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Abstract. We study the minimization of a spectral functional made as the sum of the first eigenvalue of the

Dirichlet Laplacian and the relative strength of a Riesz-type interaction functional. We show that when the

Riesz repulsion strength is below a critical value, existence of minimizers occurs. Then we prove, by means of
an expansion analysis, that the ball is a rigid minimizer when the Riesz repulsion is small enough. Eventually

we show that for certain regimes of the Riesz repulsion, regular minimizers do not exist.
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1. Introduction

Foreword. In this work we study the minimization under volume constraint of energies of the form

F(Ω) = S(Ω) +

∫
Ω

∫
Ω

dx dy

|x− y|N−α
,

where S is either the torsion energy E or the first eigenvalue of the Dirichlet-Laplacian λ1, N ≥ 2 and α ∈ (0, N).
It is well-known that both the torsion energy and the first eigenvalue of the Dirichlet-Laplacian are minimized,

among sets of fixed measure, by the ball. These results, obtained with symmetrization arguments, can be
summarized in a scale invariant form as

|Ω|−
N
N+2E(Ω) ≥ |B|

N
N+2E(B), |Ω| 2

N λ1(Ω) ≥ |B| 2
N λ1(B),

where B is a generic ball and |Ω| denotes the Lebesgue measure in RN of the set Ω. In the literature, they are
called Saint-Venant and Faber-Krahn inequalities, respectively. Both the inequalities are rigid, that is equality
holds if and only if Ω is a ball up to null capacity. We refer to [23] for a comprehensive background about these
problems.
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In sharp contrast, the Riesz Energy functional

Vα(Ω) :=

∫
Ω

∫
Ω

dx dy

|x− y|N−α
,

which appears as the second addend in the definition of F , increases while symmetrizing the set Ω, and it is
uniquely (up to a negligible set) maximized by balls [29, Theorem 3.7], leading to a competition while seeking
to minimize F .

Motivation and background. In recents years the research of quantitative stability of various geometric,
functional and spectral inequalities received a great attention, and this gave a strong impulse to the development
of the field. In turn this led to a renewed interest in several variational models where a competition between a
cohesive term is balanced by a repulsive term. A non-exhaustive list of papers in this field is [1, 6, 15, 20, 21,
27, 12, 13, 17, 34, 24, 30, 16, 34].

Arguably the most famous instance of such variational models is the Gamow liquid drop model introduced
in [19] to describe the stability of nuclear matter. Such a model is made up by the sum of a surface perimeter
term and a Riesz energy term of a set Ω ⊂ R3

J (Ω) := P (Ω) +

∫
Ω

∫
Ω

dx dy

|x− y|
.

The usual mathematical questions about this class of models are:

(1) To investigate existence and non existence of minimizers depending on the values of the mass of com-
petitors, that is, depending on the choice of the volume constraint.

(2) To study the regularity of minimizers, if existence holds.
(3) To characterize the ball as the unique minimizer as long as the mass is small enough.

In particular, regarding the liquid drop model, in [13] Choksi and Peletier conjectured1 that there exists a
critical threshold mass m such that minimizers exist only if |Ω| ≤ m. Questions (1) and (3) above, as well as
such a conjecture, follow the intuitive idea that because of the different scaling of the functionals, if the mass
is small then the perimeter term is dominant, while if the mass is large then the Riesz term dominates, and
disconnected configurations are favored. Since the Riesz energy decreases as the connected components of a
set are pushed away from each other, this leads to non-existence. In fact, one can show that if the mass is
approaching 0, then the problem reduces to the classical isoperimetric problem. The Choksi-Peletier conjecture,
although being still open in its generality, was partially solved in [27, 15, 24] where the authors show that there
are thresholds 0 < msmall < mbig such that the ball is the unique minimizer for m < msmall and existence does
not occur if m > mbig. The scope of this paper is to begin this kind of analysis when the perimeter is replaced
by a spectral functional.

1.1. Main results. The main result of the paper is the following.

Theorem 1.1. Let N ≥ 2, α ∈ (1, N). There exists ελ1 = ελ1(N,α) > 0 such that, for all ε ≤ ελ1 , the ball of
unitary measure is the unique minimizer for problem

(1) min
{
λ1(Ω) + εVα(Ω) : Ω ⊂ RN , |Ω| = 1

}
.

In the case where S = E is the torsion energy, we obtain the following weaker result.

Theorem 1.2. Let N ≥ 2, α ∈ (1, N). There exists R0 = R0(N) such that for all R > R0 there exists
εE = εE(N,α,R) such that, for all ε ≤ εE, the ball is the unique minimizer for problem

(2) min
{
E(Ω) + εVα(Ω) : Ω ⊂ RN , |Ω| = 1, Ω ⊂ BR

}
.

We stress that the value of the geometric constant R0 can be explicitly computed from our proofs.
A remark concerning the mass constraint is in order.

Remark 1.3. A straightforward scaling argument shows that there exists a continuous positive function ε(m)
vanishing at the origin and diverging at infinity such that minimizing

λ1(Ω) + Vα(Ω), |Ω| = m

is equivalent to minimize the functional

λ1(Ω) + ε(m)Vα(Ω), |Ω| = 1,

as for all t > 0 we have

λ1(tΩ) + Vα(tΩ) = t−2
(
λ1(Ω) + tN+α+2Vα(Ω)

)
.

