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Abstract. We consider shape functionals of the form Fq(Ω) = P (Ω)T q(Ω) on

the class of open sets of prescribed Lebesgue measure. Here q > 0 is fixed, P (Ω)

denotes the perimeter of Ω and T (Ω) is the torsional rigidity of Ω. The mini-

mization and maximization of Fq(Ω) is considered on various classes of admissible

domains Ω: in the class Aall of all domains, in the class Aconvex of convex do-

mains, and in the class Athin of thin domains.
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1. Introduction

In this paper, given an open set Ω ⊂ Rd with finite Lebesgue measure, we consider

the quantities

P (Ω) = perimeter of Ω;

T (Ω) = torsional rigidity of Ω.

The perimeter P (Ω) is defined according to the De Giorgi formula

P (Ω) = sup

{∫
Ω

div φ dx : φ ∈ C1
c (Rd;Rd), ‖φ‖L∞(Rd) ≤ 1

}
.

The scaling property of the perimeter is

P (tΩ) = td−1P (Ω) for every t > 0

and the relation between P (Ω) and the Lebesgue measure |Ω| is the well-known

isoperimetric inequality:
P (Ω)

|Ω|(d−1)/d
≥ P (B)

|B|(d−1)/d
(1.1)

where B is any ball in Rd. In addition, the inequality above becomes an equality if

and only if Ω is a ball (up to sets of Lebesgue measure zero).

The torsional rigidity T (Ω) is defined as

T (Ω) =

∫
Ω

u dx

where u is the unique solution of the PDE{
−∆u = 1 in Ω,

u ∈ H1
0 (Ω).

(1.2)

1



2 L. BRIANI, G. BUTTAZZO, AND F. PRINARI

Equivalently, T (Ω) can be characterized through the maximization problem

T (Ω) = max
{[∫

Ω

u dx
]2[ ∫

Ω

|∇u|2 dx
]−1

: u ∈ H1
0 (Ω) \ {0}

}
.

Moreover T is increasing with respect to the set inclusion, that is

Ω1 ⊂ Ω2 =⇒ T (Ω1) ≤ T (Ω2)

and T is additive on disjoint families of open sets. The scaling property of the

torsional rigidity is

T (tΩ) = td+2T (Ω), for every t > 0,

and the relation between T (Ω) and the Lebesgue measure |Ω| is the well-known

Saint-Venant inequality (see for instance [16], [17]):

T (Ω)

|Ω|(d+2)/d
≤ T (B)

|B|(d+2)/d
. (1.3)

Again, the inequality above becomes an equality if and only if Ω is a ball (up to sets

of capacity zero). If we denote by B1 the unitary ball of Rd and by ωd its Lebesgue

measure, then the solution of (1.2), with Ω = B1, is

u(x) =
1− |x|2

2d
which provides

T (B1) =
ωd

d(d+ 2)
. (1.4)

We are interested in the problem of minimizing or maximizing quantities of the

form

Pα(Ω)T β(Ω)

on some given class of open sets Ω ⊂ Rd having a prescribed Lebesgue measure

|Ω|, where α, β are two given exponents. Similar problems have been considered for

shape functionals involving:

- the torsional rigidity and the first eigenvalue of the Laplacian in [2], [3], [6],

[8], [11], [19], [20], [21];

- the torsional rigidity and the Newtonian capacity in [1];

- the perimeter and the first eigenvalue of the Laplacian in [14];

- the perimeter and the Newtonian capacity in [10], [13].

The case β = 0 reduces to the isoperimetric inequality, and we have, denoting by

Ω∗m a ball of measure m,{
min

{
P (Ω) : |Ω| = m

}
= P (Ω∗m)

sup
{
P (Ω) : |Ω| = m

}
= +∞.

Similarly, in the case α = 0, the Saint Venant inequality yields

max
{
T (Ω) : |Ω| = m

}
= T (Ω∗m) =

m

d(d+ 2)

(m
ωd

)2/d

while

inf
{
T (Ω) : |Ω| = m

}
= 0.
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Indeed if we choose Ωn = ∪nk=1Bn,k where Bn,k are disjoint balls of measure m/n

each, we get for every n ∈ N

inf
{
T (Ω) : |Ω| = m

}
≤ T (Ωn) =

m(d+2)/d

d(d+ 2)ω
2/d
d

n−2/d.

