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Abstract

We obtain the sharp version of the uncertainty principle recently introduced in [53], and im-
proved by [14], relating the size of the zero set of a continuous function having zero mean and the
optimal transport cost between the mass of the positive part and the negative one. The result is
actually valid for the wide family of metric measure spaces verifying a synthetic lower bound on
the Ricci curvature, namely the MCP(K,N) or CD(K,N) condition, thus also extending the scope
beyond the smooth setting of Riemannian manifolds.

Applying the uncertainty principle to eigenfunctions of the Laplacian in possibly non-smooth
spaces, we obtain new lower bounds on the size of their nodal sets in terms of the eigenvalues.
Those cases where the Laplacian is possibly non-linear are also covered and applications to linear
combinations of eigenfunctions of the Laplacian are derived. To the best of our knowledge, no
previous results were known for non-smooth spaces.
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1 Introduction

This paper is motivated by the recent emerging interest on uncertainty estimates and their applications
to the behaviour of solutions of certain elliptic equations.

To be more precise: given a continuous function f : Ω ⊂ Rn → R with zero mean
∫

Ω
f = 0, with

Ω compact, it is natural to interpret f+, the positive part of f , and f−, the negative part of f , as
two distributions of mass one can compare evaluating their Wasserstein distance W1 (even though
they do not have total mass 1). Then, if it is cheap to transport f+dx to f−dx (meaning their
Wasserstein distance is small), necessarily most of the mass of f+ must be close to most of the mass
of f−. Continuity of f implies then that necessarily the nodal set {x ∈ Ω: f(x) = 0} has to be large.
Uncertainty estimates will quantify this relation.

This question was firstly investigated by Steinerberger in dimension 2 [59] and later in any dimension
by Sagiv and Steinerberger [53] proving that any continuous function f : [0, 1]n → R having zero mean
satisfies the following inequality

W1(f+ dx, f− dx) · Hn−1 ({x ∈ (0, 1)n : f(x) = 0}) ≥ C
(
‖f‖L1

‖f‖L∞

)4− 1
n

‖f‖L1 . (1.1)

The constant C depends only on n and Hn−1 denotes the Hausdorff measure of dimension n − 1.
Subsequently, an improvement on (1.1) has been obtained in [14] by Carroll, Massaneda and Ortega-
Cerdà showing the validity of (1.1) with the better exponent 2 − 1/n and extending the range of
applicability to continuous functions defined on any smooth and compact Riemannian manifold.

It was conjectured [53, 14] however that the sharp exponent for the inequality (1.1) should be 1 in
place of 4− 1

n or 2− 1
n . This is indeed one of the first consequences of this note: given f : [0, 1]n → R

having zero mean, we prove that the following inequality is valid

W1(f+ dx, f− dx) · Hn−1 ({x ∈ (0, 1)n : f(x) = 0}) ≥ 1

8

(
‖f‖L1

‖f‖L∞

)
‖f‖L1 . (1.2)

The inequality (1.2) is just a particular case of a much more general sharp (in the exponent)
uncertainty principle proved in following Theorem 1.1.

The setting for Theorem 1.1 will be real valued continuous (or Sobolev) functions defined over metric
measure spaces (m.m.s. for short) (X, d,m), meaning a triple with (X, d) a complete and separable
metric space and m a reference non-negative Radon measure.

Geometric properties of the m.m.s. (X, d,m) are encoded in a synthetic (meaning not requiring any
smoothness assumption on X) lower bound on their Ricci curvature that is called Curvature-Dimension
condition and denoted by CD(K,N). Here K is mimiking the lower bound on the Ricci curvature and
N the upper bound on the dimension. All the other terminology and notations will be introduced in
Section 2.

Theorem 1.1 (Sharp indeterminacy estimate). Let K,N ∈ R with N > 1. Let (X, d,m) be an
essentially non-branching metric measure space verifying CD(K,N). Let f ∈ L1(X,m) be a continuous
function, or alternatively f ∈W 1,2(X, d,m), such that

∫
X
f m = 0 and assume the existence of x0 ∈ X

such that
∫
X
|f(x)| d(x, x0)m(dx) <∞.

Then the following indeterminacy estimate is valid:

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥
‖f‖L1(X,m)

‖f‖L∞(X,m)

‖f‖L1(X,m)

8CK,D
, (1.3)

where D = diam (X) and

CK,D :=

{
1 K ≥ 0,

e−KD
2/2 K < 0.

The essentially non-branching assumption in Theorem 1.1 is to prevent branch-like behaviour of
geodesics and it is trivially satisfied by Riemannian manifolds and verified by the more regular class
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of RCD(K,N) spaces (again see Section 2 for the definitions). The notation Per(A) is used to denote
the Perimeter of the set A (see Section 2 for its definition in this abstract setting). In the smooth
setting, i.e. an n-dimensional Riemannian manifold endowed with the volume measure, it coincides
thanks to De Giorgi’s Theorem with the Hn−1-measure of the reduced boundary of A (same result has
been recently extended to the setting of non-collapsed RCD(K,N) spaces, see [2] and [13]).

Remark 1.2. For completeness we stress that the inequality (1.2) follows by applying Theorem 1.1
to the m.m.s. ([0, 1]n,Lnx[0,1]n , | · |), which is the easiest example of a m.m.s. satisfying CD(0, n), and
using De Giorgi’s representation of the Perimeter measure as the Hausdorff measure of dimension n−1
restricted to the reduced boundary.

The same result holds true if the unitary cube [0, 1]n is replaced by any other closed and convex
set Ω ⊂ Rn with 0 < |Ω| <∞. This will make again the m.m.s. (Ω,LnxΩ, | · |) to satisfy CD(0, n).

We will now list few detailed comments on Theorem 1.1.
Setting and Sharpness:

- We improve on previous results by including possibly non-smooth spaces, i.e. those spaces verify-
ing the synthetic lower bound on the Ricci curvature, CD(K,N) condition, see Section 2.1 for the
precise definition and for a list of class of spaces falling within this theory. Here we mention that
given a complete Riemannian manifold (M, g) one can naturally consider the m.m.s. (M, dg,Volg)
where where dg is the geodesic distance and Volg the volume measure both induced by the metric
g. Then (M, dg,Volg) verifies CD(K,N) if and only if Ricg ≥ Kg and dim(M) ≤ N . In par-
ticular any compact smooth weighted (meaning with m = e−V Volg with V smooth) Riemannian
manifold is included in our setting. Thanks to the well-known stability property of the CD(K,N)
conditions in the measured-Gromov-Hausdorff sense, Theorem 1.1 applies also to any possible
limit space of sequences of manifolds having Ric bounded from below uniformly and dimension
bounded from above uniformly.

- The estimate does not require the space X to be compact nor the reference measure m to be finite,
at least when K ≥ 0. If K < 0, then to have a meaningful estimate necessarily the diameter of
X has to be finite.

- Inequality (1.3) does not depend on the dimension. In particular the same statement is valid
for m.m.s. satisfying CD(K,∞) (i.e. no synthetic upper bound on the dimension) for which a
localization paradigm is at disposal. In particular if (X, d,m) satisfies CD(K,∞) and the weaker
MCP(K ′, N ′) with some other K ′, N ′, then (1.3) is still valid. Referring to Theorem 4.1 for the
precise statement, here we underline that for any continuous function f : Rn → R having zero
mean and satisfying the growth assumptions with respect to e−V dx for some smooth convex
function V , then (1.3) holds true.

- As pointed out in [14] by Carroll, Massaneda and Ortega-Cerdà, their version of (1.1) cannot be
improved by lowering the exponent 2 − 1/n below 1; exponent 1 was known to be reached only
in dimension 2. Hence the exponent 1 in (1.3) is sharp.

- Theorem 1.1 will be also valid for spaces verifying another synthetic curvature notion called
measure-contraction property MCP(K,N) (see Section 2.1). A long list of subRiemanninan
spaces, including the Heinseberg group, verifies this latter condition while failing CD(K,N). In
this framework the constant in the inequality (1.3) will depend on the dimension. See Theorem
4.3 for the precise statement.

Our approach to obtain to Theorem 1.1 will be via a dimensional-reduction argument. In particular,
the L1-optimal transport problem between the positive and the negative part of f gives, as a byproduct,
a foliation of the ambient space X into a family of geodesics obtained by considering the integral
curves of the gradient of a Kantorovich potential u, i.e. a solution of the dual problem. This non-
smooth foliation has few pleasant properties that are summarised in Theorem 2.4 (see Section 2 for all
preliminaries). Here we mention that the integral of the function f along almost every geodesics of the
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foliation is still zero, where the integral is with respect to the corresponding marginal measure. Also
the curvature properties of the space are inherited by the one-dimensional “weighted” geodesic in a
suitable sense. These two properties permit to reduce the proof of Theorem 1.1 to a one-dimensional
analysis (Section 3) and, in turn, to obtain the sharpness.

1.1 Applications: Nodal set of eigenfunctions in singular spaces

Our main application of Theorem 1.1 will be a lower bound on the size of nodal sets for eigenfunctions
of the Laplacian (and linear combination of them) in possibly singular spaces verifying synthetic Ricci
curvature bounds.

The whole list of topics related to the geometry of Laplace eigenfunctions (for instance the Courant
nodal domain theorem or the quasi-symmetry conjecture) goes beyond the scope of this short introduc-
tion. However, to put the problem into perspective, we will now recall the long series of contributions
to Yau’s conjecture and the solution to it.
Yau conjectured in [65] that for any n-dimensional C∞-smooth closed Riemannian manifold M , hence
without boundary and compact, any Laplace eigenfunction

−∆fλ = λfλ

satisfies
c
√
λ ≤ Hn−1({fλ = 0}) ≤ C

√
λ,

with c, C depend solely on M and not on λ.
First Brüning [12] proved the validity of the lower bound for n = 2. Then Donnelly and Fefferman

in 1988 [29] established Yau’s conjecture in the case of real analytic metrics (for instance spherical
harmonics). In the case of smooth manifold Nadirashvili in 1988 [46] proved for n = 2 that H1({fλ =
0}) ≤ Cλ log λ and later improved [30, 27] to H1({fλ = 0}) ≤ Cλ3/4. For general n > 2, Hardt and

Simon [35] obtained the non-polynomial bound Hn−1({fλ = 0}) ≤ CλC
√
λ.

