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Abstract

We consider a class of nonlocal conservation laws with a second-order viscous regularization term which finds
an application in modelling macroscopic traffic flow. The velocity function depends on a weighted average
of the density ahead, where the averaging kernel is of exponential type. We show that, as the nonlocal reach
and the viscosity parameter simultaneously tend to zero (under a suitable balance condition), the solution
of the nonlocal problem converges to the entropy solution of the corresponding local conservation law. The
key idea of our proof is to observe that the nonlocal term satisfies a third-order equation with diffusive and
dispersive effects and to deduce a suitable energy estimate on the nonlocal term. The convergence result is
then based on the compensated compactness theory.

Keywords: Conservation laws, nonlocal flux, traffic flow, vanishing viscosity, compensated compactness,
singular limits, nonlocal-to-local convergence.
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1. Introduction

1.1. A class of nonlocal conservation laws modeling traffic flow

Nonlocal balance and conservation laws have been studied in the last decade quite intensively as they
model many phenomena in applications more realistically than corresponding local equations. For instance,
in macroscopic traffic flow modelling, the typical “local” first-order dynamics is given by{

∂tρ+ ∂x
(
V (ρ)ρ

)
= 0, (t, x) ∈ (0,∞)× R,

ρ(0, x) = ρ0(x), x ∈ R.
(1.1)

However, at a given space-time point, such a model does not change its velocity based on the traffic ahead
(nonlocal), but only based on the density at the given space-time point. This is one reason for introducing
a nonlocal variant of this model, which can be written as{

∂tρ+ ∂x
(
V (W [ρ])ρ

)
= 0, (t, x) ∈ (0,∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(1.2)
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with

W [ρ](t, x) := (γ ∗ ρ)(t, x) := 1
ε

∫ ∞
x

γ
(
s−x
ε

)
ρ(t, s) ds, (1.3)

for a nonlocal impact ε > 0 (see [23, 21, 1, 4]). The kernel γ then influences how the nonlocal term
integrates the current density nonlocally. For traffic flow modelling it is indeed reasonable to assume that γ
is monotonically decreasing, meaning that one takes traffic density further ahead not as much into account
than traffic close to the considered position. Under suitable assumptions, this model class exhibits unique
weak solutions (no entropy condition required) and also a maximum principle, as established in [23].

The natural question of whether one can recover the solution of the local equation when the nonlocal
impact ε approaches zero – i.e. as the corresponding weight γ approaches a Dirac distribution – has been
discussed for special cases via various approaches (see [5, 24, 16, 18]). Although a lot of numerical evidence
therein suggests this to be correct in more generality, a theory of proving this convergence does not exist.

In this contribution, we approach this problem for a specific nonlocal kernel γ of exponential type and
add an artificial viscosity. We show that when the nonlocal term together with the viscosity approaches
zero, the sequence of solutions converges to the local entropy solution. Although this is not a result for the
original proposed problem of nonlocal to local limit but for an approximated version, it might help to better
understand what we can and cannot expect in the limit (without viscosity) to be true.

We assume throughout the paper the following natural conditions to be satisfied:

ρ0 ∈ L1(R) ∩ L∞(R), 0 ≤ ρ0 ≤ 1; (1.4)

V ∈W 1,∞(R) ∩ C2(R), V ≥ 0, V ′ ≤ 0, (1.5)

f : ρ 7→ ρV (ρ) is genuinely nonlinear, i.e. |{(ρV (ρ))′′ = 0}| = 0. (1.6)

Additionally, we choose as nonlocal kernel – as required in Eq. (1.3) – one of exponential type:

γε(x) = 1
ε exp(−xε )χ[0,∞)(x), x ∈ R,

for ε > 0. Thanks to this structure, the nonlocal term γε ∗ ρ satisfies the identity

∂x
(
γε ∗ ρ

)
≡ 1

ε

(
γε ∗ ρ− ρ

)
,

which can be used to derive some reformulations as presented in Remark 1.1. As mentioned above, we do
not consider the nonlocal conservation law (1.2) but instead its viscosity approximation which reads for
ν ∈ R>0 

∂tρε,ν + ∂x(V (Wε[ρε,ν ])ρε,ν) = ν∂2xxρε,ν , (t, x) ∈ (0,∞)× R,
ρε,ν(0, x) = ρ0,ν(x), x ∈ R,
Wε[ρε,ν ](t, x) := 1

ε

∫∞
x
e−(s−x)/ερε,ν(t, s) ds, (t, x) ∈ (0,∞)× R.