The case when α and β have a different sign is also immediate; for instance, if

α > 0 and β < 0 we have from (1.1) and (1.3){
min

{
Pα(Ω)T β(Ω) : |Ω| = m

}
= Pα(Ω∗m)T β(Ω∗m)

sup
{
Pα(Ω)T β(Ω) : |Ω| = m

}
= +∞,

and similarly, if α < 0 and β > 0 we have{
inf
{
Pα(Ω)T β(Ω) : |Ω| = m

}
= 0

max
{
Pα(Ω)T β(Ω) : |Ω| = m

}
= Pα(Ω∗m)T β(Ω∗m).

The cases we will investigate are the remaining ones; with no loss of generality

we may assume α = 1, so that the optimization problems we consider are for the

quantities

P (Ω)T q(Ω), with q > 0.

In order to remove the Lebesgue measure constraint |Ω| = m we consider the scaling

free functionals

Fq(Ω) =
P (Ω)T q(Ω)

|Ω|αq
with αq = 1 + q +

2q − 1

d
.

In the following sections we study the minimization and the maximization problems

for the shape functionals Fq on various classes of domains. More precisely we

consider the cases below.

The class of all domains Ω (nonempty)

Aall =
{

Ω ⊂ Rd : Ω 6= ∅
}

will be considered in Section 2; we show that for every q > 0 both the maximization

and the minimization problems for Fq on Aall are ill posed.

The class of convex domains Ω

Aconvex =
{

Ω ⊂ Rd : Ω 6= ∅, Ω convex
}

will be considered in Section 3; we show that for 0 < q < 1/2 the maximization

problem for Fq on Aconvex is ill posed, whereas the minimization problem is well

posed. On the contrary, when q > 1/2 the minimization problem for Fq on Aconvex
is ill posed, whereas the maximization problem is well posed. In the threshold case

q = 1/2 the precise value of the infimum of F1/2 is provided; concerning the precise

value of the supremum of F1/2 an interesting conjecture is stated. At present, the

conjecture has been shown to be true in the case d = 2, while the question is open

in higher dimensions.

The class of thin domains Athin, suitably defined, will be considered in Section

4. If h(s) represents the asymptotical local thickness of the thin domain as s varies

in a d− 1 dimensional domain A, the maximization of the functional F1/2 on Athin
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reduces to the maximization of a functional defined on nonnegative functions h

defined on A; this allows us to prove the conjecture for any dimension d on the

class of thin convex domains.

2. Optimization in the class of all domains

In this section we show that the minimization and the maximization problems

for the shape functionals Fq are both ill posed, for every q > 0.

Theorem 2.1. There exist two sequences Ω1,n and Ω2,n of smooth domains such

that for every q > 0 we have

Fq(Ω1,n)→ 0 and Fq(Ω2,n)→ +∞.

In particular, we have{
inf
{
Fq(Ω) : Ω ∈ Aall, Ω smooth

}
= 0

sup
{
Fq(Ω) : Ω ∈ Aall, Ω smooth

}
= +∞.

Proof. In order to show the sup equality it is enough to take as Ω2,n a perturbation

of the unit ball B1 such that

B1/2 ⊂ Ω2,n ⊂ B2 and P (Ω2,n)→ +∞.

Then we have

|Ω2,n| ≤ |B2|, T (Ω2,n) ≥ T (B1/2),

where we used the monotonicity of the torsional rigidity. Then

Fq(Ω2,n) ≥
P (Ω2,n)T q(B1/2)

|B2|αq
→ +∞.

In order to prove the inf equality we take as Ωε the unit ball B1 to which we remove

a periodic array of holes; the centers of two adjacent holes are at distance ε and

the radii of the holes are

rε =

{
e−1/(cε2) if d = 2

cεd/(d−2) if d > 2.

It is easy to see that, as ε→ 0, we have

|Ωε| → |B1| and P (Ωε)→ P (B1).

Concerning the torsion T (Ωε), we have (see [9])

T (Ωε)→
∫
B1

uc dx

where uc is the nonnegative function which solves{
−∆uc +Kcuc = 1 in B1

uc ∈ H1
0 (B1),

being Kc the constant

Kc =

{
cπ/2 if d = 2

d(d− 2)2−dωdc
d−2 if d > 2.
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Since for every c > 0 we have that∫
B1

|∇uc(x)|2 +Kcu
2
c(x) dx =

∫
B1

uc dx

we get that ∫
B1

uc dx ≤
ωd
Kc

.

