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Abstract. It is well-known that the flows generated by two smooth vector

fields commute, if the Lie bracket of these vector fields vanishes. This assertion
is known to extend to Lipschitz continuous vector fields, up to interpreting the

vanishing of their Lie bracket in the sense of almost everywhere equality. We

show that this cannot be extended to general a.e. differentiable vector fields
admitting a.e. unique flows. We show however that the extension holds when

one field is Lipschitz continuous and the other one is merely Sobolev regular

(but admitting a regular Lagrangian flow).

1. Introduction

One of the well-known basic facts of differential geometry, ultimately leading to
the Frobenius theorem on integral manifolds, is that the flows of two smooth vector
fields V 1, V 2 over a smooth finite dimensional manifold M commute, if and only if
their Lie bracket [V 1, V 2] vanishes. In a more formal way, denoting the flow of V i

by F it (x) := y(t), where y(·) is the integral curve of the differential equation

(1.1) ẏ = V i(y), y(0) = x,

one has

(1.2) F 1
t (F 2

s (x)) = F 2
s (F 1

t (x)) for all x ∈M , whenever [V 1, V 2] = 0,

once t ∈ R and s ∈ R are such that the respective expressions are defined. What
happens with this statement for possibly nonsmooth vector fields V i, even when the
underlying manifold M itself remains smooth (in the sequel we will for simplicity
consider just the case of M = Rd, a finite-dimensional Euclidean space)?

Of course, to be meaningful, the question posed has to be restricted to the cases
when all the objects present in (1.2) are well-defined. This is however nontrivial
already in the case when V i are Lipschitz. Namely, in this case the flows of V i

are still defined because the Cauchy problem (1.1) has a unique solution for every
initial datum x ∈ Rd. However, there is a problem with the meaning of the Lie
bracket [V 1, V 2]; in fact, the latter is defined for smooth vector fields by the formula

(1.3) [V 1, V 2](x) := DV 2(x)V 1(x)−DV 1(x)V 2(x),

where DV i are Jacobi matrices of V i, i = 1, 2, which is meaningless when V i are
only Lipschitz, because then their derivatives are not necessarily defined for all
x ∈ Rd but only for almost all with respect to the Lebesgue measure. The natural
question would be then: does (1.2) hold for a.e. rather than for all, x ∈ Rd, once
the vanishing of the commutator [V 1, V 2] = 0 is also understood in the sense of a.e.
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equality? The answer is positive as shown in the seminal paper by F. Rampazzo
and H.J. Sussmann [14].

The problem is therefore what happens when one descends in regularity of V i

further beyond Lipschitz continuity. In fact, there are many cases when Cauchy
problems (1.1) admit unique solutions for every or just for a.e. intial datum. For
instance, as shown in [5, corollary 5.2], for a vector field V ∈ W 1,p(Rd;Rd) with
p > d and div V bounded, a unique flow x 7→ Ft(x) is defined for a.e. x ∈ Rd and
all t ∈ R as Ft(x) := y(t) where y(·) is the unique solution to the ODE

ẏ = V (y)

satisfying y(0) = x. Further, even if p ≤ d, then a solution to the latter ODE may
be not unique for a.e. initial datum, but in this case there is a natural selection
of such solutions called regular Lagrangian flow [9, 1]. Moreover, there are many
other cases besides Sobolev regularity when the vector field V admits a regular
Lagrangian flow. In view of the Rampazzo-Sussmann result for Lipschitz vector
fields, it is tempting to conjecture that also in the cases in which the fields V i

generating unique flows for a.e. initial datum (or at least regular Lagrangian flows)
F i, it is true that

(1.4) F 1
t (F 2

s (x)) = F 2
s (F 1

t (x)) for a.e. x ∈ Rd, whenever [V 1, V 2] = 0 a.e.,

of course when the Lie bracket [V 1, V 2](x) is well defined for a.e. x ∈ Rd. We will
show however by means of a counterexample that in general this is false. Never-
theless, we are able to show (Theorem 4.1 and Theorem 4.3) that this conjecture
is true, for Sobolev vector fields V i ∈ W 1,pi(Rd;Rd) once one of them is Lipschitz
(which generalizes the result of [14]).

Note that in a completely independent recent paper [7] it has been proven by
means of a different technique that when both V i are not only Sobolev but have also
bounded divergence (which in fact, under just mild growth assumptions, e.g. when
these vector fields are bounded, guarantees the existence and uniqueness of regular
Lagrangian flows, but of course is not necessary for that, see Remark 2.3), then com-
mutativity of their regular Lagrangian flows is in fact equivalent to a.e. vanishing
of their Lie bracket together with weak differentiability with locally bounded deriv-
ative of one of the respective flow maps in direction of another vector field. Thus
for the particular case of vector fields with bounded divergence our Theorem 4.1
follows from [7, theorem 1.1]. It is worth remarking that in our counterexample the
vector fields are not Sobolev and, what is more important, their distributional Lie
bracket (as opposed to an a.e. one) is a non trivial vectorial measure with vanishing
absolutely continuous part. It is therefore a curious open question whether for gen-
eral vector fields having vanishing distributional Lie bracket, the associated regular
Lagrangian flows (assumed they exist, e.g. when the vector fields are Sobolev with,
say, bounded divergence) commute.

We finally think it worth mentioning that another very interesting, completely
different but in a certain sense more classical approach based on smooth approxi-
mations and Stokes’ theorem has been used to obtain a generalization of Frobenius
integrability theorem for nonsmooth data (in that particular case, differential forms)
in [13]; however the relationship of the result obtained there to the question of com-
mutativity of flows is not at all clear (and most probably, is not even natural to
look for).

The main difficulty here is that when the vector fields V i are just Sobolev, the
respective Lagrangian flows have only very weak regularity properties: in partic-
ular, they are just summable but not Sobolev [11], so that their weak derivatives
do not have any pointwise (even a.e.) meaning. This corresponds well to the re-
cently established loss of regularity results for solutions of continuity equations with
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Sobolev velocity field of bounded divergence or even divergence-free [?, ?], and is in
sharp contrast with the situation when V i are Lipschitz, since in the latter case it is
a textbook result that the respective flows are Lipschitz too. That is why the tech-
nique we adopt in this paper is essentially different from that used in [14]. In fact,
in the latter paper a set-valued Lie bracket of Lipschitz vector fields is introduced
and then it is shown, substantially, that the usual expansions (of course adapted
now to the set-valued setting) of compositions of flow maps in each point are still
valid for this case with the set-valued Lie bracket instead of the classical one. As a
side remark, we mention that another quite natural extension of both the classical
Lie bracket and its set-valued version, the measure valued Lie bracket, has been
introduced recently in [6]. In the general case of Sobolev V i, in view of the men-
tioned lack of regularity of flows, no technique based on pointwise expansions would
work and therefore we are forced to develop a completely different PDE/measure
theory-style approach.

2. Notation and preliminaries

2.1. General notation. The finite-dimensional space Rd is assumed to be equipped
with the Euclidean norm | · |; the notation Br(x) ⊂ Rd stands for the usual open
Euclidean ball of radius r centered at x. In general, the norm in the normed space
E will be denoted by ‖ · ‖E .

All the measures over a metric space considered in the sequel are positive Radon
measures, not necessarily finite. The notation Ld stands for the Lebesgue measure
in Rd. If µ is a measure over a metric space X, then for a Borel map T : X → Y
between metric spaces X and Y we denote by T#µ the push-forward of µ, i.e. the
measure over Y defined by (T#µ)(B) := µ(T−1(B)) for every Borel B ⊂ Y .

