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Abstract

The paper is concerned with a posteriori error bounds for a wide class of numerical
schemes, for n× n hyperbolic conservation laws in one space dimension. These estimates
are achieved by a “post-processing algorithm”, checking that the numerical solution retains
small total variation, and computing its oscillation on suitable subdomains. The results
apply, in particular, to solutions obtained by the Godunov or the Lax-Friedrichs scheme,
backward Euler approximations, and the method of periodic smoothing. Some numerical
implementations are presented.

1 Introduction

Consider the Cauchy problem for a strictly hyperbolic system of conservation laws in one
space dimension:

ut + f(u)x = 0, (1.1)

u(0, x) = ū(x). (1.2)

For initial data with small total variation, it is well known that this problem has a unique
entropy-weak solution, depending Lipschitz continuously on the initial data ū in the L1 norm
[8, 9, 22, 26].

A closely related question is the stability and convergence of various types of approximate
solutions. Estimates on the convergence rate for a deterministic version of the Glimm scheme
[24, 31] were derived in [18], and more recently in [1, 6] for a wider class of flux functions. For
vanishing viscosity approximations

ut + f(u)x = ε uxx , (1.3)

uniform BV bounds, stability and convergence as ε→ 0 were proved in [5], while convergence
rates were later established in [13, 19]. Further convergence results were proved by Bianchini
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for approximate solutions constructed by the semidiscrete (upwind) Godunov scheme [3], and
by the Jin-Xin relaxation model [4].

A major remaining open problem is the convergence of fully discrete approximations, such as
the Lax-Friedrichs or the Godunov scheme [25, 26, 30]. Indeed, the convergence results known
for these numerical algorithms rely on compensated compactness [23]. They apply only to
2× 2 systems, and do not yield information about uniqueness or convergence rates.

For a particular class of systems, the convergence of Godunov approximations was proved
in [14], relying on uniform bounds on the total variation. For general hyperbolic systems,
however, it is known that the Godunov scheme is unstable w.r.t. the BV norm. In [2] an
example was constructed, showing that the total variation of a numerical solution can become
arbitrarily large as t → +∞. Indeed, if the exact solution contains a shock with speed close
to a rational multiple of the grid size ∆x/∆t, this can cause resonances, producing a large
amount of downstream oscillations.

Without an a priori bound on the total variation, one cannot compare an approximate solu-
tion with trajectories of the semigroup of exact solutions, and all the uniqueness arguments
developed in [12, 15, 16] break down. The counterexample in [2] can thus be regarded as a
fundamental obstruction toward the derivation of a priori error estimates for fully discrete
numerical schemes.

To make progress, in this paper we shift our point of view, focusing on a posteriori error
estimates. Namely, we assume that an approximate solution to (1.1)-(1.2) has been constructed
by some numerical algorithm. Based on some additional information about the approximate
solution, we seek an estimate on the difference

‖uapprox(T, ·)− uexact(T, ·)‖L1(R) . (1.4)

For any sufficiently small BV initial data ū, it is well known that the unique entropy-admissible
BV solution of (1.1)-(1.2) has two key properties [8]:

(i) The total variation of u(t, ·) remains uniformly small, for all t ≥ 0.

(ii) Given a threshold ρ > 0, one can identify a finite number of curves in the t-x plane
(shocks or contact discontinuities) such that, outside these curves, the solution has local
oscillation < ρ.

The counterexample in [2] shows that, for an approximation constructed by the Godunov
scheme, the property (i) sometimes can fail. Roughly speaking, the result we want to prove
in the present paper is the following. Let uapprox be an approximate solution produced by a
conservative scheme which dissipates entropy, and assume that:

(i′) The total variation of uapprox(t, ·) remains small, for all t ∈ [0, T ]

(ii′) Outside a finite number of narrow strips in the domain [0, T ] × R, the local oscillation
of uapprox remains small.

Then the L1 distance (1.4) is small.
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We emphasize that both conditions (i′)-(ii′) refer to the output of a numerical computation.
In (ii′), we expect that the finitely many strips where the oscillation of uapprox is large will
have the form {

(t, x) ; t ∈ [ai, bi], x ∈ [γi(t)− δ, γi(t) + δ]
}
,

where the curve t 7→ γi(t) traces the approximate location of a large shock (or a contact
discontinuity) in the exact solution. It is also worth noting that our estimates do not re-
quire any regularity of the exact solution. In particular, uexact may well have a dense set of
discontinuities.

Our goal is to prove error bounds which can be applied to a wide class of approximation
schemes. For future reference, we collect the basic assumptions on the system (1.1), and the
properties of the approximate solutions that will be used.

(A1) The system (1.1) is strictly hyperbolic, with each characteristic field being either linearly
degenerate or genuinely nonlinear. It generates a semigroup of entropy weak solutions
S : D × [0,+∞[ 7→ D, where D ⊂ L1(R; Rn) is a domain containing all functions with
sufficiently small total variation, namely

ū ∈ L1(R; Rn), Tot.Var.{ū} ≤ δ0 =⇒ ū ∈ D. (1.5)

There exist Lipschitz constants C0, L0 such that

‖Stu− Ssu‖L1 ≤ C0 · Tot.Var.{u} · |t− s|, (1.6)

‖Stu− Stv‖L1 ≤ L0‖u− v‖L1 , (1.7)

for all u, v ∈ D and 0 ≤ s ≤ t.

(A2) For each genuinely nonlinear field, there exists a strictly convex entropy η, with entropy
flux q, which selects the admissible shocks.

We recall that the existence of a semigroup generated by (1.1) was proved in [5, 10, 11, 17],
in various degrees of generality. In particular, it is known that the trajectories of the semi-
group are the unique limits of vanishing viscosity approximations. To explain the additional
assumption (A2), let u−, u+ be any two states connected by a genuinely nonlinear shock with
speed λ, so that the Rankine-Hugoniot conditions hold:

λ (u+ − u−) = f(u+)− f(u−).

Then, if the shock is NOT admissible, we require that the corresponding entropy should be
strictly increasing, namely

λ
(
η(u−)− η(u+)

)
−
(
q(u−)− q(u+)

)
> c0|u− − u+|3, (1.8)

for some constant c0 > 0.

In the following, we shall use test functions ϕ ∈ Cc(R2) which are Lipschitz continuous with
compact support, with Sobolev norm

‖ϕ‖W 1,∞
.
= max{‖ϕ‖L∞ , ‖ϕt‖L∞ , ‖ϕx‖L∞}. (1.9)
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Given ε > 0, we consider approximate solutions u : [0, T ] 7→ D of the system of conservation
laws (1.1), taking values inside the domain of the semigroup S. We assume that these solutions
are inductively defined for a discrete set of times τj = jε, j = 0, 1, 2 . . . For t ∈ [τj , τj+1[ one
can then define u(t, ·) to be the exact solution to (1.1) which coincides with u(τj , ·) at time
t = τj . In alternative, sometimes it is more convenient to simply define u(t, ·) = u(τj , ·) for
t ∈ [τj , τj+1[ .

While we do not specify any particular method to construct these approximate solutions, two
basic properties will be assumed. The first is the Lipschitz continuity of the map t 7→ u(t, ·) ∈
L1(R ;Rn), restricted to the discrete set of times τj . The second is an approximate weak
form of the conservation equations and the entropy conditions. In the following, L,C denote
suitable constants. Moreover, the notation εN .

= {jε ; j = 0, 1, 2, . . .} will be used.

(AL) For every 0 ≤ τ < τ ′ ≤ T with τ, τ ′ ∈ εN, one has

‖u(τ ′, ·)− u(τ, ·)‖L1 ≤ L (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}. (1.10)

(Pε) For every 0 ≤ τ < τ ′ ≤ T with τ, τ ′ ∈ εN, and every test function ϕ ∈ C1
c (R2), one has∣∣∣∣∣

∫
u(τ, x)ϕ(τ, x) dx−

∫
u(τ ′, x)ϕ(τ, x) dx+

∫ τ ′

τ

∫
{uϕt + f(u)ϕx} dx dt

∣∣∣∣∣
≤ Cε‖ϕ‖W 1,∞ · (τ ′ − τ) · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}.

(1.11)

Moreover, assuming ϕ ≥ 0, one has the entropy inequality∫
η(u(τ, x))ϕ(τ, x) dx−

∫
η(u(τ ′, x))ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{η(u)ϕt + q(u)ϕx} dxdt

≥ − Cε‖ϕ‖W 1,∞ · (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.

(1.12)

We remark that, for an exact solution, the left hand side of (1.11) would be zero, while the
left hand side of (1.12) would be non-negative. Since here we are dealing with ε-approximate
solutions, we allow an error that decreases with ε, but increases with the Lipschitz constant
of the test function ϕ.

In the present paper, two main questions will be addressed:

• Given an approximate solution u of (1.1)-(1.2) satisfying (AL) and (Pε), can one esti-
mate the distance between u and the exact solution ?

• What kind of approximation schemes satisfy the conditions (AL) and (Pε) ?

To answer the first question, using a technique introduced in [7], two types of estimates will
be derived.

- On regions where the oscillation is small, the approximate solution u is compared with
the solution to a linear hyperbolic problem with constant coefficients.
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- Near a point where a large jump occurs, u is compared with the solution to a Riemann
problem.

We recall that, for exact solutions, this technique yields the identity u(t, ·) = Stū, proving
that an entropy weak solution is unique and coincides with the corresponding semigroup
trajectory [7, 8, 12, 15, 16]. In Sections 2 to 4 we develop similar estimates in the case of an
approximate solution u, where the right hand side of (1.11)-(1.12) is not zero, but vanishes of
order O(1) · ε‖ϕ‖W 1,∞ . This will provide a bound on the difference (1.4).

An important aspect must be mentioned here. The uniqueness proofs in [12, 15, 16] require
some additional regularity condition, such as “Tame Variation” or “Tame Oscillation”. These
conditions are always satisfied by solutions constructed by front tracking or by the Glimm
scheme, but may fail for a numerically approximated solution. To derive rigorous error bounds,
we must check that an equivalent condition is satisfied.

For a numerically computed approximation, in Section 5 we introduce a post-processing algo-
rithm, which accomplishes three main tasks:

(1) Check that the total variation remains bounded.

(2) Trace the location of a finite number of large shocks.

(3) Check that the oscillation of the solution remains small, on a finite number of polygonal
domains, away from the large shocks.

Step (1) is the simplest, yet the crucial one. If the total variation becomes too large, at some
time t the approximate solution u(t, ·) will fall outside the domain D of the semigroup. When
this happens, the algorithm stops and no error estimate is achieved.

In the favorable case where the total variation remains small, the algorithm can then proceed
with steps (2) and (3). To implement these steps, one needs to introduce certain parameters,
such as the minimum size of the shocks which will be traced, and the length of the time
intervals [tj , tj+1] used in a new partition of [0, T ]. For every choice of these parameter values,
the algorithm yields an error bound. In practice, the accuracy of this estimate largely depends
on the choice of these values. At the end of Section 3, and then again at the end of Section 5,
we discuss how to choose these parameters, and the expected order of magnitude of the
corresponding error bounds.

To complete our program, in Section 6 we consider various approximation schemes, and prove
that they all satisfy the properties (AL) and (Pε). In particular, our analysis applies to: (i)
Godunov’s scheme, (ii) the Lax-Friedrichs’ scheme, (iii) backward Euler approximations, and
(iv) approximate solutions obtained by periodic mollifications.