Few years later the lower bound has been improved to

Hn−1({fλ = 0}) ≥ cλ
3−n
4 , (1.4)

in independent contributions by Colding and Minicozzi [24], Sogge and Zelditch [54, 55] and by Steiner-
berger [57]. Finally, a breakthrough has been obtained by Logunov in 2018, proving, in the smooth
case and for any n ∈ N, a polynomial upper bound [40] and the lower bound [41] in Yau’s conjecture.
For an overview on all these result we refer to [42].

To the best of our knowledge there are no results on the size of nodal sets of eigenfunctions of
the Laplacian whenever a singularity on the ambient manifold is allowed. Following Steinerberger
[59], upper bounds on the W1-distance between the positive and the negative parts of a Laplace
eigenfunctions will yield lower bounds on the size of their nodal sets. This indeed is the content of the
following results. The first one will be for spaces verifying CD(K,N); at this level of generality the
Laplacian may not be even a linear operator (see Section 2.4).

Theorem 1.3 (Nodal sets on CD-spaces). Let K,N ∈ R with N > 1. Let (X, d,m) be an essentially
non-branching m.m.s. verifying CD(K,N) and such that m(X) < ∞. Let fλ be an eigenfunction of
the Laplacian of eigenvalue λ > 0 (see Definition 2.17) and assume moreover the existence of x0 ∈ X
such that

∫
X
|fλ(x)| d(x, x0)m(dx) <∞.

Then the following estimate on the size of the its nodal set holds true:

Per({x ∈ X : fλ(x) > 0}) ≥
√
λ

8CK,D
√

m(X)
·

‖fλ‖2L1(X,m)

‖fλ‖L2(X,m)‖fλ‖L∞(X,m)
,

where D = diam (X) and CK,D is the same of Theorem 1.1.
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As before, Theorem 1.3 is actually valid also in other frameworks: for spaces verifying CD(K,∞)
and MCP(K ′, N ′) (Theorem 5.3) or for spaces verifying MCP(K,N) (Theorem 5.4) with dimension
dependent constant.

If in addition we assume the Laplacian to be linear (more precisely the Sobolev space W 1,2(X, d,m)
to be an Hilbert space), then more techniques from the classical setting come into play (for instance
contraction estimates for the heat flow) permitting to obtain more refined results.

Theorem 1.4 (Nodal sets on RCD spaces I). Let K,N ∈ R with N > 1. Let (X, d,m) be a m.m.s.
satisfying RCD(K,N), and such that diam (X) = D <∞. Let fλ be an eigenfunction of the Laplacian
of eigenvalue λ > 2. Then the following estimate is valid:

Per ({x ∈ X : fλ(x) > 0}) ≥ 1

C̄K,D,N

√
λ

log λ
·
‖fλ‖L1(X,m)

‖fλ‖L∞(X,m)
, (1.5)

where C̄K,D,N grows linearly in D if K ≥ 0 and exponentially if K < 0 and grows with power 1/2 in
N .

The estimate (1.5) follows directly from the following estimate

W1(f+
λ m, f−λ m) ≤ C(K,N,D)

√
log λ

λ
‖fλ‖L1 , (1.6)

(see Proposition 5.6), already obtained in the smooth setting by Steinerberger [58], and recently im-
proved in [14] removing the log λ term but with an approach that seems confined to the smooth setting.

Finally, we notice that using already available L∞ estimates for Laplace eigenfunctions one can
obtain an explicit lower bound on the size of the nodal set of an eigenfunction.

Theorem 1.5 (Nodal sets on RCD spaces II). Let K,N ∈ R with N > 1. Let (X, d,m) be a m.m.s.
verifying RCD(K,N), and with diam (X) = D <∞; finally pose m(X) = 1. Let fλ be an eigenfunction
of the Laplacian of eigenvalue λ > max {2, D−1}. Then the following estimate is valid:

Per ({x ∈ X : fλ(x) > 0}) ≥ 1

C̄K,D,N

1√
log λ

λ
1−N

2 , (1.7)

where C̄K,D,N grows linearly in D if K ≥ 0 and exponentially if K < 0 and grows with power 1/2 in
N .

Lastly our techniques permits to address also another related problem. Parallel indeed to the study
of the zero set of Laplace eigenfunctions, there is the investigation of the zero set of linear combinations
of them. That was born with the theory of Sturm [61], [62], [9] and Hurwitz in 1-dimension,[36] and
then developed by Donnelly [28], Lebeau and Robbiano [39], and more recently by Decio [26], and
Steinerberger. See also [37].

Donnelly in particular proved that the size of the zero set of linear combinations of eigenfunctions
is controlled from above by constants depending on the highest frequency appearing in the linear
combination. Analogously, a lower bound for the measure of the zero set of a function of the type∑
λ≥λ̄ aλfλ, in terms of λ̄ has been proved by Sagiv and Steinerberger [53] and by Steinerberger in

[58], [59], giving a multi-dimensional analogue of Sturm-Hurwitz’ Theorem.
Our approach to the problem permits to extend the validity of Theorem 1.3 and of Theorem 1.4

also to linear combinations of eigenfunctions. This furnishes therefore a non-smooth analogue of the
Sturm-Hurwitz’ Theorem mentioned above. Due to the nature of the problem, we necessarily have to
assume the Laplacian to be a linear operator making the natural setting for these results the class of
RCD spaces. To avoid to overload the introduction, we refer for these results to Section 6.
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1.2 Outlook

Consider a compact, smooth, N -dimensional Riemannian manifold M endowed with the geodesic
distance dg and the volume measure Volg. For this class of spaces the improved version of (1.6)
obtained in [14] holds true. Hence our Theorem 1.1 gives the following inequality

HN−1 ({x ∈ X : fλ(x) = 0}) ≥ 1

C̄K,D,N

√
λ ·
‖fλ‖L1(M)

‖fλ‖L∞(M)
,

One can then use the inequality ‖fλ‖∞ ≤ λ
N−1

4 ‖fλ‖1 by Sogge and Zelditch [55] (which is known to
be sharp on spherical harmonics) and obtain

HN−1 ({x ∈ X : fλ(x) = 0}) ≥ λ
3−N

4 ,

reproving the estimate (1.4) by Colding and Minicozzi [24], Sogge and Zelditch [54, 55] and by Steiner-
berger [57]. It is therefore plausible to expect (1.4) (or its counterpart with the Perimeter) to holds true
also for compact RCD-spaces, provided the the validity of the following two inequalities is established

W1(f+
λ m, f−λ m) ≤ C(K,N,D)

1√
λ
‖fλ‖L1 , ‖fλ‖L∞ ≤ λ

N−1
4 ‖fλ‖L1 .

that are left for a future investigation. Similar investigation will be also carried out for the quasi-
symmetry property of eigenfunction in the non-smooth setting.

2 Preliminaries

In what follows, (X, d,m) will be a complete and separable metric measure space that is (X, d) is a
complete and separable metric space and m is a non-negative Radon measure on X. Also, throughout
the note, the various curvature conditions we will assume will imply X to be proper (bounded and
closed sets are compact). In various situation this will simplify the presentation (see Section 2.4).

2.1 Synthetic Curvature conditions

We briefly recall the main definitions of curvature bounds for metric measure spaces that we will use
throughout the paper referring for more details to the original papers [43, 63, 64].

In the following P(X) is the space of Borel probability measures on X and, for p ≥ 1, Pp(X) is the
space of Borel probability measures with finite p-moment.

The p-Wasserstein distance Wp on Pp(X) is defined for any µ0, µ1 ∈ Pp(X) as follows:

Wp(µ0, µ1)p := inf
π∈Π(µ0,µ1)

∫
X×X

dp(x, y)π(dxdy), (2.1)

where
Π(µ0, µ1) :=

{
π ∈ P(X ×X) : P

(1)
] π = µ0, P

(2)
] π = µ1

}
is the set of admissible transport plans between µ0 and µ1 and P (i) is the projection on the i-th
component, for i = 1, 2. We will only considering in this note W1 and W2. Geo(X) denotes the space
of constant speed geodesics on X:

Geo(X) := {γ ∈ C([0, 1], X) : d(γ(s), γ(t)) = |s− t|d(γ(0), γ(1)) for any s, t ∈ [0, 1]} .

For any t ∈ [0, 1], the evaluation map et is defined on Geo(X) by et(γ) := γ(t). For any pair of measures
µ0, µ1 in P2(X), the set of dynamical optimal plans is defined by

OptGeo(µ0, µ1) := {ν ∈ P(Geo(X)) : (e0, e1)]ν realizes the minimum in (2.1)} .
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Definition 2.1 (Essentially non-branching). A subset G ⊂ Geo(X, d) of geodesics is called non-
branching if for any γ1, γ2 ∈ G the following holds:

∃ t ∈ (0, 1) : γ1
s = γ2

s ∀ s ∈ [0, t] =⇒ γ1
2 = γ2

s ∀ s ∈ [0, 1].

(X, d) is called non-branching if Geo(X, d) is non-branching. (X, d,m) is called essentially non-
branching if for any µ0, µ1 � m with µ0, µ1 ∈ P2(X) any ν ∈ OptGeo(µ0, µ1) is concentrated on
a Borel non-branching subset G ⊂ Geo(X, d).

The above definition was introduced in [51] by Rajala and Sturm. The restriction to essentially
non-branching spaces is natural and facilitates avoiding pathological cases. One example is the failure
of the local-to-global property for a general CD(K,N) in [50], property that has been recently verified
in [20] under the assumption of essentially non-branching (and finite m).

Given K ∈ R and N ∈ (0,∞], define:

DK,N :=

{
π√
K/N

K > 0 , N <∞

+∞ otherwise
. (2.2)

In addition, given t ∈ [0, 1] and 0 < θ < DK,N , define:

σ
(t)
K,N (θ) :=

sin(tθ
√

K
N )

sin(θ
√

K
N )

=


sin(tθ

√
K
N )

sin(θ
√

K
N )

K > 0 , N <∞

t K = 0 or N =∞
sinh(tθ

√
−K
N )

sinh(θ
√
−K
N )

K < 0 , N <∞

,

and set σ
(t)
K,N (0) = t and σ

(t)
K,N (θ) = +∞ for θ ≥ DK,N . Given K ∈ R and N ∈ (1,∞], the distortion

coefficients are defined as:

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N .