Therefore, a diagonal argument allows us to construct a sequence Ω1,n such that

|Ω1,n| → |B1|, P (Ω1,n)→ P (B1), T (Ω1,n)→ 0,

which concludes the proof. �

3. Optimization in the class of convex domains

In this section we consider only domains Ω which are convex. A first remark is

in the proposition below and shows that in some cases the optimization problems

for the shape functional Fq is still ill posed.

Proposition 3.1. We have{
inf
{
Fq(Ω) : Ω ∈ Aconvex

}
= 0 for every q > 1/2;

sup
{
Fq(Ω) : Ω ∈ Aconvex

}
= +∞ for every q < 1/2.

Proof. Let A be a smooth convex d−1 dimensional set and for every ε > 0 consider

the domain Ωε ∈ Aconvex given by

Ωε = A×]− ε/2, ε/2[.

We have (for the torsion asymptotics see for instance [2])

P (Ωε) ≈ 2Hd−1(A),

T (Ωε) ≈
ε3

12
Hd−1(A),

|Ωε| = εHd−1(A),

so that

Fq(Ωε) ≈
2

12q
(
Hd−1(A)

)(2q−1)/d
ε(2q−1)(d−1)/d. (3.1)

Letting ε→ 0 achieves the proof. �

We show now that in some other cases the optimization problems for the shape

functional Fq is well posed. Let us begin to consider the case q = 1/2.

Proposition 3.2. We have

inf
{
F1/2(Ω) : Ω ∈ Aconvex

}
= 3−1/2 (3.2)

and the infimum is asymptotically reached by domains of the form

Ωε = A×]− ε/2, ε/2[

as ε→ 0, where A is any d− 1 dimensional convex set.
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Proof. Thanks to a classical result by Polya ([23], see also Theorem 5.1 of [11]) it

holds

T (Ω) ≥ 1

3

|Ω|3

(P (Ω))2
.

Then

F1/2(Ω) =
P (Ω)(T (Ω))1/2

|Ω|3/2
≥ 3−1/2

for any bounded open convex set. Taking into account (3.1), we get (3.2). �

Concerning the supremum of F1/2(Ω) in the class Aconvex we can only show that

it is finite.

Proposition 3.3. For every Ω ∈ Aconvex we have

F1/2(Ω) ≤ 2dd3d/2

ωd

√
d

d+ 2
(3.3)

.

Proof. By the John’s ellipsoid Theorem [18], there exists an ellipsoid, that without

loss of generality we may assume centered at the origin,

Ea =

{
x ∈ Rd :

d∑
i=1

x2
i

a2
i

< 1

}
, a = (a1, . . . , ad), with ai > 0

such that Ea ⊂ Ω ⊂ dEa. Then we have

F1/2(Ω) ≤
P (dEa)

(
T (dEa)

)1/2

|Ea|3/2
. (3.4)

Since the solution of (1.2) for Ea is given by

u(x) =
1

2

( d∑
i=1

a−2
i

)−1(
1−

d∑
i=1

x2
i

a2
i

)
,

we obtain

T (Ea) =
ωd
d+ 2

( d∑
i=1

a−2
i

)−1 d∏
i=1

ai,

while

|Ea| = ωd

d∏
i=1

ai.

To estimate P (Ea) we notice that Ea is contained in the cuboid Q =
∏d

1]− ai, ai[,
so that

P (Ea) ≤ P (Q) = 2
d∑
i=1

∏
j 6=i

(2aj) = 2d
( d∑

i=1

1

ai

) d∏
i=1

ai.

Combining these formulas we have from (3.4)

F1/2(Ω) ≤ 2dd3d/2

ωd(d+ 2)1/2

( d∑
i=1

1

ai

)( d∑
i=1

1

a2
i

)−1/2
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and finally, by Jensen inequality,

F1/2(Ω) ≤ 2dd3d/2

ωd

√
d

d+ 2
,

as required. �

On the precise value of sup
{
F1/2(Ω) : Ω ∈ Aconvex

}
we make the following

conjecture.

Conjecture 3.4. We have

sup
{
F1/2(Ω) : Ω ∈ Aconvex

}
= d
( 2

(d+ 1)(d+ 2)

)1/2

and it is asymptotically reached by taking for instance

Ωε =
{

(s, t) : s ∈ A, 0 < t < ε(1− |s|)
}

as ε→ 0, where A is the unit ball in Rd−1.

Remark 3.5. We recall that Conjecture 3.4 has been shown to be true in the case

d = 2 (see [23], [22], and the more recent paper [12]). In Section 4 we prove the

conjecture above for every d ≥ 2 in the class of convex thin domains.