Finally, in Section 7 we discuss details of the post-processing algorithm, and present a nu-
merical simulation. For the “p-system”, describing isentropic gas dynamics in Lagrangian
coordinates, we consider initial data generating two centered rarefactions, and two shocks
that eventually cross each other. After computing an approximate solution by the upwind
scheme, we implement the post-processing algorithm. The two shocks are traced (as long as
they remain well separated), and the remaining domain is covered by trapezoids where the
numerical solution has small oscillation (away from interaction times).
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2 Solutions with small oscillation

In this section we begin by studying the case where no large shocks are present. Let u = u(t, x)
be an approximate solution which satisfies (AL) and (Pε). Consider an open interval ]a, b[ ,
fix a point ξ with a < ξ < b and set

A = Df(u(0, ξ)). (2.1)

Assuming that all characteristic speeds satisfy

λ− < λi(u) < λ+, i = 1, . . . , n, (2.2)

fix τ ∈ εN and consider the trapezoidal domain

∆ =
{

(t, x) ; t ∈ [0, τ ], a(t)
.
= a+ λ+t < x < b+ λ−t

.
= b(t)

}
. (2.3)

Following an approach introduced in [7], error estimates will be obtained by comparing u with
the solution w of the linear hyperbolic system with constant coefficients

wt +Awx = 0, w(0, x) = u(0, x). (2.4)

For this purpose, let {`1, . . . , `n} and {r1, . . . , rn} be dual bases of left and right eigenvectors
of the matrix A, normalized so that

|ri| = 1, `i · rj = δij =

{
1 if i = j,
0 if i 6= j.

(2.5)

Let λ1, . . . , λn be the corresponding eigenvalues of A. For each i, consider the scalar functions

ui(t, x) = `i · u(t, x), wi(t, x) = `i · w(t, x).

By (2.4), wi solves the scalar linear equation

wi,t + λiwi,x = 0, wi(0, x) = ui(0, x).

For each i = 1, . . . , n, we will estimate the difference ui(τ, ·)− wi(τ, ·).

As a preliminary, consider a BV function g : [α, β] 7→ R. Since g is regulated, it admits left
and right limits g(x−), g(x+) at every point x. By possibly modifying g on the countable set
where it has jumps, we can assume that

g(x+) · g(x−) ≤ 0 =⇒ g(x) = 0. (2.6)

We can then select countably many maximal open subintervals ]aj , bj [⊂ [α, β] where g has
constant sign. Namely,

(G) g has constant sign on each ]aj , bj [ , and changes sign on every neighborhood of each
endpoint aj , bj (unless aj = α or bj = β). Moreover, g(x) = 0 for x /∈

⋃
j [aj , bj ].
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Figure 1: The test function φ defined at (2.7), with Lipschitz constant ε−2/3.

For a given ε > 0, consider the test function with Lipschitz constant ‖φx‖L∞ = ε−2/3

φ(x)
.
=


min

{
1,

x− aj
ε2/3

,
bj − x
ε2/3

}
if x ∈ [aj , bj ] and g is positive on ]aj , bj [ ,

max

{
−1,

aj − x
ε2/3

,
x− bj
ε2/3

}
if x ∈ [aj , bj ] and g is negative on ]aj , bj [ ,

0 if x /∈ ∪j [aj , bj ].
(2.7)

Lemma 2.1 Let g : [α, β] 7→ R be as above. If g is strictly positive (or strictly negative) for
all x ∈ [α, β], then ∫ β−ε2/3

α+ε2/3
|g(x)| dx ≤

∫ β

α
φ(x) g(x) dx. (2.8)

On the other hand, if g(ξ) = 0 for some ξ ∈ [α, β], then∫ β

α
|g(x)| dx ≤

∫ β

α
φ(x) g(x) dx+ 2ε2/3 · Tot.Var.{g ; [α, β]}. (2.9)

Proof. 1. If g has always the same sign, then by construction φ(x) g(x) ≥ 0 for all x, while
φ(x) = sign(g(x)) for x ∈ [α+ ε2/3, β − ε2/3]. Hence the estimate (2.8) is trivially true.

2. If g changes sign, consider the maximal subintervals [aj , bj ] where g has a constant sign, as
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in (G). We then have the estimate∫ β

α
|g(x)| dx =

∑
j

∫ bj

aj

|g(x)| dx

≤
∑

bj−aj≤2ε2/3

(bj − aj) sup
aj<x<bj

|g(x)|

+
∑

bj−aj≥2ε2/3

(∫ bj−ε2/3

aj+ε2/3
+

∫ aj+ε2/3

aj

+

∫ bj

bj−ε2/3

)
|g(x)| dx

≤ 2ε2/3 ·
∑

bj−aj≤2ε2/3

Tot.Var.{g ; ]aj , bj ]}+

∫ β

α
φ(x) g(x) dx+ 2ε2/3 ·

∑
bj−aj>2ε2/3

sup
aj<x<bj

|g(x)|

=

∫ β

α
φ(x) g(x) dx+ 2ε2/3 · Tot.Var.{g ; [α, β]}.

Remark 2.1 Here and in the sequel, one could prove similar results by replacing the exponent
2/3 with any number γ ∈ ]0, 1[ , and working with test functions which are Lipschitz continuous
with constant ε−γ . Our choice of γ = 2/3 is motivated by the heuristic expectation that, in
most cases, this should yield the sharpest error bounds. See Remark 3.1 for further discussion
of this point.

We can now state the main result of this section, providing an error estimate on the trapezoidal
domain (2.3).

Lemma 2.2 There exists a constant C1 such that the following holds. For a given ε > 0, let
u be an approximate solution of (1.1) that satisfies the property (Pε). Let ∆ be the trapezoid
in (2.3), and let w be the solution to the linear Cauchy problem (2.4), with A as in (2.1).
Then ∫ b+τλ−−ε2/3

a+τλ++ε2/3
|u(τ, x)− w(τ, x)| dx

≤ C1

(
τ · sup

(t,x)∈∆
|u(t, x)− u(0, ξ)|+ τε1/3 + ε2/3

)
· sup
t∈[0,τ ]

Tot.Var.{u(t, ·)}.
(2.10)

Proof. 1. Fix i ∈ {1, . . . , n}. On the interval [α, β]
.
= [a+ τλ+, b+ τλ−], consider the scalar

function
gi(x)

.
= `i · [u(τ, x)− w(τ, x)] = `i · [u(τ, x)− u(0, x− λiτ)]. (2.11)

Let φi : [α, β] 7→ [−1, 1] be the function with Lipschitz constant ‖φ′i‖L∞ = ε−2/3, defined as in
(2.7) with g replaced by gi. We then extend φi to the entire real line by setting φi(x) = 0 if
x /∈ [α, β], and consider a test function ϕi = ϕi(t, x) such that

ϕi(t, x) = φi(x− λi(t− τ)) `i for t ∈ [0, τ ], x ∈ R . (2.12)
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2. Observing that λi ∈ [0, 1] and ‖ϕi‖W 1,∞ = |`i| ε−2/3, by (1.11) we now obtain∣∣∣∣∫ ϕi(0, x)u(0, x) dx−
∫
ϕi(τ, x)u(τ, x) dx+

∫ τ

0

∫
{uϕi,t + f(u)ϕi,x} dxdt

∣∣∣∣
≤ Cε‖ϕi‖W 1,∞ · τ · sup

t∈[0,τ ]
Tot.Var.{u(t, ·)}

≤ C ′ε1/3 τ · sup
t∈[0,τ ]

Tot.Var.{u(t, ·)}.

(2.13)

3. For future use we observe that, if x 7→ u(x) is Lipschitz and u∗ = u(ξ) for some ξ ∈ [x1, x2],
then ∫ x2

x1

∣∣∣`i(f(u)x − λiux)
∣∣∣ dx =

∫ x2

x1

∣∣∣`i[Df(u)−Df(u∗)]ux

∣∣∣ dx
≤ C0 sup

x1<x<x2
|u(x)− u∗| ·

∫ x2

x1

|ux| dx.

Here C0 is a constant depending only on the function f . By an approximation argument, for
any BV function x 7→ u(x) we conclude

Tot.Var.
{
`i(f(u)−λiu) ; [x1, x2]

}
≤ C0

(
sup

x1<x<x2
|u(x)− u∗|

)
·Tot.Var.{u ; [x1, x2]}. (2.14)

4. Since w is a solution to the linear equation (2.4), the choice of the test function ϕi in (2.12)
implies ∫

ϕi(0, x)u(0, x) dx =

∫
ϕi(0, x)w(0, x) dx =

∫
ϕi(τ, x)w(τ, x) dx. (2.15)

Moreover, calling u∗ = u(0, ξ), integrating by parts and using (2.14) together with the bound
φi(x) ∈ [−1, 1], we obtain∣∣∣∣∫ τ

0

∫
{uϕi,t + f(u)ϕi,x} dxdt

∣∣∣∣ =

∣∣∣∣∫ τ

0

∫
[f(u)− λiu]ϕi,x dxdt

∣∣∣∣
≤
∫ τ

0
Tot.Var.

{
`i(f(u)− λiu) ; [a+ λ+τ + (t− τ)λi , b+ λ−τ + (t− τ)λi]

}
‖ϕi‖L∞ dt

≤ C0 sup
(t,x)∈∆

|u(t, x)− u∗| ·
∫ τ

0
Tot.Var.

{
u(t, ·) ; ]a+ tλ+, b+ tλ−[

}
dt.

(2.16)

5. By (2.15), combining (2.13) with (2.16) we conclude∫ b+τλ−

a+τλ+
φi(x) `i[w(τ, x)− u(τ, x)] dx =

∫
ϕi(0, x)u(0, x) dx−

∫
ϕi(τ, x)u(τ, x) dx

≤
∣∣∣∣∫ τ

0

∫
{uϕi,t + f(u)ϕi,x} dxdt

∣∣∣∣+ Ei ,

(2.17)
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where

Ei
.
=

∣∣∣∣∫ ϕi(0, x)u(0, x) dx−
∫
ϕi(τ, x)u(τ, x) dx+

∫ τ

0

∫
{uϕi,t + f(u)ϕi,x} dxdt

∣∣∣∣
≤ Cε‖ϕ‖W 1,∞ · τ · sup

t∈[0,τ ]
Tot.Var.{u(t, ·)}.

(2.18)

Notice that the above inequality follows from (1.11). In addition, the first term on the right
hand side of (2.17) is estimated by (2.16).

6. If the function gi(x)
.
= `i[w(τ, x) − u(τ, x)] always keeps the same sign, we now use (2.8).

If it changes sign at least once, we use (2.9). Combining the two cases, by (2.16) and (2.17)
we deduce∫ b+τλ−−ε2/3

a+τλ++ε2/3

∣∣∣`i[w(τ, x)− u(τ, x)]
∣∣∣ dx

≤ C0 sup
(t,x)∈∆

|u(t, x)− u∗| ·
∫ τ

0
Tot.Var.

{
u(t, ·) ; ]a+ tλ+, b+ tλ−[

}
dt+ Ei

+2ε2/3 · Tot.Var.
{
gi ; ]a+ τλ+, b+ τλ−[

}
.

(2.19)

7. Recalling (2.5), for any vector v =
∑

i ciri ∈ Rn one has

|v| ≤
n∑
i=1

|ci| =

n∑
i=1

|`i · v|.

We use this inequality with v = w(τ, x)− u(τ, x). Using (2.11) to compute the total variation
of gi, summing the inequalities (2.18)-(2.19) for i = 1, . . . , n, we obtain∫ b+τλ−−ε1/3

a+τλ++ε1/3

∣∣∣w(τ, x)− u(τ, x)
∣∣∣ dx

≤ nC0 sup
(t,x)∈∆

|u(t, x)− u∗| · τ · sup
t∈[0,τ ]

Tot.Var.
{
u(t, ·) ; ]a+ tλ+, b+ tλ−[

}
+nCε‖ϕ‖W 1,∞ · τ · sup

t∈[0,τ ]
Tot.Var.{u(t, ·)}

+2ε2/3

(∑
i

|`i|

)
·
(

Tot.Var.{u(0, ·) ; [a, b]}+ Tot.Var.{u(τ, ·) ; [a+ τλ+, b+ τλ−]}
)
.

(2.20)
This yields (2.10), for a suitable constant C1.

