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Abstract. We consider the functionalZ
|∇u|2

2
+ F (x, u) dx

in a periodic setting. We discuss whether the minimizers or the stable solutions satisfy some
symmetry or monotonicity properties, with special emphasis on the autonomous case when F
is x-independent.

In particular, we give an answer to a question posed by Victor Bangert when F is autonomous
in dimension n 6 3 and in any dimension for nonzero rotation vectors.

Given F ∈ C2,α
loc (Rn+1), for some α ∈ (0, 1), and a bounded open set Ω ⊂ Rn, we consider the

energy functional EΩ on the space

D(Ω) = {u ∈ L∞(Ω) with ∇u ∈ L2(Ω,Rn)}

defined by

EΩ(u) =
∫

Ω

|∇u(x)|2

2
+ F (x, u(x)) dx.

This functional is very important for the applications, since it comprises many classical physical
models as particular cases. We just mention here that when n = 1 the functional includes the
case of the Lagrangian action of the pendulum and that, in any dimension, it can be seen as the
continuous limit of famous discrete models for crystal dislocations, as the ones dealt in [Aub83,
Mat82]. Also, the scalar Ginzburg-Landau-Allen-Cahn functional may be reduced to it in many
cases of interest (see, e.g., [JGV09]).
We say that u : Rn → R is a minimizer1 if, for any bounded open set Ω ⊂ Rn, we have that
u ∈ D(Ω) and EΩ(u) 6 EΩ(u + ϕ) for any ϕ ∈ C∞

0 (Ω). That is, u is a minimizer if its energy
increases under compact perturbations (the size of the domain and the size of the perturbation
may be taken arbitrarily large).
It is easily seen that if u is a minimizer, then it satisfies the Euler-Lagrange equation associated
to the energy functional, that is

(1) ∆u(x) + f(x, u(x)) = 0,

where f(x, r) = −∂rF (x, r). Also, u ∈ C2,α
loc (Rn) (though u may not be in L∞(Rn)).

We also say that u has rotation vector ρ ∈ Rn if the map x 7→ u(x)− ρ · x belongs to L∞(R).

1What we call here simply minimizer is known in the literature also with the names of local minimizer or class A
minimizer.
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We say that u is Birkhoff2 if, for any k = (k′, kn+1) ∈ Zn × Z = Zn+1 we have that either
u(x+ k′) + kn+1 > u(x) for any x ∈ Rn or that u(x+ k′) + kn+1 6 u(x) for any x ∈ Rn.
We say that F is integer-periodic if for any k = (k′, kn+1) ∈ Zn × Z = Zn+1 we have that
F (x+ k′, r + kn+1) = F (x, r), for any (x, r) ∈ R2.
Finally, we say that F is autonomous if F (x, r) = F (r), that is, F does not depend on the
space-variables x.
The construction of Birkhoff solutions of a given rotation vector in an integer periodic setting
is a classical result in dynamical systems (see [Aub83, Mat82]). The extension to the PDE case
has been the topic of many recent research papers in the field. First of all, a very important
result proven in [Mos86] is that, if F is integer periodic, for any ρ ∈ Rn, there exists a minimizer
uρ which has rotation vector ρ and is Birkhoff. Such a result inspired a broad investigation
on Birkhoff minimizers for this problem and for related ones: see, for instance, [Ban89, Ban90,
Aue01, CdlL01, Val04] and references therein. Also the case of Birkhoff solutions that are not
minimizing have been dealt with, see [Bes05, dlLV07]. In spite of the organization given by
these Birkhoff solutions, the system may exhibit also chaotic behaviors, as shown, for instance, in
[AJM02, RS03, Rab04, RS04, AM05]. Thus, equation (1) somehow bridges some features typically
arising in dynamical systems with the theory of elliptic PDEs.
Other than minimality, a variational condition that is often interesting to look at is stability. If u
is a solution of (1), we say that it is stable3 if∫

Rn

|∇ψ(x)|2 + ∂2
rF (x, u(x))(ψ(x))2 dx > 0

for any compactly supported ψ ∈ C∞(Rn).
From the variational point of view, a solution is stable if the second variation of the energy is
nonnegative. In particular, minimizers are stable solutions. For other properties of stable solutions
see, e.g., [AAC01, FSV08].
This paper has been motivated by the above mentioned results and by the following problem
posed by [Ban89] (see the very last line there):

Question 1. Let F be integer-periodic. Let u be a minimizer with rotation vector ρ. Then, is u
Birkhoff?