When N = 1, set τ
(t)
K,1(θ) = t if K ≤ 0 and τ

(t)
K,1(θ) = +∞ if K > 0.

The Rényi entropy functional E : P(X)→ [0,∞] is defined as

E(µ) :=

∫
X

ρ1− 1
N m, where µ = ρm + µs and µs ⊥ m,

and the Boltzman entropy Ent : P(X)→ [0,∞] defined by

Ent(µ) :=

∫
X

ρ log(ρ)m, if µ = ρm, and Ent(µ) :=∞ otherwise

Definition 2.2 (CD conditions). (X, d,m) verifies the CD(K,N) (resp. CD(K,∞)) condition for some
K ∈ R, N ∈ (1,∞) if for any pair of probability measures µ0, µ1 ∈ P(X) with µ0, µ1 � m (and
Ent(µi) < ∞, i = 0, 1), there exists ν ∈ OptGeo(µ0, µ1) and an optimal plan π ∈ Π(µ0, µ1) such that
µt := (et)]ν � m and

EN ′(µt) ≥
∫ {

τ
(1−t)
K,N ′ (d(x, y))ρ

− 1
N′

0 + τ
(t)
K,N ′(d(x, y))ρ

− 1
N′

1

}
π(dxdy)

for any N ′ ≥ N , t ∈ [0, 1] (resp .

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− K

2
t(1− t)W2(µ0, µ1)2).

For our purposes we also need to introduce a weaker variant of CD called Measure-Contraction
property, MCP(K,N) in short, introduced separately by Ohta [47] and Sturm [64] with two definitions
that slightly differ in general metric spaces, but that coincide on essentially non-branching spaces.
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Definition 2.3 (MCP(K,N)). A m.m.s. (X, d,m) is said to satisfy MCP(K,N) if for any o ∈ supp(m)
and µ0 ∈ P2(X, d,m) of the form µ0 = 1

m(A)mxA for some Borel set A ⊂ X with 0 < m(A) < ∞ (and

with A ⊂ B(o, π
√

(N − 1)/K) if K > 0), there exists ν ∈ OptGeo(µ0, δo) such that:

1

m(A)
m ≥ (et)]

(
τ

(1−t)
K,N (d(γ0, γ1))Nν(dγ)

)
∀t ∈ [0, 1]. (2.3)

If (X, d,m) is a m.m.s. verifying MCP(K,N), then (supp(m), d) is Polish, proper and it is a geodesic
space. With no loss in generality for our purposes we will assume that X = supp(m).

To conclude this part we include a list of notable examples of spaces fitting in the assumptions of
our results. The class of essentially non branching CD(K,N) spaces includes many remarkable family
of spaces, among them:

• Measured Gromov Hausdorff limits of Riemannian N -dimensional manifolds satisfying Ricg ≥
Kg and more generally the class of RCD(K,N) spaces. Indeed measured Gromov Hausdorff
limits of Riemannian N -manifolds satisfying Ricg ≥ Kg are examples of RCD(K,N) spaces (see
for instance [31] and for the definition of RCD see Section 2.4) and, in particular, are essentially
non-branching and CD(K,N) (see [51]).

• Alexandrov spaces with curvature ≥ K. Petrunin [49] proved that the lower curvature bound
in the sense of comparison triangles is compatible with the optimal transport type lower bound
on the Ricci curvature given by Lott-Sturm-Villani. Moreover geodesics in Alexandrov spaces
with curvature bounded below do not branch. It follows that Alexandrov spaces with curvature
bounded from below by K are non-branching CD(K(N − 1), N) spaces.

• Finsler manifolds where the norm on the tangent spaces is strongly convex, and which satisfy
lower Ricci curvature bounds. More precisely we consider a C∞-manifold M , endowed with
a function F : TM → [0,∞] such that F |TM\{0} is C∞ and for each p ∈ M it holds that
Fp := TpM → [0,∞] is a strongly-convex norm, i.e.

gpij(v) :=
∂2(F 2

p )

∂vi∂vj
(v) is a positive definite matrix at every v ∈ TpM \ {0}.

Under these conditions, it is known that one can write the geodesic equations and geodesics do not
branch: in other words these spaces are non-branching. We also assume (M,F ) to be geodesically
complete and endowed with a C∞ probability measure m in a such a way that the associated
m.m.s. (X,F,m) satisfies the CD(K,N) condition. This class of spaces has been investigated
by Ohta [48] who established the equivalence between the Curvature Dimension condition and a
Finsler-version of Bakry-Emery N -Ricci tensor bounded from below.

While CD(K,N) implies the weaker MCP(K,N), the latter is capable to capture the behaviour of
more general family of spaces. In particular, for a complete list of subRiemannian spaces verifying the
MCP(K,N) (and not CD(K,N)), we refer to the recent [44].

2.2 Localization and one-dimensional densities

One of the key tools of our approach to obtain a sharp indeterminacy estimate is the dimensional
reduction argument furnished by localization theorem. In its various forms, the following theorem goes
back to [10] for the MCP case (with a slightly different presentation), while to [18] for the CD(K,N) case
with m(X) < ∞ and to [22] for a general Radon measure. We refer to the aforementioned references
for all the missing details.

Theorem 2.4. Let (X, d,m) be an essentially non-branching metric measure space with supp(m) = X.
Let f : X → R be m-integrable such that

∫
X
f m = 0 and assume the existence of x0 ∈ X such that∫

X
|f(x)| d(x, x0)m(dx) <∞.
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Assume also (X, d,m) verifies CD(K,N) (resp. MCP(K,N)) condition for some K ∈ R and N ∈
[1,∞).

Then the space X can be written as the disjoint union of two sets Z and T with T admitting a
partition {Xα}α∈Q and a corresponding disintegration of mxT such that:

mxT =

∫
Q

mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that Q](mxT )� q, with Q the quotient map
associated to the partition and the map Q 3 α 7→ mα ∈M+(X) satisfying the following properties:

• for any m-measurable set B, the map α 7→ mα(B) is q-measurable;

• for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Xα (strong consistency);

• For q-almost every q ∈ Q, it holds
∫
Xq
f mq = 0 and f = 0 m-a.e. in Z.

• For q-almost every q ∈ Q, the set Xq is a geodesic (even more a transport ray) and the one
dimensional m.m.s. (Xα, d,mα) verifies CD(K,N) (resp. MCP(K,N)).

Moreover, fixed any q as above such that Q](mxT )� q, the disintegration is q-essentially unique.

Remark 2.5. Via the ray map g associated to the transport set of f+m into f−m (see for instance
[10]), we have that for q-a.e. q ∈ Q

mq = g(q, ·)]
(
hq · L1

)
,

for some function hq : Dom (g(q, ·)) ⊂ R → [0,∞) where Dom (g(q, ·)) is an interval Iq ⊂ R and
(Iq, | · |, hq · L1) is isomorphic to (Xα, d,mα); in particular it verifies CD(K,N) (resp. MCP(K,N)).

We will therefore spend few lines on one-dimensional m.m.s. verifying curvature bounds.

Definition 2.6 (CD(K,N) density). Given K,N ∈ R and N ∈ (1,∞), a non-negative function h
defined on an interval I ⊂ R is called a CD(K,N) density on I, if for all x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1− t)x0)
1

N−1 ≥ σ(t)
K,N−1(|x1 − x0|)h(x1)

1
N−1 + σ

(1−t)
K,N−1(|x1 − x0|)h(x0)

1
N−1 ,

(recalling the coefficients σ from Section 2.1). The case N =∞ request instead

log h(tx1 + (1− t)x0) ≥ t log h(x1) + (1− t) log h(x0) +
K

2
t(1− t)(x1 − x0)2,

obtained from the previous one subtracting 1 from both sides, multiplying by N − 1, and taking the
limit as N → ∞. For completeness, we will say that h is a CD(K, 1) density on I iff K ≤ 0 and h is
constant on the interior of I.

Definition 2.7 (MCP(K,N) density). Given K,N ∈ R and N ∈ (1,∞), a non-negative function h
defined on an interval I ⊂ R is called a MCP(K,N) density on I if for all x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1− t)x0) ≥ σ(1−t)
K,N−1(|x1 − x0|)N−1h(x0). (2.4)

The link between one dimensional m.m.s. with curvature bounds and densities is contained in the
next straightforward result.

Theorem 2.8. If h is a CD(K,N) (resp. MCP(K,N)) density on an interval I ⊂ R then the m.m.s.
(I, |·| , h(t)dt) verifies CD(K,N) (resp. MCP(K,N)).

Conversely, if the m.m.s. (R, |·| , µ) verifies CD(K,N) (resp. MCP(K,N)) and I = supp(µ) is not
a point, then µ� L1 and there exists a version of the density h = dµ/dL1 which is a CD(K,N) (resp.
MCP(K,N)) density on I.
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The estimate (2.4) implies several known properties that we collect in what follows. To write them
in a unified way we define for κ ∈ R the function sκ : [0,+∞)→ R (on [0, π/

√
κ) if κ > 0)

sκ(θ) :=


(1/
√
κ) sin(

√
κθ) if κ > 0,

θ if κ = 0,

(1/
√
−κ) sinh(

√
−κθ) if κ < 0.

(2.5)

For the moment we confine ourselves to the case I = (a, b) with a, b ∈ R; hence (2.4) implies(
sK/(N−1)(b− x1)

sK/(N−1)(b− x0)

)N−1

≤ h(x1)

h(x0)
≤
(
sK/(N−1)(x1 − a)

sK/(N−1)(x0 − a)

)N−1

, (2.6)

for x0 ≤ x1. Hence denoting with D = b− a the length of I, for any ε > 0 it follows that

sup

{
h(x1)

h(x0)
: x0, x1 ∈ [a+ ε, b− ε]

}
≤ Cε, (2.7)

where Cε only depends on K,N , provided 2ε ≤ D ≤ 1
ε . In particular, MCP(K,N) densities will be

locally Lipschitz in the interior of their domain and continuous on its closure (see [22] for details).