In particular requiring the mass of competitors m ≈ tN to be small is equivalent to require ε ≈ tN+α+2 to be
small.

1The conjecture was formulated only for N = 3 but it is commonly extended to any dimension N ≥ 2
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Therefore, Theorem 1.1 states that for small masses the only minimizer of λ1 + Vα is the ball, as long as
α > 1, which is the analogous of the results obtained on the functional P + Vα.

For the torsion energy the situation depends on the value of α. Indeed for any t > 0 one has

E(tΩ) + Vα(tΩ) = tN+2
(
E(Ω) + tα−2Vα(Ω)

)
,

so that small values of ε = tα−2 do correspond to small values of the mass only for α > 2.

The result stated in Theorem 1.1 is the spectral analog of the existence results in [27, 24, 15]. On the other
hand, when dealing with the torsion energy, the result needs the additional assumption of equiboundedness of
competitors. We believe such an hypothesis to be of technical nature, but its removal seems a challenging task
and we do not solve it in this paper. We discuss this issue in the next remark.

Remark 1.4. The problem of proving the existence of minimizers among generic subsets of RN (instead of
among equibounded sets) for spectral functionals has been a rather hot topic in the last years. Regarding the
eigenvalues of the Dirichlet-Laplacian essentially two techniques are available in literature: one developed by
Bucur in [9] is based on a concentration-compactness argument mixed together with regularity results for inward
minimizing sets; the other, proposed by the first author and Pratelli in [32], is based on a De Giorgi type surgery
argument. Seemingly none of these techniques works while tackling the case of the functional E + εVα. Even
working with a more direct surgery-wise technique for the functional E as that used in [8, Section 5] seems to
fail in our setting. Hence we are not able to get rid of the equiboundedness assumption in Theorem 1.2.

Restricting the class of Riesz energies to α ∈ (1, N) seems a deep problem as well. In fact to show Theorems
1.1, 1.2 we need a fine regularity analysis of minimizers (see the discussion below) where the regularity of the
Riesz potential

vΩ(x) :=

∫
Ω

dy

|x− y|N−α

plays a crucial role. If α ≤ 1, then vΩ is at most of class C0,γ , for some γ ∈ (0, 1], which is not enough for our
proof to work.

The third and last result we prove is the following, in which we show that for big values of the mass,
minimizers do not exist among sets satisfying uniform density constraints as long as α ∈ (N − 1, N).

Definition 1.5. We say that a set Ω has the internal δ−ball condition if for any x ∈ ∂Ω there exists a ball
Bδ ⊂ Ω tangent to ∂Ω in x. We call U(δ) the class of open sets Ω ⊂ RN that satisfy the internal δ-ball condition.

Theorem 1.6. Let α ∈ (N − 1, N). Then there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) there exists
εmax = εmax(α,N, δ) such that for ε ≥ εmax both problems

inf {E(Ω) + εVα(Ω) : Ω ∈ U(δ), |Ω| = 1} ,

and

inf {λ1(Ω) + εVα(Ω) : Ω ∈ U(δ), |Ω| = 1} ,

do not admit a minimizer.

1.2. Outline of the proof and structure of the paper. The proofs of the main results of the paper,
Theorem 1.1 and 1.2, are articulated in two main steps, which we briefly describe here below. First we discuss
the proof of Theorem 1.2, which covers most of the paper. Then we describe a (completely independent) surgery
argument for the functional λ1 + εVα. By putting together these two steps, Theorem 1.1 follows.

Strategy of the proof of Theorem 1.2. The proof of Theorem 1.2 is quite long and involved and is
inspired by ideas developed in [8, 27].

First of all, we consider a problem without the mass constraint. This step is needed because the techniques
from the free boundary regularity that we aim to apply do not work properly in presence of a measure constraint
as perturbations become more difficult to manage. Whence we consider an auxiliary minimization problem of
the form

(3) min {Gε,η(Ω) := E(Ω) + εVα(Ω) + fη(|Ω|) : Ω ⊂ BR} ,

where fη is a suitable piecewise linear function which acts as a sort of Lagrange multiplier. This strategy in
shape optimization problems was first proposed by Aguilera, Alt and Caffarelli in [3]. We point out that without
the equiboundedness restriction, at least as long as α < 2, minimizers of problem (3) do not exist (see Section 2),
and the infimum of Gε,η diverges toward minus infinity, which somewhat underlines one difficulty while trying to
remove the equiboundedness of competitors in Theorem 1.2. Unfortunately the desired equivalence between (3)
and (2) is not straightforward, and we first need to show existence of minimizers of problem (3), and some mild
regularity (finiteness of the perimeter and density estimates). This permits us to show that for suitable values
of η (again depending on R), the minimization of Gε,η and the measure constrained minimization of E + εVα
are indeed equivalent, for ε small enough.
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The next key point is therefore to prove a suitable regularity result on the free boundary of an optimal set
for (3). To get such a regularity we switch to the problem

min

{
1

2

∫
|∇u|2 −

∫
u+ εVα(|{u > 0}|) + fη(|{u > 0}|) : u ∈ H1

0 (BR)

}
,

with the idea of exploiting the regularity theory for ∂{u > 0} ∩ BR, where u is any minimizer of the above
problem. Such an analysis is done in the spirit of the seminal work on free boundary regularity by Alt and
Caffarelli [4] .

