quasi-open nest (G )y in

X by )
G.=GfUG,, Gf:=@G,x{}.

~—1 . . N 1
(ili) Each & € F_),. defines in a canonical way a & € F- aloc-

X and a distribution x € N, ?&i, define & € N, ﬁ’g, by
= (-Lg +1)¢n where ¢n(z,%) = n(x), ¥n:=(-Lg, +1) 7'k
Proof. (i) For f € F and k € ! with « as above and wit f S+ ),

<’%7f>:(§1(¢7 )_81( ‘)
(ii), (iii) straightforward. O

Given a quasi-open nest (Gy,)y, in
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Lemma 7.14. Let x € 5’;1(10 be given and let (AF); denote the local continuous additive func-
tional associated with it for the Markov process (Pg, Bt)ze)_(,tzo on X obtained by projection
of the Markov process (]fpgc, Bt)

zeX >0 ON X as in Corollary 7.11.

Then (Af); coincides with the local continuous additive functional associated with i € @(;ic,

the canonical extension of k onto X as considered in the previous Lemma 7.135.

Proof. To simplify the presentation, we restrict ourselves to the case x € F~!. The extension to
the general case will follow by straightforward approximation arguments. Then the associated
CAF (A}); is characterized by the identity

(k, G1p) = Em[ /O b e*tdﬁt} (Vo € L2(X, ).

An analogous characterization holds for the CAF (A); associated with # € 1. Thus for all
® € L?(X,m) and with ® := 1(®T + ®7) € L?(X,m),

IAE@ﬁl[/OOO e*tdflt} = (k,G1®) = (k,G1®) =K m[/ooo e*td/_lt} = IAEq)ﬁl[/ooo e*tdf_lt]

=1

since (&, @) = (k, @) and G1® = G1® by (7.10). This proves that A = A (up to equivalence
of CAFs). O

Lemma 7.15. For h € L*(X,m),

Pfh = Pf(hom) (7.13)
and

&%(h) = &%(hom).

Proof. The first assertion follows from Corollary 7.11 and Lemma 7.14. The second assertion
is a direct consequence of the first one since both of the quadratic forms are generated by the
respective semigroups. ]

Theorem 7.16. Let the Dirichlet space (X, E,m) and the moderate distribution k € FL obe

qloc
given. Extend the latter to & € 3"(;1(1)0, and assume that the doubled Dirichlet space (X, E,m) is

tamed with synthetic Ricci bound k. Then the original Dirichlet space (X, E,m) is sub-tamed
with synthetic Ricci bound k.
In other words,

BE, (&, 00) for (X, &, 1) —  BE;(k,00) for (X, €&, m).
Proof. For each f € ©(E),
L(Pf)!? =T(BF)Y? < PE(D(H)V?) = PE(D()Y2 0 m) = BE(D()Y?)

with the first identity due to (7.10), the last one due to (7.13), and the inequality due to the
taming property of the doubled space. Moreover, the equality T'(f)/2 = T'(f)'/2 o 7 follows
from the locality of €. ]
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7.3. Doubling of Riemannian Surfaces. Let (M, g) be a compact 2-dimensional Riemann-
ian manifold with boundary and denote by M the doubling of M (i.e. the gluing of two copies
of M along their common boundary). That is,

M=M{ UM; UdM
where Mg and My denote two copies of the interior of M. Let m and m denote the volume
measures on M and |\7|, resp., and let o denote the surface measure on OM (regarded both as
a subset of M and as subset of |\7|)
Let (M, SM,m) be the canonical Dirichlet space on M (with “Neumann boundary conditions”)
with Eu(f) := %fMo Vf|?>dm and D(Em) := W?(Mp). Moreover, let (Mg, £}, m) denote its
restriction (with “Dirichlet boundary conditions”) onto Mo, i.e. £}, = E&u on D(&Y,) =
Wy (Mo).
The doubled Dirichlet space (|\7|, éM, tﬁ) on M is given by

i =eu( ) (55

with D(Em) = {f € L2(X,m): fT+f~ e W2(Mp), f+— f~ € Wy *(Mo) }.

Theorem 7.17. Assume that k € C(M) is a pointwise lower bound for the Ricci curvature
on My and that £ € C(OM) is a pointwise lower bound for the second fundamental form on

OM. Then the Dirichlet space (|\7|, EM,tﬁ) satisfies BE1 (K, 00) with
ki=kt+lo
where k :=kom and m: M — M denotes the projection.