In this generality, Question 1 is still open. As far as we know, the state of the art on it is the
following:

• Question 1 has a positive answer in any dimension n if (−ρ, 1) is rationally independent
(i.e., ρ · m′ = mn+1 with m = (m′,mn+1) ∈ Zn × Z implies m = 0). This is proved in
Theorem 8.4 of [Ban89].

• Question 1 has a positive answer in dimension n 6 7 if ρ = 0 and, for instance, F (x, r) =
1 − cos(2πr). This follows by the results of [Sav09] (and the arguments in the proof of
Corollary 4 here).

2In the literature, the Birkhoff property also occurs under the names of non-intersection, non-self-intersection
or self-conforming property.

3The definition of stability we use here is classical, but different from other famous stability conditions (such as
Ljapunov stability, structural stability, etc.
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• Question 1 has a negative answer in dimension n = 9. Indeed, as observed in [JGV09],
the example built in [dPKW09, dPKW08] provides a negative answer to Question 1, with
F independent of x and ρ = 0.

So, in this note, we would like to give some rigidity and symmetry results that also provide
some partial answer to Question 1. The techniques we use come from a different, but related
subject, that is the 1D-symmetry of minimal solutions of the Ginzburg-Landau-Allen-Cahn phase
transitions, which is the content of a famous problem set in [DG79] (see [GG98, BCN97, AC00,
AAC01, Far07, FSV08, Sav09, FV11] and the review [FV09] for more details on this). With this
respect, it is convenient to introduce the following notation: we say that u : Rn → R is 1D if
there exist $ ∈ Sn−1 and u? : R → R such that u(x) = u?($ · x). That is, u is 1D if it depends
only on one variable, up to rotations. With a slight abuse of terminology, in the above notation,
if u? is (strictly) monotone, we say that u is (strictly) monotone.
We prove the following 1D-results in the case in which F is autonomous:

Theorem 2 (Stable solutions in R2). Let n = 2. Let F be autonomous and u be a stable solution
of (1) with rotation vector ρ. Then, u is 1D. Also, u is either constant or strictly monotone,
and u(x) = u?($ · x), with ρ = ±|ρ|$.

Theorem 3 (Minimal solutions in R3 when ρ = 0). Let n = 3. Let F be autonomous bounded
from below and attaining its minimum. Let u be a minimizer with rotation vector ρ = 0. Then, u
is 1D. Also, u is either constant or strictly monotone.

In particular, from Theorems 2 and 3, one can obtain that:

Corollary 4. Question 1 has a positive answer in dimension 2 6 n 6 3 if F is autonomous and
ρ = 0.

In any dimension, and when ρ 6= 0, we have the following result:

Theorem 5 (Minimal solutions in Rn when ρ 6= 0). Let 0 6 m 6 n and suppose that F does not
depend on (x1, . . . , xm), that is there exists G : Rn−m ×R for which

(2) F (x1, . . . , xn, r) = G(xm+1, . . . , xn, r)

for any (x, r) ∈ Rn+1.
Then Question 1 has a positive answer when (ρ1, . . . , ρm) 6= 0 and (ρm+1, . . . , ρn,−1) is rationally
independent.

The case in which m = 0 in Theorem 5 reduces to Theorem 8.4 of [Ban89]. The case in which m =
n in Theorem 5 is interesting in itself and gives the following

Corollary 6. Let F be autonomous. Then Question 1 has a positive answer in any dimension n
when ρ 6= 0.