(1.7)

We smooth initial datum in the following way:

{ρ0,ν}ν>0 ⊂ C∞c (R), (1.8)

ρ0,ν
ν→0−→ ρ0 a.e. and in Lploc(R), p ∈ [1,∞), (1.9)

0 ≤ ρ0,ν ≤ 1, ν > 0. (1.10)

Remark 1.1 (Reformulations of (1.7)). As pointed out before, assuming sufficient regularity the nonlocal
conservation law with viscosity term (1.7) can also be reformulated into

∂tρε,ν + ∂x(V (Wε,ν)ρε,ν) = ν∂2xxρε,ν , (t, x) ∈ (0,∞)× R,
−ε∂xWε,ν +Wε,ν = ρε,ν , (t, x) ∈ (0,∞)× R,
ρε,ν(0, x) = ρ0,ν(x), x ∈ R,
Wε,ν(0, x) = 1

ε

∫∞
x
e−(s−x)/ερ0,ν(s) ds, x ∈ R,

(1.11)
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or as a higher-order equation with competing diffusion and dispersion effects,
∂tWε,ν + ∂x(V (Wε,ν)Wε,ν) = ε∂2txWε,ν

+ν∂2xxWε,ν + ε∂x(V (Wε,ν)∂xWε,ν)− εν∂3xxxWε,ν , (t, x) ∈ (0,∞)× R,
W (0, x) = 1

ε

∫∞
x
e−(s−x)/ερ0,ν(s) ds, x ∈ R.

(1.12)

1.2. Singular limits in the literature

A “nonlocal-to-local convergence” result can be seen as “closing the gap” between local and nonlocal
modelling with conservation laws and unifying both theories. It would also provide another way for defining
the proper (entropy) solutions for local conservation laws as limits of weak solutions to nonlocal conservation
laws, which usually do not require an entropy condition for uniqueness (see [19, 23, 25, 26]). Eventually,
such a convergence result would also give additional insights into questions related to control theory (see
[3]).

Positive result on the nonlocal-to-local convergence were obtained in [31], provided that the limit entropy
solution is smooth and the convolution kernel is even; and in [24] for a large class of nonlocal conservation
laws under the assumption of having monotone initial data. In [5], Bressan and Shen considered the inviscid
case of the equation with exponential kernel considered in the present paper, i.e. (1.2). Provided that
the initial datum is bounded away from zero and has bounded total variation (but without monotonicity
assumptions), they proved that, as ε → 0+, the family {ρε}ε>0 converges (up to subsequences) to a weak
solution of the corresponding local conservation law; they also show that the limit is the unique entropy
solution under the additional assumption that V is an affine function.

The positive effect of viscosity in the nonlocal-to-local approximation process was previously studied in
[18, 16] for more general compactly supported kernels (see also [6] in the case of more regular initial data and
linear velocity). On the other hand, for the inviscid case, in [18], the authors also exhibit counterexamples
showing that, under rather general assumptions, the convergence of the solutions does not hold. Under
more restrictive assumptions that the initial datum has bounded total variation, is bounded away from zero
and satisfies a one-sided Lipschitz condition, a positive result was obtained in [17]. In the same paper, the
authors also showed that, if the initial data is not bounded away from zero, a total variation blow-up may
occur, which is a key difficulty to prove a convergence result.

Considering viscous perturbations is relevant because some of the numerical tests showing convergence
are performed by using a Lax-Friedrichs type scheme involving some kind of numerical viscosity (see [15]
for an analysis of the effect of numerical viscosity in the study of the nonlocal-to-local limit). However, we
also remark that the numerical simulations performed in [24, Section 7], which are based on the method
of characteristics and do not introduce artificial viscosity, show that we should expect convergence of the
nonlocal solution to the local solution.