3 Error bounds for solutions without large shocks

Consider an approximate solution u = u(t, x) of (1.1)-(1.2), constructed by a numerical algo-
rithm with time step ε > 0, which satisfies the properties (AL) and (Pε). We fix a new time
step h >> ε, and split the interval [0, T ] into subintervals [tj , tj+1] with tj = j h. Throughout
the following we choose h ≈ ε1/3, say

c0ε
1/3 ≤ h ≤ ε1/3 (3.1)
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for some constant c0 > 0, and assume that both h and T are integer multiples of ε. To simplify
the discussion, we also assume that T = νh for some integer ν. Notice that, in the general
case, one can consider the time T ′ such that

T ′ = νh ≤ T < (ν + 1)h

for some integer ν. By (1.10), the difference can then be estimated by

‖u(T, ·)− u(T ′, ·)‖L1 ≤ Lh · sup
t∈[0,T ]

Tot.Var.{u(t, ·)} = O(1) · ε1/3.

∆∆

j,k j,k

j,k

j,k+1

j,k+1

j,k+1

h

1

a ba b

T

t

t

t j+1

j

x0

Figure 2: Covering the strip [0, T ]× R with finitely many trapezoids ∆jk.

As shown in Fig. 2, for any given j = 1, 2, . . . , ν − 1, we cover the real line with finitely many
intervals ]ajk, bjk[ , k = 1, . . . , N(j), so that

−∞ = aj,1 < aj,2 < bj,1 < aj,3 < · · · < aj,N(j) < bj,N(j)−1 < bj,N(j) = +∞.

We then cover each strip [tj , tj+1] × R with the trapezoids ∆jk, k = 1, . . . , N(j). For conve-
nience, these will be expressed as the convex closure of their four vertices:

∆jk = co
{

(tj , ajk), (tj , bjk), (tj+1, ajk + hλ+ + ε2/3), (tj+1, bjk + hλ− − ε2/3)
}
.

Equivalently:

∆jk =

{
(t, x) ; t ∈ [tj , tj+1],

tj+1 − t
h

ajk +
t− tj
h

(ajk + hλ+ + ε2/3) ≤ x ≤ tj+1 − t
h

bjk +
t− tj
h

(bjk + hλ− − ε2/3)

}
.

(3.2)

By suitably choosing the points ajk, bjk, we can assume that the intervals

J ′jk = [ajk + hλ+ + ε2/3 , bjk + hλ− − ε2/3], k = 1, . . . , N(j),

form a partition of R. Namely

bjk + hλ− − ε2/3 = aj,k+1 + hλ+ + ε2/3, k = 1, . . . , N(j)− 1. (3.3)
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Furthermore, by choosing the bases of all trapezoids to have length

bjk − ajk > 2h(λ+ − λ−), (3.4)

we can assume that each point (t, x) ∈ [tj , tj+1] × R is contained in at least one and in not
more than two of these trapezoids.

Next, we recall that the oscillation of u over a set ∆ is defined as

Osc.{u ; ∆} .
= sup

(t,x),(s,y)∈∆
|u(t, x)− u(t, y)|.

For each fixed j ∈ {1, . . . , ν}, the maximum oscillation of u over all trapezoids ∆jk will be
denoted by

κj
.
= max

1≤k≤N(j)
Osc.{u ; ∆jk} . (3.5)

Let now S : [0,+∞[×D 7→ D be the Lipschitz semigroup generated by the hyperbolic system
(1.1), as in (1.6)-(1.7). In particular, t 7→ Stū yields the exact solution to the Cauchy problem
(1.1)-(1.2). As proved in [7, 8], for any approximate solution u one has the error estimate

‖u(T, ·)− ST ū‖L1 ≤ L0 ·
ν−1∑
j=0

∥∥∥u(tj+1, ·)− Shu(tj , ·)
∥∥∥
L1
. (3.6)

For each j, we will show that the corresponding term on the right hand side of (3.6) can be
estimated using (2.10).

Consider the covering of the strip [tj , tj+1]× R in terms of the trapezoids ∆jk, introduced at
(3.2). As in (2.4), for k = 1, . . . , N(j) we shall denote by w(k) the solution to the linearized
problem with constant coefficients

wt +Awx = 0, w(tj , ·) = u(tj , ·), A
.
= Df(u(tj , ξk)), (3.7)

for some given points ξk ∈ ]ajk, bjk [.

Let `
(k)
i be the i-th left eigenvector of the above matrix A, normalized as in (2.5). Using (2.19)

on each trapezoid ∆jk we obtain∫ bjk+hjλ
−−ε2/3

ajk+hjλ++ε2/3

∣∣∣`(k)
i · [u(tj+1, x)− w(k)(tj+1, x)]

∣∣∣ dx
≤ C0 ·Osc.{u ; ∆jk} ·

∫ tj+1

tj

Tot.Var.
{
u(t, ·) ; ]ajk + (t− tj)λ+, bjk + (t− tj)λ−[

}
dt

+

∣∣∣∣∣
∫
ϕ

(k)
i (tj , x)u(tj , x) dx−

∫
ϕ

(k)
i (tj+1, x)u(tj+1, x) dx+

∫∫
∆jk

{
uϕ

(k)
i,t + f(u)ϕ

(k)
i,x

}
dxdt

∣∣∣∣∣
+2ε2/3 · Tot.Var.

{
`i · u(tj , ·) ; [ajk, bjk]

}
+2ε2/3 · Tot.Var.

{
`i · u(tj+1, ·) ; [ajk + hjλ

+ , bjk + hjλ
−]
})

.
= Aik +Bik + Cik +Dik .

(3.8)
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For notational convenience, call χjk the characteristic function of the interval [ajk + hjλ
+ +

ε2/3 , bjk + hjλ
− − ε2/3]. Our next goal is to estimate the quantity

Ej
.
=

∫ +∞

−∞

∣∣∣∣∣u(tj+1, x)−
∑
k

w(k)(tj+1, x) · χjk(x)

∣∣∣∣∣ dx . (3.9)

This can of course be achieved by summing the terms on the right hand side of (3.8) over all
i = 1, . . . , n and k = 1, . . . , N(j). Toward this goal, we recall the key assumption that every
point (t, x) ∈ [tj , tj+1]×R belongs to one and no more than two of the trapezoids ∆jk. More
precisely, we have the implication

|k − k′| ≥ 2 =⇒ ∆jk ∩∆jk′ = ∅. (3.10)

Recalling (3.5), for a fixed i we thus obtain

N(j)∑
k=1

Aik ≤ C0 κj ·
∫ tj+1

tj

2 Tot.Var.{u(t, ·)} dt. (3.11)

N(j)∑
k=1

Cik ≤ 4ε2/3 Tot.Var.{u(tj , ·)},
N(j)∑
k=1

Dik ≤ 4ε2/3 Tot.Var.{u(tj+1, ·)}. (3.12)

The estimate for
∑

k Bjk is a bit more delicate, because if we use (1.11) separately on each
subdomain ∆jk, the error term on the right side would be multiplied by N(j), which can be
a very large number.

For this reason, we argue as follows. For each i ∈ {1, . . . , n}, we consider test functions ϕ, ϕ̃i
which satisfy, for t ∈ [tj , tj+1],

ϕi(t, x) =

{
ϕ

(k)
i (t, x) if (t, x) ∈ ∆jk , k even,

0 otherwise.

ϕ̃i(t, x) =

{
ϕ

(k)
i (t, x) if (t, x) ∈ ∆jk , k odd,

0 otherwise.

For convenience, we denote by `max an upper bound for the norm of all left eigenvectors
`i = `i(u) of all matrices A(u) = Df(u), normalized as in (2.5). With this notation we have

‖ϕi‖W 1∞ ≤ `max · ε−2/3 , ‖ϕ̃i‖W 1∞ ≤ `max · ε−2/3. (3.13)

Applying (1.11) to the test function ϕi, then to ϕ̃i, we obtain∑
k even

Bik ≤ Cεh ε−2/3`max · sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)},

∑
k odd

Bik ≤ Cεh ε−2/3`max · sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)}.

Summing over k, we thus obtain

N(j)∑
k=1

Bik ≤ 2Chε1/3`max · sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)}. (3.14)
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All together, the inequalities (3.11), (3.12), and (3.14) yield∫ +∞

−∞

∣∣∣∣∣u(tj+1, x)−
∑
k

w(k)(tj+1, x) · χjk(x)

∣∣∣∣∣ dx
≤ C0 2nκj

∫ tj+1

tj

Tot.Var.{u(t, ·)} dt+ 4nε2/3Tot.Var.{u(tj , ·)}

+4nε2/3Tot.Var.{u(tj+1, ·)}+ 2Chε1/3`max · sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)}.

(3.15)

Next, we replace the approximate solution u with the exact solution uexact(tj+s, ·) = Ssu(tj , ·)
of (1.1) having the same data at t = tj . As proved in [7], with the same notation used in (3.9),
as long as u(tj , ·) ∈ D remains in the domain of the semigroup, one has∫ +∞

−∞

∣∣∣∣∣uexact(tj+1, x)−
∑
k

w(k)(tj+1, x) · χjk(x)

∣∣∣∣∣ dx
≤ C2 h

(
max

1≤k≤N(j)
Osc. {u(tj , ·) ; ∆jk }

)
· Tot.Var.{u(tj , ·)},

(3.16)

for a suitable constant C2.

Combining (3.15) with (3.16) and recalling (3.5), we obtain∫ +∞

−∞

∣∣∣u(tj+1, x)− (Stj+1−tju(tj , ·))(x)
∣∣∣ dx

≤ C3

(
κj h+ ε2/3 + hε1/3

)
· sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)}.
(3.17)

Recalling that h ≈ ε1/3 and T = νε1/3, from the above analysis we obtain:

Theorem 3.1 Let the basic assumptions (A1)-(A2) hold. Let t 7→ u(t, ·) ∈ D be an ap-
proximate solution to the Cauchy problem (1.1)-(1.2), taking values in the domain D of the
semigroup and satisfying (AL) and (Pε). Then, for some constant C4, the following holds.

Assume that the strip [0, T ] × R can be covered by trapezoids ∆jk, j = 0, . . . , ν − 1, k =
1, . . . N(j) as in (3.2), so that (3.3)-(3.5) hold. Then the difference between u(T, ·) and the
exact solution ST ū is bounded by

‖u(T, ·)− ST ū‖L1 ≤ C4

2T +

ν−1∑
j=0

κj

 ε1/3 · sup
t∈[0,T ]

Tot.Var.{u(t, ·)} . (3.18)

Proof. Let L0 be the Lipschitz constant of the semigroup in (1.7). From (3.6) and (3.17) it
now follows

‖u(T, ·)− ST ū‖L1 ≤ L0 ·
ν−1∑
j=0

∥∥∥u(tj+1, ·)− Shu(tj , ·)
∥∥∥
L1

≤ L0 ·
ν−1∑
j=0

C3

(
κj h+ ε2/3 + hε1/3

)
· sup
t∈[tj ,tj+1]

Tot.Var.{u(t, ·)}

. ≤ L0C3 ·

2T +

ν−1∑
j=0

κj

 ε1/3 · sup
t∈[0,T ]

Tot.Var.{u(t, ·)}.

(3.19)
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This yields (3.18), with C4 = L0C3.

Remark 3.1 Based on the estimate (3.19), we seek to understand at which rate the error in
the approximate solution may approach zero, as ε→ 0.

Having chosen h ≈ ε1/3, we can choose all bounded trapezoids ∆jk, 1 < k < N(j), to be of
diameter O(1) · ε1/3. Moreover, by choosing every bj1 suitably large and negative, and aj,N(j)

large and positive, we can assume that the solution is nearly constant on the unbounded
trapezoids ∆j,1 and ∆j,N(j). Here and in the sequel, the Landau symbol O(1) denotes a
uniformly bounded quantity.