The link between this regularity argument and the rigidity of the ball is then the quantitative version of the
Saint-Venant inequality, stating that for any Ω ⊂ RN there exists a ball Br(x) of measure |Ω| such that

|Ω|−
N
N+2E(Ω)− |B|−

N
N+2E(B) ≥ σN

(
|Ω \Br(x)|
|Ω|

)2

.

This deep result, recently shown in [8], together with several of the ideas of its proof, plays a crucial role in
our analysis. Indeed by comparing any candidate minimizer with a ball, we show that for ε small, minimizers
are close in L1−topology to the ball. Whence, exploiting the free boundary regularity analysis, such an L1−
proximity to a ball is improved to a nearly spherical one, stating that the boundary of any minimizer is a small
C2,γ−parametrization on a sphere. At this point, a perturbative analysis in the class of nearly spherical sets
yields to the conclusion (again with the aid of the quantitative Saint-Venant inequality) that the ball is the only
minimizer. Beside proving Theorem 1.2, this argument, together with the Kohler-Jobin inequality is enough
to get the statement of Theorem 1.1 among equibounded sets. At this point we only need to show that any
minimizing sequence can be chosen to be made up of equibounded sets. This, as mentioned above, is made by
means of a surgery-wise argument.

The surgery argument. The strategy we follow is based on that proposed in [32] (see also [10]) in order
to prove existence of minimizers under measure constraint for the k−th eigenvalue of the Dirichlet-Laplacian.
Nevertheless some differences with respect to [32] occur. On the one hand the presence of the repulsive Riesz
energy term forces us to work with connected sets. On the other hand we only deal with the first eigenvalue,
thus we do not need to take care of the further difficulty about the orthogonality constraint of the higher
eigenfunctions. Furthermore, up to choose ε small enough, we can deal with sets which are close to the ball in
the L1−topology which allows us to simplify the argument.

Plan of the paper. The paper is organized as follows: in Section 2 we give the basic definitions and we
prove or recall some preliminary results. In Sections 3, 4, 5 and 6 we develop the proof of Theorem 1.2, as
described above. Section 8 is devoted to a surgery argument for the functional λ1 + εVα. Finally, Sections 9
and 10 contain the proof of Theorems 1.1 and 1.6, respectively.

2. Setting, notations and some preliminary results

The ambient space in this work is RN , where N ≥ 2 is an integer. With Ω we denote an open bounded set,
unless otherwise stated. We write Br(x) to indicate the ball with radius r centered in x, and just Br if the
center is x = 0, while by B we denote just a generic ball, unless otherwise stated. Moreover we set ωN the
measure of the ball of unit radius in RN and the N -dimensional Lebesgue measure of a set D is denoted by |D|.

2.1. The functionals: definitions and properties. The problem we deal with is the minimization under
volume constraint of the functional

Fα,ε(Ω) := E(Ω) + εVα(Ω).

where E is the torsion energy

E(Ω) := min
u∈H1

0 (Ω)

1

2

∫
Ω

|∇u|2 −
∫

Ω

u,

and Vα is the Riesz potential energy defined for α ∈ (0, N) as

Vα(Ω) :=

∫
Ω

∫
Ω

1

|x− y|N−α
dx dy.

Some features of these two functionals are in order. First, we remark that the minimum for the torsion energy
functional is attained by a function wΩ, the torsion function, as long as Ω has finite measure. The Euler-Lagrange
equation of the minimization problem defining E reads as

−∆wΩ = 1 in Ω, wΩ ∈ H1
0 (Ω).

The definition of E together with the equation satisfied by wΩ leads to the following representation of the
torsion energy

E(Ω) = −1

2

∫
Ω

wΩ ≤ 0.
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By the Pólya-Szëgo inequality (see [35]) it follows that

E(Ω) ≥ E(B),

where B is a ball of RN of measure |Ω|, that is: the torsion energy E is minimized by balls under volume
constraint. Moreover the above inequality is rigid, in the sense that equality holds if and only if Ω is a ball, up
to sets of null-capacity. This inequality is addressed as Saint-Venant inequality. The torsion energy E satisfies
the following scaling law:

E(tΩ) = tN+2E(Ω), for all t > 0,

and it is non-increasing with respect to set inclusion, i.e.

Ω1 ⊂ Ω2 =⇒ E(Ω1) ≥ E(Ω2),

the inequality being strict as soon as |Ω2 \Ω1| > 0. Therefore we can rewrite the Saint-Venant inequality in the
scale invariant form

E(Ω)|Ω|−
N+2
N ≥ E(B)|B|−

N+2
N .

About the Riesz energy functional Vα, we note that it scales as

Vα(tΩ) = tN+αVα(Ω).

Moreover, we recall that by Riesz inequality (see [29, Theorem 3.7]) Vα is maximized by balls, that is,

|Ω|−
N+α
N Vα(Ω) ≤ |B|−

N+α
N Vα(B).

Again the inequality is rigid, that is, equality holds if and only if Ω is a ball up to a negligible set. It is immediate
to see that the Riesz potential energy is non-decreasing with respect to set inclusion, that is

Ω1 ⊂ Ω2, implies Vα(Ω1) ≤ Vα(Ω2),

the inequality being strict if |Ω2 \ Ω1| > 0. Alongside the Riesz energy we define the Riesz potential

vΩ(x) :=

∫
Ω

1

|x− y|N−α
dy = χΩ ∗

1

| · |N−α
(x),

so that

Vα(Ω) =

∫
Ω

vΩ(x) dx.