Our approach differs from the previous contributions mentioned above. Indeed, the proof in [18] is based
on a priori estimates obtained by extensively using energy estimates for the heat kernel and the Duhamel
representation formula. On the other hand, we establish an energy estimate on the nonlocal term Wε,ν(t, ·)
by relying just on the structure of (1.12); we then apply Tatar’s compensated compactness technique to
deduce the Lp compactness of the family {ρε,ν}ε,ν>0. In our more particular setting (in which a maximum
principle holds), we obtain convergence under much milder assumptions on the ratio ε/ν (i.e. we assume

ε/ν → 0 instead of ε ≤ e−Cν−β , with C, β > 0).
Our approach is somewhat inspired by the strategy used to study the singular limit problem for the

Camassa-Holm equation (see [12, 9]), which contains nonlinear dispersive effects as well as fourth order
dissipative effects, or of the Ostrovski-Hunter equation (see [10, 8]). In both cases, the approximating
equations are higher-order ones which can be equivalently rewritten as parabolic-elliptic systems or (using
the Helmholtz kernel) as a conservation law with a nonlocal perturbation, which is useful in establishing
compactness estimates.

These papers on singular limits are, in turn, inspired by the pioneering results by Schonbek on the
zero diffusion-dispersion limit for the Korteweg-de Vries-Burgers and Benjamin-Bona-Mahony equation (see
[29]). Equation (1.12) differs substantially from the equations appearing in these papers for several reasons: a
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mixed derivative ∂2txWε,ν appears; the system in (1.2) is a PDE-ODE coupling instead of a parabolic-elliptic
PDE system; and we do not need to rely on the Lp compensated compactness developed by Schonbek
because, from the formulation (1.7) of our problem, we are able to deduce a L∞ estimate, which allows us
to apply the standard L∞ compensated compactness theorem by Tartar (see [27, 30]).

1.3. Outline of the paper

The paper is organized as follows. In Section 2, we recall the notions of solutions for conservation laws
and state our main convergence result.

In Section 3, we prove the well-posedness of (1.7) – which, in turn, implies the rigorous equivalence
between (1.7) and (1.2) – and the a priori estimates required for the study of the singular limit. More
specifically, we establish L∞ bounds on ρε,ν and Wε,ν and an L2 estimate on Wε,ν(t, ·) which also involves
the H2 norm of Wε,ν(t, ·).

In Section 4, we use the previous estimates to prove that the family {ρε,ν}ε,ν>0 is compact in Lp. To
this end, we rely on Tartar’s compensated compactness technique and show that the family {∂tη(ρε,ν) +
∂xq(ρε,ν)}ε,ν>0, for every convex entropy-entropy flux pair, is compact in H−1loc ((0,∞) × R). Finally, we
check that the limit function ρ is an entropy solution of (1.1). We remark that in the compactness estimates
and in the verification of the entropy condition, the assumption ε = o(ν) is crucial.

2. Main results

Let us recall the notion of an entropy solutions for the Cauchy problem (1.1).

Definition 2.1 (Entropy solutions). A function ρ : [0,∞) × R → R is an entropy solution of the Cauchy
problem (1.1) if ρ ∈ L∞((0, T )×R) for every T > 0 and, for every non-negative test function ϕ ∈ C∞c (R2),
we have ∫ ∞

0

∫
R

(
η(ρ)∂tϕ+ q(V (ρ)ρ)∂xϕ

)
dtdx+

∫
R
η(u0(x))ϕ(0, x) dx ≥ 0 (2.1)

for every entropy η with entropy flux q, i.e. η, q ∈ C2(R), η′′ ≥ 0, η′(V (ρ)ρ)′ = q′(ρ) for all ρ ∈ R.

For a modern presentation of the proof of the well-posedness of entropy solutions for scalar conservation
laws, we refer the reader to the monographs [22, 14].

Our main theorem is the following convergence result.

Theorem 2.1 (Nonlocal-to-local limit). Let {ρε,ν}ε,ν be a family of classical solutions of the Cauchy problem
(1.7). Then, for all

(ε, ν) ⊂ R2
>0 such that (ε, ν)→ (0, 0) ∧ ε

ν → 0, (2.2)

there exists ρ ∈ L∞((0,∞)× R) such that

ρε,ν → ρ a.e. and in Lploc((0,∞)× R), with p ∈ [1,∞),

and ρ is the entropy solution of the Cauchy problem (1.1).