If the exact solution is Lipschitz continuous, we expect that the maximum oscillation (3.5) will
be of size κj = O(1) · ε1/3 for every j ∈ {0, 1, . . . , ν − 1}. In this case, as ε → 0 the quantity
2T +

∑ν
j=1 κj remains uniformly bounded, and the estimate (3.19) indicates that the error

vanishes of order O(1) · ε1/3.

Next, assume that the initial data ū contains a jump, generating a centered rarefaction wave
of strength σ. In this case, taking into account the decay caused by genuine nonlinearity, we
expect that the oscillation of u over a trapezoid ∆jk of diameter O(1) ·ε1/3 will satisfy a bound
of the form

Osc. {u(t, ·) ; ∆jk} = O(1) ·min

{
σ ,

ε1/3

tj

}
. (3.20)

Recalling that tj = jε1/3 and ν = Tε−1/3, this leads to

ν∑
j=1

κj =
ν∑
j=1

min

{
σ ,

Cε1/3

jε1/3

}
= O(1) · log ν = O(1) · | log ε|. (3.21)

In this case, the estimate (3.19) would indicate that the error vanishes of orderO(1)·ε1/3 | log ε|.
The same should hold if the exact solution contains finitely many centered rarefaction waves.

We emphasize, however, that this is only a heuristic expectation. For a numerically computed
solution, it needs to be confirmed by a post-processing algorithm, which can actually provide
a bound on the oscillations κj in (3.18).

4 Solutions with an isolated large shock

The error estimates developed in the previous section are not effective for solutions containing
large shocks. Indeed, around a shock, the oscillation will be large. As a consequence, even
when the diameters of the trapezoids ∆jk in (3.2) approach zero, the maximum oscillation κj
in (3.5) will remain uniformly large. For this reason, we do not expect that the right hand
side of the error bound (3.18) will approach zero as ε → 0. To cope with this problem, in
this section we develop additional tools to estimate the numerical error in a neighborhood of
a shock.

Consider an approximate solution u, which satisfies (AL) and (Pε). We seek a sharper error
bound, assuming that the oscillation of u is concentrated in a narrow region of the form

Γ
.
=
{

(t, x) ; t ∈ [0, h], |x− γ(t)| < δ
}
, γ(t) = x0 + λt. (4.1)

15



2δ
t

b
x

b

∆

aa

l
’

Γ
m

ρ

Γ
r

Γ

0

h

γ

’ x
0

’

Figure 3: The regions Γl,Γm,Γr introduced at (4.13) to trace a large shock, and the trapezoid ∆′ at
(4.4).

Of course, we expect that γ(·) will trace the position of a large shock in the exact solution.
Here ρ, δ > 0 are suitable parameters. Different choices of these values will lead to different
estimates. As a rule of thumb, it will be useful for the reader to keep in mind their order of
magnitude:

h ≈ ε1/3, ρ ≈ ε1/3, δ ≈ ε

ρ
= ε2/3. (4.2)

Referring to Fig. 3, we introduce the points{
a = x0 + λ−h− δ − ρ,

b = x0 + λ+h+ δ + ρ,

{
a′

.
= a− λ+h,

b′
.
= b− λ−h,

(4.3)

and consider the trapezoidal domain

∆′
.
= co

{
(0, a′), (0, b′), (h, a), (h, b)

}
=
{

(t, x) ; t ∈ [0, h] , a′ + λ+t ≤ x ≤ b′ + λ−t
}
.

(4.4)

Our basic assumption is that, outside the narrow strip Γ, the oscillation of u remains small.
More precisely, consider the left and right domains

∆′l =
{

(t, x) ; t ∈ [0, h] , a′ + λ+t ≤ x ≤ x0 − δ + λt
}
,

∆′r =
{

(t, x) ; t ∈ [0, h] , x0 + δ + λt ≤ x ≤ b′ + λ−t
}
,

(4.5)

and define
κ′

.
= max

{
Osc.{u ; ∆′l} , Osc.{u ; ∆′r}

}
. (4.6)

Calling
u−

.
= u(0, x0 − δ), u+ .

= u(0, x0 + δ), (4.7)

the above definition of κ′ implies

|u(t, x)− u−| ≤ κ′ for (t, x) ∈ ∆′l ,

|u(t, x)− u+| ≤ κ′ for (t, x) ∈ ∆′r .
(4.8)

Assuming that κ′ is small, the following result provides a bound on the distance between u
and the exact solution, ‖u(h, ·)− Shū‖L1([a,b]), restricted to the interval [a, b].

16



Theorem 4.1 Let t 7→ u(t, ·) ∈ D be an approximate solution to the Cauchy problem (1.1)-
(1.2), taking values in the domain D of the semigroup, and satisfying (AL) and (Pε). Then,
for some constant C5, in the above setting we have the error bound∫ b

a
|u(h, x)− (Shū)(x)| dx ≤ C5 · h

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)2/3

+ C5

(
ρκ′ + hκ′ + δ

)
. (4.9)

Moreover, there exists a constant K1 such that, if

|u+ − u−| ≥ K1 ·
(
ε

δ
+ κ′ +

ρκ′ + δ

h

)1/3

, (4.10)

then the estimate (4.9) can be improved to∫ b

a
|u(h, x)− (Shū)(x)| dx ≤ C5 · h

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)
. (4.11)

Remark 4.1 It may seem surprising that the error bound (4.11), valid for large jumps, is
actually better than (4.9), which applies to small jumps. To understand what is involved
here, the following observation can be useful. If the strength σ = |u+ − u−| is small, it could
be that this jump is tracing a centered rarefaction wave within the exact solution, which
gets approximated by a single jump by the numerical algorithm (indeed, this is a common
feature of front tracking approximations). If σ is small enough, the entropy produced by the
jump is small, and the assumptions (1.11)-(1.12) can still be satisfied. This is a “worst-case
scenario”: as shown in Fig. 4, the corresponding L1 error is O(1) · hσ2. On the other hand, if
the strength σ of the jump is large, the entropy dissipation assumption (1.12) rules out this
possibility. Therefore, the jump must trace an entropic shock in the exact solution.

Proof of Theorem 4.1.

1. As a first step, using (Pε) we will provide a bound for the error∣∣∣f(u+)− f(u−)− λ(u+ − u−)
∣∣∣. (4.12)

As shown in Fig. 3, denote by Γl, Γm, and Γr the left, middle, and right domains

Γl
.
= {(t, x) ; t ∈ [0, h], x ∈ [γ(t)− δ − ρ , γ(t)− δ]},

Γm
.
= {(t, x) ; t ∈ [0, h], x ∈ [γ(t)− δ , γ(t) + δ]},

Γr
.
= {(t, x) ; t ∈ [0, h], x ∈ [γ(t) + δ , γ(t) + δ + ρ]}.

(4.13)

Recalling (4.1), (4.3) and (4.4), we observe that the above definitions imply

Γm = Γ, Γl ∪ Γm ∪ Γr ⊂ ∆′.

Given ρ > 0, consider a Lipschitz test function ϕ such that, for t ∈ [0, h], one has

φ(t, x) =


0 if |x− γ(t)| ≥ δ + ρ,

1 if |x− γ(t)| ≤ δ,

δ + ρ− |x− γ(t)|
ρ

if δ < |x− γ(t)| < δ + ρ.

(4.14)
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Then choose any unit vector w ∈ Rn and set ϕ(t, x) = φ(t, x) w. By construction, for t ∈ [0, h]
the test function ϕ vanishes outside the union Γl ∪ Γm ∪ Γr. Notice that

‖ϕx‖L∞ =
1

ρ
, ‖ϕt‖L∞ =

|λ|
ρ
.

Assuming that the approximate solution u satisfies (Pε), by (1.11) it follows∣∣∣∣∫ ϕ(0, x)u(0, x) dx−
∫
ϕ(h, x)u(h, x) dx+

∫∫
Γl∪Γm∪Γr

uϕt + f(u)ϕx dxdt

∣∣∣∣
≤ C εh · max{1, |λ|}

ρ
· sup
t∈[0,h]

Tot.Var.{u(t, ·)} .
(4.15)

Using (4.8), we now estimate(∫∫
Γl

+

∫∫
Γm

+

∫∫
Γr

)
{uϕt + f(u)ϕx} dx dt

.
= Il + Im + Ir . (4.16)

Trivially, Im = 0 because ϕt = ϕx = 0 on Γm. By (4.8) it follows

Ir + Il =

∫∫
Γr∪Γl

{uϕt + f(u)ϕx} dxdt

=

∫ h

0

{
[λu+ − f(u+)]− [λu− − f(u−)]

}
w dt+O(1) · hκ′.

(4.17)

Next, by (4.6) one obtains∣∣∣∣∫ ϕ(0, x)u(0, x) dx−
∫
ϕ(h, x)u(h, x) dx

∣∣∣∣
≤
(∫ x0−δ

x0−δ−ρ
+

∫ x0+δ+ρ

x0+δ

) ∣∣∣u(0, x)− u(h, x+ λh)
∣∣∣ dx+

∫ x0+δ

x0−δ

(
|u(0, x)|+ |u(h, x+ λh)|

)
dx

≤ ρ ·Osc.{u ; ∆′l}+ ρ ·Osc.{u ; ∆′r}+ 2δ · 2‖u‖L∞ ≤ 2ρκ′ + 4δ ‖u‖L∞ .
(4.18)

From (4.15), by (4.17) and (4.18) it follows∣∣∣∣∫ h

0

{
λ(u+ − u−)− [f(u+)− f(u−)]

}
w dt

∣∣∣∣ = O(1) ·
(
ε h

ρ
+ hκ′ + ρκ′ + δ

)
, (4.19)

where the factor O(1) already accounts for the uniform bound on the total variation. Choosing
the unit vector

w =
λ(u+ − u−)− [f(u+)− f(u−)]∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]

∣∣∣ ,
by (4.19) we conclude that the error in the Rankine-Hugoniot equations has size∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]

∣∣∣ = O(1) ·
(
εh

ρ
+ hκ′ +

ρκ′ + δ

h

)
. (4.20)

2. Next, consider the piecewise constant function

w(t, x)
.
=

{
u− if x < x0 + λt,

u+ if x > x0 + λt.
(4.21)
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Aim of the next two steps is to prove that the difference between w and an exact solution
having the same initial data is bounded by

‖w(h, ·)− Shw(0, ·)‖L1(R) = O(1) · h
∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]

∣∣∣. (4.22)

With this goal in mind, define the averaged Jacobian matrix

A =

∫ 1

0
Df(su+ + (1− s)u−) ds.

Call λ1 < · · · < λn the eigenvalues of A. Let {r1, . . . , rn} and {`1, . . . , `n} be dual bases of
right and left eigenvectors of A, normalized as (2.5). Moreover, let ci, `max be such that

u+ − u− =

n∑
i=1

ciri , `max
.
= max{|`1|, . . . , |`n|}. (4.23)

For every i = 1, . . . , n, we then have∣∣∣`i · (λI −A)(u+ − u−)
∣∣∣ = |ci| |λ− λi| ≤ `max

∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]
∣∣∣. (4.24)

Let i∗ ∈ {1, . . . , n} be a characteristic family such that |λ − λi∗ | = mini |λ − λi|. Since the
eigenvalues of A are strictly separated, by (4.24) it follows

|ci| = O(1) ·
∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]

∣∣∣ for all i 6= i∗. (4.25)

We now consider the solution to the Riemann problem with left and right states u−, u+. Let
σ1, . . . , σn be the sizes of the waves in this solution. As usual, if the i-th field is genuinely
nonlinear, we choose the sign so that σi > 0 corresponds to a rarefaction wave, while σi < 0
yields an entropy admissible shock. For future use, we denote by

u− = u0 , u1 , . . . , un = u+, (4.26)

the intermediate states. If the i∗-th characteristic field is linearly degenerate, standard esti-
mates on the strength of these waves yield the bound

n∑
i=1

|σi − ci| = O(1) ·
∑
i 6=i∗
|ci| . (4.27)

Indeed, (4.27) is trivially true when the right hand side is zero. The general case is obtained
by an application of the implicit function theorem. The same estimate (4.27) is achieved when
the i∗-th field is genuinely nonlinear and ci∗ < 0. By (4.27) it follows

|ui∗ − u+|+ |ui∗−1 − u−|+
∑
i 6=i∗
|ui − ui−1| = O(1) ·

∑
i 6=i∗
|ci|. (4.28)

In both of the above cases, combining (4.24), (4.25), and (4.28), the distance between w(h, ·)
and an exact solution can be estimated as

1

h
‖w(h, ·)− Shw(0, ·)‖L1(R)

= O(1) ·
∑
i 6=i∗
|ci|+O(1) · |λi∗ − λ| |ci∗ |+O(1) · (|ui∗ − u+|+ |ui∗−1 − u−|) |λ|

= O(1) ·
∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]

∣∣∣
= O(1) ·

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)
.