To conclude we present here a folklore result about localization paradigm in the setting of CD(K,∞)
spaces. So far Theorem 2.4 is not known for a general CD(K,∞) spaces, the missing ingredient being
good behaviour of W2-geodesics. Additionally assuming the space to satisfy MCP(K ′, N ′) for some
K ′, N ′ ∈ R (with possibly K ′ different from K) excludes all the technical issues and the proof of the
following localization result just follows as the one of Theorem 2.4.

Theorem 2.9. Let (X, d,m) be an essentially non-branching metric measure space with supp(m) = X.
Let f : X → R be m-integrable such that

∫
X
f m = 0 and assume the existence of x0 ∈ X such that∫

X
|f(x)| d(x, x0)m(dx) <∞.
Assume also (X, d,m) verifies CD(K,∞) and MCP(K ′, N ′) conditions for some K,K ′ ∈ R and

N ′ ∈ [1,∞).

Then the space X can be written as the disjoint union of two sets Z and T with T admitting a
partition {Xα}α∈Q and a corresponding disintegration of mxT such that:

mxT =

∫
Q

mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that Q](mxT ) � q and the map Q 3 α 7→
mα ∈M+(X) satisfies the following properties:

• for any m-measurable set B, the map α 7→ mα(B) is q-measurable;

• for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Xα (strong consistency);

• For q-almost every q ∈ Q, it holds
∫
Xq
f mq = 0 and f = 0 m-a.e. in Z.

• For q-almost every q ∈ Q, the set Xq is a geodesic (even more a transport ray) and the one
dimensional m.m.s. (Xα, d,mα) verifies CD(K,∞).

Moreover, fixed any q as above such that Q](mxT )� q, the disintegration is q-essentially unique.

2.3 Perimeters

Given a metric measure space (X, d,m), one can introduce a notion of perimeter which extends the
classical one on Rn. The following presentation follows [45] and the more recent [3]. We start by
recalling the notion of slope (or local Lipschitz constant) of a real-valued function.

10



Definition 2.10 (Slope). Let (X, d) be a metric space and u : X → R be a real valued function. We
define the slope of f at the point x ∈ X as

|∇u| (x) :=

{
lim supy→x

|u(x)−u(y)|
d(x,y) if x is not isolated

0 otherwise.

To fix notations, the space of Lipschitz maps on (X, d) will be denoted by Lip(X) = Lip(X, d) while
Lipc(X) = Lipc(X, d) will be the subspace of compactly supported Lipschitz maps. If the function is
locally Lipschitz in an open set A, i.e. for every x ∈ A, the function is Lipschitz in a neighborhood of
x, then we use the notation Liploc(A)

Definition 2.11 (Perimeter). Let E ∈ B(X), where B(X) denotes the class of Borel sets of (X, d),
and let A ⊂ X be open. We define the perimeter of E relative to A as:

Per(E;A) := inf

{
lim inf
n→∞

∫
A

|∇un|m : un ∈ Liploc(A), un → χE in L1
loc(A,m)

}
,

where |∇u| (x) is the slope of u at the point x. If Per(E;X) < ∞, we say that E is a set of finite
perimeter. We denote Per(E;X) with Per(E).

When E is a fixed set of finite perimeter, the map A 7→ Per(E;A) is the restriction to open sets of
a finite Borel measure on X, defined as

Per(E;B) := inf {Per(E;A) : A open, A ⊃ B} .

For some recent progress on the extension of De Giorgi’s rectifiability theorem (relating the perimeter
and the Hausdorff measure of codimension 1) to the setting of non-collapsed RCD(K,N) spaces, we
refer to [2] and references therein.

We observe the following fact.

Lemma 2.12. Let (X, d,m) be a metric measure space, E ⊆ X be a Borel set. Assume that we are
given a strongly consistent disintegration of m associated to a zero mean function as given in Theorem
2.9:

mxT =

∫
Q

mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that and mα ∈M+(X). Then it holds

Per(E) ≥
∫
Q

Perα(Eα) q(dα),

where Eα = E ∩Xα and Perα is the perimeter functional in the space (Xα, d,mα).

Proof. Let {fn}n ∈ Liploc(X) be a sequence of functions converging in L1(X,m) to χE . Then, by
disintegration

0 = lim
n→+∞

∫
X

|fn(x)− χE(x)|m(dx) = lim
n→+∞

∫
Q

∫
Xα

|fn(x)− χE(x)|mα(dx) q(dα),

so up to extracting a subsequence, that we call again {fn}, we have that for q-a.e. q ∈ Q

lim
n→+∞

∫
Xα

|fn(x)− χE(x)|mα(dx) = 0.

Recalling that each mα is concentrated on Xα and denoting Eα := E ∩ Xα, we have that fnxXα
converges on L1(Xα,mα) to χEα for q-a.e α ∈ Q. We observe in addition that if fn is Lipschitz then
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fnxXα is Lipschitz as well with a smaller local Lipschitz constant. Hence, taken {fn}n ∈ Liploc(X) a
sequence of functions attaining in the limit Per(E), we have that

Per(E) = lim inf
n→∞

∫
X

|∇fn|m ≥ lim inf
n→∞

∫
Q

∫
Xα

|∇fn|mα q(dα)

≥ lim inf
n→∞

∫
Q

∫
Xα

|∇fnxXα |mα q(dα) ≥
∫
Q

lim inf
n→∞

∫
Xα

|∇fnxXα |mα q(dα)

≥
∫
Q

Perα(Eα)mα q(dα),

and the claim follows.

We also include the following easy fact about the perimeter in the weighted one dimensional case.
For a proof we refer to [21, Proposition 3.1] where there is an analogous statement for CD(K,N) den-
sities.

Lemma 2.13. Let m = hL1 be a non-negative measure on R, with h a CD(K,∞) density on its
support, which in particular is an interval. Let E be an open set in supp(m). Let C1, . . . , Cn be its
connected components, with n possibly +∞. We consider the set ∪nk=0C̄k. We observe that ∪nk=0C̄k =
∪mk=0[ak, bk], with [ak, bk] disjoint, with m possibly +∞, ak, bk ∈ R ∪ {±∞}. Then, setting B(E) :=
∪mk=0{ak, bk} \ {inf(supp(m)), sup(supp(m))}, it holds

Perh(E) =
∑

x∈B(E)

h(x) =

m∑
k=1

h(ak) + h(bk),

where Perh is the Perimeter functional in the space (supp(m), | · |, hL1).

2.4 Laplacian, Heat Flow and RCD

The main references for this part are [23, 4, 5, 32, 31, 7, 17] or [1] for a survey on the subject.
We recall the definition of the Cheeger energy of an L2 function, which will be used to define

Sobolev spaces on metric measure spaces. We will be only concerned with the case p = 2.
Let f ∈ Lp(X,m), the Cheeger energy of f is defined as

Ch(f) := inf

{
lim inf
n→∞

1

2

∫
|∇fn|2 m : fn ∈ Lip(X) ∩ L2(X,m), ‖fn − f‖L2 → 0

}
, (2.8)

where |∇fn| (x) is the slope of fn at the point x. Then W 1,2(X, d,m) is defined as the space of functions
f ∈ L2(X,m) with finite Cheeger energy, endowed with the norm

‖f‖W 1,2(X,d,m) :=
{
‖f‖L2(X,m) + Ch(f)

1
2

}
which makes W 1,2(X, d,m) a Banach space. For any f ∈ W 1,2(X, d,m), one can single out a distin-
guished object |∇f |w ∈ L2(X,m), which plays the role of the modulus of the gradient and provides
the integral representation

Ch(f) =
1

2

∫
|∇f |2w m;

this function is called the minimal weak upper gradient (after its identification with the minimal relaxed
gradient). For Lipschitz functions Lip(f) is a weak upper gradient for f .

Next we review the definition of Laplacian. Throughout the note, the various curvature conditions
we will assume will always imply X to be proper (bounded and closed sets are compact) thus simplifying
the presentation.
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We recall that a Radon functional over X is a linear functional T : LIPc(X) → R such that for
every compact subset W ⊂ X there exists a constant CW ≥ 0 so that

|T (f)| ≤ CW max
W
|u|, for all u ∈ LIPc(Ω) with supp(u) ⊂ X.

Finally for any f, u locally in the Sobolev space (see [32]), define the functions D±f(∇u) : X → R by

D+f(∇u) := inf
ε>0

|D(u+ εf)|2w − |Du|2w
2ε

,

while D−f(∇u) is obtained replacing infε>0 with supε<0.

Definition 2.14 (General definition). Let (X, d,m) be a m.m.s. and f : X → R be a Borel function.
The function f ∈ W 1,2(X, d,m) is in the domain of the Laplacian in X, f ∈ D(∆), provided there
exists a Radon functional T : Lipc(X)→ R such that∫

D−u(∇f)m ≤ −T (u) ≤
∫
D+u(∇f)m,

for each u ∈ Lipc(X). In this case we write T ∈∆(f).

Definition 2.15 (Eigenfunction). Let (X, d,m) be a m.m.s. and f be in W 1,2(X, d,m). The function
f is an eigenfunction for −∆ if there exists λ > 0 such that

−λfm ∈∆f ;

i.e. ∫
D−u(∇f)m ≤ λ

∫
fum ≤

∫
D+u(∇f)m,

for each u ∈ Lipc(X).

Remark 2.16. It is straightforward to check that any eigenfunction has zero mean, provided m(X) <
∞. Here we only sketch the argument when X is proper. Consider any sequence (χn) of 1-Lipschitz
functions with bounded support and values in [0, 1] such that χn ≡ 1 in Bn(x̄), for some fixed x̄ ∈ X.
Since we are assuming X to be proper, χn ∈ Lipc(X) and therefore∫

D−χn(∇f)m ≤ λ
∫
χnf m ≤

∫
D+χn(∇f)m;

for both quantities, ∣∣∣∣∫ D±χn(∇f)m

∣∣∣∣ ≤ ∫
X\Bn(x̄)

|∇f |w m

that are both converging to zero, provided m(X) < ∞, giving
∫
f m = 0 by dominated convergence

theorem.