We use the notation A . B for possibly vector valued functions A, B defined on
a subset Ω ⊆ Rd, when there exists a constant C ≥ 0 such that

|A|(x) ≤ C|B|(x) for every x ∈ Ω

with some constant C > 0 depending possibly on parameters such as dimension of
the space or integrability exponents, but not on A and B.

2.2. Spaces. For a measure µ in a metric space E we denote by Lp(E,µ;Rm) the
usual Lebesgue space of µ-integrable with exponent p ≥ 1 functions f : E → Rm
(µ-essentially bounded when p = +∞); the reference to µ will be omitted in the
case µ = Ld. The reference to E may be also omitted when no confusion is possible.

Analogously, W k,p(Rd;Rm) (resp. W k,p
loc (Rd;Rm)) will stand for the usual Sobolev

(resp. locally Sobolev) class of functions over Rd with values in Rm. In all the cases
the reference to Rm will be omitted when m = 1, i.e. for real valued functions. The
norm in Lp(Rd) is denoted for brevity just ‖·‖p. The notation C∞0 (Rd) stands for the
class of infinitely differentiable functions with compact support in Rd (usually called
test functions)¡ and the action of a distribution u on a test function ϕ ∈ C∞0 (Rd)
is denoted by 〈ϕ, u〉.

The space C([a, b];Rd) of continuous curves in Rd parameterized over the inter-
val [a, b] is endowed with the usual supremum norm. For every t ∈ [a, b] we let
et : C([a, b];Rd)→ Rd stand for the evaluation map et(θ) := θ(t).

2.3. Variation. Given a function

ω : [−T, T ]2 → R, (s, t) 7→ ωst,

we write, where π = {ti}i denotes any partition of [−T, T ] and |π| := supi |ti−ti−1|,

[ω] := lim sup
|π|→0

∑
ti∈π
|ωtiti+1

|.
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This generalizes the notion of total variation (which corresponds to the case ωst :=
ft − fs).

2.4. Maximal functions. We recall the usual definitions of the sharp maximal
function g]r for an r > 0 and the maximal function g∗ of a locally integrable function
g : Rd → R, namely,

g]r(x) := sup
s∈[0,r]

1

Ld(Bs(x))

∫
Bs(x)

|g(y)− g(x)|dy,

g∗(x) := sup
s≥0

1

Ld(Bs(x))

∫
Bs(x)

|g(y)|dy,

so that in particular

(2.1) g]r ≤ 2g∗.

Remark 2.1 (convergence of maximal functions). We notice that, if g ∈ Lp(Rd)
with p > 1, then

(2.2) g]r, g
∗ ∈ Lp(Rd),

and g]r(x)↘ 0 as r ↘ 0 for a.e. x ∈ Rd (this can be proven by density of continuous
functions). In particular, ∥∥g]r∥∥p ↘ 0 as r ↘ 0.

2.5. Pointwise inequalities for Sobolev functions. Recall that for Sobolev
functions f ∈W 1,1

loc (Rd), one has the following pointwise inequality [4, corollary 1],

valid for every x, y ∈ Rd \N , where N is Lebesgue-negligible:

(2.3) |f(y)− f(x)−Df(x)(y − x)| . |y − x|
(
|Df |]|y−x|(y) + |Df |]|y−x|(x)

)
.

From (2.1) we obtain

(2.4) |f(y)− f(x)| . |y − x| (|Df |∗(y) + |Df |∗(x)) .

2.6. Regular Lagrangian flows.

Definition 2.2. We say that a Borel map F : [a, b] × Rd → Rd is a regular La-
grangian flow for the (possibly time-dependent) vector field V : [a, b] × Rd → Rd
if

(i) for a.e. x ∈ Rd the map t ∈ [a, b] 7→ F (t, x) is an absolutely continuous
solution of the ODE

ẏ = V (t, y)

for t ∈ [a, b], satisfying y(a) = x;
(ii) there is a constant C > 0 independent of t (called the compressibility con-

stant of F ) such that

F (t, ·)#Ld ≤ CLd

for every t ∈ [a, b].

For flows we usually write Ft(x) instead of F (t, x).

Remark 2.3. The regular Lagrangian flows over any time interval [−T, T ] for the
vector field V : Rd → Rd is known to exist and be unique when, say, V is Sobolev
and essentially bounded, i.e. V ∈W 1,p(Rn)∩L∞(Rn) and has essentially bounded
divergence div V ∈ L∞(Rn). However these conditions are far from being necessary
for the existence of regular Lagrangian flows. For instance, if Φ: Rd → Rd is a
biLipschitz map, and the vector field V : Rd → Rd admits a regular Lagrangian
flow Ft(·), then the vector field Ṽ : Rd → Rd defined by

Ṽ (y) := (DΦ)(Φ−1(y))V (Φ−1(y))
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admits a regular Lagrangian flow Φ(Ft(Φ
−1(·))). It is also worth mentioning that

for a vector field V defined over some open set Ω ⊂ Rd, theorem 5.2 from [2] gives
sufficient contitions for a vector field to a admit a unique regular Lagrangian flows
defined over (−T̄ (x), T̄ (x)) for some measurable function T̄ : Ω→ (0,+∞).

We will further use a couple of observations.

Remark 2.4. When ν is a measure over Rd with bounded density with respect to
the Lebesgue measure, i.e.

ν = fLd with f ∈ L∞(Rd),
and F : [a, b]×Rd → Rd is a regular Lagrangian flow with compressibility constant
C for some vector field, then one has

(2.5) F (t, ·)#ν ≤ C‖f‖∞Ld,
because F (t, ·)#ν = (f ◦ F (t, ·)−1)F (t, ·)#Ld.

Lemma 2.5. If F : [a, b] × Rd → Rd is a regular Lagrangian flow and N ⊂ Rd is
Lebesgue negligible, then there is a B0 ⊂ Rd with Ld(B0) = 0 such that F (t, x) 6∈ N
for every x 6∈ B0 and a.e. t ∈ [a, b].

Proof. For the set G := {(x, t) ∈ [a, b]×Rd : F (t, x) ∈ N} one has Ld+1(G) = 0 by
Fubini theorem since for each fixed t ∈ [a, b] one has

Ld(G ∩ ({t} × Rd)) = (F (t, ·)#Ld)(N) ≤ CLd(N) = 0.

Therefore the set

B0 := {x ∈ Rd : L1(G ∩ ([a, b]× {x})) > 0} ⊂ Rd

is Lebesgue negligible as claimed. �

3. Vanishing Lie bracket does not imply commutativity of flows

In this section we show by means of the example below that when two vector
fields have a.e. vanishing Lie bracket, it is in general not true that their flows
commute a.e. even if we assume that they are a.e. uniquely defined, and even if
they are regular Lagrangian. The main idea comes from an example [15, Nelson’s
example] of non-commutativity of groups with generators commuting on a common
dense set. In our case, we consider a foliation of Rd into helix-like hypersurfaces so
that the composition of the two flows yields a rotation along the axis of the helix.

Example 3.1. Let d := 3,

f(x, y) := arctan
(y
x

)
and consider the vector fields

V 1 := ∂x + (∂xf)∂z = ∂x −
y

x2 + y2
∂z,

V 2 := ∂y + (∂yf)∂z = ∂y +
x

x2 + y2
∂z,

where

(3.1) ∂xf = − y

x2 + y2
, ∂yf =

x

x2 + y2

stand for the classical derivatives of the function f , so that

(3.2) [V 1, V 2] =
(
∂2
xyf − ∂2

yxf
)
∂z = 0,

i.e. their Lie bracket vanishes (of course the function f , the vector fields and their Lie
bracket are defined everywhere in Rd outside of the two-dimensional plane {x = 0},
hence a.e. in Rd). We now verify the sequence of claims.
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Claim 1. Both V 1 and V 2 are tangent to the level sets of the function (x, y, z) ∈
Rd 7→ z − f(x, y) ∈ R, i.e. to the graphs of the functions z = f(x, y) + C in Rd,
with C any constant, as observed by a direct calculation.