Here as usual — if not explicitly specified otherwise — the manifold M and its boundary OM
are assumed to be smooth (at least €?).

Proof. The first parts of our argumentation apply to manifols of arbitray dimension n. Only
in the last step n = 2 is requested.

(i) Given € > 0, choose ¢, € C2(M) and V € C*(M) with £ > ¢, > { —eon OM and V =
—d(.,0M) on B¢(OM) := {z € M : d(z,0M) < €}. (The existence of such /. is obvious; the
existence of such V' follows from the fact that d(., OM) itself is smooth in B.(OM) for sufficiently
small € > 0 where “smallness” is in terms of bounds for the second fundamental form on OM
and for the sectional curvature on M, cf. e.g. [47], (A3.2.1) and related construction.)

(ii) Now consider the conformally transformed Riemannian manifold (M, g’) with g’ = e~2¥g
where 1 = ¢, = (e — £¢) V. (To improve readability, we will suppress the dependency (of 1,
g’, and k) on € here and below.) Again, this is a Riemannian manifold with boundary but
now the boundary is convex (according to general abuse of notations; the precise meaning is
that Mg is convex and/or that M can be regarded as a convex subset of an ambient space).
Indeed, this follows from Theorem 5.16 in [46] where instead of a conformal transformation
a time change was considered which leads to the same transformed distance function and
hence to the same convexity notion. The Ricci curvature of the transformed manifold (M, g)
is bounded from below (see [45]) by

K =e ¥ [k: —AYp— (n—=2)Vy> + (n—2) ( — V%)(Vu, Vu) + (V, Vu>2)}.

inf
uelerll(M) |Vul?
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(iii) Next let us consider (M,g), the doubling of (M,g’), and the associated Dirichlet space
(M, &y, ') with

A 1 . hoa. 1 - .

Eur) = [ B an = [ B aid

2 Ju 2 /0
and D(-) = e 2V (), = ™1 where ) := 1 o 7. According to [33], based on a detailed
approximation property derived in [38], this space satisfies BE; (k' W', 00) with &' := ¥ o 7.
(Actually, this is proven in [33] only for constant k’. However, in view of the equivalence of
Eulerian and Lagrangian formulations of variable synthetic Ricci bounds [10] and in view of
the stability of the latter [27], this easily extends to uniformly bounded, continuous functions
K'.)
(iv) Finally, we will conformally re-transform (M, g') with the weight e*?¥ such that
g=c?g

On M\ AM, this of course leads to a smooth Riemannian structure which (on each of the two
copies) coincides with the original one and with Ricci curvature locally bounded from below

/

by k := ko m. To provide a global estimate, valid also on OM, from now on we will restrict
ourselves to the 2-dimensional case.

In this case, the initial conformal transformation is just a time change and the conformal re-
transformation is a time-re-change as considered in [46]. Following the argumentation there —
now with the doubled Dirichlet space in place of the reflected Dirichlet space — we conclude
from [46, Theorem 6.7] that the Dirichlet space (|\7|, éM,ﬁl) satisfies BE; (&, 00) with

fo= kw4 Adl,,, (7.14)
with AQZJ‘QM = Aqﬁ - (AQZ)) ﬁl'l\?l\aM' Here A denotes the distributional Laplacian acting on
Y € D(Ey) whereas Ai) = (Ay)) o 7 denotes the continuous function on M\ &M obtained by
applying the operator A locally to ¢ (or A locally on My to 9).

Note that for all f € ’D(éM) with f* € ©(Ewm), f* being defined as in the previous Section
7.2,

@il £) = = [ [L0G.5)+ b fld

M\OM

_ _/ D, f*+ )+ AY- (7 + f7)]dm

Mo

= <A¢‘3Ma f+ + f_>
Hence, the distribution A@/}‘E)M can be identified with Awa = A — (A¢) m‘MO where A

denotes the distributional Neumann Laplacian acting on ¢ € D(Ey).

(v) So far, the estimate in (7.14) depends on € (via the e-dependence of ). However, we can
get rid of this (and other) dependencies and ambiguities. Again following the argumentation
in [46] with the doubled Dirichlet space in place of the reflected Dirichlet space, we conclude

from Theorem 6.14 there (and its proof) that (I\A/I7 éM,ﬁl) indeed satisfies BE; (&, 00) with

=k
where o denotes the surface measure of OM ([46, Example 6.12]). O
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