(4.29)
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Notice that the last estimate was obtained from (4.20).
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Figure 4: Comparing the entropic solution wexact to the Riemann problem with left and right states
u−, u+ with another weak solution w̃ containing a non-admissible i∗-shock of strength σi∗ > 0. Taking
into account the presence of a centered rarefaction wave in wexact, The difference between the two
solutions can be bounded as ‖w̃(h, ·)− wexact(h, ·)‖L1 = O(1) · hσ2

i∗ .

3. It remains to study the case where the i∗-th field is genuinely nonlinear, but ci∗ > 0.
For this purpose, call w̃ = w̃(t, x) the solution to the Riemann problem with initial data
w̃(0, ·) = w(0, ·), which contains a non-entropic i∗-shock of size σ∗, while all other waves are
entropy admissible. We observe that all the above estimates still apply to w̃. In particular,

1

h
‖w̃(h, ·)− Shw(0, ·)‖L1(R) = O(1) ·

∑
i 6=i∗
|ci|+O(1) · |λi∗ − λ| |ci∗ |. (4.30)

It remains to estimate the difference between w̃ and the entropic solution to the same Riemann
problem. Call u− = ũ0, ũ1, . . . , ũn = u+ the intermediate states for the non-entropic solution
w̃. Since shock and rarefaction curves have a second order tangency, comparing with the
intermediate states (4.26) of the entropic solution, we find

|ũi − ui| = O(1) · σ3
i∗ i = 0, 1, . . . , n. (4.31)

Taking into account that the wave connecting the states ui∗−1 and ui∗ is a centered rarefaction
instead of a single jump, we obtain the bound

1

h
‖w(h, ·)− w̃(h, ·)‖L1(R) = O(1) · σ2

i∗ . (4.32)

Combining (4.30) with (4.32) we conclude

1

h
‖w(h, ·)− Shw(0, ·)‖L1(R) = O(1) ·

∑
i 6=i∗
|ci|+O(1) · |λi∗ − λ| |ci∗ |+O(1) · c2

i∗ . (4.33)

We claim that the jump ci∗ > 0 must be small, otherwise the approximate entropy inequality
(1.12) would fail. Intuitively, this means that the approximate solution cannot contain a large,
non-admissible shock. Indeed, let η be a convex entropy, with entropy flux q, such that (1.8)
holds for every non-admissible shock of the i∗ family. Let φ be the test function in (4.14).
Arguing as in (4.15), by (1.12) we now obtain∫

φ(0, x)η(u(0, x)) dx−
∫
φ(h, x)η(u(h, x)) dx+

∫∫
Γl∪Γm∪Γr

η(u)φt + q(u)φx dxdt

≥ −O(1) · ε
ρ
h .

(4.34)
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As in (4.18), we have∣∣∣∣∫ φ(0, x)η(u(0, x)) dx−
∫
φ(h, x)η(u(h, x)) dx

∣∣∣∣ = O(1) · (ρκ′ + δ) . (4.35)

Repeating the argument at (4.16)-(4.17) we obtain∫ h

0

∫
{η(u)φt+q(u)φx} dxdt = h

{
[λη(u+)−q(u+)]− [λη(u−)−q(u−)]

}
+O(1) ·hκ′. (4.36)

Next, consider the state ũ+, connected to u− by a (not entropy admissible) i∗-shock of size
ci∗ > 0. By the implicit function theorem, one has the bound

|ũ+ − u+| = O(1) ·
∑
i 6=i∗
|ci|. (4.37)

Recalling (1.8), from (4.36) we obtain

1

h

∫ h

0

∫
{η(u)φt + q(u)φx} dxdt

=
{

[λη(ũ+)− q(ũ+)]− [λη(u−)− q(u−)]
}

+O(1) · |ũ+ − u+|+O(1) · κ′

≤ − c0|ũ+ − u−|3 +O(1) · |ũ+ − u+|+O(1) · κ′

≤ − c0c
3
i∗ +O(1) ·

∑
i 6=i∗
|ci|

≤ − c0c
3
i∗ +O(1) ·

∣∣∣λ(u+ − u−)− [f(u+)− f(u−)]
∣∣∣,

(4.38)

where (4.25) was used in the last inequality. Combining (4.38) with (4.34), (4.35), and (4.36),
and using (4.20) to bound the last term in (4.38), we obtain

ci∗ = O(1) ·
(
ε

ρ
+ κ′ +

ρ

h
κ′ +

δ

h

)1/3

. (4.39)

Starting from (4.33) and using (4.24), (4.25), (4.20), and (4.39), we obtain

1

h
‖w(h, ·)− Shw(0, ·)‖L1(R) = O(1) ·

(
ε

δ
+ κ′ +

ρκ′ + δ

h

)2/3

. (4.40)

4. Notice that the estimate (4.40) is somewhat weaker, compared with (4.29). In this step we
show that, if the jump |u+ − u−| is sufficiently large, then in the genuinely nonlinear case we
must have ci∗ < 0, hence the stronger estimate (4.29) holds. Recalling (4.23), notice that

|ci∗ | ≥ |u+ − u−| −
∑
i 6=i∗
|ci| ≥ |u+ − u−| − O(1) ·

(
ε

δ
+ κ′ +

ρκ′ + δ

h

)
. (4.41)

Therefore, there exists a constant K1 large enough so that, if (4.10) holds, then (4.41) provides
a contradiction with (4.39). Since (4.39) was obtained by assuming that ci∗ > 0, we conclude
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that (4.10) is a sufficient condition to guarantee that ci∗ ≤ 0. In this case, the stronger
estimate (4.29) holds.

5. Restricted to the interval [a, b], by (4.8) and (4.40), the difference between u and the exact
solution having initial data u(0, x) = ū(x) can now be estimated by∫ b

a
|u(h, x)− (Shū)(x)| dx

≤
(∫ x0+λh−δ

a
+

∫ x0+λh+δ

x0+λh−δ
+

∫ b

x0+λh+δ

)
|u(h, x)− w(h, x)| dx

+‖w(h, ·)− Shw(0, ·)‖L1 + L0

(∫ x0−δ

a′
+

∫ x0+δ

x0−δ
+

∫ b′

x0+δ

)
|w(0, x)− ū(x)| dx

≤
[
(b− a− 2δ)κ′ + 4δ‖u‖L∞

]
+O(1) · h

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)2/3

+
[
(b′ − a′ − 2δ)κ′ + 4δ‖u‖L∞

]
≤ C5 · h

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)2/3

+ C5(ρ+ h)κ′ + C5δ ,

(4.42)
for a suitable constant C5. Indeed, from (4.3) it follows

b− a = 2ρ+ 2δ + (λ+ − λ−)h, b′ − a′ = 2ρ+ 2δ + 2(λ+ − λ−)h. (4.43)

On the other hand, if (4.10) holds, then we can use (4.29) instead of (4.40). The same argument
used in (4.42) now yields∫ b

a
|u(h, x)− (Shū)(x)| dx ≤ C5 · h

(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)
+ C5(ρ+ δ + h)κ′ + C5δ . (4.44)

5 A post-processing algorithm

There are various ways to use the estimates developed in Sections 3 and 4, to obtain a posteriori
error bounds. The underlying idea is to isolate a finite number of thin regions enclosing the
large jumps, where the estimates (4.9) or (4.11) can be used. Then use the bounds (3.18) on
the remaining portion of the domain.

The algorithm described below can be applied to any BV solution of (1.1), but it is designed
in order to be most effective when the exact solution is piecewise Lipschitz with finitely many
shocks (or contact discontinuities) and centered rarefaction waves.

Let u : [0, T ]×R 7→ Rn be an approximate solution of (1.1)-(1.2), which satisfies the properties
(AL) and (Pε). In this section we introduce an algorithm which checks its total variation,
identifies the location of large shocks, and constructs trapezoidal subdomains where the oscil-
lation remains small. In view of our previous analysis, this will yield an error bound on the
L1 distance (1.4) between u and an exact solution.

The algorithm includes three steps.
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STEP 1. For each t ∈ [0, T ], we compute the total variation of u(t, ·). Let δ0 > 0 be the
constant in (1.5). If

sup
t∈[0,T ]

Tot.Var.{u(t, ·)} ≤ δ0, (5.1)

then the algorithm can proceed. On the other hand, if (5.1) fails, the approximate solution
may lie outside the domain of the semigroup and no error estimate can be provided. In this
case, the algorithm stops.

STEP 2. We now split the interval [0, T ] into equal subintervals of size h = ε1/3, inserting the
times tj = j h, j = 0, 1, . . . , ν = T/h. The next goal is to identify the location of the large
shocks, on each strip [tj , tj+1]×R. For this purpose, we set ρ = h = ε1/3, δ = ε2/3, and choose
two additional parameters:

• A lower bound σmin for the size of the jump to be traced.

• An upper bound κ′ for the oscillation of u on a region to the right and to the left of the
jump.

In view of (4.10), it will be convenient to choose these values so that

σmin ≥ K1 ·
(

2ε1/3 + 2κ′
)1/3

. (5.2)

In this way, the sharper estimate (4.11) in Theorem 4.1 will be available.

Recalling the construction at (4.1)–(4.5), we introduce

Definition 5.1 Given an interval [x0 − δ, x0 + δ] and a speed λ ∈ [λ−, λ+], consider the
polygonal regions

Γ
.
=
{

(t, x) ; t ∈ [tj , tj+1] , x0 − δ + λ(t− tj) ≤ x ≤ x0 − δ + λ(t− tj)
}
,

∆′l =
{

(t, x) ; t ∈ [tj , tj+1] , a′ + λ+(t− tj) ≤ x ≤ x0 − δ + λ(t− tj)
}
,

∆′r =
{

(t, x) ; t ∈ [tj , tj+1] , x0 + δ + λ(t− tj) ≤ x ≤ b′ + λ−(t− tj)
}
,

(5.3)

with a′, b′ as in (4.3). We say that Γ traces a shock during the time interval [ti, ti+1] if

max
{

Osc.{u ; ∆′l} , Osc.{u ; ∆′r}
}
≤ κ′, (5.4)

|u(tj , x0 + δ)− u(tj , x0 + δ)| ≥ σmin . (5.5)

In the following, we shall denote by

∆(j`) =
{

(t, x) ; t ∈ [tj , tj+1] , a′j`+λ
+(t−tj) ≤ x ≤ b′j`+λ

−(t−tj)
}
, ` = 1, . . . , N ′(j),

(5.6)
the trapezoids containing the traced shocks (see Fig. 5).
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STEP 3. We cover the remaining region [tj , tj+1] \
⋃N ′(j)
`=1 ∆(j`) with finitely many trapezoids

of the same form as in (3.2)

∆jk =

{
(t, x) ; t ∈ [tj , tj+1],

tj+1 − t
h

cjk +
t− tj
h

(cjk + hλ+ + ε2/3) ≤ x ≤ tj+1 − t
h

djk +
t− tj
h

(djk + hλ− − ε2/3)

}
,

(5.7)
in such a way that each point (t, x) ∈ [tj , tj+1] × R is contained in at most two of these
trapezoids (see Fig. 5). More precisely, we can assume that (3.10) holds, for all k, k′ ∈
{1, . . . , N(j)}. Within each time interval [tj , tj+1], we compute the maximum oscillation of u
over these trapezoids:

κj
.
= max

1≤k≤N(j)
Osc.{u ; ∆jk}. (5.8)

t
j+1

t

(jl)

x

t

∆
j,k∆ j,k+1∆ j,k−1

jk
j c

j,k+1

∆

a
jl b’

jl
’ c

jk d

Figure 5: Implementing a post-processing algorithm, each strip [tj , tj+1]×R is covered with trapezoids
∆jk where the oscillation remains small (as far as possible), and trapezoids ∆(j`) containing a large
traced shock.