Notice that vΩ(0) satisfies

(4) vtΩ(0) =

∫
tΩ

1

|y|N−α
dy = tα

∫
Ω

1

|z|N−α
dz = tαvΩ(0).

The following result, which is a simple refinement of [27, Proof of Proposition 2.1] will be used several times in
the paper.

Lemma 2.1. Let α ∈ (0, N), Ω, F ⊂ RN be two measurable sets, with finite measure, such that Ω∆F ⊂ BR(0),
for some R > 0. Then it holds

Vα(F )− Vα(Ω) ≤ C0|Ω∆F |
[
|Ω| αN + |F | αN

]
,

for some constant C0 = C0(N,α) > 1.

Proof. First we compute

Vα(F )− Vα(Ω) =

∫
RN

∫
RN

χF (x)(χF (y)− χΩ(y))

|x− y|N−α
dxdy +

∫
RN

∫
RN

χΩ(y)(χF (x)− χΩ(x))

|x− y|N−α
dxdy

=

∫
F\Ω

(vF (x) + vΩ(x)) dx−
∫

Ω\F
(vF (x) + vΩ(x)) dx ≤

∫
Ω∆F

(vF + vΩ).

We can now observe that, as a consequence of Riesz inequality (see [18, Lemma 2.3]) and the rescaling of vΩ(0),
see (4), we get ∫

Ω∆F

vΩ(x) dx =

∫
Ω∆F

∫
Ω

1

|x− y|N−α
dy dx

≤
∫

Ω∆F

∫
B̃(x)

1

|x− y|N−α
dy dx

= |Ω∆F |
∫
B̃

1

|z|N−α
dz = |Ω∆F | |Ω| αN

∫
B

1

|z|N−α
dz,
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where B̃(x) and B̃ are balls of measure |B̃| = |B̃(x)| = |Ω| centered at x and at the origin respectively, while
B is the ball of measure one centered at the origin. The same computation holds also for

∫
Ω∆F

vF dx. In
conclusion we have

Vα(F )− Vα(Ω) ≤
∫

Ω∆F

(vF + vΩ) ≤ C0|Ω∆F |
[
|Ω| αN + |F | αN

]
,

where C0(N,α) :=
∫
B

1
|z|N−α dz < +∞ as α > 0. �

We conclude this subsection recalling one of the main tool we exploit to solve problem (6): the sharp
quantitative version of the Saint-Venant inequality, which was first proved as a intermediate result in [8, Proof
of the Main Theorem].

Theorem 2.2. There exists a constant σ = σ(N), such that, for all open sets with finite measure Ω ⊂ RN , we
have

(5) E(Ω)|Ω|−1− 2
N − E(B)|B|−1− 2

N ≥ σA(Ω)2,

for any ball B, where

A(Ω) := inf

{
|Ω∆B(x)|
|Ω|

: x ∈ RN , B(x) is a ball of measure |Ω|
}
,

is the Fraenkel asymmetry.

The last functional involved in our work is the first eigenvalue of the Dirichlet-Laplacian acting on an open
and bounded set Ω ⊂ RN . We recall its variational definition given as the minimum of the so-called Rayleigh
quotient:

λ1(Ω) := min
ϕ∈H1

0 (Ω)

∫
Ω
|∇ϕ|2∫
Ω
ϕ2

,

we call u ∈ H1
0 (Ω) the function attaining the minimum, which is the eigenfunction corresponding to λ1(Ω) and

that solves the PDE {
−∆u = λ1(Ω)u, in Ω,

u ∈ H1
0 (Ω).

The monotonicity and scaling properties of the eigenvalue follow immediately from its definition:

λ1(tΩ) = t−2λ1(Ω), for all t > 0,

Ω1 ⊂ Ω2 =⇒ λ1(Ω1) ≥ λ1(Ω2).

We finally recall the sharp quantitative Faber-Krahn inequality for the first eigenvalue of the Dirichlet-
Laplacian, that was first proved in [8, Main Theorem].

Theorem 2.3. There exists a positive constant σ̂ = σ̂(N) such that for all open set Ω ⊂ RN with finite measure
we have

|Ω|2/Nλ1(Ω)− |B|2/Nλ1(B) ≥ σ̂A(Ω)2,

where B is a generic ball and A the Fraenkel asymmetry.

2.2. Quasi-open sets and the minimization problem. Let us recall the notion of capacity and of quasi-open
set.

Definition 2.4. For every subset D of RN , the capacity of D in RN is defined as

cap(D) := inf

{∫ (
|∇u|2 + |u|2

)
dx : u ∈ H1(RN ) ,

0 ≤ u ≤ 1 LN -a.e. on RN , u = 1 LN -a.e. on an open set containing D

}
.

We say that a property P(x) holds cap-quasi-everywhere in D, if it holds for all x ∈ D except at most a set
of zero capacity, and in this case we write q.e. in D. A subset A of RN is said to be quasi-open if for every
ε > 0 there exists an open subset ωε of RN such that cap(ωε) < ε and A ∪ ωε is open.