From the lower semi-continuity and convexity of Ch : D(Ch) ⊂ L2(X,m)→ [0,∞), it is natural to
consider an alternative definition of Laplacian related to the sub-differential ∂−Ch of convex analysis.
We recall that the sub-differential ∂−Ch is the multivalued operator in L2(X,m) defined at all f ∈
D(Ch) by the family of inequalities

g ∈ ∂−Ch(f) ⇐⇒
∫
X

g(h− f)m ≤ Ch(h)− Ch(f), ∀ h ∈ L2(X,m).

Definition 2.17 (L2-Laplacian). The Laplacian −∆f ∈ L2(X,m) of a function f ∈ W 1,2(X, d,m)
is the element of minimal L2(X,m)-norm in the sub-differential ∂−Ch(f), provided the latter is non-
empty. Accordingly, f ∈W 1,2(X, d,m) is an eigenfunction provided −∆f = λf , for some λ > 0.
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It will be clear from the proof of our results that the minimality requirement in the previous
definition does not play any role: our main results will be valid for any element of the sub-differential.

We also mention that at this level of generality, the two notions of Laplacian do not coincide,
however ([32, Proposition 4.9]) if f, g ∈ L2(X,m) with Ch(f) <∞ and −g ∈ ∂−Ch(f), then g ∈ D(∆)
and gm ∈∆f .

Again from the lower semi-continuity and convexity of Ch, invoking the classical theory of gradient
flows of convex functionals in Hilbert spaces, it follows that: for any f ∈ L2(X,m) there exists a unique
continuous curve (ft)t≥0 in L2(X,m) locally absolutely continuous in [0,∞) with f0 = f , such that
d
dtft ∈ ∂

−Ch(ft) for a.e. t > 0.
The existence of the flow for all f ∈ L2(X,m) stems from the density of D(Ch) in L2(X,m). This

gives rise to a semigroup (Ht)t≥0 on L2(X,m) defined by Htf = ft, where ft is the unique L2-gradient
flow of Ch.

It follows that ft ∈ D(∆) and

d+

dt
ft = ∆ft, ∀ t ∈ (0,∞),

according to Definition 2.17.
On the other hand, one can study the metric gradient flow of the Boltzmann entropy Ent in P2(X, d).

If (X, d,m) satisfies CD(K,∞), it has been proven in [4] that for any µ ∈ D(Ent) there exists a unique
gradient flow of Ent starting from µ (for details we refer to [4]). This gives rise to a semigroup (Ht)t≥0

on P2(X, d) defined by Htµ = µt where µt is the unique gradient flow of Ent starting from µ.
One of the main result of [4] is the identification of the two gradient flows: if (X, d,m) is a CD(K,∞)

space and f ∈ L2(X,m) such that fm = µ ∈ P2(X, d), then

Htµ = (Htf)m, ∀ t ≥ 0. (2.9)

In particular we will only use the notation Ht for both semi-groups.

Definition 2.18 (RCD condition). We say that (X, d,m) is infinitesimally Hilbertian if the Cheeger en-
ergy Ch2 defined in (2.8) is a quadratic form on W 1,2(X, d,m). Finally (X, d,m) satisfies the RCD(K,N)
condition if it satisfies the CD(K,N) condition and it is infinitesimally Hilbertian.

Under the RCD condition, powerful contraction estimates for the heat flow are at disposal.

Theorem 2.19 (Theorem 3 of [31]). Let (X, d,m) be a metric measure space verifying RCD(K,N),
then for any µ, ν ∈ P2(X) and s, t > 0

W2(Htµ,Hsν)2 ≤ e−Kτ(s,t)W2(µ, ν)2 + 2N
1− e−Kτ(s,t)

Kτ(s, t)
(
√
t−
√
s)2, (2.10)

where τ(s, t) = 2(t+ s+
√
ts)/3.

Also, if X is infinitesimally Hilbertian then the two notions of Laplacian coincide and the previous
implication can be reversed. Indeed if f, g ∈ L2(X,m) with Ch(f) <∞ and f ∈ D(∆) with gm ∈∆f
then −g ∈ ∂−Ch(f).

Finally if W 1,2(X, d,m) is an Hilbert space (hence in the RCD case) and f ∈ W 1,2(X, d,m) is an
eigenfunction for the Laplacian in the sense of Definition 2.15, then Htf = e−λtf . It is indeed enough
to check that −λe−λtf ∈ ∂−Ch(e−λtf) that is equivalent to −λf ∈ ∂−Ch(f) and this follows from [32,
Proposition 4.12].
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3 One dimensional indeterminacy estimates

In this section we will obtain the one-dimensional version of the uncertainty principle we will then
integrate via Disintegration Theorem. A slightly different version of the following Proposition 3.1 was
already present in the literature [60, Theorem 4].

Throughout this section we will tacitly assume the Wasserstein distance to be defined on any couple
of non-negative Borel measures having the same finite mass (not necessarily coinciding with 1).

We fix some notations that will be useful in this section and in the following one.
Given a function f : I → R with zero mean, with I real closed interval, possibly of infinite length,
satisfying the hypotheses of Theorem 2.4 we say that the trasport of f goes along a unique trasport
ray if applying Theorem 2.4 one has that the partition in {Xα}α is made of only one element.
We underline in addition that, recalling the notations of Lemma 2.13, in the case of f being a continuous
function B({x | f(x) > 0}) is a subset of the zero set of f .

Proposition 3.1. Let f : [0, 1]→ R be a continuous function having zero mean w.r.t Lebesgue measure,
i.e. ∫

(0,1)

f+(x) dx =

∫
(0,1)

f−(x) dx,

and assume that the transport of f goes along a unique transport ray, (see notations above). Then it
holds:

W1(f+L1, f−L1)H0 (B({x | f(x) > 0})) ≥
‖f+‖2L1(0,1)

2 min{‖f+‖L∞(0,1), ‖f−‖L∞(0,1)}
. (3.1)

Proof. Step 1. We claim that given two non-negative functions h, g ∈ L∞(0, 1) such that∫
[0,1]

h(x) dx =
∫

[0,1]
g(x) dx and which satisfy the following condition on the supports: there exists

x̄ ∈ (0, 1) such that
supp{h} ⊆ [0, x̄], supp{g} ⊆ [x̄, 1], (3.2)

then one has

W1(h, g) ≥ 1

2

‖h‖2L1

min{‖h‖L∞ , ‖g‖L∞}
. (3.3)

Indeed we can consider the two following rearrangement of the masses

rhL1 := ‖h‖L∞ χ(x̄−τh,x̄)L1, rgL1 := ‖g‖L∞ χ(x̄,x̄+τg)L1,

with τh and τg chosen so that the total mass of rhL1 is the same total mass of hL1, and the same for
rgL1 and gL1. We notice that by direct calculation it holds

W1(rhL1, rgL1) =
1

2

(
‖h‖2L1(0,1)

‖h‖L∞(0,1)
+
‖g‖2L1(0,1)

‖g‖L∞(0,1)

)
, (3.4)

and then we observe that
W1(hL1, gL1) ≥W1(rhL1, rgL1). (3.5)

Indeed for any π optimal transport plan between hL1 and gL1, one has

W1(hL1, gL1) =

∫
|x− y|π(dxdy) =

∫
(x̄,1)

(y − x̄)g(y) dy +

∫
(0,x̄)

(x̄− x)h(x) dx

=

∫
(x̄,1)

yg(y) dy +

∫
(0,x̄)

−xh(x) dx ≥
∫

(x̄,1)

yrg(y) dy +

∫
(0,x̄)

−xrh(x) dx

where the last inequality follow from the two following observations:
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• g − rg ≤ 0 in (x̄, x̄+ τg) and g − rg ≥ 0 in (x̄+ τg, 1) ,

• h− rh ≤ 0 in (0, x̄− τh) and h− rh ≥ 0 in (x̄− τh, x̄),

and the fact that for a function ψ : (0,+∞) → R with zero mean and such that ψ ≤ 0 in (0, a) and
ψ ≥ 0 in (a,+∞) it holds that

∫
(0,+∞)

xψ(x) dx ≥ 0. So finally putting (3.4) and (3.5) togheter we

obtain

W1(hL1, gL1) ≥
‖h‖2L1(0,1)

2 min{‖h‖L∞(0,1), ‖g‖L∞(0,1)}
.

Step 2. Let f : [0, 1]→ R be as in the hypotheses.
We define the sets Dk as follows: let C1, . . . , Cn be the connected components of {x ∈ [0, 1] | f(x) > 0},
with n possibly +∞, then the sets {Dk}k are the closed disjoint intervals such that

∪nk=0C̄k = ∪mk=0Dk.

We observe that if m = +∞ then H0(B({x | f(x) > 0})) = +∞ and the statement is trivially true.
So we assume that m < +∞.

Let T : [0, 1]→ R be an optimal transport map for the problem.
We prove the following claim:

W1(f+xDkL1, T](f
+xDkL1)) ≥ 1

2

‖f+xDk‖2L1(0,1)

min{‖f+‖L∞(0,1), ‖f−‖L∞(0,1)}
, ∀ 1 ≤ k ≤ m.

Proof of the claim.
We observe that T#(f+xDkL1) ≤ f−L1 (actually equality holds), for any k, so in particular it is
absolutely continuous with respect to the Lebesgue measure. We consider

h := f+xDk , g :=
dT](f

+xDkL1)

dL1
, (3.6)

and we notice that they satisfy the hypotheses of the previous step. Indeed

supp(h) ⊆ Dk, supp(g) ⊆ T (Dk) and T (x) ≥ x ∀x ∈ Dk or T (x) ≤ x ∀x ∈ Dk.

To see this observe that, since the transport of f goes along a unique transport ray, we have that
either u(x) := −x or u(x) := x is a Kantorovich potential for the problem. Assuming without loss
of generality u(x) = −x and using the definition of Kantorovich potential we have that each couple
(x, T (x)) with x ∈ suppf+ satisfies u(x)− u(T (x)) = |x− T (x)| so in particular T (x) = x+ |x− T (x)|
and T (x) ≥ x. The claim follows by applying the result of the previous step to h and g and observing
that ‖g‖L∞ ≤ ‖f−‖L∞ .