By Corollary 4, we see that the case ρ = 0 is somewhat the “most delicate” in the framework
of Question 1. Indeed, as remarked above, Question 1 has a negative answer with n = 9, F
autonomous and ρ = 0 (see [dPKW09, dPKW08, JGV09]), hence Theorem 5 is, in a sense,
optimal.
An immediate consequence of Theorem 5 and Corollary 4 is that

Corollary 7. Question 1 has a positive answer in dimension 2 6 n 6 3 if F is autonomous, for
any rotation vector ρ.
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When F is not autonomous, it is not conceivable to expect u to be 1D. Nevertheless, some of the
above results can be adapted to deal with the case in which the dependence of F on the space
variable is not complete:

Theorem 8 (Monotonicity in R2). Let n = 2. Let F (x1, x2, r) = F (x1, r), that is suppose that
F does not depend on the second space variable. Let u be a stable solution of (1) with rotation
vector ρ. Then, either ∂x2u(x) > 0 for any x ∈ R2, or ∂x2u(x) < 0 for any x ∈ R2, or u is 1D.

Solutions of (1) which are monotone in one direction, and for which the nonlinearity is independent
of this variable, are stable (see, for instance, [AAC01, FSV08]), and some interesting examples
of such solutions in R2 have been recently constructed in [AM05] when the nonlinearity is of
Allen-Cahn-type and periodic with respect to, say, x1. In this sense, our Theorem 8 may be seen
as a counterpart of Theorem 1.2 in [AM05].
The extension of Theorem 8 in dimension 3 (in analogy with Theorem 3) is given by the following
result:

Theorem 9 (Monotonicity in R3 when ρ = 0). Let n = 3. Let F (x1, x2, x3, r) = µ(x1, x2)g(r)
with µ ∈ L∞(R2) and suppose that F (x, r) > 0 for any (x, r) ∈ R4 and that g(r?) = 0 for
some r? ∈ R. Let u be a minimizer with rotation vector ρ = 0. Then, either ∂x3u(x) > 0 for any
x ∈ R3, or ∂x3u(x) < 0 for any x ∈ R3, or ∂x3u(x) = 0 for any x ∈ R3.

It is worth recalling that in the ODE case of the standard pendulum, the bounded stable solutions
are monotone in time (it can be explicitly checked that they are either equilibria or heteroclinics):
thus, Theorem 9 may be seen as an extension of this elementary fact to the PDE case.
By exchanging the roles of x2 and x3 in Theorem 9, we also obtain the following result:

Corollary 10. Let the assumptions of Theorem 9 and suppose that µ depends only on x1 (i.e., it
is independent of both x2 and x3). Then, for any i ∈ {2, 3} we have that either ∂xiu(x) > 0 for
any x ∈ R3, or ∂xiu(x) < 0 for any x ∈ R3, or ∂xiu(x) = 0 for any x ∈ R3.

Remark 11. We observe that no periodicity for F is needed for Theorems 2, 3, 8 and 9. Also, more
general energy functionals may be dealt with using the techniques discussed here (for instance,
one can replace the term |∇u|2 in the functional with Λ2(|∇u|), as defined in [FSV08] with p = 2).

The rest of the paper is devoted to the proofs of the results presented above.

1. Proof of Theorem 2

We define v(x) = u(x) − ρ · x. Then, by (1), we have that −∆v(x) = f(u(x)) and the latter
quantity is bounded for any x ∈ Rn. Accordingly, by elliptic regularity theory, we have that
|∇v| ∈ L∞(Rn) and so

(3) |∇u| 6 |ρ|+ |∇v| ∈ L∞(Rn).

Then, the fact that u is 1D follows, for instance, from Theorem 1.1 in [FSV08].
So we will write u(x) = u?($ · x) for some $ ∈ Sn−1. We now show that u? is either constant
or strictly monotone. For this, we observe that, since u is stable, so is u?. Then, there exists
a positive function ϕ solution of ϕ̈(t) + q(t)ϕ(t) = 0 for any t ∈ R (see, e.g., [MP78, FCS80]
or Proposition 4.2 in [AAC01]), where q(t) = f ′(u?(t)). Let w = u̇?. Notice that w ∈ L∞(R)
due to (3). Since also ẅ(t) + q(t)w(t) = 0, we deduce from Theorem 1.8 of [BCN97] (applied
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here with m = 1) that w is proportional to ϕ, hence either {u̇? = 0} = R or {u̇? = 0} = ∅.
Accordingly, u? is either constant or strictly monotone, as desired.
Now, take any η ∈ Sn−1 with $ · η = 0. By definition