The next result provides an a posteriori estimate on the L1 error in the approximate solution.
Here the estimate refers to the outcome of a post-processing algorithm, depending on the choice
of κ′ and σmin in (5.4)-(5.5). We remark that any choice of such parameters, determining which
shocks are actually traced, leads to some error bound. However, the sharpness of the estimate
heavily depends on a suitable choice of these parameter values.

Theorem 5.1 Consider a system of conservation laws satisfying the basic assumptions (A1)-
(A2). Then there exist constants C ′, C ′′ such that the following holds.

Let u : [0, T ]×R 7→ Rn be an approximate solution to the Cauchy problem (1.1)-(1.2), satisfying
the conditions (AL) and (Pε), together with (5.1). Let κj, κ

′ be the oscillation bounds in (3.5)
and (5.4), for a covering with trapezoids ∆jk, ∆(j`) produced by a post-processing algorithm.
Then the difference between u(T, ·) and the exact solution is bounded by

‖u(T, ·)− ST ū‖L1(R) ≤ C ′

T +

ν−1∑
j=0

κj

 ε1/3 + C ′′
(
ε1/3κ′ + ε2/3

)
·
ν−1∑
j=0

N ′(j) . (5.9)

Proof. 1. Calling L0 be the Lipschitz constant of the semigroup at (1.7), we have

‖u(T, ·)− ST ū‖L1 ≤ L0 ·
ν−1∑
j=0

∥∥∥u(tj+1, ·)− Shu(tj , ·)
∥∥∥
L1
. (5.10)
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For each j, in order to estimate the difference u(tj+1, ·)− Shu(tj , ·), we consider a covering of
the strip [tj , tj+1]×R by trapezoids ∆(j`), ` = 1, . . . N ′(j) as in (5.6), and ∆jk, k = 1, . . . , N(j),
as in (5.7).

2. Recalling (4.3), we denote by {tj+1} × [aj`, bj`] the upper boundaries of the trapezoids
∆(j`). These are the trapezoids which contain one large traced shock. Moreover, we call
{tj+1} × [ĉjk, d̂jk] the upper boundaries of the remaining trapezoids ∆jk. According to (5.7),
this means

[ĉjk , d̂jk] =
[
cjk + hλ+ + ε2/3 , djk + hλ− − ε2/3

]
.

3. The same argument used at (3.17) now yields an error bound on the set

Vj
.
=

N(j)⋃
k=1

[ĉjk , d̂jk].

Indeed, recalling the uniform bound (5.1) on the total variation, one obtains∫
Vj

∣∣∣u(tj+1, x)− (Shu(tj , ·)) (x)
∣∣∣ dx ≤ C3

(
κj h+ ε2/3 + hε1/3

)
· δ0 . (5.11)

On the other hand, for each ` ∈ {1, . . . , N ′(j)}, applying the estimate (4.11) on the interval
[aj`, bj`] we obtain the error bound∫ bj`

aj`

|u(h, x)− (Shū)(x)| dx ≤ C5 · h
(
ε

ρ
+ κ′ +

ρκ′ + δ

h

)
+ C5

(
ρκ′ + hκ′ + δ

)
. (5.12)

4. Recalling our choices

ρ = h = ε1/3, δ = ε2/3, νh = νε1/3 = T,

summing the terms in (5.11) over all j ∈ {0, . . . , ν− 1}, and summing the terms in (5.12) over
all j and all ` ∈ {1, . . . , N ′(j)}, we obtain (5.9).

Remark 5.1 It is interesting to speculate about the rate at which the error bound on the
right hand side of (5.9) will approach zero as ε → 0. We begin by assuming that the exact
solution we are trying to compute is piecewise Lipschitz, with a finite number of centered
rarefaction waves, and finitely many non-interacting shocks.

As is Remark 3.1, the first term on the right hand side of (5.9) is expected to approach zero
as ε1/3| log ε|. Concerning the second term, we can fix a constant C0 and choose κ′ = C0ε

1/3.
If the exact solution contains N ′ shocks, we expect that, for all ε > 0 sufficiently small, each
of these shocks will be traced, satisfying the inequality (5.2). The second term on the right
hand side of (5.9) will thus have the form

C ′′
(
ε1/3C0ε

1/3 + ε2/3
)
· νN ′ = O(1) · ε1/3.
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In this case, (5.9) would yield

‖u(T, ·)− ST ū‖L1(R) = O(1) · ε1/3| log ε|. (5.13)

More generally, let us now assume that some of the shocks in the solution interact with each
other. Let τ ∈ [0, T ] be one of the (finitely many) interaction times. During a time interval
[τ−, τ+] around τ , of size τ+ − τ− = O(1) · ρ, we shall not be able to trace the interacting
shocks. As a consequence, for [tj , tj+1] ∩ [τ−, τ+] 6= ∅, the oscillation on one of the trapezoids
∆jk in (5.7) (the one which contains a non-traced shock) will be large. This will force κj to
be large. However, we expect that the total length of all intervals [tj , tj+1], where some large
shock cannot be traced, will have size

O(1) · ρ · [total number of shock interactions] = O(1) · ε1/3.

In conclusion, the presence of finitely many shock interactions will contribute an additional
error term O(1) · ε1/3 to the right hand side of (5.9). This will not change its overall order of
magnitude.

One could also argue that, if the solution contains a finite number of compression waves, from
which new shocks are formed, these (non-traced) waves would contribute an error term of the
same nature as a centered rarefaction wave. Therefore, a bound of the order (5.13) would still
be obtained.

Once again, we emphasize that the bounds (5.13) represent only a heuristic expectation. For
a numerically computed solution, they needs to be confirmed by a post-processing algorithm,
computing a bound on the oscillations κj in (3.5).

6 Properties of approximation schemes

In this section we analyze various approximation methods, and check that they all satisfy the
assumptions (AL) and (Pε).
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∆

∆
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j−1 j j+1
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Figure 6: Left: the upwind Godunov scheme is obtained by solving the Riemann problems at each
node Pmj = (tm, xj), then by replacing each solution by its average on each of the intervals [xj , xj+1].
By the conservation equation, these averages can be explicitly computed by (6.2). Right: a similar
construction, on a staggered grid, leads to the Lax-Friedrichs scheme (6.12).

6.1 The Godunov scheme.

To simplify our discussion, without loss of generality we assume that all characteristic speeds
(i.e., all eigenvalues of the Jacobian matrices Df(u)) lie in the interior of the interval [0, 1].
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This can be achieved by a linear rescaling and a shift of the coordinates t, x. In this case, the
Godunov scheme reduces to an upwind scheme. Given a mesh size ε > 0, consider the grid
points

Pmj = (tm, xj) = (εm, εj).

As shown in Fig. 6, left, we consider approximate solutions u = u(t, x) with the following
properties:

(i) At each time t = tm, the function u(tm, ·) is piecewise constant, namely

u(tm, x) = Umj for xj < x < xj+1 ,

(ii) For t ∈ [tm, tm+1[ , the function u(t, ·) yields the exact solution to (1.1) with initial data
u(tm, ·). This is obtained by solving the Riemann problems at each node xj .

(iii) At time tm+1, we take the average of u(tm+1− , ·) on each interval [xj , xj+1]. Namely

u(tm+1, x) = Um+1,j
.
=

1

ε

∫ xj+1

xj

u(tm+1, y) dy for xj < x < xj+1 . (6.1)

Since we are assuming that all wave speeds are contained in the interval [0, 1], using the
conservation equations these average values Um+1,j can be computed by

Um+1, j = Um,j +
(
f(Um,j−1)− f(Um,j)

)
. (6.2)

We check that an approximate solution u produced by the Godunov scheme with mesh size
ε > 0 satisfies the Lipschitz condition (AL). Indeed, for every 0 ≤ τ < τ ′ ≤ T with τ, τ ′ ∈ εN,

‖u(τ ′, ·)− u(τ, ·)‖L1(R) ≤
∑

τ<tm≤τ ′

∑
j

∫ xj

xj−1

|u(tm+1, x)− u(tm, x)| dx

=
∑

τ<tm≤τ ′

∑
j

ε
∣∣∣f(Um,j−1)− f(Um,j)

∣∣∣ ≤ ε
∑

τ<tm≤τ ′
Tot.Var.

{
f(u(tm, ·))

}
≤ (τ ′ − τ) · Lip(f) · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}.

(6.3)

Here and in the sequel, Lip(f) denotes the Lipschitz constant of the function f .

To prove that the property (Pε) also holds, we shall use

Lemma 6.1 Let w : [0, ε] 7→ R be any function with bounded variation, and assume ϕ ∈ C1.
Consider the average value

w
.
=

1

ε

∫ ε

0
w(y) dy.

Then ∣∣∣∣∫ ε

0
[w(x)− w]ϕ(x) dx

∣∣∣∣ ≤ Tot.Var.{w ; ]0, ε[ } · ε2‖ϕx‖L∞ . (6.4)

27



Proof. Call ϕ the average value of ϕ over [0, ε]. Then∣∣∣∣∫ ε

0
[w(x)− w]ϕ(x) dx

∣∣∣∣ =

∣∣∣∣∫ ε

0
[w(x)− w] (ϕ(x)− ϕ) dx

∣∣∣∣
≤
∫ ε

0
‖w(·)− w‖L∞ · ‖ϕ(·)− ϕ‖L∞ dx ≤ ε · Tot.Var.{w ; ]0, ε[ } · ε‖ϕx‖L∞ .

(6.5)

Next, fix ε > 0 and consider any test function ϕ ∈ C1
c (R2). Since the Godunov approximations

coincide with exact solutions on each of the half-open intervals [tm, tm+1[ , we have∣∣∣∣∣
∫
u(τ, x)ϕ(τ, x) dx−

∫
u(τ ′, x)ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{uϕt + f(u)ϕx} dxdt

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ<tm≤τ ′

∫
[u(tm, x)− u(tm−, x)]ϕ(tm, x) dx

∣∣∣∣∣∣ .
(6.6)

Using Lemma 6.1 we obtain∑
τ<tm≤τ ′

∣∣∣∣∫ [u(tm, x)− u(tm−, x)]ϕ(tm, x) dx

∣∣∣∣
≤

∑
τ<tm≤τ ′

∑
j

ε2 Tot.Var.
{
u(tm, ·) ; ]jε, (j + 1)ε[

}
· ‖ϕx‖L∞

= ε (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.

(6.7)

This yields (1.11). In order to prove (Pε), given a convex entropy with entropy flux q, it
remains to check that (1.12) is satisfied as well. Let ϕ ≥ 0 be a test function in C1

c (R2).
Integration by parts yields∫

η(u(τ, x))ϕ(τ, x) dx−
∫
η(u(τ ′, x))ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
η(u)ϕt + q(u)ϕx dt dx

= −
∫ τ ′

τ

∫
{η(u)t + q(u)x}ϕ dx dt+

∑
τ<tm≤τ ′

∫
(η(u(tm−, x))− η(u(tm, x)))ϕ(tm, x)dx.