Claim 2. The flows F i for the vector fields V i, i = 1, 2, are uniquely defined over
[−T, T ], for every T > 0 and for every initial datum outside of the plane {x = 0}.
In fact, this is quite immediate for F 2, since the solution to the ODE θ̇ = V 2(θ) is
uniquely defined for every initial datum θ(0) ∈ Rd \ {x = 0} over all times.

As for F 1, we consider the solutions to the ODE θ̇ = V 1(θ) for every initial
datum outside of the plane {x = 0}. If x̄ := θ1(0) < 0 then the solution θ(·)
to the respective Cauchy problem is defined uniquely for all t ∈ (−∞,−x̄), and,
analogously, if x̄ := θ1(0) > 0 then it is defined uniquely for all t ∈ (−x̄,+∞). In
the first case, one has

lim
t→−x̄−0

f(θ1(t), θ2(t)) =

 π/2, if ȳ < 0,
0, if ȳ = 0,

−π/2, if ȳ > 0,

because θ2(t) = θ2(0) for all t ∈ (−∞,−x̄) and

lim
t→−x̄−0

θ1(t) = 0−.

Thus, denoting z̄ := θ3(0) and recalling Claim 1, we get that

lim
t→−x̄−0

θ3(t) = lim
t→−x̄−0

f(θ1(t), θ2(t)) + (z̄ − f(x̄, ȳ))

= z̄ − f(x̄, ȳ)− π

2
sign ȳ.

Symmetrically in the second case, θ2(t) = θ2(0) for all t ∈ (−x̄,+∞),

lim
t→−x̄+0

θ1(t) = 0+

and

lim
t→−x̄+0

θ3(t) = z̄ − f(x̄, ȳ)− π

2
sign ȳ.

Summing up, we have that absolutely continuous solutions θ(·) to the respective
Cauchy problem are defined uniquely for every initial datum outside of the plane
{x = 0} and for a.e. t ∈ R, or, more precisely, for every t ∈ R except t = −x̄, with

(3.3) lim
t→−x̄

θ(t) =
(

0, ȳ, z̄ − f(x̄, ȳ)− π

2
sign ȳ

)
.

This defines uniquely the flow F 1.
Claim 3. One has div V i = 0, and hence the flows F i are regular Lagrangian

(because F it#Ld = Ld for all t for which F it is defined, i.e. the compressibility

constant is one), for i = 1, 2.
Claim 4. Finally, the flows F 1 and F 2 do not commute despite (3.2). In

fact, consider an arbitrary p = (x̄, ȳ, z̄) ∈ Rd with x < 0 and y < 0. Then for
θ1(t) := F 1

t (p) one has

(3.4) θ1(t) =
(
x̄+ t, ȳ, θ1

3(t)
)

with θ1
3(−x̄) = z̄ − f(x̄, ȳ) + π/2 in view of (3.3). By Claim 1 one has that θ1(t)

for t > −x̄ belongs to the graph of function z = f(x, y) + C, which means

θ1
3(t) = f(x̄+ t, ȳ) + C

for all t > −x̄. Letting t→ −x̄+ 0, we get

z̄ − f(x̄, ȳ) + π/2 = θ1
3(−x̄) = −π/2 + C,
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which gives C = z̄ − f(x̄, ȳ) + π. Therefore, F 2
s (F 1

t (p)) belongs to the graph of
function

z = f(x, y) + z̄ − f(x̄, ȳ) + π

for every s ∈ R and t > −x̄.
On the other hand, for θ2(s) := F 2

s (p) one has

θ2
2(s) =

(
x̄, ȳ + s, , θ2

3(s)
)
,

so that for every s > −ȳ one has θ2
2(s) > 0. Then for σ1(t) := F 1

t (θ2(s)) for s > −ȳ
one has

(3.5) σ1(t) =
(
x̄+ t, ȳ + s, σ1

3(t)
)
.

Since θ2(s) belongs to the graph of the function

z = f(x, y) + z̄ − f(x̄, ȳ)

by Claim 1, then so is σ1(t) for t < −x̄. By (3.3) one has

(3.6) σ1(−x̄) =
(
x̄, ȳ + s, z̄ − f(x̄, ȳ)− π

2

)
.

Hence for t > −x̄ (and s > −ȳ) one has that F 1
t (F 2

s (p)) = σ1(t) belongs to the
graph of function z = f(x, y) + C, that is,

σ1
3(t) = f(x̄+ t, ȳ) + C

for all t > −x̄, and the value of C can be found by letting t → −x̄ + 0, since then
by (3.6) we have

z̄ − f(x̄, ȳ)− π/2 = σ1
3(−x̄) = π/2 + C,

which gives C = z̄ − f(x̄, ȳ) − π. Therefore, F 1
t (F 2

s (p)) belongs to the graph of
function

z = f(x, y) + z̄ − f(x̄, ȳ)− π
for every s > −ȳ and t > −x̄. In other words for all such pairs (s, t) one has

F 1
t (F 2

s (p)) 6= F 2
s (F 1

t (p))

as claimed.

Remark 3.2. One can easily check that both V 1, V 2 are not Sobolev (even locally)

on R3. Moreover, for f(x, y) := arctan(y/x) we have f /∈ W 1,1
loc (R2). We may in

fact prove more, that is, any two vector fields on R3 of the form

V 1 = ∂x + ∂xf∂z, V 2 = ∂y + ∂yf∂z,

with f ∈W 1,1
loc (R2) must have commuting flows F 1, F 2. Indeed, they are explicitly

given by

F 1
s (x, y, z) :=

(
x+ s, y, z +

∫ s

0

∂xf(x+ r, y)dr

)
,

F 2
t (x, y, z) :=

(
x, y + t, z +

∫ t

0

∂yf(x, y + r)dr

)
.

If we introduce the differential 1-form on R3

ω := df = ∂xfdx+ ∂yfdy,

then F 1
s ◦ F 2

t = F 2
t ◦ F 1

s , if and only if∫
∂R

df = 0

for “almost every” oriented rectangle R ⊂ R2 with parallel sides to the coordinate
axes and side lengths s, t (namely, for every rectangle of the form [x, x+s]×[y, y+t]
for a.e. (x, y) ∈ R2). Note that ω is independent on z, and, moreover, if f ∈
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W 1,1
loc (R2), then choosing a precise representative of f , one has that for almost

every rectangle R = [x0, x0 + s] × [y0, y0 + t] the restriction of f to its sides is
an absolutely continuous H1-a.e. differentiable function (where H1 stands for the
one-dimensional Hausdorff measure), so that calculating explicitly, one gets∫

∂R

ω =

∫ x0+s

x0

fx(x, y0) dx+

∫ y0+t

y0

fy(x0 + s, y) dy

+

∫ x0

x0+s

fx(x, y0 + t) dx+

∫ y0

y0+t

fy(x0, y) dy

= f(x0 + s, y0)− f(x0, y0) + f(x0 + s, y0 + t)− f(x0 + s, y0)

+ f(x0, y0 + t)− f(x0 + s, y0 + t) + f(x0, y0)− f(x0, y0 + t) = 0,

thus the two flows commute, i.e. to be more precise

F 1
t (F 2

s (x, y, z)) = F 2
s (F 1

t (x, y, z))

for a.e. (x, y) ∈ R2, all z ∈ R and (s, t) ∈ R2.