The notion of capacity is strictly related to spectral functionals such as the torsion energy and the first
eigenvalue of the Dirichlet-Laplacian. In particular, one can not consider to be equivalent, a priori, two open
(or quasi-open) sets which differ for a generic negligible set. Indeed for any open set Ω it is possible to construct
a sequence of subsets Ωn ⊂ Ω of measure |Ωn| = |Ω| with E(Ωn) < 1/n for all n ∈ N. For example take
Ω = (0, 1)N and let {ri}i∈N be an enumeration of the rationals in (0, 1). Then, as cap((0, 1)N−1) > 0, it is
possible to find kn so that

Ωn = Ω \

{
(0, 1)N−1 ×

kn⋃
i=1

ri

}
, with E(Ωn) ≤ 1

n
,
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and |Ωn| = |Ω|.

Definition 2.5. A function u : RN → R is said to be quasi-continuous if for every ε > 0 there exists an open
subset ωε of RN with cap(ωε) < ε such that u

∣∣
RN\ωε

is continuous.

For every u ∈ H1(RN ), there exists a Borel and quasi-continuous representative ũ : RN → R of u and, if ũ
and û are two quasi-continuous representatives of the same function u, then we have ũ = û q.e. in RN . From
now on for every u ∈ H1(RN ), we consider only its quasi-continuous representative. In this setting, we are able
to provide a more general definition of the space H1

0 (Ω), which coincide with the usual one as soon as Ω is open,
but that is suitable also for measurable sets (and quasi-open sets in particular).

Definition 2.6. If A is a quasi-open subset of RN , we set

H1
0 (A) :=

{
u ∈ H1(RN ) : u = 0 q.e. in RN \A

}
.

It is nowadays standard to perform the minimization of functionals such as Fα,ε in the class of quasi-open
sets. As it can be noted, in the definition of the torsion energy and of the first eigenvalue of the Dirichlet-
Laplacian, only the space H1

0 (Ω) was really needed and therefore, once we have a definition which is suitable
for quasi-open sets, we can work with them with no additional worries. On the other hand, the Riesz energy is
well defined even for measurable sets, therefore there are no problems on its side.

As it is common in the Calculus of Variations, after finding a minimizer in the larger class of quasi-open sets,
we will try later to restore the regularity of minimizers (and in particular, show that they are open).

We are now in position to properly define the problem we deal with in a large part of this paper. Let

R >
(

1
ωN

)1/N

, so that a ball of radius R has measure greater than 1. Then we consider the problem

(6) min
{
Fα,ε(A) : A ⊂ RN , quasi-open, |A| = 1, A ⊂ BR

}
.

From now on, we tacitly deal with quasi-open sets, unless otherwise stated.

2.3. Some notions of geometric measure theory. We give here some measure theoretic notions which will
be used throughout the paper. Comprehensive references for this section are [2, 31]. The measure theoretic
perimeter (or De Giorgi perimeter) of a measurable set E is the quantity

P (E) = sup

{∫
E

divζ : ζ ∈ C1
c(RN,RN), ‖ζ‖C0 ≤ 1

}
.

We say that E is a set of finite perimeter or Caccioppoli set if P (E) < +∞, that is if χE is a function of bounded
variation [2], and with ∇χE we indicate the distributional derivative of χE . Notice that if E is Lipschitz regular,
by divergence theorem,

P (E) = HN−1(∂E),

where Hk stands for the k−dimensional Hausdorff measure, k ∈ [0, N ].
For any Lebesgue measurable set E and t ∈ [0, 1] we define the quantities

Et =

{
x ∈ RN : lim sup

r→0

|E ∩Br(x)|
|Br(x)|

= t

}
,

and the essential boundary of E as

∂ME := RN \ (E0 ∪ E1).

Beside the essential boundary we call reduced boundary the set

∂∗E :=

{
x ∈ RN : νE(x) := lim

r→0

∫
Br(x)

∇χE∫
Br(x)

|∇χE |
exists and is a unit vector

}
.

The quantity νE(x) in the definition of ∂∗E is the measure theoretic normal of ∂E at the point x, whenever it
is well defined. By results of Federer and De Giorgi [31] for sets of finite perimeter it holds

P (E) = HN−1(∂∗E) = HN−1(∂ME).

In particular for a set of finite perimeter we have ∂∗E ⊂ E1/2 ⊂ ∂ME and HN−1(∂ME \ ∂∗E) = 0. Eventually,
for any x ∈ ∂∗E the blow up of the boundary of E converges in L1 to an hyperplane orthogonal to νE(x), that
is

E − x
r
→
{
y ∈ RN : y · νE(x) ≥ 0

}
as r → 0.
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3. An existence result for an auxiliary problem

Let η ∈ (0, 1) and consider the function

fη : R+ → R, fη(s) =

{
η(s− 1), if s ≤ 1,
1
η (s− 1), if s ≥ 1.

It is easy to check that, for all 0 ≤ s2 ≤ s1, we have that

(7) η(s1 − s2) ≤ fη(s1)− fη(s2) ≤ 1

η
(s1 − s2).

We introduce then the functional

Gε,η(Ω) := Fα,ε(Ω) + fη(|Ω|),
and, for R > ω

−1/N
N , the minimization problem

(8) min {Gε,η(Ω) : Ω ⊂ BR,Ω quasi-open} .
In Section 5 we will show that such minimization problem and the minimization problem (6) are equivalent. To
do that we first have to prove existence and some mild regularity of minimizers of Gε,η. We begin by showing
a lower bound for Gε,η on equibounded sets.