We show now that for Fq in the class Aconvex the minimization problem is well

posed when q < 1/2 and the maximization problem is well posed when q > 1/2.

From the bounds obtained in Propositions 3.2 and 3.3 we can prove the following

results.

Proposition 3.6. We have
inf
{
Fq(Ω) : Ω ∈ Aconvex

}
≥ 3−1/2

(
d(d+ 2)

)1/2−q
ω

(1−2q)/d
d for every q ≤ 1/2

sup
{
Fq(Ω) : Ω ∈ Aconvex

}
≤ 2dd3d/2−q+1

(d+ 2)qω
1+(2q−1)/d
d

for every q ≥ 1/2.

Proof. We have

Fq(Ω) = F1/2(Ω)

(
T (Ω)

|Ω|(d+2)/d

)q−1/2

.

Hence it is enough to apply the bounds (3.2) and (3.3), together with the Saint

Venant inequality (1.3) to get that for every Ω ∈ Aconvex

inf
{
Fq(Ω) : Ω ∈ Aconvex

}
≥ 3−1/2

(
T (B)

B(d+2)/d

)q−1/2

if q ≤ 1/2

sup
{
Fq(Ω) : Ω ∈ Aconvex

}
<

2dd3d/2

ωd

√
d

d+ 2

(
T (B)

B(d+2)/d

)q−1/2

if q ≥ 1/2.

By the expression (1.4) for T (B) we conclude the proof. �

We now prove the existence of a convex minimizer when q < 1/2 and of a convex

maximizer when q > 1/2.
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Theorem 3.7. There exists a solution for the following optimization problems:{
min

{
Fq(Ω) : Ω ∈ Aconvex

}
for every q < 1/2;

max
{
Fq(Ω) : Ω ∈ Aconvex

}
for every q > 1/2.

Proof. Suppose q < 1/2 and consider Ωn a minimizing sequence for Fq(Ω). By the

John’s ellipsoid Theorem we can assume that there exists a sequence of ellipsoids

Ean such that

Ean ⊂ Ωn ⊂ dEan .

By rotations, translations and scaling invariance of Fq we can assume without loss

of generality that

Ean =

{
x ∈ Rd :

d∑
i=1

x2
i

a2
in

< 1

}
, an = (a1n, . . . , adn), 0 < a1n ≤ · · · ≤ adn = 1.

Observe that this implies that the diameter of Ωn is uniformly bounded in n. We

claim that

a1n ≥ c for every n ∈ N
where c is a positive constant. Then the proof is achieved by extracting a sub-

sequence Ωnk
which converges both in the sense of characteristic functions and in

the Hausdorff metric to some open, non empty, convex, bounded set Ω− and by

using the continuity properties of torsional rigidity, perimeter and volume (see for

instance, [7], [17]).

To prove the claim we use a strategy similar to the one already used in the proof

of Proposition 3.3. Let Qan be the cuboid
∏d

i=1]− ain, ain[. Since

d−1/2Qan ⊂ Ean

we have, for n large enough,

Fq(B1) ≥ Fq(Ωn) ≥ 1

d(d−1)/2ddαq

T q(Ean)P (Qan)

|Ean|αq
. (3.5)

An explicit computation shows

T q(Ean)P (Qan)

|Ean|αq
=

2dω
q−αq

d

(d+ 2)q

( ∑d
i=1 a

−1
in(∑d

i=1 a
−2
in

)1/2

)((∑d
i=1 a

−2
in

)1/2

(
∏d

i=1 a
−1
in )1/d

)1−2q

.

Observe that, by Cauchy-Schwarz inequality,

1 ≤
∑d

i=1 a
−1
in

(
∑d

i=1 a
−2
in )1/2

≤
√
d, (3.6)

while for the last term it holds(∑d
i=1 a

−2
in

)1/2

(
∏d

i=1 a
−1
in )1/d

=

(∑d
i=1 a

−2
in

)1/2

(
∏d−1

i=1 a
−1
in )1/d

≥ a−1
1n(

a−1
1n

)(d−1)/d
=

(
1

a1n

)1/d

(3.7)

Therefore, putting together (3.5)–(3.7) and using the fact that q < 1/2 we obtain

that, if n is large enough, the sequence a1n must be greater than some positive

constant c, which proves the claim.
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The case q > 1/2 can be proved in a similar way. If Ωn is a maximizing sequence

for Fq(Ω) and Ean are ellipsoids such that Ean ⊂ Ωn ⊂ dEan , we have

Fq(B1) ≤ Fq(Ωn) ≤ P (dEan)T q(dEan)

|Ean|αq
= dd−1+q(d+2)P (Ean)T q(Ean)

|Ean |αq
. (3.8)

If Qan is the cuboid
∏d

i=1]− ain, ain[ we have Ean ⊂ Qan , so that

P (Ean) ≤ P (Qan) = 2d
( d∑

i=1

a−1
in

) d∏
i=1

ain .