+∞ > sup
x∈Rn

∣∣∣u?($ · x)− ρ · x
∣∣∣

> sup
t>0

∣∣∣u?($ · ηt)− ρ · ηt
∣∣∣

> sup
t>0

|ρ · η| t−
∣∣u?(0)

∣∣.
Therefore, ρ · η = 0.
Accordingly, $⊥ ⊆ ρ⊥, that is either ρ = 0 or $ = ±ρ/|ρ|.

2. Proof of Theorem 3

Suppose that
min
r∈R

F (r) = F (ro).

Let
G(r) = F (r)− F (ro).

Notice that G > 0 and G′ = −f . Then, by proceeding as in Lemma 1 in [CC95], we see that there
exists C > 0 such that

(4)
∫

BR

|∇u(x)|2 +G(u(x)) dx 6 CR2,

for any R > 0. From (4), one obtains that u is 1D either by the arguments of [AAC01] or by
Lemma 5.2 of [FSV08] (indeed, (4) here implies (5.1) in [FSV08] and a and λ1 of [FSV08] are
both equal to 1 in this setting).
Also, u is either constant or strictly monotone, see Section 1.

3. Proof of Corollary 4

From Theorems 2 and 3 we know that u is 1D and it is either constant or strictly monotone. If it is
constant, we are done: therefore, without loss of generality, we can assume that u(x) = u?($ · x),
with u? strictly increasing and ü?(t) = F ′(u?(t)) for any t ∈ R.
Hence, by energy conservation, there exists c ∈ R such that

(5)
|u̇?(t)|2

2
− F (u?(t)) = c for any t ∈ R.

We define
co = c+ min

r∈R
F (r).

Notice that

(6)
|u̇?(t)|2

2
= c+ F (u?(t)) > c+ min

r∈R
F (r) = co.

We claim that

(7)
∣∣u?(t)− u?(s)

∣∣ < 1 for any t, s ∈ R.
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To prove (7), we argue by contradiction: fix s ∈ R and suppose, say, that there exists t+ ∈ R such
that

(8) u?(t+)− u?(s) = 1.

By the integer periodicity of F , there exists

(9) m ∈
[
u?(s), u?(s) + 1

)
such that

min
r∈R

F (r) = F (m).

By (8) and (9), there exists t? ∈ R for which

u?(t?) = m.

We claim that

(10) u̇?(t?) 6= 0.

Indeed, notice that F ′(u?(t?)) = F ′(m) = 0 by the minimality of m, and so, if u̇?(t?) = 0 then u?

would be constant by the Uniqueness Theorem for ODEs.
This proves (10). From (5) and (10),

co = c+ F (m) = c+ F (u?(t?)) =
|u̇?(t?)|2

2
> 0.

Thus, by (6), |u̇?(t)| >
√

2co > 0 for any t ∈ R and so u? cannot be bounded. In particular, ρ
cannot be 0. This contradiction proves (7).
From (7) we obtain that, if (k′, kn+1) ∈ Zn+1 and kn+1 > 0 (i.e., kn+1 > 1) we have that

u(x+ k′) + kn+1 = u?($ · (x+ k′)) + kn+1 > u?($ · x)− 1 + kn+1 > u?($ · x) = u(x).

Analogously, if (k′, kn+1) ∈ Zn+1 and kn+1 < 0, we have

u(x+ k′) + kn+1 6 u(x).

Finally, if kn+1 = 0, since u? is increasing, we have that, if $ · k > 0 then

u(x+ k′) + kn+1 = u?($ · (x+ k′)) > u?($ · x) = u(x)

and, analogously, if $ · k 6 0 then

u(x+ k′) + kn+1 6 u(x).

The above observations give that u is Birkhoff, proving Corollary 4.

4. Proof of Theorem 5

If m = 0, then Theorem 5 reduces to Theorem 8.4 of [Ban89], so we may suppose that m > 1.
In fact, by possibly adding a spurious variable x0, we may suppose that

(11) m > 2.