Lemma 3.1. Let α ∈ (0, N), R > ω
−1/N
N and η, ε ∈ (0, 1). Then, for all quasi-open Ω ⊂ BR, we have

Gε,η(Ω) ≥ ω
N+2
N

N E(B)RN+2 − η ≥ ω
N+2
N

N E(B)RN+2 − 1,

where B is any ball of measure 1.

Proof. Since Ω ⊂ BR, by the monotonicity of E, its scaling properties and the positivity of Vα we get

E(Ω) + εVα(Ω) ≥ ω
N+2
N

N E(B)RN+2.

On the other hand, if |Ω| ≥ 1 then

fη(|Ω|) ≥ 0,

while if |Ω| < 1 then

fη(|Ω|) = η(|Ω| − 1) ≥ −η,
and the conclusion easily follows. �

The following existence result for the unconstrained functional Gε,η is an adaptation of [8, Lemma 4.6], which
is in turn inspired by [9, Theorem 2.2 and Lemma 2.3].

Lemma 3.2. Let α ∈ (0, N), η ∈ (0, 1), ε ∈ (0, 1) and let R > ω
−1/N
N . There exists a minimizer in the class

of quasi-open sets for problem (8). Moreover all minimizers have perimeter uniformly bounded by a constant
depending on N,R, η.

Proof. Let (Ωn) ⊂ BR be a minimizing sequence, with

Gε,η(Ωn) ≤ inf {Gε,η(Ω) : Ω ⊂ BR, quasi-open}+
1

n
.

Let un be the torsion function of Ωn, so that Ωn = {un > 0} and let tn = 1/
√
n. We define

Ω̃n := {un > tn}.
We have

Gε,η(Ωn) ≤ Gε,η(Ω̃n) +
1

n
,

which, since the torsion function of Ω̃n is precisely (un − tn)+, reads as

1

2

∫
{un>0}

|∇un|2 −
∫
{un>0}

un + εVα(Ωn) + fη(|{un > 0}|)

≤ 1

2

∫
{un>tn}

|∇un|2 −
∫
{un>tn}

(un − tn)+ + εVα(Ω̃n) + fη(|{un > tn}|) +
1

n
.

Noting that

(9)

∫
{un>0}

un −
∫
{un>tn}

(un − tn) ≤ tn|{un > 0}|,

recalling the property (7) of fη and the monotonicity of Vα, the above inequality yields

(10)
1

2

∫
{0<un<tn}

|∇un|2 +
η

2
|{0 < un < tn}| ≤ tn|{un > 0}|+ 1

n
≤ tn|BR|+

1

n
.
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On the other hand, since η < 1, using coarea formula, the arithmetic geometric mean inequality and (10), we
obtain

η

∫ tn

0

P ({un > s}) ds = η

∫
{0<un<tn}

|∇un| dx

≤ η

2

∫
{0<un<tn}

|∇un|2 dx+
η

2
|{0 < un < tn}| ≤ tn|BR|+

1

n
.

Thanks to the choice of tn = 1/
√
n, we can find a level 0 < sn < 1/

√
n such that the sets Wn := {un > sn}

satisfy

P (Wn) ≤ 2η

ηtn

∫ tn

0

P ({un > s}) ds ≤ 2|BR|
η

+
2

ηtnn
≤ C(N,R, η) +

2

η
√
n
.

It is easy to check that (Wn) is still a minimizing sequence for problem (8):

Gε,η(Wn)

=
1

2

∫
{un>sn}

|∇un|2 −
∫
{un>sn}

(un − sn) + εVα({un > sn}) + fη(|{un > sn}|)

≤ Gε,η(Ωn) + sn|{un > 0}|+ fη(|{un > sn}|)− fη(|{un > 0}|)

≤ Gε,η(Ωn) +
|BR|√
n
− η|{0 < un < sn}| ≤ Gε,η(Ωn) +

|BR|√
n
,

(11)

where we have also used the monotonicity of Vα and property (9) with sn in place of tn. Moreover, since the
sets of the sequence (Wn)n∈N have equibounded perimeter, there exists a Borel set W∞ such that (up to pass
to subsequences)

Wn →W∞, in L1, P (W∞) ≤ C(N,R, η).

On the other hand, the torsion function of Wn, that is wn = (un − sn)+, is equibounded in H1(BR). In fact,
by Lemma 3.1, Gε,η is (uniformly) bounded from below and so

C(N,R) ≤ Gε,η(Wn) = −1

2

∫
Wn

|∇wn|2 + εVα(Wn) + fη(|Wn|),

which implies,
1

2

∫
Wn

|∇wn|2 ≤ −C(N,R) + εVα(BR) +
1

η
|BR|.

Hence, up to subsequences, there is w ∈ H1
0 (BR) such that

wn → w, strongly in L2(BR) and weakly in H1
0 (BR).