(6.8)
By construction, the approximation u is an entropy weak solution of the hyperbolic system of
conservation law in every strip [tm−1, tm[×R, therefore the first term on the right hand side
of (6.8) is non negative.

By the convexity of η, we can apply Jensen’s inequality and obtain

η(u(tm, x)) = η
(1

ε

∫ xj+1

xj

u(tm−, y) dy
)
≤ 1

ε

∫ xj+1

xj

η(u(tm−, y)) dy , (6.9)
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for xj < x < xj+1. In turn, this yields∑
τ<tm≤τ ′

∫
R

(η(u(tm−, x))− η(u(tm, x)))ϕ(tm, x)dx

=
∑

τ<tm≤τ ′

∑
j

∫ xj+1

xj

(η(u(tm−, x))− η(u(tm, x)))ϕ(tm, x) dx

≥
∑

τ<tm≤τ ′

∑
j

∫ xj+1

xj

(
η(u(tm−, x))− 1

ε

∫ xj+1

xj

η(u(tm−, y)) dy
)
ϕ(tm, x) dx

≥ − Lip(η) ε · (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.

(6.10)

6.2 The Lax-Friedrichs scheme.

Consider step sizes ∆t,∆x > 0 so that all characteristic speeds satisfy the CFL condition

|λi| <
∆x

∆t
. (6.11)

As shown in Fig. 6, right, we then construct a staggered grid with nodes at the points

Pmj = (m∆t, j∆x), m+ j even.

The Lax-Friedrichs approximations are defined inductively as follows. Given a piecewise con-
stant function u(tm, ·), with jumps at the points Pmj with m + j even, for t ∈ [tm, tm+1[ we
let u(t, ·) be the exact solution of the system of conservation laws (1.1) with the given data at
t = tm. We then define u(tm+1, ·) to be the piecewise constant function obtained by taking the
average of u(tm+1−, ·) over every interval [xj−1, xj+1] with m + j even. By the conservation
equations, if all characteristic speeds satisfy |λi| < ∆x/∆t, these average values

Um+1,j =
1

2∆x

∫ xj+1

xj−1

u(tm+1−, x) dx , m+ j even,

are inductively computed by the Lax-Friedrichs scheme

Um+1,j =
1

2
(Um,j+1 + Um,j−1)− ∆t

2∆x
[f(Um,j+1)− f(Um,j−1)]. (6.12)

Setting ε = ∆t, both the approximate Lipschitz condition (AL) and the property (Pε) can
be proved in the same way as for the Godunov scheme. We thus omit details.

Remark 6.1 If the stability condition (6.11) is violated, it is well known that the numerical
algorithm becomes unstable. As a consequence, the numerical solution will develop a large
amount of oscillations. In this case, the total variation becomes too large, the assumption
(5.1) fails, and the error bound (5.9) does not apply.

6.3 Backward Euler approximations.

We now discretize time but keep space continuous. We assume that all characteristic speeds
are strictly positive. Calling ε = ∆t the time step, the backward Euler approximations are
defined in terms of the implicit equations

u(t+ ε, x) = u(t, x)− εf(u(t+ ε, x))x .
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Equivalently, setting Um(x) = u(mε, x), one needs to solve the sequence of ODEs

Um+1(x) = Um(x)− ε f(Um+1(x))x . (6.13)

The convergence of these approximations for general n × n hyperbolic systems has not been
studied. Complete results are available in the scalar case [20], which is covered by the general
theory of nonlinear contractive semigroups [21].

Let Um(·) be a sequence of solutions to (6.13) with m = 0, 1, . . . and define the approximate
solution u by setting

u(t, x) = Um(x) for mε ≤ t < (m+ 1)ε.

Then (AL) follows by

‖u(τ, ·)− u(τ ′, ·)‖L1(R) ≤
∑

τ<tm≤τ ′
‖u(tm, ·)− u(tm−1, ·)‖L1(R)

= ε
∑

τ<tm≤τ ′

∫
|f(u(tm, x))x| dx

≤ Lip(f) (τ ′ − τ) ·
(

supt∈[τ,τ ′] Tot.Var.{u(t, ·)}
)
.

Next, we verify (Pε). As before, fix 0 ≤ τ < τ ′ ≤ T with τ, τ ′ ∈ εN. Given a test function
ϕ ∈ C1

c (R2), we compute∣∣∣∣∣
∫
u(τ, x)ϕ(τ, x) dx−

∫
u(τ ′, x)ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{uϕt + f(u)ϕx} dx dt

∣∣∣∣∣
=

∣∣∣∣∣∣−
∫ τ ′

τ

∫
f(u)xϕdx dt+

∫ ∑
τ<tm≤τ ′

(
u(tm−1, x)− u(tm, x)

)
ϕ(tm, x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣−
∫  ∑

τ<tm≤τ ′

u(tm−1, x)− u(tm, x)

ε

∫ tm

tm−1

ϕ(t, x)dt

 dx

+

∫ ∑
τ<tm≤τ ′

(
u(tm−1, x)− u(tm, x)

)
ϕ(tm, x) dx

∣∣∣∣∣
≤
∫ ∑

τ<tm≤τ ′
|u(tm−1, x)− u(tm, x)|

∣∣∣∣∣ϕ(tm, x)− 1

ε

∫ tm

tm−1

ϕ(t, x)dt

∣∣∣∣∣ dx
≤ ε (τ ′ − τ) ‖ϕt‖L∞ Lip(f) ·

(
sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}
)
.

Finally, let η be a convex entropy with entropy flux q. If ϕ ≥ 0 is a test function in C1
c (R2),
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we have∫
η(u(τ, x))ϕ(τ, x) dx−

∫
η(u(τ ′, x))ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{η(u)ϕt + q(u)ϕx} dx dt

= −
∫ τ ′

τ

∫
q(u)xϕ dt dx+

∫ ∑
τ<tm≤τ ′

(
η(u(tm−1, x))− η(u(tm, x))

)
ϕ(tm, x) dx

= −
∑

τ<tm≤τ ′

∫ (
Dη(u(tm, x)) · u(tm−1, x)− u(tm, x)

ε

∫ tm

tm−1

ϕ(t, x)dt
)
dx

+

∫ ∑
τ<tm≤τ ′

(
η(u(tm−1, x))− η(u(tm, x))

)
ϕ(tm, x) dx

≥
∑

τ<tm≤τ ′

∫ (
η(u(tm−1, x))− η(u(tm, x)

)(
ϕ(tm, x)− 1

ε

∫ tm

tm−1

ϕ(t, x)dt
)
dx

≥ − ε (τ ′ − τ) ‖ϕt‖L∞ Lip(η)Lip(f) ·
(

sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}
)
.

Notice that the convexity of η was here used in the inequality

Dη(u(a, x)) · (u(a, x)− u(b, x)) ≥ η(u(a, x))− η(u(b, x)). (6.14)

6.4 The smoothing method.

Next, we consider an approximate solution to (1.1)-(1.2) obtained by periodic mollifications,
taking the convolution with a smoothing kernel K ∈ C∞c (R). We assume{

K(x) ∈ [0, 1] for |x| < 1,

K(x) = 0 for |x| ≥ 1,
K(x) = K(−x),

∫
K(x) dx = 1, (6.15)

and set Kδ(x)
.
= δ−1K(δ−1x). We fix a time step ε > 0 and define an ε-approximate solution

u by setting
tm = mε, u(tm, ·) = Kδ ∗ u(tm−, ·),

and letting u be a classical solution to (1.1) on each half-open interval [tm, tm+1[ .

As in the scalar case (see [26]), the method is well-defined provided that the ratio ε/δ is
suitably small. To see this, in connection with the quasilinear system

ut +A(u)ux = 0, A(u) = Df(u), (6.16)

we choose bases {r1(u), . . . , rn(u)} and {l1(u), . . . , ln(u)} of right and left eigenvectors of A(u),
normalized so that

|ri(u)| = 0, li(u) · ri(u) =

{
1 if i = j,
0 if i 6= j.

(6.17)

We denote by uix = li ·ux the i-th component of the gradient vector ux w.r.t. this basis. From
(6.17) and (6.16) it follows

ux =
n∑
i=1

uixri(u) ut = −
n∑
i=1

λi(u)uixri(u).
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Differentiating the first equation w.r.t. t and the second one w.r.t. x, then equating the results,
one obtains a semilinear system of evolution equations for the scalar components uix, having
the form

(uix)t + λi(u
i
x)x =

n∑
j,k=1

gijk(u)ujxu
k
x. (6.18)

See for example Section 1.6 in [9] for details. Assume that

|gijk(u)| < Mg

for all i, j, k, and all u in the domain were the solution is defined. Let t 7→ Z(t) be the solution
to the ODE

d

dt
Z(t) = n2Mg Z

2(t), Z(0) = Z0 . (6.19)

Assume that, at time t = 0, there holds

|uix(0, x)| ≤ Z0 for all x ∈ R, i = 1, . . . , n. (6.20)

A comparison argument now yields

|uix(t, x)| ≤ Z(t) for all x ∈ R, t ∈ [0, T0[ ,

where

T0 =
1

n2Mg Z0

is the time where the solution to (6.19) blows up.
It remains to give an upper bound for the gradient components after each mollification. This
is achieved observing that

‖uix(tm, ·)‖L∞ ≤ ‖ux(tm, ·)‖L∞ · sup
u
|li(u)|

≤ Tot.Var.{u(tm−, ·)}
δ

‖K‖L∞ · sup
u
|li(u)|.

Therefore, if we choose

0 < ε <
δ

n2Mg ‖K‖L∞

(
sup
m

Tot.Var.{u(tm−, ·)}
)−1(

sup
i

sup
u
|li(u)|

)−1
, (6.21)

all the components uix remain bounded on each strip [tm, tm+1[×R, and the approximate
solution is well-defined.

We now check that the assumption (AL) holds:

‖u(τ ′, ·)− u(τ, ·)‖L1(R)

≤
∑

τ<tm≤τ ′

∫
| Kδ ∗ u(tm−, x)− u(tm−, x)| dx+

∑
τ<tm≤τ ′

∫
|u(tm−, x)− u(tm−1, x)| dx

≤ 2δ
(τ ′ − τ

ε

)
· sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}+ L (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}

= C (τ ′ − τ) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.
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Here we are using the estimate∫
| Kδ ∗ u(tm−, x)− u(tm−, x)| dx

≤
∫ (∫ δ

−δ
Kδ(y) sup

|y|<δ

∣∣∣u(tm−, x)− u(tm−, x− y)
∣∣∣ dy) dx

≤
∫

Tot.Var.
{
u(tm−, ·) ; ]x− δ, x+ δ[

}
dx ≤ 2δ · Tot.Var.{u(tm−, ·)}.

(6.22)

To prove (Pε) we shall need the following result.

Lemma 6.2 Let w : R 7→ R be any function with bounded variation, and assume ϕ ∈ C1. Let
K ∈ C∞c be a smoothing kernel as in (6.15), and define

w̃
.
= Kδ ∗ w.

Then ∣∣∣∣∫ [w̃(x)− w(x)]ϕ(x) dx

∣∣∣∣ ≤ δ2 ‖ϕx‖L∞ · Tot.Var.{w} . (6.23)

Proof. 1. Assuming that w is Lipschitz continuous, we rewrite the left hand side of (6.23) in
a more suitable way:∣∣∣∣∫ [w̃(x)− w(x)]ϕ(x) dx

∣∣∣∣
=

∣∣∣∣∫∫ Kδ(x− y)[w(y)− w(x)]ϕ(x) dy dx

∣∣∣∣
=

∣∣∣∣∫∫ Kδ(x− y)[ϕ(y)− ϕ(x)]w(x) dy dx

∣∣∣∣
=

∣∣∣∣∫ (∫ x

−∞

∫
Kδ(z − y)[ϕ(y)− ϕ(z)] dydz

)
w′(x) dx

∣∣∣∣ .
(6.24)

2. Next we prove the estimate∣∣∣∣∫ x

−∞

∫
Kδ(z − y)[ϕ(y)− ϕ(z)] dydz

∣∣∣∣ ≤ δ2 ‖ϕx‖L∞ . (6.25)

Indeed, since the integrand vanishes for |z − y| > δ, the domain where it can be nonzero can
be split as Σ0 ∪ Σ, where (see Fig. 7)

Σ0 =
{

(z, y) ; |z − y| ≤ δ, y + z < x− δ
}
,

Σ =
{

(z, y) ; z ≤ x, y − z ≤ δ, y + z ≥ x− δ
}
.