Indeed, if m = 1 we consider u as a function of (n+1) variables (x0, x1, ...., xn) and F as a function
of (n+ 2) variables (x0, x1, ...., xn, r), though independent of the spurious variable x0, i.e. we set

u0(x0, x1, ...., xn) := u(x1, ...., xn) and F0(x0, x1, ...., xn, r) := F (x1, ...., xn, r).
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In this way, u0 is a minimizer of the functional

v(x0, x1, . . . , xn) 7−→
∫
|∇v(x0, x1, . . . , xn)|2

2
+ F0((x0, x1, . . . , xn), v(x0, x1, . . . , xn)) dx0 . . . dxn

and u0 has rotation vector (0, ρ) ∈ Rn+1.
So, if ρ1 6= 0, we have that (0, ρ1) 6= 0, hence u0 follows under the assumptions of Theorem 5 with
m = 2 (and n replaced by n+ 1). Accordingly, if Theorem 5 holds for m = 2, we deduce that u0

is Birkhoff, hence so is u.
These considerations prove that we may suppose that (11) holds.
Now, given a = (a1, . . . , an+1) ∈ Rn+1, we call a = (a1, . . . , am) and a = (am+1, . . . , an+1). Notice
that a = (a, a).
Analogously, if b = (b1, . . . , bn) ∈ Rn, we set b̃ = (bm+1, . . . , bn). Hence, with a slight abuse of
notation, we write b = (b, b̃).
We prove that

for any ω ∈ Rn+1 with ω 6= 0 and ω rationally independent
and any ε > 0, there exists a rotation Rω,ε of Rm such that

‖Rω,ε − Id‖ 6 ε and
(
Rω,ε ω, ω

)
is rationally independent.

(12)

To check this, given k ∈ Zn+1 with

(13) k 6= 0,

we set
S =

{
v ∈ Rm s.t. |v| = |ω|

}
and

Bk =
{
v ∈ S s.t. (v, ω) · k = 0

}
.

Notice that Bk is the intersection between the sphere S and an affine plane of dimension m − 1,
due to (11) and (13), and therefore its (m− 1)-dimensional Hausdorff measure on S vanishes, i.e.

(14) Hm−1
(
Bk

)
= 0.

Now, we define

B =
{
v ∈ S s.t. ∃k ∈ Zn+1 with k 6= 0 s.t. (v, ω) · k = 0

}
.

Then,

Hm−1
(
B
)

= Hm−1

 ⋃
k∈Zn+1

k 6=0

Bk

 = 0,

due to (14).
As a consequence, given ε > 0, there exists

(15) ωε ∈ S \B

such that

(16) |ωε − ω| 6 ε2.
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Since ω 6= 0, we may suppose that ωε 6= 0 as well, and so we can take Rω,ε to be a rotation in Rm

sending ω to ωε (we recall that |ω| = |ωε|, since both the vectors belong to the sphere S). By (16),
‖Rω,ε − Id‖ 6 ε, if ε is small.
Furthermore (

Rω,ε ω, ω
)
· k =

(
ωε, ω

)
· k.

Hence, if the above quantity vanishes for some k ∈ Zn+1 we deduce from (15) that k = 0.
Therefore, ω · k = 0 and so, since ω is rationally independent, we have that k = 0. That is, k = 0
and this gives that (Rω,ε ω, ω) is rationally independent, thus proving (12).
Now, we apply (12) to ω = (−ρ, 1). Notice that, in this case, ω = −(ρ1, . . . , ρm) 6= 0 and ω =
−(ρm+1, . . . , ρn,−1) is rationally independent by our assumptions. Hence, we obtain that, given ε >
0, there exists a rotation Rε on Rm such that (−Rερ,−ρ̃, 1) is rationally independent and

(17) lim
ε→0+

Rε = Id.