Hence (3.8) implies, for a suitable constant Cq,d depending only on q and on d,

Fq(B1) ≤ Cq,d

∑d
i=1 a

−1
in(∑d

i=1 a
−2
in

)q(∏d
i=1 ain

)(2q−1)/d
≤ dqCq,d

((∏d
i=1 a

−1
in

)1/d∑d
i=1 a

−1
in

)2q−1

,

where in the last inequality we used the Cauchy-Schwarz inequality (3.6). Finally,

since ain ≤ adn = 1, we obtain

Fq(B1) ≤ dqCq,d(a
−1
in )(2q−1)/d

and, since q > 1/2, the conclusion follows as in the previous case. �

4. Optimization in the class of thin domains

In this section we consider the class of thin domains

Ωε =
{

(s, t) : s ∈ A, εh−(s) < t < εh+(s)
}

where ε is a small positive parameter, A is a (smooth) domain of Rd−1, and h−, h+

are two given (smooth) functions. We denote by h(s) the local thickness

h(s) = h+(s)− h−(s),

and we assume that h(s) ≥ 0. The following asymptotics hold for the quantities we

are interested to (for the torsional rigidity we refer to [5]):

P (Ωε) ≈ 2Hd−1(A),

T (Ωε) ≈
ε3

12

∫
A

h3(s) ds,

|Ωε| = ε

∫
A

h(s) ds,

which together give the asymptotic formula when q = 1/2

F1/2(Ωε) ≈ 3−1/2Hd−1(A)
[ ∫

A

h3(s) ds
]1/2[ ∫

A

h(s) ds
]−3/2

= 3−1/2

[[
—

∫
A

h3(s) ds
][

—

∫
A

h(s) ds
]−3
]1/2 (4.1)

where we use the notation

—

∫
A

f(s) ds =
1

Hd−1(A)

∫
A

f(s) ds.
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By Hölder inequality we have

lim
ε→0

F1/2(Ωε) ≥ 3−1/2

and the value 3−1/2 is actually reached by taking the local thickness function h

constant, which corresponds to Ωε a thin slab.

A sharp inequality from above is also possible for F1/2(Ωε), if we restrict the

analysis to convex domains, that is to local thickness functions h which are concave.

The following result will be used, for which we refer to [4], [15].

Theorem 4.1. Let 1 ≤ p ≤ q. Then for every convex set A of RN (N ≥ 1) and

every nonnegative concave function f on A we have[
—

∫
A

f q dx
]1/q

≤ Cp,q

[
—

∫
A

fp dx
]1/p

where the constant Cp,q is given by

Cp,q =

(
N + p

N

)1/p(
N + q

N

)−1/q

.

In addition, the inequality above becomes an equality when A is a ball of radius 1

and f(x) = 1− |x|.

We are now in a position to prove the Conjecture 3.4 for convex thin domains.

Theorem 4.2. If Ωε are thin convex domains with local thickness h, we have

lim
ε→0

F1/2(Ωε) ≤ d
( 2

(d+ 1)(d+ 2)

)1/2

. (4.2)

In addition, the inequality above becomes an equality taking for instance as A the

unit ball of Rd−1 and as the local thickness h(s) the function 1− |s|.

Proof. By (4.1) we have

lim
ε→0

F1/2(Ωε) = 3−1/2

[[
—

∫
A

h3(s) ds
][

—

∫
A

h(s) ds
]−3
]1/2

.

In addition, by Theorem 4.1 with N = d− 1, q = 3, p = 1, we obtain

—

∫
A

h3 dx ≤ C3
1,3

[
—

∫
A

h dx
]3

,

so that

lim
ε→0

F1/2(Ωε) ≤ 3−1/2C
3/2
1,3 = d

( 2

(d+ 1)(d+ 2)

)1/2

as required. Finally, an easy computation shows that in (4.2) the inequality becomes

an equality if A is the unit ball of Rd−1 and h(s) = 1− |s|. �
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