Remark 2.1 (Long-time behavior of periodic solutions). We note that the singular limit problem considered
in this paper is strictly related to the analysis of the long-time behavior of periodic solutions to the problem

∂tρ+ ∂x(ρV (W )) = 0, (t, x) ∈ (0,∞)× R,
−α∂xW +W = ρ, (t, x) ∈ (0,∞)× R,
ρ(0, x) = ρ0(x), x ∈ R,

where α > 0 is a fixed parameter and ρ0 is 1-periodic. Indeed, following [7, 13], we introduce the functions

ρT = ρ(Tt, Tx), WT (t, x) = W (Tt, Tx), T, t ≥ 0, x ∈ R.
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The functions ρT and PT are T -periodic and solve the rescaled system
∂tρT + ∂x(ρTV (WT )) = 0, (t, x) ∈ (0,∞)× R,

−α 1

T
∂xWT +WT = ρT , (t, x) ∈ (0,∞)× R,

ρT (0, x) = ρ0(Tx), x ∈ R.

Due to the periodicity assumption, the study of the asymptotic behavior of ρ is equivalent to the study of the
limit of the family {ρT }T>0 (see [7, Theorem 3.2]). Setting ε = α/T , this reduces to the nonlocal-to-local
singular limit problem studied in [5]. In particular, under the assumptions of [5, Theorem 3], we can show
that there exists a subsequence {ρTk}k>0, Tk → ∞ and a limit function ρ̄ ∈ L∞((0,∞) × R) such that, as
k →∞,

ρTk → ρ̄ a.e. and in Lploc((0,∞)× R), 1 ≤ p <∞

and ρ̄ is a weak (actually, classical) solution of{
∂tρ̄+ ∂x(V (ρ̄)ρ̄) = 0, (t, x) ∈ (0,∞)× R,
ρ̄(0, x) =

∫ 1

0
ρ0(x) dx, x ∈ R,

namely ρ̄(t, x) =
∫ 1

0
ρ0(x) dx.

In other words, we have observed that the nonlocal conservation law and the corresponding local one
(whose decay properties were established in [7]) have the same long-time behavior.

3. A priori estimates

We start by proving the well-posedness of classical solutions of (1.7), their non-negativity, and an upper
bound in terms of the L∞ norm of the initial data. This, in turn, implies an L∞ estimate on Wε,ν .

Lemma 3.1 (Well-posedness and L∞-estimate). For every ε, ν > 0, there exists a unique non-negative
smooth solution ρε,ν ∈ C∞([0,∞)× R) ∩W 2((0,∞)× R) of the Cauchy problem (1.7) such that

0 ≤ ρε,ν , Wε,ν ≤ 1.

Proof. Since ρ0,ν ∈W 2(R), the existence and uniqueness of smooth solutions of (1.7) can be proved arguing
similarly to [18, Theorem 2.1] or [11]. We focus on showing the L∞ bound on the solutions. To prove
ρε,ν ≥ 0, we consider the function

η(ξ) = −ξχ(−∞,0](ξ), ξ ∈ R,

which satisfies
η′(ξ) = −χ(−∞,0](ξ), η′′(ξ) = δ{ξ=0} ≥ 0. (3.1)

Multiplying Eq. (1.7) by η′(ρε,ν), integrating over R, and using [2, Lemma 2] yields

d

dt

∫
R
η(ρε,ν) dx =

∫
R
∂tρε,νη

′(ρε,ν) dx

= ν

∫
R
∂2xxρε,νη

′(ρε,ν) dx−
∫
R
∂x(V (Wε,ν)ρε,ν))η′(ρε,ν) dx

= −ν
∫
R

(∂xρε,ν)2η′′(ρε,ν)︸ ︷︷ ︸
≥0

dx+

∫
R
V (Wε,ν)∂xρε,ν ρε,νη

′′(ρε,ν)︸ ︷︷ ︸
=0 (see Eq. (3.1))

dx

≤ 0.
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Integrating over (0, t) and using Eq. (1.10) and Eq. (3.1), we have

0 ≤
∫
R
η(ρε,ν(t, x)) dx ≤

∫
R
η(ρ0,ν(x)) dx = 0.

Therefore, η(ρε,ν) ≡ 0 and, that is

ρε,ν(t, x) ≥ 0. (3.2)

To prove ρε,ν ≤ 1, we follow the argument in [26, Corollary 5.9]. For t ≥ 0, let

Xmax(t) :=
{
x ∈ R : ρε,ν(t, x) = ‖ρε,ν(t, ·)‖L∞(R)

}
.