We set W := {w > 0}, and recall that we are identifying w with its quasi-continuous representative. Thus

χW (x) ≤ lim inf
n→∞

χWn
(x) = χW∞(x), for a.e. x ∈ BR,

hence |W \W∞| = 0, that is W ⊂ W∞ up to a negligible set. We now observe that Vα and fη are continuous
with respect to the L1 convergence of sets, while the first integral in the torsion energy is lower semicontinuous
with respect to the weak H1 and the second one with respect to the strong L1 convergence. We can therefore
pass to the limit in (11) and obtain

E(W ) + εVα(W∞) + fη(|W∞|) ≤
1

2

∫
BR

|∇w|2 −
∫
BR

w + εVα(W∞) + fη(|W∞|)

≤ lim inf
n
Gε,η(Wn) = inf

Ω⊂BR
Gε,η(Ω) ≤ E(W ) + εVα(W ) + fη(|W |).

On the other hand, using again the monotonicity of Vα, we have

η|W∞ \W | = η(|W∞| − |W |) ≤ fη(|W∞|)− fη(|W |) ≤ ε(Vα(W )− Vα(W∞)) ≤ 0,

thus |W∞ \W | = 0, which entails W = W∞ a.e. and this is the desired minimizer for problem (8). �

We conclude this section with a result concerning a property of the minimizers of Gε,η which will be useful later.

Lemma 3.3. Let R > ω
−1/N
N , α ∈ (0, N) and B a ball of measure 1. There exist a constants ε0 = ε0(N,α) > 0

and η0 = η0(N,α) > such that, if η ≤ η0 and ε ≤ ε0, then for any minimizer Ω̂ of problem (8) we have

E(Ω̂) ≤ E(B)

4
< 0.
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Proof. The existence of an optimal set Ω̂ follows from Lemma 3.2. If |Ω̂| ≥ 1, then we have, calling B a ball of
unit measure,

E(Ω̂) ≤ E(Ω̂) + εVα(Ω̂) +
1

η
(|Ω̂| − 1) ≤ E(B) + εVα(B) ≤ E(B)

4
< 0,

by minimality of Ω̂ and as soon as we take ε ≤ ε0 := −E(B)
4Vα(B) .

On the other hand, if |Ω̂| < 1, using again the optimality of Ω̂ we have

E(Ω̂) + η(|Ω̂| − 1) ≤ E(Ω̂) + εVα(Ω̂) + η(|Ω̂| − 1) ≤ E(B) + εVα(B),

that is,

E(Ω̂) ≤ E(B) + εVα(B) + η ≤ E(B)

4
< 0,

as soon as ε ≤ ε0 and η ≤ η0 = −E(B)
4 . �

4. First regularity properties of minimizers of the unconstrained problem

In this Section we essentially follow the approach of [8, Section 4], which is in turn based on the seminal
paper by Alt and Caffarelli [4], to prove density estimates, and Lipschitz regularity of the torsion function of
minimizers for Problem (8).

The keystone idea is that we can pass from a functional defined on the class of quasi-open sets, to another
defined on functions. In fact, for any Ω ⊂ BR quasi-open, calling u its torsion function, we have that

Gε,η(Ω) = Gε,η({u > 0}).

Moreover, if Ωε,η is optimal for problem (8), using the definition and minimality properties of its torsion function
uε,η, we have that, for all v ∈ H1

0 (BR),

1

2

∫
|∇uε,η|2 −

∫
uε,η + εVα({uε,η > 0}) + fη(|{uε,η > 0}|)

≤ 1

2

∫
|∇v|2 −

∫
v + εVα({v > 0}) + fη(|{v > 0}|).

(12)

Remark 4.1. In this section, we stress that instead of working on optimal sets for problem (8), we focus on
functions optimal for problem (12). Clearly if u is optimal for problem (12), then it must be the torsion function
of {u > 0}, therefore the two formulations are equivalent.

By Lemma 2.1 we get that uε,η behaves like a quasi-minimizer2 of a free boundary-type problem, that is

1

2

∫
|∇uε,η|2 −

∫
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

∫
|∇v|2 −

∫
v + fη(|{v > 0}|)

+ Cε|{uε,η > 0}∆{v > 0}|
[
|{uε,η > 0}| αN + |{v > 0}| αN

]
,

(13)

for all v ∈ H1
0 (BR) and with a constant C depending only on N,α. Since v, uε,η ∈ H1

0 (BR), from (13) ensues

1

2

∫
|∇uε,η|2 −

∫
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

∫
|∇v|2 −

∫
v + fη(|{v > 0}|) + 2C|BR|

α
N ε|{uε,η > 0}∆{v > 0}|.

This quasi-minimality property does not provide any new information by itself and we need to take advantage
of the (smallness of the) parameter ε, since the volume term is not in general of lower order. We also observe
that if v ∈ H1

0 (BR) is such that

{v > 0} ⊂ {uε,η > 0},
then inequality (12) together with the monotonicity of Vα entails that

1

2

∫
|∇uε,η|2 −

∫
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

∫
|∇v|2 −

∫
v + fη(|{v > 0}|),

(14)

and we stress the fact that the parameter α does not appear in this formulation. Therefore, it should not be
surprising that in the next Lemma 4.2 the constants ( as for example K0, ρ0) do not depend on α.

2This terminology is borrowed by the theory of quasi-minimizers for the perimeter, see [31, Chapter 3].
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We continue our analysis of the regularity of minimizers with the following non-degeneracy lemma. Its proof,
which we provide for the sake of completeness, is basically a rewriting of [8, Lemma 4.9], in turn inspired by [4,
Lemma 3.4].