Remark 3.3. Due to the lack of Sobolev regularity of the two vector fields in Ex-
ample 3.1, it does not follow from the a.e. vanishing of the Lie bracket [V 1, V 2] = 0
that the same holds also in the distributional sense. However just the notion of a
distributional Lie bracket is quite nontrivial and deserves some discussion. In fact,
trying to give the distributional meaning directly to the formula

[V 1, V 2] = (DV 2)V 1 − (DV 1)V 2,

where DV i stands for the Jacobian matrix of V i, i = 1, 2, by trying to understand
the derivatives in the latter in distributional sense, might lead in no reasonable
direction because this amounts in general (i.e. unless the vector fields involved have
some extra regularity) to dealing with products of distributions. However, for, say,
divergence free vector fields V 1, V 2 one has

∫
R3

ϕ(x)([V 1, V 2]ψ)(x) dx =

∫
R3

ϕ
(
V 1(x)(V 2ψ)(x)− ϕV 2(x)(V 1ψ)(x)

)
dx

= −
∫
R3

(
(V 1ϕ)(x)(V 2ψ)(x)− (V 2ϕ)(x)(V 1ψ)(x)

)
dx

(3.7)

for all compactly supported {φ, ψ} ⊂ C∞(R3) once both V 1 and V 2 are smooth, so
that this can be used as a definition of a distributional Lie bracket for nonsmooth
divergence free vector fields. Namely, for such vector fields we define the action of
their distributional Lie bracket on a compactly supported test function ψ ∈ C∞(R3)
as, in its turn, a distribution acting on a test function φ ∈ C∞(R3) with compact
support by the formula

〈φ, [V 1, V 2]ψ〉 := −
∫
R3

(
(V 1ϕ)(x)(V 2ψ)(x)− (V 2ϕ)(x)(V 1ψ)(x)

)
dx(3.8)

In our case we show

(3.9) [V 1, V 2] = 2πH1 ¬ {(x, y) = 0} ∂z
in the sense of (3.7), i.e. that for every test function ψ the action of the distribu-
tional Lie bracket [V 1, V 2] on ψ is defined by

[V 1, V 2]ψ = 2πH1 ¬ {(x, y) = 0} ∂zψ,
in the distributional sense, or else in other words, that the action 〈φ, [V 1, V 2]ψ〉 of
the distribution [V 1, V 2]ψ on the test function φ is given by

(3.10) 〈φ, [V 1, V 2]ψ〉 = 2π

∫
R
ϕ(0, 0, z)∂zψ(0, 0, z) dz.
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In yet another language one can read the distributional Lie bracket [V 1, V 2] as a
one-dimensional metric current of locally finite mass [12] (a version of Ambrosio-
Kirchheim metric currents [3] or measurable derivations by N. Weaver [16]) acting
on a “differential form” φdψ as

[V 1, V 2](φdψ) = 2π

∫
R
ϕ(0, 0, z)∂zψ(0, 0, z) dz.

Let us point out however that since in our example the vector fields V 1, V 2 are
not (locally) square integrable, a separate definition of the two integrals,∫

R3

(V 2ϕ)(V 1ψ) and

∫
R3

(V 1ϕ)(V 2ψ),

could be problematic for generic test functions φ and ψ. Nevertheless it turns out
that the integral of the difference in the righthand side of (3.7) is well defined, since
a simple cancellation occurs in view of the a.e. identity

(V 2ϕ)(V 1ψ)− (V 1ϕ)(V 2ψ) = ∂zϕ(∂xψ∂yf − ∂yψ∂xf)

− ∂zψ(∂xϕ∂yf − ∂yϕ∂xf)
(3.11)

where for brevity we use the notation (3.1) from Example 3.1 for the a.e. (but not
distributional) derivatives ∂xf, ∂yf of the function f(x, y) := arctan(y/x).

To prove (3.10), use (3.8) and (3.11) to obtain in cylindrical coordinates (r, θ, z)
the relationship

〈φ, [V 1, V 2]ψ〉 =

∫
R3

(∂zϕ(x∂xψ + y∂yψ)− ∂zψ(x∂xϕ+ y∂yϕ))
dxdydz

x2 + y2

=

∫ 2π

0

dθ

∫
R
dz

∫ ∞
0

dr (∂zϕ∂rψ − ∂zψ∂rϕ) ,

(3.12)

since x∂x + y∂y = r∂r. Using the compact support assumption on ϕ and ψ, we
integrate by parts in (3.12) yielding∫

R
∂zϕ∂rψdz = ϕ∂rψ

∣∣z=∞
z=−∞ −

∫
R
ϕ∂z∂rψdz = −

∫
R
ϕ∂z∂rψdz,

and∫ ∞
0

∂zψ∂rϕdr = ϕ∂zψ
∣∣r=∞
r=0

−
∫ ∞

0

ϕ∂r∂zψdr = −ϕ∂zψ
∣∣
r=0
−
∫ ∞

0

ϕ∂r∂zψ dr

Since ∂r∂zψ − ∂z∂rψ = 0, a cancellation occurs in (3.12) and we conclude that∫ 2π

0

∫
R

∫ ∞
0

(∂zϕ∂rψ − ∂zψ∂rϕ) drdzdθ =

∫ 2π

0

∫
R
ϕ∂zψ

∣∣
r=0

=

∫
R
ϕ(0, 0, z)∂zψ(0, 0, z) dz,

that is (3.10) as claimed.

In view of the above remark, it would be interesting to provide an example, if
exists, of two vector fields having the Lie bracket vanishing in the distributional
sense, yet the two associated Lagrangian flows being defined, but not commuting. It
has to be remarked though that just the definition of the distributional Lie bracket
requires some extra assumptions on the vector fields (e.g. for the integral in the
definition (3.8) to be well defined the natural assumption would be that the vector
fields be locally square integrable).
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4. Vanishing Lie bracket and commutativity of regular Lagrangian
flows for Sobolev vector fields

We prove now that regular Lagrangian flows F 1, F 2 of Sobolev vector fields V 1,
V 2 respectively commute a.e., if the Lie bracket of the latter vanishes a.e., i.e. (1.4)
holds, once one of the two is Lipschitz continuous.

Theorem 4.1. Let p ∈ [1,∞], and assume that V 1 ∈ W 1,p(Rd) is such that its
regular Lagrangian flow F 1

s is uniquely defined for s in some interval containing
zero, and V 2 ∈ W 1,∞(Rd). Let (F 1

t )t∈R, (F 2
t )t∈R be the corresponding regular

Lagrangian flows. If

[V 1, V 2](x) := (DV 2)(x)V 1(x)− (DV 1)(x)V 2(x) = 0 for a.e. x ∈ Rd,
then the flows commute, i.e., for a.e. x ∈ Rd

F 2
t

(
F 1
s (x)

)
= F 1

s

(
F 2
t (x)

)
, for every s, t ∈ R.

Remark 4.2. Theorem 1.1 from [7] proven by means of a different technique shows,
roughly speaking, that if both V i are not just Sobolev but also have bounded diver-
gence, then commutativity of their regular Lagrangian flows is in fact equivalent to
a.e. vanishing of their Lie bracket together with weak differentiability with locally
bounded derivative of one of the respective flow maps in direction of another vector
field. Thus for the particular case of vector fields with bounded divergence the
above Theorem 4.1 follows from the cited result.

Proof. Since V 2 is Lipschitz continuous, its regular Lagrangian flow coincides a.e.
with the classical flow. Therefore, we may assume that x 7→ F 2

t (x) is defined
everywhere and Lipschitz continuous. It is also sufficient to prove the thesis for s,
t ∈ [−T, T ] for an arbitrary T > 0 such that both F it are defined for t ∈ [−T, T ],
i = 1, 2.

Let ν stand for a finite measure on Rd with bounded and strictly positive density
with respect to Ld (the L∞ norm of the latter will be denoted by ‖ν‖∞), e.g. a
standard Gaussian. For x ∈ Rd and s, t ∈ [−T, T ] we set

(4.1) Xs,t(x) := F 2
t (F 1

s (x)).