For x ∈ Xmax(t) and a.e. t > 0, we have

∂tρε,ν(t, x) = − ∂xρε,ν(t, x)V (Wε,ν(t, x))︸ ︷︷ ︸
=0

−ρε,ν(t,x)ε V ′(Wε,ν(t, x))Wε,ν(t, x)

+
ρ2ε,ν(t,x)

ε V ′(Wε,ν(t, x)) + ν∂2xxρε,ν(t, x)︸ ︷︷ ︸
≤0

≤ ρε,ν(t,x)
ε V ′(Wε,ν(t, x))(ρε,ν(t, x)−Wε,ν(t, x))︸ ︷︷ ︸

≤0

,

where we have used Eq. (3.2), Eq. (1.5) and the fact that, for x ∈ Xmax(t),

∂xρε,ν(t, x) = 0,

Wε,ν(t, x)− ρε,ν(t, x) = 1
ε

∫ ∞
x

e−(s−x)/ε
(
ρε,ν(t, s)− ρε,ν(t, x)

)
ds ≤ 0.

We have thus shown that, for all maximal points x ∈ Xmax(t),

∂tρε,ν(t, x) ≤ 0,

which implies

‖ρε,ν(t, ·)‖L∞(R) ≤ ‖ρε,ν(0, ·)‖L∞(R) ≤ 1.

The L∞-estimate for Wε,ν then follows from the one for ρε,ν thanks to Eq. (1.3).

From the regularity of ρε,ν , we deduce that problems (1.7), (1.2), and (1.12) are indeed equivalent and
Wε,ν is also smooth.

Relying on (1.12), we obtain an energy estimate for Wε,ν(t, ·). In the proof, a key role is played by the
assumption (2.2) on the ratio ε/ν.

Lemma 3.2 (Energy estimate). If Wε,ν is the solution of (1.12), then the following estimate holds:

‖Wε,ν(t, ·)‖2L2(R) + ε2 ‖∂xWε,ν(t, ·)‖2L2(R)

+ ν

∫ t

0

‖∂xWε,ν(s, ·)‖2L2(R) ds+ ε2ν

∫ t

0

∥∥∂2xxWε,ν

∥∥2
L2(R) ds ≤ C,

for some constant C > 0 independent from ε and ν and for every t ≥ 0. In particular,

{Wε,ν}ε,ν>0, {ε∂xWε,ν}ε,ν>0 are bounded in L∞(0,∞;L2(R)),

{
√
ν∂xWε,ν}ε,ν>0, {ε

√
ν∂2xxWε,ν}ε,ν>0 are bounded in L2((0,∞)× R).
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Proof. We differentiate the L2-norm 1
2‖Wε,ν(t, ·)‖L2(R) with respect to time and, using Eq. (1.12), we obtain

d

dt

∫
R

W 2
ε,ν

2
dx =

∫
R
Wε,ν∂tWε,ν dx

=−
∫
R
∂x(V (Wε,ν)Wε,ν)Wε,ν dx+ ε

∫
R
Wε,ν∂

2
txWε,ν dx

+ ν

∫
R
Wε,ν∂

2
xxWε,ν dx+ ε

∫
R
Wε,ν∂x(V (Wε,ν)∂xWε,ν) dx− εν

∫
R
Wε,ν∂

3
xxxWε,ν dx

=

∫
R
V (Wε,ν)Wε,ν∂xWε,ν dx+ ε

∫
R
Wε,ν∂

2
txWε,ν dx

+ ν

∫
R
Wε,ν∂

2
xxWε,ν dx+ ε

∫
R
Wε,ν∂x(V (Wε,ν)∂xWε,ν) dx+ εν

∫
R
∂xWε,ν∂

2
xxWε,ν dx

=

∫
R
∂x

(∫ Wε,ν

0

V (ξ)ξ dξ

)
dx︸ ︷︷ ︸

=0

−ε
∫
R
∂tWε,ν∂xWε,ν dx

− ν
∫
R

(∂xWε,ν)2 dx− ε
∫
R
V (Wε,ν)(∂xWε,ν)2 dx+ εν

∫
R
∂x

(
(∂xWε,ν)

2

2

)
dx︸ ︷︷ ︸

=0

=− ε
∫
R
∂tWε,ν∂xWε,ν dx− ν

∫
R

(∂xWε,ν)2 dx− ε
∫
R
V (Wε,ν)(∂xWε,ν)2 dx.