Once that we proved the claim, we notice that being the sets Ck disjoint, we can sum over k the
inequalities (3.6), and we get

W1(f+L1, f−L1) =

m∑
k=1

W1(f+xDkL1, T](f
+xDkL1))) ≥ 1

2

m∑
k=1

‖f+xDk‖2L1(0,1)

min {‖f+‖L∞(0,1), ‖f−‖L∞(0,1)}
.

Applying Cauchy-Schwartz inequality the result follows:

W1(f+L1, f−L1) ≥ 1

2 min {‖f+‖L∞(0,1), ‖f−‖L∞(0,1)}
1

m

(
m∑
k=1

‖f+xDk‖L1(0,1)

)2

=
1

2m

‖f+‖2L1(0,1)

min {‖f+‖L∞(0,1), ‖f−‖L∞(0,1)}
.

Remark 3.2. We observe that in the preceeding proposition the fact that the interval in which we
are working in is exactly [0, 1] plays no role, so it analogously holds for an interval [a, b] o in general
for intervals of infinite length provided that the function f is in L1.
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3.1 One dimensional densities with curvature bounds

We now obtain the one-dimensional estimate also for a reference measure other than the Lebesgue one.
As before, we will first consider the case of functions defined on a compact interval [0, D] and then

we will discuss the non-compact case in the following Remark 3.4.

Proposition 3.3. Let h : [0, D]→ [0,+∞) be a CD(K,∞)-density (recall Definition 2.6).
Let f : [0, D]→ R be a continuous function having zero mean w.r.t the measure hL1:

∫
(0,D)

f(x)h(x) dx = 0.

Assume also that the transport of fh goes along a unique transport ray. Then it holds

W1(f+hL1, f−hL1)

 ∑
x∈B({f>0})

h(x)

 ≥ ‖fh‖2L1(0,D)

8CK,D‖f‖L∞(0,D)

, (3.7)

(see Lemma 2.13 for the definition of B({f > 0})) where

CK,D :=

{
1 K ≥ 0,

e−KD
2/2 K < 0.

(3.8)

Proof. Step 1. We make the following preliminary observation. From CD(K,∞) assumption it follows
that the map

[0, D] 3 x 7→ log h(x) +K
(x− x̄)2

2
,

is concave. In particular, for each x̄ ∈ (0, D) either is increasing in [0, x̄] or is decreasing in [x̄, D].
Hence in the first case

log h(x) +K
(x− x̄)2

2
≤ log h(x̄), ∀ x ∈ [0, x̄];

while in the second case:

log h(x) +K
(x− x̄)2

2
≤ log h(x̄), ∀ x ∈ [x̄, D];

The combination of the two previous inequalities yields

min{‖h‖L∞[0,x̄], ‖h‖L∞[x̄,D]} ≤ h(x̄)CK,D. (3.9)

where CK,D is the defined in (3.8).
Similarly to Step 1 of the previous proof we make a base estimate that we will use in the next step:
we take two non negative bounded functions f, g : [0, D] → R such that

∫
[0,D]

fh dx =
∫

[0,D]
gh dx,

satisfying
supp{f} ⊆ [0, x̄], supp{g} ⊆ [x̄, D]. (3.10)

We can now apply (3.3) to fh, gh (recalling that h is positive) and

W1(fhL1, ghL1) ≥
‖fh‖2L1(0,D)

2 min{‖fh‖L∞(0,D), ‖gh‖L∞(0,D)}

≥
‖fh‖2L1(0,D)

2CK,D max{‖f‖L∞(0,D), ‖g‖L∞(0,D)}h(x̄)
, (3.11)

where the second inequality follows from (3.9).

Step 2. Consider C1, . . . , Cn the connected components of {f > 0} with n possibly +∞. As in
Lemma 2.13 we consider the set ∪nk=0C̄k. We observe that it is the union of disjoint closed intervals:
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∪nk=0C̄k = ∪mk=0[ak, bk], with m possibly +∞. We will proceed as in the proof of Proposition 3.1: we
consider an optimal trasport map T and we obtain

W1(f+hL1, f−hL1) =

m∑
k=0

W1(f+hL1x(ak,bk), T](f
+hL1x(ak,bk))).

Then we can apply (3.11) (as in the previous proof using the fact that the transport of f+h into f−h
goes along a unique transport ray) to obtain:

W1(f+hL1, f−hL1) =

m∑
k=0

W1(f+hL1x(ak,bk), T](f
+hL1x(ak,bk)))

≥
m∑
k=0

‖f+h‖2L1(ak,bk)

2CK,D ‖f‖L∞(ak,bk) (h(ak) + h(bk))

≥ 1

2CK,D ‖f‖L∞(0,D)

m∑
k=0

‖f+h‖2L1(ak,bk)

(h(ak) + h(bk))

≥
‖fh‖2L1(0,D)

8CK,D ‖f‖L∞(0,D)

∑m
k=0(h(ak) + h(bk))

,

with the convention that if ak = 0 (resp. bk = D) the term h(ak) (resp. h(bk)) does not appear. From
this we get

8CK,DW1(f+hL1, f−hL1)

(
m∑
k=0

(h(ak) + h(bk))

)
≥
‖fh‖2L1(0,D)

‖f‖L∞(0,D)

,

with the same convention on h(0), h(D) as above, from which the conclusion follows.

Remark 3.4. The case of non-compact intervals of definition holds without modifications. The only
relevant case is K ≥ 0 and D = ∞ indeed for K < 0 and D = ∞, the claim becomes empty. Notice
that D plays a role only in (3.9) where, in the relevant cases, it becomes independent on D.

3.2 The case of MCP(K,N) densities

We now address the case of an MCP(K,N)-density. As it is clear from the proof of Proposition 3.3, the
only place where the CD(K,∞) assumption has been used is to ensure h > 0 over (0, D) and to derive
(3.9). A similar estimate, with suitable variations, can be obtained also for MCP(K,N)-densities.

Lemma 3.5. Let h : [0, D] → [0,∞] be an MCP(K,N)-density for some real parameters K,N with
N ≥ 1. Then for any x̄ ∈ [0, D] the following estimates holds true:

min{‖h‖L∞[0,x̄], ‖h‖L∞[x̄,D]} ≤ h(x̄)CK,N,D, (3.12)

where

CK,N,D :=

{
2N−1 K ≥ 0

2N−1e
√
−K(N−1)D2 K < 0.

(3.13)

Proof. The claim will follow from simple manipulations of (2.6). For clarity we recall it: for all
0 ≤ x0 ≤ x1 ≤ D (

sK/(N−1)(D − x1)

sK/(N−1)(D − x0)

)N−1

≤ h(x1)

h(x0)
≤
(
sK/(N−1)(x1)

sK/(N−1)(x0)

)N−1

;

indeed for x ∈ [0, x̄]

h(x) ≤
(
sK/(N−1)(D − x)

sK/(N−1)(D − x̄)

)N−1

h(x̄) ≤ h(x̄)

sK/(N−1)(D − x̄)N−1
sup

0≤x≤x̄
sK/(N−1)(D − x)N−1
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and for x ∈ [x̄, D]

h(x) ≤
(
sK/(N−1)(x)

sK/(N−1)(x̄)

)N−1

h(x̄) ≤ h(x̄)

sK/(N−1)(x̄)N−1
sup

x̄≤x≤D
sK/(N−1)(x)N−1.

Then if K ≥ 0, in particular h will be MCP(0, N) giving

sup
0≤x≤x̄

h(x) ≤ h(x̄)

(
D

D − x̄

)N−1

, sup
x̄≤x≤D

h(x) ≤ h(x̄)

(
D

x̄

)N−1

,

and therefore

min{‖h‖L∞[0,x̄], ‖h‖L∞[x̄,D]} ≤ h(x̄)DN−1 min{1/(D − x̄), 1/x̄}N−1 ≤ 2N−1h(x̄),

proving the inequality if K ≥ 0. If K < 0, arguing analogously one gets

min{‖h‖L∞[0,x̄], ‖h‖L∞[x̄,D]} ≤ h(x̄)2N−1e
√
−K(N−1)D2 ,

concluding the proof.

Putting together the proof of Proposition 3.3 and Lemma 3.5 we straightforwardly obtain the next

Proposition 3.6. Let h : [0, D]→ [0,+∞) be an MCP(K,N)-density. Let f : [0, D]→ R be a contin-
uous function having zero mean w.r.t the measure with density h:

∫
(0,D)

f(x)h(x) dx = 0. Assume also

that the transport of fh goes along a unique transport ray:
∫

(0,s)
f(x)h(x) dx ≥ 0 for all s ∈ [0, D].

Then it holds

W1(f+hL1, f−hL1)

 ∑
{x∈B({f>0})}

h(x)

 ≥ ‖fh‖2L1(0,D)

8CK,N,D‖f‖L∞(0,D)

, (3.14)

where CK,N,D is given by (3.13).

Remark 3.7. The case of non-compact intervals of definition holds again without modifications. The
only relevant case here will be K = 0 and D = ∞; if K > 0, then MCP implies that D < DK,N (see
(2.2)) while if K < 0 and D = ∞, the claim becomes empty. Notice that D plays a role only in (3.9)
that is the content of Lemma 3.5.

4 Indeterminacy estimates for metric measure spaces

We now use the one-dimensional estimates of the previous section to deduce the following sharp inde-
terminacy estimates.

Theorem 4.1. Let K,K ′, N ∈ R with N > 1. Let (X, d,m) be an essentially non-branching m.m.s.
satisfying either CD(K,N) or MCP(K ′, N) and CD(K,∞). Let f ∈ L1(X,m) a continuous function
or, alternatively, f ∈ W 1,2(X, d,m) be such that

∫
X
f m = 0. Assume also the existence of x0 ∈ X

such that
∫
X
|f(x)| d(x, x0)m(dx) <∞. Then the following indeterminacy estimate is valid:

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥
‖f‖2L1(X,m)

8CK,D‖f‖L∞(X,m)
, (4.1)

where D = diam (X) and

CK,D :=

{
1 K ≥ 0,

e−KD
2/2 K < 0.
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Remark 4.2. Notice that curvature assumptions CD(K,N) and MCP(K,N) imply D < ∞ only in
the range K > 0 and N ∈ (1,∞). Hence under the second set of assumptions (MCP(K ′, N) and
CD(K,∞)), the result (4.1) for K ≥ 0 gives a non-trivial bound also in the non-compact case D =∞.