Since the flow F 2 is Lipschitz continuous, we have that for a.e. x ∈ Rd and for every
s, t ∈ [−T, T ], the map (s, t) 7→ Xs,t(x) is continuous. Moreover, for a.e. x ∈ Rd
one has

∂tXs,t(x) = V 2(Xs,t(x)) for a.e. t ∈ (−T, T ),

∂sXs,0(x) = V 1(Xs,0(x)) for a.e. s ∈ (−T, T ).

Now, for s, s′, t ∈ [−T, T ], we write

As,s′;t(x) := Xs′,t(x)−Xs,t(x), Bs,s′;t(x) := As,s′;t(x)− (s′ − s)V 1(Xs,t(x)),

frequently omitting the reference to x for brevity, and for every t ∈ [−T, T ] we con-

sider the measure η := X̂t#ν over C([−T, T ],Rd), where X̂t : Rd → C([−T, T ],Rd)
is defined by the formula

X̂t(x) := X(·,t)(x).

Note that η is concentrated over curves [−T, T ] 3 s 7→ Xs,t(x) for a set of full
ν-measure of x ∈ Rd. Further,

es#η = Xs,t#ν = F 2
t#(F 1

s#ν) ≤ C2C1Ld,

where Ci are the compressibility constants for F i, i = 1, 2.
We will show that for some function (ωss′)s,s′∈[−T,T ], with [ω] = 0 one has

(4.2) ‖Bs,s′;t(·)‖L1(ν) . ωss′ , for s, s′ ∈ [−T, T ].
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This would give∥∥θs′ − θs − (s′ − s)V 1(θs)
∥∥
L1(C([−T,T ],Rd);η)

. ωss′

for every s, s′ ∈ [−T, T ], which means in view of Proposition A.1 (applied with V 1

instead of V and C1C2 instead of C) that η-a.e. θ ∈ C([−T, T ],Rd) is an integral
curve of V 1. In other words, for ν-a.e. (hence for Ld-a.e., because the density
of ν is strictly positive) x ∈ Rd the curve θ defined by θ(s) := Xs,t(x) satisfies
∂sθ = V 1(θ(s)) for every s ∈ [−T, T ]. Since for such curves one has θ(0) = F 2

t (x),
then for a.e. x ∈ Rd one has

Xs,t(x) = F 1
s (F 2

t (x)),

which is the claim of the theorem being proven.
The rest of the proof is therefore dedicated to showing the claim (4.2). It will

be done in six steps.
Step 1: Estimate on As,s′;0. In the subsequent estimates we suppose without

loss of generality that s′ ≥ s (the case s ≥ s′ is completely symmetric). One has

|As,s′;0(x)|p = |Xs′,0(x)−Xs,0(x)|p = |F 1
s (x)− F 1

s′(x)|p

≤

∣∣∣∣∣
∫ s′

s

|V 1(y(τ))| dτ

∣∣∣∣∣
p

≤ |s− s′|p/p
′
∫ s′

s

|V 1(y(τ))|p dτ by Hölder inequality.

Integrating with respect to η̃ := νxB⊗ δF 1(·,x), where B ⊂ Rd is an arbitrary fixed
Borel set, gives

(4.3)

∫
B

|As,s′;0(x)|pdν(x) ≤ |s− s′|p/p
′

∣∣∣∣∣
∫
C([−T,T ];Rd)

dη̃(y)

∫ s′

s

|V 1(y(τ))|p dτ

∣∣∣∣∣
= |s− s′|p/p

′

∣∣∣∣∣
∫ s′

s

dτ

∫
C([−T,T ];Rd)

dη̃(y)|V 1(y(τ))|p
∣∣∣∣∣

= |s− s′|p/p
′

∣∣∣∣∣
∫ s′

s

dτ

∫
Rd

deτ#η̃(x)|V 1(x)|p
∣∣∣∣∣

≤ C‖ν‖∞|s− s′|1+p/p′
∫
F 1
τ (B)

|V 1(x)|p dx,

because eτ#η̃ = F 1
τ#(νxB) = 1F 1

τ (B)F
1
τ#ν and in view of (2.5). In particular, with

B := Rd we get

(4.4) ‖As,s′;0(x)‖Lp(ν) . |s− s′|1/p+1/p′
∥∥V 1

∥∥
p

= |s− s′|
∥∥V 1

∥∥
p
.

Further, since F 1
τ (B) = (F 1

−τ )−1(B), we get

Ld(F 1
τ (B)) = (F 1

−τ#Ld)(B) ≤ CLd(B),

and hence from (4.3) with p = 1 we get that the functions As,s′;0(·)/|s − s′| are
equiintegrable in L1(ν), if V 1 ∈ L1(Rd).

Step 2: Estimate on As,s′;t. Lipschitz continuity of F 2
t gives, for a.e. x ∈ Rd,

∂t|As,s′;t| ≤ |V 2(Xs,t)− V 2(Xs′,t)| ≤
∥∥DV 2

∥∥
∞ |As,s′;t|, for a.e. t ∈ [−T, T ].

Hence, by Gronwall lemma,

sup
t∈[−T,T ]

|As,s′;t| ≤ |As,s′;0| exp
(∥∥DV 2

∥∥
∞ T

)
.
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Integrating with respect to ν gives

sup
t∈[−T,T ]

‖|As,s′;t|‖Lp(ν) ≤

∥∥∥∥∥ sup
t∈[−T,T ]

|As,s′;t|

∥∥∥∥∥
Lp(ν)

≤ ‖As,s′;0‖Lp(ν) exp
(∥∥DV 2

∥∥
∞ T

)
. |s′ − s|

∥∥V 1
∥∥
p

exp
(∥∥DV 2

∥∥
∞ T

)
in view of (4.4)

. |s′ − s|.

(4.5)

Step 3: Integral inequality for Bs,s′;t. We first prove that

(i) for a.e. x ∈ Rd and for every s ∈ [−T, T ] the curve t 7→ V 1(Xs,t(x)) is
absolutely continuous, and

(ii) satisfies

(4.6) ∂tV
1(Xs,t(x)) = DV 1(Xs,t(x))V 2(Xs,t(x)).

In fact, for a.e. x ∈ Rd and for every s ∈ [−T, T ] the curve t 7→ Xs,t(x) is absolutely
continuous (even Lipschitz). Letting

ν1
s := F 1

s#ν, η2
s := F 2

#ν
1
s ,

we have that η2
s is a measure on C([−T, T ];Rd) concentrated over such curves, while

ν1
s ≤ C1‖ν‖∞Ld

by Remark 2.4, and therefore

et#η
2
s = F 2

t#ν
1
s ≤ C2C1‖ν‖∞Ld

by the same Remark. Therefore, (i) and (ii) follow from Lemma B.2 with η2
s in

place of η and V 1 in place of V .
Note that since [V 1, V 2](x) = 0 for a.e. x ∈ Rd, then by Lemma 2.5 there is a

B0 ⊂ Rd with Ld(B0) = 0 such that [V 1, V 2](Xs,t(x)) = 0 for every x 6∈ B0 and
a.e. s, t ∈ [−T, T ].

Using (4.6) we obtain

∂tBs,s′;t = ∂tAs,s′;t − (s′ − s)DV 1(Xs,t)V
2(Xs,t),

= ∂tAs,s′;t − (s′ − s)DV 2(Xs,t)V
1(Xs,t) (since [V 1, V 2](Xs,t) = 0 a.e.)

= DV 2(Xs,t)Bs,s′;t +Rs,s′;t,

where

Rs,s′;t := V 2(Xs′,t)− V 2(Xs,t)−DV 2(Xs,t)(Xs′,t −Xs,t).