We define
vε(x) = u(RT

ε x, x̃).
Then, in the light of (2), we have that vε is a minimizer too, and has rotation vector (Rερ, ρ̃).
Consequently, by Theorem 8.4 of [Ban89], vε is Birkhoff. Take now any k = (k′, kn+1) ∈ Zn×Z =
Zn+1. We have that, for an infinitesimal sequence of ε, either vε(x + k′) + kn+1 > vε(x) for any
x ∈ Rn or that vε(x+ k′) + kn+1 6 vε(x) for any x ∈ Rn. That is, either

u(y +RT
ε k, ỹ + k̃) + kn+1 > u(y)

for any y ∈ Rn, or that
u(y +RT

ε k, ỹ + k̃) + kn+1 6 u(y)
for any y ∈ Rn. So, sending ε→ 0+ and using (17), we obtain that u is Birkhoff, as desired.

5. Proof of Theorem 8

As in Section 1, we see that |∇u| ∈ L∞(R2). Consequently, for any R > 0

(18)
∫

BR

|∇u(x)|2 dx 6 ‖∇u‖L∞(R2)R
2.

Also, since u is stable, there exists a positive function ϕ solution of

∆ϕ(x) + ∂rf(x1, u(x))ϕ(x) = 0

for any x ∈ Rn (see4, e.g., [MP78, FCS80] or Proposition 4.2 in [AAC01]).
We define ψ = ∂x2u, and we observe that also ψ is a solution of

∆ψ(x) + ∂rf(x1, u(x))ψ(x) = 0

for any x ∈ Rn. As a consequence, if we set σ = ψ/ϕ, we have that σ is a solution of

(19) div (ϕ2∇σ) = 0

4Let us spend some words on the construction of such positive solution ϕ. The idea is that the stability condition
implies that the first eigenvalue of the Schrödinger operator ∆ − ∂2F in BR is positive. As a consequence, one
considers ϕR to be a positive eigenfunction with constant boundary datum cR. The value cR is adjusted so to
make ϕR(0) = 1. Then, one sends R → +∞ and obtains the desired ϕ, using elliptic regularity theory to pass to
the limit and the Harnack Inequality to be sure that the limit remains positive.
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in Rn.
Furthermore, from (18),

(20)
∫

BR

(ϕσ)2 dx =
∫

BR

|∂x2u|2 dx 6 ‖∇u‖L∞(R2)R
2.

Then, from the Liouville-type result of [BCN97] (see, e.g., the version5 in Theorem 3.1 of [AAC01]),
we conclude that σ is constant. This and the Maximum Principle yield the desired result.

6. Proof of Theorem 9

The proof is a simple modification of an argument in [CC95] and of the proof of Theorem 8 here
above.
Let R > 1 and ψR ∈ C∞

0

(
BR, [0, 1]

)
with ψR(x) = 1 for any x ∈ BR−1 and ‖∇ψR‖L∞(R3) 6 2.

Let uR(x) = u(x) +
(
r? − u(x))ψR(x). Notice that, if x ∈ BR−1 then

F (x, uR(x)) = µ(x1, x2)g(r?) = 0

and
|∇uR(x)| 6 |∇u(x)|+ |r? − u(x)| |∇ψR(x)|+ |∇u(x)| 6 K,

for a suitable K depending on r?, ‖u‖L∞(R3) and ‖∇u‖L∞(R3), but independent of R.
As a consequence, by the minimality of u, we have that∫

BR

|∇u(x)|2 dx 6
∫

BR

|∇u(x)|2 + F (x, u(x)) dx

6
∫

BR

|∇uR(x)|2 + F (x, uR(x)) dx =
∫

BR\BR−1

|∇uR(x)|2 + F (x, uR(x)) dx

6

(
K2 + sup

(x1,x2)∈R2

|µ(x1, x2)| sup
|r|6|r?|+‖u‖L∞(R3)

|g(r)|

) ∣∣∣BR \BR−1

∣∣∣ 6 CR2,

(21)

for a suitable C > 0, possibly depending on r?, ‖u‖L∞(R3) and ‖∇u‖L∞(R3), but independent of R.
Then, the proof of Theorem 9 follows by repeating verbatim the argument in Section 5, but
replacing (18) with (21).
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Università di Roma Tor Vergata
Dipartimento di Matematica
via della ricerca scientifica, 1
I-00133 Rome, Italy
enrico@mat.uniroma3.it