Proof. Given f as in the assumptions, we can invoke localization paradigm (Theorem 2.4 and Theorem
2.9) yielding a decomposition of the space X as X = Z ∪ T , where f is zero m-a.e. in Z and T can be
partitioned into {Xα}α with α in a Borel set Q ⊂ X, and a disintegration of m,

mxT =

∫
Q

mα q(dα),

with q Borel probability measure with q(Q) = 1 and Q 3 α 7→ mα ∈ M+(X) satisfying the proper-
ties of Theorem 2.4; in particular, (Xα, d,mα) is a CD(K,N) space (or CD(K,∞) see Theorem 2.9),∫
Xα

f mα = 0 and every Xα is a transport ray associated to the L1-optimal trasport of f+m into f−m.

Step 1. As proven in [22, Proposition 4.4] for the case of signed distance functions, q can be
identified with a test plan, see [4, Definition 5.1]; hence, if f ∈ W 1,2(X, d,m), by the identification
between different definitions of Sobolev spaces [4, Theorem 6.2], for q-a.e. α the function f restricted
to the geodesic Xα is Sobolev and therefore continuous.

As said in Remark 2.5, we have an isomorphism between each space (Xα, d,mα) and spaces
(Iα, | · |, hα · L1), with Iα a real interval (of possible infinite length) satisfying the same CD(K,N)
(or CD(K,∞)) condition,

∫
Iα
fα(x)hα(x) dx = 0 being fα the corresponding of fxXα through the

isomorphism and Iα transport ray for fα. Whenever possible, for simplicity of notation, we will use
f = fα.

So now we can apply Proposition 3.3 and we have that q-a.e. α ∈ Q it holds

W1(f+
α hαL1, f−α hαL1)

 ∑
x∈B({fα>0})

hα(x)

 ≥ ‖f‖2L1(Xα,mα)

8CK,D‖f‖L∞(Xα,mα)
. (4.2)

By Lemma 2.13
∑
x∈B({fα>0}) hα(x) = Perhα({x ∈ Iα : fα(x) > 0}), hence using the isomorphisms of

metric measure spaces, we have

W1(f+mα, f
−mα)Perα ({x ∈ Xα : f(x) > 0}) ≥

‖f‖2L1(Xα,mα)

8CK,D‖f‖L∞(Xα,mα)
,

where Perα is the perimeter in (Xα, d,mα) and Perhα in (Iα, | · |, hα · L1). In the previous factor we
have tacitly used that CK,D ≥ CK,Dα , where Dα is the length of Xα. Integrating the square root of
the inequality with respect to the measure q on Q and applying Holder inequality, we get(∫

Q

W1(f+mα, f
−mα) q(dα)

) 1
2
(∫

Q

Perα({x ∈ Xα : f(x) > 0}) q(dα)

) 1
2

≥
∫
Q

(
W1(f+mα, f

−mα) · Perα({x ∈ Xα : f(x) > 0})
) 1

2 q(dα)

≥

∫
Q

‖f‖L1(Xα,mα)

2
√

2CK,D‖f‖
1
2

L∞(Xα,mα)

q(dα)

≥ 1

2
√

2CK,D‖f‖
1
2

L∞(X,m)

∫
Q

∫
Xα

|f(x)|mα(dx) q(dα)

=
‖f‖L1(X,m)

2
√

2CK,D‖f‖
1
2

L∞(X,m)

.
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Clearly
∫
Q
W1(f+mα, f

−mα) q(dα) = W1(f+m, f−m); therefore

W1(f+m, f−m)
1
2

(∫
Q

Perα({x ∈ Xα : f(x) > 0}) q(dα)

) 1
2

≥
‖f‖L1(X,m)

2
√

2CK,D‖f‖
1
2

L∞(X,m)

.

The conclusion follows using Lemma 2.12.

Repeating the same argument of the previous proof and using Proposition 3.6, we also obtain
the analogous estimate for spaces verifying the weaker MCP(K,N); as expected, weaker curvature
assumptions yields a dependence on the dimension of the estimate.

Theorem 4.3. Let K,N ∈ R with N > 1. Let (X, d,m) be an essentially non-branching m.m.s.
verifying MCP(K,N).

Let f ∈ L1(X,m) a continuous function or, alternatively, f ∈W 1,2(X, d,m) be such that
∫
X
f m =

0. Assume also the existence of x0 ∈ X such that
∫
X
|f(x)| d(x, x0)m(dx) < ∞. Then the following

indeterminacy estimate is valid:

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥
‖f‖2L1(X,m)

8CK,N,D‖f‖L∞(X,m)
, (4.3)

where diam (X) = D and

CK,N,D :=

{
2N−1 K ≥ 0,

2N−1e
√
−K(N−1)D2 K < 0.

5 Nodal Sets of Eigenfunctions

The plan for this section is to obtain lower bounds on the nodal set of eigenfunctions under curvature
assumptions. Building on the previous Theorem 4.1 and Theorem 4.3, this will reduce to find an upper
bound on the W1 distance between the positive and the negative part of the eigenfunction.

5.1 Nodal set under MCP and CD

Here, as throughout the paper, the W1 distance is understood to be tacitly extended between any finite
non-negative measure with the same total mass.

Lemma 5.1. Let (X, d,m) be a m.m.s. verifying MCP(K,N) and with finite total mass, m(X) <∞.
Let f be an eigenfunction of the Laplacian with eigenvalue λ 6= 0 accordingly to Definition 2.17 and
assume moreover the existence of x0 ∈ X such that

∫
X
|f(x)| d(x, x0)m(dx) <∞.

Then

W1(f+m, f−m) ≤
√

m(X)√
λ
‖f‖L2(X,m)

Proof. First from Remark 2.16,
∫
f m = 0 and, by definition, f ∈ W 1,2(X, d,m). By assumption

Kantorovich duality has a solution and therefore exists a 1-Lipschitz Kantorovich Potential u : X → R
such that

W1(f+m, f−m) =

∫
X

(f+(x)− f−(x))u(x)m(dx) =

∫
X

f(x)u(x)m(dx). (5.1)

Since f is a eigenfunction in the sense of Definition 2.17, then the following integration by-parts formula∫
X

D−g(∇f)m ≤ λ
∫
X

gf m ≤
∫
X

D+g(∇f)m,

is valid for any g ∈W 1,2(X, d,m) (see for instance the proof of [32, Proposition 4.9]).
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From m(X) <∞ it follows that u ∈W 1,2(X, d,m), hence together with (5.1) gives

W1(f+m, f−m) ≤ 1

λ

∫
X

D+u(∇f)m ≤ 1

λ

∫
X

|Du|w |Df |w m ≤ Lip(u)

λ

∫
X

|Df |w m,

where we used the fact that |D±u(∇f)| ≤ |Du|w |Df |w and that Lip(u) is a weak upper gradient for
u. Then by Holder inequality we have∫

X

|Df |w m ≤ m(X)
1
2

(∫
X

|Df |2w m

) 1
2

= m(X)
1
2

(∫
X

D−f(∇f)m

) 1
2

≤ m(X)
1
2

√
λ

(∫
X

f2 m

) 1
2

noticing that Df+(∇f) = |Df |2w (see [32, (3.6)]) and f itself as test-function.

Remark 5.2. The same claim can be obtained assuming f to be an eigenfunction for the more general
notion of Laplacian of Definition 2.14, provided one additionally knows f to be Lipschitz regular,
yielding integration by-parts formula against any Sobolev functions (and in particular yielding f to be
an eigenfunction for the Laplacian of Definition 2.17.)

Putting together Lemma 5.1 and the previous results we obtain the next

Theorem 5.3. Let (X, d,m) be an essentially non-branching m.m.s. verifying either CD(K,N) or
MCP(K ′, N ′) and CD(K,∞) and such that m(X) <∞.

Let f be an eigenfunction of the Laplacian of eigenvalue λ > 0 accordingly to to Definition 2.17 and
assume moreover the existence of x0 ∈ X such that

∫
X
|f(x)| d(x, x0)m(dx) < ∞. Then the following

estimate on the size of the its nodal set holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

8CK,D
√
m(X)

·
‖f‖2L1(X,m)

‖f‖L2(X,m)‖f‖L∞(X,m)
,

where D = diam (X) and

CK,D :=

{
1 K ≥ 0,

e−KD
2/2 K < 0.

Proof. Theorem 4.1 and Lemma 5.1 imply the claim.

Using Theorem 4.3, we obtain the following analogous statement for spaces verifying the weaker
MCP(K,N) condition with dimension-dependent constant appearing. The proof, being completely the
same is omitted.

Theorem 5.4. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(K,N) and such
that m(X) <∞.

Let f be an eigenfunction of the Laplacian of eigenvalue λ > 0 accordingly to to Definition 2.17
and assume moreover the existence of x0 ∈ X such that

∫
X
|f(x)| d(x, x0)m(dx) <∞.

Then the following estimate on the size of the its nodal set holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

8CK,N,D
√
m(X)

·
‖f‖2L1(X,m)

‖f‖L2(X,m)‖f‖L∞(X,m)
,

where D = diam (X) and

CK,N,D :=

{
2N−1 K ≥ 0,

2N−1e
√
−K(N−1)D2 K < 0.
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5.2 The infinitesimally Hilbertian case

Assuming the heat flow to be linear yields more sophisticated argument and sharper estimtes. We start
with the following folklore result whose proof is included as no proof as been found in the literature.

Lemma 5.5. Let (X, d,m) be a m.m.s. with diam (X) < D. Let f, g : X → [0,∞) be functions with
‖f‖L1(X,m) = ‖g‖L1(X,m). Then

W1(f m, gm) ≤ D‖f − g‖L1(X,m).

Proof. Construct an admissible plan π̄ ∈ Π(f m, gm), with π̄ = π1 + π2 by defining

π1 := (Id, Id)]
(
gmx{g≤f}

)
+ (Id, Id)]

(
f mx{g>f}

)
and considering any π2 ∈ Π((f − g)+m, (f − g)−m). Then it is straightforward to check that

W1(f m, gm) ≤
∫
X×X

d(x, y)π2(dxdy) ≤ Dπ2(X ×X) = D

∫
X

(f − g)+ m(dx),

proving the claim.