At this point Gronwall lemma yields

(4.7) sup
t∈[−T,T ]

|Bs,s′;t(x)| ≤

(
|Bs,s′;0(x)|+

∫ T

−T
|Rs,s′;τ (x)|dτ

)
exp

(∥∥DV 2
∥∥
∞ T

)
,

which implies
(4.8)

sup
t∈[−T,T ]

‖Bs,s′;t‖L1(ν) ≤

(
‖Bs,s′;0‖L1(ν) +

∫ T

−T
‖Rs,s′;τ‖L1(ν)dτ

)
exp

(∥∥DV 2
∥∥
∞ T

)
.

Step 4: Estimate on Bs,s′;0. To estimate ‖Bs,s′;0‖L1(ν) we use Proposition A.1

with V 1 instead of V , p0 := p, p1 := p′, q := 1, obtaining

(4.9) ‖Bs,s′;0‖L1(ν) . |s
′ − s|2.
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Step 5: Estimate on Rs,s′;τ . We use (2.3) with the components of V 2 instead of
f , getting∣∣V 2(y)− V 2(z)−DV 2(z)(y − z)

∣∣ . |y − z|((DV 2)]|y−z|(y) + (DV 2)]y−z(z)
)
,

and choose z := Xs,t(x), y := Xs′,t(x), so that

Rs,s′;t(x) . As,s′;t(x)
(

(DV 2)]|As,s′;t(x)|(Xs′,t(x)) + (DV 2)]|As,s′;t(x)|(Xs,t(x))
)
.

Integrating the above inequality over x ∈ Rd with respect to ν and dividing by
|s− s′|, we arrive at the estimate

∫ T

−T

‖Rs,s′;τ‖L1(ν)

|s− s′|
dτ .

∫ T

−T
dτ

∫
Rd

As,s′;τ (x)

|s− s′|
Ds,s′;τ (x)dν(x), where

Ds,s′;τ (x) :=
(

(DV 2)]|As,s′;τ (x)|(Xs′,τ (x)) + (DV 2)]|As,s′;τ (x)|(Xs,τ (x))
)
.

(4.10)

We will show that one has∫ T

−T
dτ

∫
Rd

(DV 2)]|As,s′;τ (x)|(Xs′,τ (x))dν(x)→ 0,(4.11) ∫ T

−T
dτ

∫
Rd

(DV 2)]|As,s′;τ (x)|(Xs,τ (x))dν(x)→ 0,(4.12)

which means in particular that the functions D̃s,s′ defined by (τ, x) 7→ Ds,s′;τ (x)
converge to zero in L1(Rd × (−T, T ), ν ⊗ L1), hence in measure ν ⊗ L1x[−T, T ]
as δ := s′ − s → 0+, uniformly in s ∈ [−T, T ]. Minding that these functions are
uniformly bounded (since the maximal function (DV 2)] is bounded by ‖DV 2‖∞),

and the functions Ãs,s′ defined by (τ, x) 7→ As,s′;τ (x)/|s−s′| are uniformly bounded
in L1(Rd × (−T, T ), ν ⊗ L1) and equiintegrable by Step 1, then choosing arbitrary
sequences sk, s

′
k ∈ [−T, T ] with δk := s′k − sk → 0+ from Lemma B.1 (i) (with

fk := Ãsk,s′k , gk := D̃sk,s′k
, E := Rd × (−T, T ), µ := ν ⊗ L1) and from (4.10) one

gets

(4.13)

∫ T

−T
‖Rs,s′;τ‖L1(ν) dτ . |s

′ − s|o(1).

Plugging (4.9) and (4.13) into (4.8), we get

sup
t∈[−T,T ]

‖Bs,s′;t‖L1(ν) . o(|s′ − s|)

as s′ − s→ 0+, which gives the thesis.
Step 6. It remains to prove (4.11) and (4.12). In order to verify (4.11), let νs be

as in Step 3, i.e. νs := (F 1
s )]ν, so that a change of variables gives∫

Rd
(DV 2)]|As,s′;τ (·)|(Xs′,τ (·))dν =

∫
Rd

(DV 2)]|A0,s′−s;τ (·)|(Xs′−s,τ (·))dνs.

Thus we simply observe that∫
Rd

(DV 2)]|A0,δ;τ (x)|)(Xδ,τ (x))dνs(x)→ 0

as δ := s′ − s → 0+ uniformly in s ∈ [−T, T ] by Lemma B.1 (ii) with gδ(x) :=

(DV 2)]|A0,δ;τ (x)|(Xδ,τ (x)) (note that these functions are bounded by ‖DV 2‖∞ since

so are the maximal functions (DV 2)] and limδ→0+ gδ = 0 by Remark 2.1). Therefore
by Lebesgue dominated convergence theorem we get∫ T

0

dτ

∫
Rd

(DV 2)]|A0,s′−s;τ (x)|(Xs′−s,τ (x))dνs(x)→ 0
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uniformly in s ∈ [−T, T ] as s′−s→ 0+. The proof of (4.12) is completely analogous,
and we can conclude the proof of the theorem. �

We give also the local version of the above Theorem 4.1.

Theorem 4.3. For p ∈ [1,∞] assume that V 1 ∈ W 1,p
loc (Ω;Rd) for some open

set Ω ⊂ Rd is such that its regular Lagrangian flow F 1
s (x) is uniquely defined

over (−T̄ (x), T̄ (x)) for some measurable function T̄ : Ω → (0,+∞), and V 2 ∈
W 1,∞

loc (Ω;Rd). If

[V 1, V 2](x) = 0 for a.e. x ∈ Ω,

then for a.e. x ∈ Ω there is a T = T (x) > 0 such that the regular Lagrangian flows
F 1, F 2 satisfy

(4.14) F 2
t

(
F 1
s (x)

)
= F 1

s

(
F 2
t (x)

)
for every s, t ∈ [−T, T ].

Proof. For every ball B := BR(x0) such that B̄ ⊂ Ω and every T1 > 0 we find a
ρ > R with the property that Bρ(x0) ⊂ Ω. Let MB,T1 ⊂ B stand for the (possibly
empty) Borel set of points x ∈ B such that F 1

s (x) is defined for all s ∈ [−T1, T1]
and stays in B. By Lemma 4.5 applied with V 2 in place of V there is a T2 > 0
(depending on B) such that for all x ∈ B the classical flow induced by V 2 (which
is equal to the regular Lagrangian flow F 2) is defined for all t ∈ [−T2, T2] and stays
inside Bρ(x0). We set then T := T1 ∧ T2, so that clearly T = T (B, T1). In this
way the map (4.1) is defined over MB,T1

for all t, s ∈ [−T, T ], and takes values
in Bρ(x0). Note now that in the proof of Theorem 4.1 one only evaluates the Lie
bracket [V1, V2] along the trajectories of ODEs with right-hand sides V1, V2. The
latter, if started at a point of MB,T1

remain in Bρ(x0), so that [V1, V2] vanishes
along them. Thus reiterating the proof of Theorem 4.1 with ν := Ld(MB,T1

) we get
that for a.e. x ∈ MB,T1 the regular Lagrangian flows F 1, F 2 commute, i.e. (4.14)
holds. Representing now Ω as a disjoint union of balls Ω := tjBj such that B̄j ⊂ Ω
for all j ∈ N, one has that (4.14) holds for a.e. x ∈ MBj ,1/k with T = T (Bj , 1/k),
and since for all j the sets {MBj ,1/k}k∈N cover almost all Bj , the claim follows. �

Remark 4.4. If under conditions of Theorem 4.3 one has additionally that V 1 ∈
L∞loc(Ω), then one can assume that T ∈ L∞loc(Ω). In fact, for every x0 ∈ Ω, R > 0,
ρ > R as in the above proof, letting ρ1 ∈ (R, ρ) apply Lemma 4.5 with V 1 instead
of V and ρ1 instead of ρ to get a number T1 > 0 such that F 1

s (x) is defined for
s ∈ [−T1, T1] and x ∈ BR(x0) and maps almost all of B := BR(x0) into Bρ1(x0)
for every s ∈ [0, T1]. Applying again Lemma 4.5 now with V 2 in place of V and
ρ1 in place of R we get the existence of a T2 > 0 be such that for all x ∈ Bρ1(x0)
the classical flow induced by V 2 (which is equal to the regular Lagrangian flow
F 2) is defined for all t ∈ [−T2, T2] and stays inside Bρ(x0). We set then T :=
T1 ∧ T2, so that clearly T = T (B). One has then that the regular Lagrangian flows
(F 1
t )t∈[−T,T ], (F 2

t )t∈[−T,T ] defined for a.e. x ∈ B commute, i.e., (4.14) holds for
every s, t ∈ [−T, T ]. The claim follows by representing Ω as a disjoint union of
balls Ω := tjBj such that B̄j ⊂ Ω for all j ∈ N: in fact, every relatively compact
subset of Ω is covered by only a finite number of Bj .

The following lemma has been used in the above proof.

Lemma 4.5. Let Ω ⊂ Rd be an open set and the vector field V ∈ L∞loc(Ω;Rd) be
such that the respective regular Lagrangian flow (t, x) 7→ Ft(x) is defined for all
t ∈ (−T̄ , T̄ ) whenever x ∈ B, B̄ ⊂ Ω, for some T = T (B) > 0. Then for every
Bρ(x0), and 0 < R < ρ there is a T ∈ (0, T̄ (BR(x0))) such that Ft(x) ∈ Bρ(x0) for
a.e. x ∈ BR(x0) and all t ∈ [−T, T ].
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Proof. Take a positive

T <
ρ−R

‖V ‖L∞(Bρ(x0))
∧ T̄ (BR(x0)).

We have then that Ft maps almost all of BR(x0) into Bρ(x0) for every t ∈ [−T, T ].
We show this for an arbitrary t ∈ [0, T ], the remaining case being completely
symmetric. In fact, otherwise there is an x ∈ Bρ(x0) and y ∈ C([0, t̄];Rd), y(t) :=
Ft(x) such that y(t) ∈ Bρ(x0) for all t ∈ [0, t̄), |y(t̄)− x0| = ρ and t̄ ≤ T . But

Ft(x) = x+

∫ t

0

V (x(τ))dτ,

so that

|Ft̄(x)− x0| ≤ R+ t̄‖V ‖L∞(Bρ(x0)) ≤ R+ T‖V ‖L∞(Bρ(x0)) < ρ,

which is impossible because |F 1
t̄ (x)− x0| = |y(t̄)− x0| = ρ by assumption. �

Appendix A. Concentration on integral curves

We prove here our main technical tool, namely, a criterion of when a measure
over continuous curves is concentrated over on integral curves of a given vector
field V . Let us remark that it is based on a discrete formulation of the equation for
integral curves.

Proposition A.1. Let p0, p1 ∈ (1,+∞) with 1/p0 + 1/p1 = 1/q ≤ 1. Assume
that V ∈ L1

(
[a, b];Lp0(Rd)

)
, DV ∈ L1

(
[a, b];Lp1(Rd)

)
, where a < 0 < b and η

be a finite measure on C([a, b];Rd) with et#η ≤ CLd for all t ∈ [a, b]. Then, η is
concentrated on integral curves of V , if and only if there exists a variation function
(ωst)st∈[a,b] with [ω] = 0 such that

(A.1)

∥∥∥∥θt − θs − (∫ t

s

Vτdτ

)
(θs)

∥∥∥∥
Lq(C([a,b];Rd),η)

≤ ωst for every s, t ∈ [a, b].

In such a case one can always choose

(A.2) ωst . C
1/q

(∫ t

s

‖Vτ‖p0 dτ
)(∫ t

s

‖DVτ‖p1 dτ
)
.

Remark A.2. If (A.1) holds, then we can always represent η = F#(e0#η), where F
denotes the regular Lagrangian flow for V .

Proof. Assume first that η is concentrated on integral curves of V . Then

(A.3) ‖θt − θs‖p0 =

∥∥∥∥∫ t

s

Vτ (θτ )dτ

∥∥∥∥
p0

≤ C1/p0

∫ t

s

‖Vτ‖p0 dτ.
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It follows that

∥∥∥∥∫ t

s

Vτ (θr)−
(∫ t

s

Vτdτ

)
(θs)

∥∥∥∥
Lq(C([a,b];Rd),η)

≤
∫ t

s

‖Vτ (θτ )− Vτ (θs)‖Lq(C([a,b];Rd),η) dτ

.
∫ t

s

‖|θτ − θs| (|DVτ |∗(θτ ) + |DVτ |∗(θs))‖Lq(C([a,b];Rd),η) dτ by (2.4),

≤
∫ t

s

‖θτ − θs‖Lp0 (C([a,b];Rd),η) ‖|DVτ |
∗(θτ ) + |DVτ |∗(θs)‖Lp1 (C([a,b];Rd),η) dτ

.
∫ t

s

C1/p1 ‖DVτ‖p1 C
1/p0

∫ τ

s

‖Vu‖p0 dudτ by (A.3) and (2.2),

≤ C1/q

∫ t

s

‖DVτ‖p1 dτ
∫ t

s

‖Vτ‖p0 dτ

(A.4)

as claimed. Conversely, assume that (A.1) holds. Then

(A.5) ‖θt − θs‖Lp0 (η) ≤ ωst +

∥∥∥∥∫ t

s

Vτ (θτ )dτ

∥∥∥∥
Lp0 (η)

≤ ωst + C1/p0

∫ t

s

‖Vτ‖p0 dτ.

Applying the triangle inequality along any partition π of [s, t], we obtain that

‖θt − θs‖Lp0 (η) ≤
∑
ti∈π

ωtiti+1 + C1/p0

∫ t

s

‖Vτ‖p0 dτ.

Therefore, (A.5) self-improves to (A.3) and we can argue then exactly as in (A.4).
It follows that∥∥∥∥θt − θs − ∫ t

s

Vτ (θτ )dτ

∥∥∥∥
Lq(C([a,b];Rd),η)

≤ ωst + C1/q

∫ t

s

‖DVτ‖p1 dτ
∫ t

s

‖Vτ‖p0 dτ.

This entails that f(t) := θt − θ0 −
∫ t

0
Vτ (θτ )dτ has zero total variation, i.e., it must

be η-a.e. constant (and null since f(0) = 0). �

As curious consequence of Proposition A.1, we obtain the following quantitative
stability estimate for regular Lagrangian flows, which is of interest itself though not
used elsewhere in this paper.

In particular it quantifies the qualitative statement that weak convergence of
vector fields in time and strong convergence in space leads to convergence of the
respective flows, see e.g. [8, remark 2.11] or [10] for a Trotter-type formula.

To state it we write

Φδ(x) := log(1 + δ−1|x|)
for x ∈ Rd, δ > 0, and notice that, for every x, y ∈ Rd,

(A.6) Φδ(y) ≤ Φδ(x) +
|y − x|
δ + |x|

.