Using again Eq. (1.12),

d

dt

∫
R

W 2
ε,ν

2
dx+ ν

∫
R

(∂xWε,ν)2 dx =ε

∫
R
∂x(V (Wε,ν)Wε,ν)∂xWε,ν dx− ε2

∫
R
∂xWε,ν∂

2
txWε,ν dx

− εν
∫
R
∂xWε,ν∂

2
xxWε,ν dx︸ ︷︷ ︸

=0

−ε2
∫
R
∂xWε,ν∂x(V (Wε,ν)∂xWε,ν) dx

+ ε2ν

∫
R
∂xWε,ν∂

3
xxxWε,ν dx− ε

∫
R
V (Wε,ν)(∂xWε,ν)2 dx

=ε

∫
R
V (Wε,ν)(∂xWε,ν)2 dx+ ε

∫
R
V ′(Wε,ν)Wε,ν(∂xWε,ν)2 dx

− ε2 d

dt

∫
R

(∂xWε,ν)2

2
dx+ ε2

∫
R
V (Wε,ν)∂xWε,ν∂

2
xxWε,ν dx

− ε2ν
∫
R

(∂2xxWε,ν)2 dx− ε
∫
R
V (Wε,ν)(∂xWε,ν)2 dx.

Using the L∞-bound established in Lemma 3.1 and Young’s inequality (see [20, Appendix B]), we obtain

d

dt

∫
R

W 2
ε,ν + ε2(∂xWε,ν)2

2
dx+ ν

∫
R
(∂xWε,ν)2 dx+ ε2ν

∫
R
(∂2xxWε,ν)2 dx

=ε

∫
R
V ′(Wε,ν)Wε,ν(∂xWε,ν)2 dx+ ε2

∫
R
V (Wε,ν)∂xWε,ν∂

2
xxWε,ν dx

≤ε
∫
R
V ′(Wε,ν)Wε,ν(∂xWε,ν)2 dx

+
ε2

2ν

∫
R

(V (Wε,ν)∂xWε,ν)2 dx+
ε2ν

2

∫
R

(∂2xxWε,ν)2 dx

≤ε
(
‖V ′‖L∞(0,1) +

ε

ν
‖V ‖2L∞(0,1)

)∫
R

(∂xWε,ν)2 dx+
ε2ν

2

∫
R

(∂2xxWε,ν)2 dx.
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Thanks to Eq. (2.2), when ε and ν are small, we have

d

dt

∫
R

W 2
ε,ν + ε2(∂xWε,ν)2

2
dx+

ν

2

∫
R
(∂xWε,ν)2 dx+

ε2ν

2

∫
R
(∂2xxWε,ν)2 dx ≤ 0.

Finally, due to Eq. (1.8), Eq. (1.9), and Eq. (1.10), we conclude the proof by integrating over (0, t).

4. Compensated compactness framework and proof of the convergence result

In this section, we use Tartar’s compensated compactness method (see [27, 30]) to obtain strong conver-
gence of a subsequence of solutions of (1.7) to the unique entropy solution of (1.1).

Lemma 4.1 (Tartar’s compensated compactness). Let f ∈ C2(R) be a genuinely nonlinear function, i.e.
|{f ′′ = 0}| = 0, and {ρδ}δ>0 be a measurable family of functions defined on R+ × R such that

‖ρδ‖L∞((0,T )×R) ≤MT , T, δ > 0,

and the family
{∂tη(ρδ) + ∂xq(ρδ)}δ>0

is compact in H−1loc (R+ × R), for every convex η ∈ C2(R), where q′ = f ′η′. Then there exist a sequence
{δn}n∈N ⊂ (0,∞), δn → 0, and a map ρ ∈ L∞((0, T )× R), T > 0, such that

ρδn −→ ρ a.e. and in Lploc(R+ × R), 1 ≤ p <∞.

To check that the family {ρε,ν}ε,ν>0 satisfies the assumptions of Lemma 4.1, we rely on Murat’s compact
embedding (see [28]).