Proposition 5.6. Let (X, d,m) be a m.m.s. verifying RCD(K,N) and such that diam (X) = D <∞.
Let f be an eigenfunction of eigenvalue λ > 2. Then

W1(f+m, f−m) ≤ C(K,N,D)

√
log λ

λ
‖f‖L1(X,m),

with C(K,N,D) growing linearly in D and as square root in N .

Proof. We define
µ±0 := f±m, µ±t := Htµ

±
0 ,

where Ht is the heat flow (see Section 2.4) and by triangular inequality

W1(µ+
0 , µ

−
0 ) ≤W1(µ+

0 , µ
+
t ) +W1(µ+

t , µ
−
t ) +W1(µ−t , µ

−
0 ),

notice indeed that µ+
t (X) = µ+

0 (X) = µ−0 (X) = µ−t (X). Then by Theorem 2.19 we deduce that

W1(µ±t , µ
±
0 ) =

(∫
X

f+ m

)
W1(µ±t /µ

±
t (X), µ±0 /µ

±
0 (X))

≤ ‖f‖L1(X,m)W2(µ±t /µ
±
t (X), µ±0 /µ

±
0 (X))

≤
√
t‖f‖L1(X,m)C(t,K,N),

where C(t,K,N) :=
(

2N 1−e−K2t/3

K2t/3

)1/2

, (with C(t,K,N) ≤
√

2N if K ≥ 0).

To bound W1(µ+
t , µ

−
t ) we use Lemma 5.5. Call gt the evolution of a function g through the heat

flow (gt = Htg), by the identification (2.9), it follows that (recall that f ∈W 1,2(X, d,m) by definition)

µ±t = (Htf
±)m = f±t m.

Notice that by infinitesimal Hilbertianity

f+
t − f−t = Ht(f

+ − f−) = Ht(f) = e−λtf,

where the last identity is a consequence of f being an eigenfunction (see Section 2.4). Then we have
that

W1(µ+
t , µ

−
t ) ≤ D‖f+

t − f−t ‖L1(X,m) = D‖ft‖L1(X,m) = De−λt‖f‖L1(X,m).
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So finally

W1(µ+
0 , µ

−
0 ) ≤

(√
tC(t,K,N) +De−λt

)
‖f‖L1(X,m).

Choosing t = 1
λ log(λ) we obtain

W1(f+ m, f−m) ≤ C(K,D,N)

√
log λ

λ
‖f‖L1(X,m),

with C(K,N,D) growing linearly in D and as square root in N .

Hence we can state one of the main results of this note.

Theorem 5.7 (Nodal set RCD-spaces). Let K,N ∈ R with N > 1. Let (X, d,m) be a m.m.s. satisfying
RCD(K,N). Assume moreover diam (X) = D < ∞. Let f be an eigenfunction of the Laplacian of
eigenvalue λ > 2. Then the following estimate is valid:

Per ({x ∈ X : f(x) > 0}) ≥

√
λ

log λ
·

‖f‖L1(X,m)

C̄K,D,N‖f‖L∞(X,m)

, (5.2)

where C̄K,D,N grows linearly in D if K ≥ 0 and exponentially if K < 0 and grows with power 1/2 in
N .

Proof. Since diam (X) < ∞, it follows that m(X) < ∞ and therefore f ∈ L1(X,m), it has zero mean
and satisfies the growth conditions and regularity needed to invoke Theorem 4.1. Hence Theorem 4.1
implies that

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥
‖f‖2L1(X,m)

8CK,D‖f‖L∞(X,m)
,

that together with Proposition 5.6 implies that

Per ({x ∈ X : f(x) > 0}) ≥

√
λ

log λ

‖f‖L1(X,m)

C(K,N,D)CK,D‖f‖L∞(X,m)
,

giving therefore the claim.

We are now in position of obtaining the explicit lower bound on the size of the nodal set of an
eigenfunction stated in Theorem 1.5.

Proof of Theorem 1.5. It is a straightforward consequence of Theorem 5.7 and of the following ob-
servation: given an eigenfunction f of eigenvalue λ, there exists a constant C = C(K,N,D) such
that

‖f‖L∞(X,m) ≤ Cλ
N
2 ‖f‖L1(X,m),

provided λ ≥ D−2. Indeed from [8, Proposition 7.1] and assuming m(X) = 1, one has that

‖f‖L∞(X,m) ≤ Cλ
N
4 ‖f‖L2(X,m) ≤ Cλ

N
4 ‖f‖

1
2

L∞(X,m)‖f‖
1
2

L1(X,m),

from which the claim follows dividing by the L∞ norm and squaring both sides.

6 Linear combination of eigenfunctions

We now consider functions obtained as linear combination of eigenfunctions. As expected, for the
following results it will be necessary to assume the linearity of the Laplacian, i.e. infinitesimal Hilber-
tianity.

We will however present two different upper bounds for the W1 distance between the positive and
the negative part of the function, one following the lines of Proposition 5.6 valid for RCD spaces and
one following Lemma 5.1 valid for MCP spaces.
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Proposition 6.1. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(K,N) with
diam (X) = D <∞; assume moreover (X, d,m) to be infinitesimally Hilbertian.

Let f be a continuous function or, alternatively, f ∈W 1,2(X, d,m), such that it satisfies in L2 sense
f =

∑
λk≥λ akfλk , k ∈ N, where each fλk is an eigenfunction with eigenvalue λk.

Then the following estimate on the size of the nodal set of f holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ√

m(X)CK,N,D
·

‖f‖2L1

‖f‖L2‖f‖L∞
,

where CK,N,D is given by Theorem 4.3.

Proof. From diam (X) < ∞, it follows that m(X) < ∞ and therefore f ∈ L1(X,m), it has zero mean
and satisfies the growth conditions needed to apply Theorem 4.3. To prove the claim it will be therefore
sufficient to obtain an upper bound for W1(f+ m, f−m).

Using the Kantorovich formulation, there exists a 1-Lipschitz function such that

W1(f+m, f−m) =

∫
X

fum =
∑
λk≥λ

ak

∫
X

fλkum ≤
∑
λk≥λ

ak
λk
‖|∇fλk |w‖L2‖|∇u|‖L2

≤
√
m(X)

∑
λk≥λ

1√
λk
‖akfλk‖L2 ≤

√
m(X)√
λ

∑
λk≥λ

‖akfλk‖L2 =

√
m(X)√
λ
‖f‖L2 ,

where we used in the third identity ‖ 1
λk
|∇fλk |w‖2L2 = 1

λk
‖fλk‖2L2 , and in the last one the orthogonality

of {fλk}k∈N given by infinitesimally Hilbertianity.

Lemma 6.2. Let (X, d,m) be a m.m.s. verifying RCD(K,N) and such that diam (X) = D < ∞ and
K ≥ 0. Let f : X → R be a continuous or, alternatively, f ∈W 1,2(X, d,m), such that

f =
∑
λk≥λ

〈f, fλk〉fλk , {λk}k∈N,

where {fλk}k∈N are eigenfunctions of the Laplacian of unitary L2-norm with eigenvalue λk, 〈f, fλk〉 is
the scalar product of L2(X,m), 〈fλj , fλk〉 = δj,k and convergence of the series is in L2(X,m). Then

W1(f+m, f−m) ≤ C(K,N,D,m(X))

(
1

λ
log

(
λ
‖f‖L2

‖f‖L1

)) 1
2

‖f‖L1 ,

with C(K,N,D,m(X)) an explicit constant, provided that λ ≥ 2
√

m(X).

Proof. Following the approach and the same notation of the proof of Proposition 5.6 we have

W1(µ+
0 , µ

−
0 ) ≤W1(µ+

0 , µ
+
t ) +W1(µ+

t , µ
−
t ) +W1(µ−t , µ

−
0 ),

and deduce from Theorem 2.19 that

W1(µ±t , µ
±
0 ) ≤

√
t‖f‖L1(X,m)C(t,K,N),

where C(t,K,N) :=
(

2N 1−e−K2t/3

K2t/3

)1/2

. Then to bound W1(µ+
t , µ

−
t ), again using Lemma 5.5, by

orthonormality of {fλk}k it follows that

‖ft‖2L1(X,m) =

∥∥∥∥∥∥
∑
λk≥λ

e−λkt〈f, fλk〉fλk

∥∥∥∥∥∥
2

L1(X,m)

≤ m(X)

∥∥∥∥∥∥
∑
λk≥λ

e−λkt〈f, fλk〉fλk

∥∥∥∥∥∥
2

L2(X,m)

= m(X)
∑
λk≥λ

e−2λkt|〈f, fλk〉|2 ≤ m(X)e−2λt‖f‖2L2(X,m). (6.1)
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So finally
W1(µ+

0 , µ
−
0 ) ≤

√
t‖f‖L1(X,m)C(t,K,N) +D

√
m(X)e−λt‖f‖L2(X,m).

Using that K ≥ 0 (so C(t,K,N) ≤
√

2N) and choosing t = 1
λ log

(
λ‖f‖L2(X,m)

‖f‖L1(X,m)

)
, it holds

W1(µ+
0 , µ

−
0 ) ≤ C(K,N,D,m(X))

(
1

λ
log

(
λ
‖f‖L2

‖f‖L1

)) 1
2

‖f‖L1 ,

proving the claim.

The following result is then a straightforward consequence

Corollary 6.3. Let (X, d,m) be a m.m.s. verifying RCD(K,N) and such that diam (X) = D <∞.
Let f : X → R be a continuous or, alternatively, f ∈W 1,2(X, d,m) such that

f =
∑
λk≥λ

〈f, fλk〉fλk , {λk}k∈N, λ > 0,

where {fλk}k∈N are eigenfunctions of the Laplacian of unitary L2-norm with eigenvalue λk, 〈f, fλk〉 is
the scalar product of L2(X,m), 〈fλj , fλk〉 = δj,k and convergence of the series is in L2(X,m).

Then the following estimate on the size of the nodal set of f holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

C(K,N,D,m(X))
log

(
λ
‖f‖L2

‖f‖L1

)−1/2

· ‖f‖L
1

‖f‖L∞
,

with C(K,N,D,m(X)) the same constant of Lemma 6.2, provided that λ ≥ 2
√
m(X).
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