Indeed,

log(1 + δ−1|y|) ≤ log(1 + δ−1(|x|+ |y|)) = log

(
(1 + δ−1|x|)

(
1 +
|y − x|
δ + |x|

))
≤ log

(
1 + δ−1|x|

)
+
|y − x|
δ + |x|

.
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Corollary A.3. For i = 1, 2 let

V i ∈ L1
(
[a, b];Lp0(Rd)

)
, DV i ∈ L1

(
[a, b];Lp1(Rd)

)
,

with p0, p1, a, b as in Proposition A.1, ηi be finite measures on Θ := C([a, b];Rd)
with et#η

i ≤ CiLd for all t ∈ [a, b] concentrated on integral curves of V i. Then, for
every δ > 0 one has∥∥∥ sup

i
Φδ(θ1

ti − θ
2
ti)
∥∥∥
Lq(Θ×Θ,η)

.
∥∥Φδ(θ1

0 − θ2
0)
∥∥
Lq(Θ×Θ,η)

+
∑
i

∥∥∥∥D ∫ ti+1

ti

V 1
τ dτ

∥∥∥∥
p1

+
1

δ

∑
i

∥∥∥∥∫ ti+1

ti

(V 1
τ − V 2

τ )dτ

∥∥∥∥
p0

+
1

δ

∑
i

(
ω1
titi+1

+ ω2
titi+1

)
,

whenever a = t0 < t1 . . . < tn ≤ b, where ωist are as in (A.2) (with Ci, V
i instead

of C, V ), and η is any coupling between η1 and η2 (i.e. a Borel measure over Θ×Θ
with marginals η1 and η2).

Proof. Write

Rist := θit − θis −
(∫ t

s

Vτdτ

)
(θis),

so that
∥∥Rist∥∥q ≤ ωist. We use (A.6) with y = θ1

t − θ2
t , x = θ1

s − θ2
s , obtaining

Φδ(θ1
t − θ2

t ) ≤ Φδ(θ1
s − θ2

s) +

∣∣∣∫ ts V 1
τ dτ(θ1

s)−
∫ t
s
V 2
τ dτ(θ2

s)
∣∣∣+
∣∣R1

st

∣∣+
∣∣R2

st

∣∣
δ + |θ1

s − θ2
s |

≤ Φδ(θ1
s − θ2

s) +

∣∣∣∫ ts V 1
τ dτ(θ1

s)−
∫ t
s
V 1
τ dτ(θ2

s)
∣∣∣

|θ1
s − θ2

s |

+ δ−1

(∣∣∣∣∫ t

s

(V 1
τ − V 2

τ )dτ(θ2
s)

∣∣∣∣+
∣∣R1

st

∣∣+
∣∣R2

st

∣∣) .
To conclude, it is sufficient to choose s := ti, t := ti+1, proceed recursively, and
finally take the Lq norms (recall that we are considering finite measures, so that
Lp spaces are nested). �

Remark A.4. To see why the above result provides quantitative estimates on conver-
gence of regular Lagrangian flows associated to Sobolev vector fields (V n)n weakly
converging in time and strongly in space to a field V̄ , one needs a rate of convergence
for the terms ∥∥∥∥∫ ti+1

ti

(V nτ − V̄τ )dτ

∥∥∥∥
p0

,

as well as the variation functions ωntiti+1
, ω̄titi+1

, e.g. uniform in the chosen sequence

of times {ti}i. Once this is known, we may choose optimally δ = δ(n) → 0 and
obtain some quantitative rate for the trajectories, when evaluated at times {ti}i.
Choosing properly {ti}i and using some control on the modulus of continuity (e.g.
if the vector fields are bounded) yields rates on the entire trajectories. We do not
provide more details here, since this would be outside the scope of this paper.

Appendix B. Auxiliary lemmata

The lemma below provides a useful version of the Lebesgue dominated conver-
gence theorem.

Lemma B.1. Let µ be a σ-finite Borel measure on a metric space (E, d), let {fk} ⊂
L1(E,µ) be a bounded sequence of nonnegative functions, and {gk} be a sequence
of uniformly bounded positive functions. If
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(i) either gk → 0 in measure µ, i.e., limk→∞ µ(|gk| > ε) = 0 for every ε > 0
and {fk} are µ−equiintegrable,

(ii) or gk → 0 locally in measure µ, i.e., limk→∞ µ(K ∩ {|gk| > ε}) = 0 for
every ε > 0 and K ⊆ E compact, and moreover the sequence of measures
νk = fkµ is tight and {fk} are uniformly bounded in L∞(E,µ)

then ∫
E

fkgkdµ→ 0.

Proof. In case (i), for every ε > 0 let Ek,ε := {x ∈ E : |gk(x)| > ε}. Then∫
E

fkgkdµ =

∫
Ek,ε

fkgkdµ+

∫
E\Ek,ε

fkgkdµ

≤ sup
k
‖gk‖L∞(E,µ)

∫
Ek,ε

fkdµ+ ε‖fk‖L1(E,µ),

the first term vanishing as k →∞ because limk µ(Ek,ε) = 0 and in view of equiin-
tegrability of fk. Since ε > 0 is arbitrary, one gets the claim.

Similarly, in case (ii), for any ε > 0, let K ⊆ Rd be compact with supk νk(Kc) <
ε. Then, ∫

Rd
gkdνk =

∫
K

gkfkdx+

∫
Kc

gkfkdx

≤ sup
k
‖fk‖L∞(E,µ)

∫
K

gkdx+ sup
k
‖gk‖L∞(E,µ) νk(Kc)

≤ C
(∫

K

gkdx+ ε

)
,

for some constant C > 0. By Lebesgue dominated convergence theorem one has
limk→0

∫
K
gkdx = 0, and hence the thesis since ε > 0 is arbitrary. �

The following lemma gives a chain rule for Sobolev functions along “almost
every” integral curve of an ODE.

Lemma B.2. Let p, q ≥ 1 with 1
p + 1

q ≤ 1, let f ∈W 1,p(Rd), V ∈ L1([a, b];Lq(Rd))
and η be a finite measure on C([a, b];Rd) with bounded compression and concen-
trated on integral curves of V . Then, for any a.e. representative of f one has that
for η-a.e. θ the curve t 7→ f(θt) is absolutely continuous and

∂tf(θt) = V (θt)∇f(θt) for a.e. t ∈ [a, b].

Proof. We approximate f with a fast converging sequence (fn)n≥1 ⊆ C1(Rd), i.e.,
such that

∞∑
n=1

‖f − fn‖p + ‖∇f −∇fn‖p <∞.

The thesis clearly holds for every fn in place of f . We have

‖fn ◦ et − f ◦ et‖Lp(η) . ‖fn − f‖p for every t ∈ [a, b],
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so that for every t ∈ [a, b], η-a.e., limn→∞ fn(θt) = f(θt). In fact the limit holds
η-a.e. and uniformly with respect to t ∈ [a, b]. To show this, we notice that∥∥∥∥∥ sup

t∈[a,b]

(fn+1 − fn) ◦ et

∥∥∥∥∥
L(η)

≤ ‖(fn+1 − fn) ◦ e0‖L1(η)

+

∥∥∥∥∥
∫ b

a

|∇fn+1 −∇fn+1||Vτ | ◦ eτdτ

∥∥∥∥∥
L1(η)

. ‖fn+1 − fn‖p

+

∫ b

a

‖∇fn+1 −∇fn‖p ‖Vτ‖q dτ.

The last quantity is summable with respect to n ≥ 1. It follows that η-a.e. the se-
quence (fn(θs)s∈[a,b] is Cauchy, hence convergent in C([a, b]), towards (f(θs))s∈[a,b],
that is in particular η-a.e. continuous.

To argue that it is indeed absolutely continuous, we use the bound so that, η-a.e.,
for every t ∈ [a, b],

lim
n→∞

∫ t

0

∇fn(θτ )Vτ (θτ )dτ =

∫ t

s

∇f(θτ )Vτ (θτ )dτ.

To conclude, we simply pass to the limit in the η-a.e. identity

fn(θt)− fn(θ0) =

∫ t

a

∇fn(θτ )Vτ (θτ )dτ. �
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