Since K is an even function, by symmetry (switching the variables z and y) we immediately
obtain ∫∫

Σ0

Kδ(z − y)[ϕ(y)− ϕ(z)] dydz = 0. (6.26)
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Figure 7: Splitting the domain of integration Σ0 ∪ Σ, in the proof of (6.25).

On the other hand, the integral over the triangle Σ can be estimated by∣∣∣∣∫∫
Σ
Kδ(z − y)[ϕ(y)− ϕ(z)] dydz

∣∣∣∣ ≤ meas(Σ) · ‖Kδ‖L∞ · sup
(z,y)∈Σ

|ϕ(y)− ϕ(z)|

≤ δ2 · δ−1‖K‖L∞ · δ‖ϕx‖L∞ .
(6.27)

Putting together (6.26) and (6.27), and recalling that ‖K‖L∞ ≤ 1, we obtain (6.25).

3. Using (6.25) in (6.24), we now obtain the bound (6.23), for every Lipschitz function w. Since
the previous arguments do not depend on the Lipschitz constant of w, by an approximation
argument we conclude that (6.23) remains valid for every function w with bounded variation.

We are now ready to prove (Pε). Consider a test function ϕ ∈ C1
c (R2). Using Lemma 6.2, we

obtain ∣∣∣∣∣
∫
u(τ, x)ϕ(τ, x) dx−

∫
u(τ ′, x)ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{uϕt + f(u)ϕx} dx dt

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∑

τ<tj≤τ ′
(u(tj , x)− u(tj−, x))ϕ(tj , x)dx

∣∣∣∣∣∣
≤ δ2

(τ ′ − τ
ε

)
‖ϕx‖L∞ · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}

= C1 ε (τ ′ − τ)‖ϕx‖L∞ · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)}.

In view of (6.21), here we can choose the constant C1 = δ2/ε2.

Finally, let η be a convex entropy with entropy flux q. For any non-negative test function
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ϕ ∈ C1
c (R2) one has∫

η(u(τ, x))ϕ(τ, x) dx−
∫
η(u(τ ′, x))ϕ(τ ′, x) dx+

∫ τ ′

τ

∫
{η(u)ϕt + q(u)ϕx} dx dt

= −
∫ ∑

τ<tm≤τ ′

(
η(u(tm, x))− η(u(tm−, x))

)
ϕ(tm, x)dx

≥ −
∫ ∑

τ<tm≤τ ′
Dη(u(tm, x))(u(tm, x)− u(tm−, x))ϕ(tm, x)dx

≥ − δ2
(τ ′ − τ

ε

)
‖ϕx‖L∞ Lip(η) · sup

t∈[τ,τ ′]
Tot.Var.{u(t, ·)}

= − C1 ε (τ ′ − τ)‖ϕx‖L∞ Lip(η) · sup
t∈[τ,τ ′]

Tot.Var.{u(t, ·)} ,

where the first inequality follows from the convexity of η, by (6.14).

7 Numerical implementation

In this last section we discuss details of the post-processing algorithm, and present a numerical
simulation.

STEP 1 of the algorithm, computing the total variation of the numerical solution u(t, ·), is
entirely straightforward.

STEP 2, identifying the location of the large shocks, requires more attention. Given a pair of
constants M > 0 and σ >> ε > 0, we first identify regions where the total variation of u is
large. For this purpose, we introduce

Definition 7.1 For a given function u : [0, T ]× R 7→ Rn, the points (t, x) such that

min
{

Tot.Var.{u(t, ·) ; [x− σ, x+ ε]} , Tot.Var.{u(t, ·) ; [x− ε, x+ σ]}
}
> Mσ (7.1)

will be called flagged points.

Notice that, by definition, the variation of u(t, ·) on a small interval to the left or to the right
of a flagged point must be large. Roughly speaking, the following result shows that, outside
flagged points, solutions are approximately Lipschitz continuous with constant 2M .

Lemma 7.1 Assume that all points (t, x) with x ∈ [a, b] are not flagged. Then

|u(t, a)− u(t, b)| ≤
(

1 +
b− a
σ + ε

)
2σM . (7.2)

Proof. 1. By assumption, we can split the interval as [a, b] = I+ ∪ I−, where I+, I− are two
disjoint sets with the following property. Setting

Jx =

{
[x− ε, x+ σ] if x ∈ I+,

[x− σ, x+ ε] if x ∈ I−,
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one has
Tot.Var.{u(t, ·); Jx} ≤ σM for all x ∈ [a, b].

2. We claim that every subinterval [c, d] ⊆ [a, b] with length d− c ≤ σ + ε can be covered by
two of the intervals Jx. Indeed, three cases can arise:

CASE 1: c+ ε ∈ I+. Then [c, d] ⊆ Jc+ε .

CASE 2: d− ε ∈ I−. Then [c, d] ⊆ Jd−ε .

CASE 3: c+ ε ∈ I− and d− ε ∈ I+. Then we can find to points c+ ε ≤ x < y ≤ d− ε, such
that

y − x < ε, x ∈ I−, y ∈ I+.

In this case, [c, d] ⊆ Jx ∪ Jy, proving our claim.

3. To complete the proof, we cover [a, b] with finitely many intervals [ci, di], i = 1, . . . , N ,
such that

N ≤ 1 +
b− a
σ + ε

, di − ci ≤ σ + ε for all i = 1, . . . , N,

By the previous construction, for every i we have

Tot.Var.{u(t, ·) ; [ci, di]} ≤ 2Mσ.

Therefore, the total variation of u(t, ·) over [a, b] is bounded by 2NσM . This yields (7.2).

Having defined the set F ⊆ [0, T ] × R of all flagged points, for each tj = jε ∈ [0, T ], j =
0, 1, . . . , ν, we denote by

Fj
.
= {x ∈ R ; (tj , x) ∈ F}

the set of flagged points at time tj .

For every time tj , we identify intervals [a, b] such that b− a ≤ δ .
= ε2/3 and moreover

a ∈ Fj , b ∈ Fj , Fj ∩ [a− ρ, a[ = Fj ∩ ]b, b+ ρ] = ∅.

In other words, the points (tj , a) and (tj , b) are flagged, but points to the left of a and to the
right of b are not flagged.

Each such interval [a, b] locates a possible isolated shock at time tj . To check if this shock can
be traced over the entire interval [tj , tj+1], we check if there exists an interval [c, d] satisfying
the same properties at time t = tj+1, and moreover

[c, d] ⊂ [a+ λ−h , b+ λ+h].

In the positive case, we approximate the shock location with a straight line:

γ(t) = x0 + λ(t− tj), t ∈ [tj , tj+1],

choosing x0, λ so that

x0 = γ(tj) =
a+ b

2
, γ(tj+1) =

c+ d

2
.
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We then consider the polygonal regions Γ, ∆l, ∆′r defined as in (5.3). If the two inequalities
(5.4)-(5.5) are both satisfied, we say that the parallelogram

Γ =
{

(t, x) ; t ∈ [tj , tj+1] , x0 − δ + (t− tj)λ ≤ x ≤ x0 + δ + (t− tj)λ
}
,

traces the shock. The trapezoid

∆′ =
{

(t, x) ; t ∈ [tj , tj+1] , a′ + λ+(t− tj) ≤ x ≤ b′ + λ−(t− tj)
}
,

where
a′

.
= x0 − ρ− δ − (λ+ − λ−)h, b′

.
= x0 + ρ+ δ + (λ+ − λ−)h,

is then inserted within the list of trapezoids ∆(j`) in (5.6), containing a traced shock. On the
other hand, if one of the inequalities (5.4)-(5.5) fails, the shock is not traced.

STEP 3 of the algorithm provides a covering of each domain

(
[tj , tj+1]× R

)
\
N ′(j)⋃
`=1

∆(j`), j = 0, 1, . . . , ν − 1,

with finitely many trapezoids ∆jk as in (5.7). This step is straightforward. The algorithm
terminates by computing the constants κj in (5.8), which provide an upper bound on the
oscillation of u on each ∆jk, k = 1, . . . , N(j).

Example. We consider a model of isentropic gas dynamics in Lagrangian coordinates. Using
a shifted system of coordinates, this can be written as

vt − ux + vx = 0,

ut +

(
1

2v2

)
x

+ ux = 0.
(7.3)

Here u is the velocity of the gas, while v denotes the specific volume. By the choice of
coordinates, the characteristic speeds are

λ± = 1± v−3/2.

In particular, when v ≥ 1, one has λ(v) ∈ [λ−, λ+]
.
= [0, 2]. We consider the Cauchy problem

with piecewise constant initial data

v(0, x) =


2 if x < 0,
3 if 0 < x < 1/2,
1 if x > 1/2,

u(0, x) = 0. (7.4)

The exact solution is shown in Fig. 8.

We compute an approximate solution using the upwind scheme with mesh sizes

∆x = ε = 0.0005, ∆t =
ε

2
= 0.00025 .

The profiles of the two components of the solution, at the final time T = 1.5, are shown in
Fig. 9.
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Figure 8: A sketch of the exact solution to (7.3)-(7.4), containing two centered rarefaction waves and
two shocks, interacting at time t∗.
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Figure 9: The components of the solution at the terminal time T = 1.5, computed by the upwind
scheme. Above: the specific volume v(T, ·). Below: the velocity u(T, ·). The dotted lines show the
initial data.

To illustrate how the post-processing algorithm works, in Fig. 10, left, we plot the set of
flagged points. These are computed according to Definition 7.1, choosing σ = 0.0063 and
M = 25. In Fig. 10, right, we identify the shocks that can be traced on each time interval
[tj , tj+1]. Here κ′ = 0.1, σmin = 0.4. Notice that, according to our previous construction, each
trapezoid ∆(j`) around a traced shock will have the form

∆(j`) =
{

(t, x) ; t ∈ [tj , tj+1], xj` − δ − ρ− 2h+ 2(t− tj) ≤ x ≤ xj` + δ + ρ+ 2h
}
.

Indeed, this is obtained from (4.3)-(4.4), with

a′ = xj` − δ − ρ− 2h, b′ = xj` + δ + ρ+ 2h, λ− = 0, λ+ = 2.

Finally, in Fig. 11 we plot an approximate graph of the function

κ(t) = κj
.
= max

1≤k≤N(j)
Osc.{u ; ∆jk} if t ∈ [tj , tj+1 [ . (7.5)

One can think of κ(t) as the maximum oscillation of the numerical solution u(t, ·) on domains
of diameter O(1) · ε1/3, outside the large traced shocks. In view of (5.9), this function κ(·)
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Figure 10: Left: the points flagged by the post-processing algorithm. Right: the portions of the two
shocks that are actually traced.
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Figure 11: An approximate computation of the function κ(t) defined at (7.5), determining the error
rate.

determines the rate at which the distance ‖u(t, ·) − Stū‖L1 between the approximate and
the exact solution increases in time. Notice that κ(t) is large for t ≈ 0, when the main
contribution to the error comes from the two centered rarefactions. As time increases, the
rarefactions decay, and the value of κ(t) decays as well. As t approaches the interaction time
t∗, the two shocks cannot be individually traced. As a consequence, the value of κ(t) suddenly
becomes very large. Finally, when the shocks move away from each other and can be traced
once again, we see that κ(t) reverts to a small value.
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