Lemma 4.2 (Murat’s compact embedding). Let Ω be a bounded open subset of RN , N ≥ 2. Suppose the
sequence {Ln}n∈N of distributions is bounded in W−1,p(Ω) for some 2 < p ≤ ∞. Suppose also that

Ln = L1,n + L2,n,

where {L1,n}n∈N lies in a compact subset of H−1(Ω) and {L2,n}n∈N lies in a bounded subset of L1
loc(Ω).

Then {Ln}n∈N lies in a compact subset of H−1loc (Ω).

Proof of Theorem 2.1. First, we observe the following:

∂tρε,ν + ∂x(V (ρε,ν)ρε,ν) = ν∂2xxρε,ν + ∂x
(
(V (ρε,ν)− V (Wε,ν))ρε,ν

)
= ν∂2xxρε,ν + ∂x

(
b(t, x)(ρε,ν −Wε,ν)ρε,ν

)
= ν∂2xxρε,ν − ε∂x

(
b(t, x)∂xWε,νρε,ν

)
,

(4.1)

where

b(t, x) :=

∫ 1

0

V ′(θρε,ν(t, x) + (1− θ)Wε,ν(t, x)) dθ, (t, x) ∈ R>0 × R. (4.2)

Let η, q : R→ R be a C2 convex entropy-entropy flux pair for the conservation law (1.1), i.e. η, q ∈ C2(R),
η′′ ≥ 0, η′f ′ = q′, where f : ρ 7→ V (ρ)ρ. Multiplying Eq. (4.1) by η′(ρ) yields

∂tη(ρε,ν) + ∂xq(ρε,ν) = νη′(ρε,ν)∂2xxρε,ν − εη′(ρε,ν)∂x(b ∂xWε,νρε,ν)

= ν∂2xxη(ρε,ν)− νη′′(ρε,ν)(∂xρε,ν)2 − ε∂x(η′(ρε,ν)b ∂xWε,νρε,ν)

+ εη′′(ρε,ν)b ∂xWε,νρε,ν∂xρε,ν .
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To apply Tartar compensated compactness, we show that the right-hand side is compact in H−1loc ((0,∞)×R).
By Lemma 3.2 and Lemma 3.1, we have for T > 0:

‖νη′(ρε,ν)∂xρε,ν‖L2((0,T )×R) = ‖νη′(ρε,ν)∂xWε,ν − ενη′(ρε,ν)∂2xxWε,ν‖L2((0,T )×R)

≤
√
ν ‖η′(ρε,ν)‖L∞((0,T )×R) ‖

√
ν∂xWε,ν − ε

√
ν∂xWε,ν‖L2((0,T )×R)

≤
√
ν cT → 0;

(4.3)

Additionally, we obtain

‖νη′′(ρε,ν)(∂xρε,ν)2‖L1((0,T )×R) = ‖νη′′(ρε,ν)
(
∂xWε,ν − ε∂2xxWε,ν

)2
‖L1((0,T )×R)

= ‖νη′′(ρε,ν)
(
ν(∂xWε,ν)2 − 2εν∂xWε,ν∂

2
xxWε,ν

+ νε2(∂2xxWε,ν)2
)
‖L1((0,T )×R)

≤ cT

(4.4)

as well as

‖εη′(ρε,ν)b(t, x)∂xWε,νρε,ν‖L2((0,T )×R) = ε√
ν
‖η′(ρε,ν)b(t, x)ρε,ν‖L∞((0,T )×R)

∫ T

0

√
ν‖∂xWε,ν‖L2(R) dt

≤ ε√
ν
cT → 0

(4.5)

and

‖εη′′(ρε,ν)b ∂xWε,νρε,ν∂xρε,ν‖L1((0,T )×R)

= ‖εη′′(ρε,ν)b ρε,ν∂xWε,ν

(
∂xWε,ν − ε∂2xxWε,ν

)
‖L1((0,T )×R)

= ‖η′′(ρε,ν)b ρε,ν

(
ε(∂xWε,ν)2 − ε2∂xWε,ν∂

2
xxWε,ν

)
‖L1((0,T )×R)

≤ ‖η′′(ρε,ν)b ρε,ν

(
ε(∂xWε,ν)2 + ε2|∂xWε,ν∂

2
xxWε,ν |

)
‖L1((0,T )×R)

≤ ‖η′′(ρε,ν)b ρε,ν‖L∞((0,T )×R)×∥∥∥∥ εν ν(∂xWε,ν)2 +
ε2ν

2
(∂2xxWε,ν)2 +

ε2

2ν2
ν(∂xWε,ν)2

∥∥∥∥
L1((0,T )×R)

≤ cT .

(4.6)

Then, by Lemma 4.2, we deduce that {∂tη(ρε,ν) + ∂xq(ρε,ν)}ε,ν>0 is compact in H−1loc ((0,∞) × R).
Therefore, by Lemma 4.1, we conclude that given (2.2) there exists a function ρ ∈ L∞((0, T ) × R), T > 0,
such that

ρεn,νn −→ ρ in Lploc((0,∞)× R), p ∈ [1,∞), and a.e. in (0,∞)× R.

By the Lebesgue dominated convergence theorem, we have that ρ is a weak solution of (1.1).
It remains to show that ρ is an entropy solution. We start by observing that

∂tη(ρεn,νn) + ∂xq(ρεn,νn) = νn∂
2
xxη(ρεn,νn)− νnη′′(ρεn,νn)(∂xρεn,νn)2︸ ︷︷ ︸

≥0

− εn∂x(η′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn)

+ εnη
′′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn∂xρεn,νn

≤ νn∂2xxη(ρεn,νn)− εn∂x(η′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn)
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+ εnη
′′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn∂xρεn,νn

Let us consider a non-negative test function ϕ ∈ C∞c (R2). Then,∫ ∞
0

∫
R

(
η(ρεn,νn)∂tϕ+ q(ρεn,νn)∂xϕ

)
dtdx+

∫
R
η(ρ0,νn(x))ϕ(0, x) dx

≥ νn
∫ ∞
0

∫
R
η(ρεn,νn)∂2xxϕdx dt

+ εn

∫ ∞
0

∫
R

(
η′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn

)
∂xϕdx dt

+ εn

∫ ∞
0

∫
R
η′′(ρεn,νn)b(t, x)ρεn,νn∂xWεn,νn

(
∂xWεn,νn − εn∂2xxWεn,νn

)
ϕdxdt

= νn

∫ ∞
0

∫
R
η(ρεn,νn)∂2xxϕdxdt︸ ︷︷ ︸

I1

+ εn

∫ ∞
0

∫
R

(
η′(ρεn,νn)b(t, x)∂xWεn,νnρεn,νn

)
∂xϕdx dt︸ ︷︷ ︸

I2

+ εn

∫ ∞
0

∫
R
η′′(ρεn,νn)b(t, x)ρεn,νn(∂xWεn,νn)2 dx︸ ︷︷ ︸

I3

− εn
νn

∫ ∞
0

∫
R
η′′(ρεn,νn)b(t, x)ρεn,νn

√
νn∂xWεn,νnεn

√
νn∂

2
xxWεn,νnϕdx dt︸ ︷︷ ︸

I4

.

Due to the estimates done in the first part of the proof, we have

I1 ≤ νn‖η‖L∞(R)‖∂2xxϕ‖L1(R2);

I2 ≤ εn√
νn
‖η′(ρεn,νn)b ρεn,νn‖L∞((0,T )×R)

∫ T

0

√
νn‖∂xWεn,νn‖L2(R) dt

≤ εn√
νn
cT ;

I3 ≤ εn
νn
‖η′′(ρεn,νn)b ρεn,νn‖L∞((0,T )×R)

∥∥νn(∂xWεn,νn)2
∥∥
L1((0,T )×R) ≤

εn
νn
cT ;

I4 ≤ εn
νn
‖η′′(ρεn,νn)b ρεn,νn‖L∞((0,T )×R)‖

√
νn∂xWεn,νn‖L2((0,T )×R)×

‖εn
√
νn∂

2
xxWεn,νn‖L2((0,T )×R)‖ϕ‖L∞(R2) ≤ εn

νn
cT .

Passing to the limit, thanks to assumption Eq. (2.2) and to the Lebesgue dominated convergence theorem,
we obtain Eq. (2.1).

The fact that, in the statement of the theorem, the family {ρε,ν}ε,ν>0 converges to ρ and not just up
to subsequences follows from the uniqueness of entropy solutions of (1.1) and from the Urysohn property,
i.e. ρε,ν → ρ if and only if for all subsequences {ρεn,νn}n∈N, there exists an extract {ρεnk ,νnk }k∈N such that
ρεnk ,νnk → ρ.
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