Lemma 4.2. Let α ∈ (0, N), R > 0, η ∈ (0, 1), ε ∈ (0, 1) and Ω be an optimal set for the problem

min
{
Gε,η(A) : A ⊂ BR, quasi-open

}
,

we call u ∈ H1
0 (Ω) its torsion function. For every κ ∈ (0, 1), there are positive constants K0, ρ0 depending only

on κ, η,N such that the following assertion holds: if ρ ≤ ρ0 and x0 ∈ BR, then

(15) −
∫
∂Bρ(x0)∩BR

u dHN−1 ≤ K0ρ =⇒ u ≡ 0 in Bκρ(x0) ∩BR.

Proof. Without loss of generality, we fix x0 = 0. We also extend u to zero outside BR, so that it satisfies
−∆u ≤ 1 in RN in weak sense. Then the function

x 7→ u(x) +
|x|2 − ρ2

2N

is subharmonic in Bρ. Thus, for every κ ∈ (0, 1), there exists c = c(κ,N) such that

(16) δρ := sup
B√κρ

u ≤ c

(
−
∫
∂Bρ∩BR

u dHN−1 + ρ2

)
≤ c(K0ρ+ ρ2).

Let now w be the solution of

(17)


−∆w = 1, in B√κρ \Bκρ,
w = δρ, on ∂B√κρ,

w = 0, on Bκρ.

By definition, w ≥ u on ∂B√κρ, therefore the function

v =

{
u, in RN \B√κρ,
min{u,w}, in B√κρ,

satisfies

{v > 0} ⊂ {u > 0}, {v > 0} \B√κρ = {u > 0} \B√κρ.

Since v ∈ H1
0 (BR) inequality (14) gives

1

2

∫
B√κρ

|∇u|2 −
∫
B√κρ

u+ fη(|{u > 0}|)

≤ 1

2

∫
B√κρ

|∇v|2 −
∫
B√κρ

v + fη(|{v > 0}|).

We note that v = 0 in Bκρ, therefore, using also (7),

η

2
|{u > 0} ∩Bκρ| ≤ η|({u > 0} \ {v > 0}) ∩B√κρ|

≤ fη(|{u > 0}|)− fη(|{v > 0}|).

Thanks to the two inequalities above and the definition of v, we can infer

1

2

∫
Bκρ

|∇u|2 −
∫
Bκρ

u+
η

2
|{u > 0} ∩Bκρ|

≤ 1

2

∫
Bκρ

|∇u|2 −
∫
Bκρ

u+ fη(|{u > 0}|)− fη(|{v > 0}|)

≤ 1

2

∫
B√κρ\Bκρ

(|∇v|2 − |∇u|2)−
∫
B√κρ\Bκρ

(v − u)

≤
∫

(B√κρ\Bκρ)∩{u>w}
(|∇w|2 −∇u · ∇w)−

∫
(B√κρ\Bκρ)∩{u>w}

(w − u).

(18)

On the other hand testing (17) with (u− w)+ and integrating over B√κρ \Bκρ, we obtain

(19)

∫
(B√κρ\Bκρ)∩{u>w}

(|∇w|2 −∇u · ∇w)−
∫

(B√κρ\Bκρ)∩{u>w}
(w − u) =

∫
∂Bκρ

∂w

∂ν
u dHN−1,
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where ν denotes the outer unit normal exiting from Bκρ and thanks to the fact that w = 0 on ∂Bκρ and w ≥ u
on ∂B√κρ. We now observe that, since the torsion function on an annulus is explicit, with a direct computation
one obtains ∣∣∣∣∂w∂ν

∣∣∣∣ ≤ β1
δρ + ρ2

ρ
, on ∂Bκρ,

for some β1 = β1(N,κ). We can now combine (18) and (19) to obtain

1

2

∫
Bκρ

|∇u|2 −
∫
Bκρ

u+
η

2
|{u > 0} ∩Bκρ| ≤ β1(N,κ)

δρ + ρ2

ρ

∫
∂Bκρ

u dHN−1.

Then, using the definition of δρ, the trace inequality in W 1,1 and the arithmetic geometric mean inequality we
obtain ∫

∂Bκρ

u dHN−1 ≤ C(N,κ)

(
1

ρ

∫
Bκρ

u+

∫
Bκρ

|∇u|

)

≤ β2

((
δρ
ρ

+
1

2

)
|{u > 0} ∩Bκρ|+

1

2

∫
Bκρ

|∇u|2
)
,

for some β2 = β2(N,κ) > 0. Putting together the above estimates, recalling again (16) we have, for all ρ ≤ ρ0

η

2

∫
Bκρ

|∇u|2 +
η

2
|{u > 0} ∩Bκρ|

≤ β1
δρ + ρ2

ρ

∫
∂Bκρ

u dHN−1 + δρ|{u > 0} ∩Bκρ|

≤ β1(c(K0 + ρ) + ρ)

∫
∂Bκρ

u dHN−1 + c(K0ρ+ ρ2)|{u > 0} ∩Bκρ|

≤ β1β2(c(K0 + ρ) + ρ)

[(
δρ
ρ

+
1

2

)
|{u > 0} ∩Bκρ|+

1

2

∫
Bκρ

|∇u|2
]

+ c(K0ρ+ ρ2)|{u > 0} ∩Bκρ|

≤ β1β2(c(K0 + ρ) + ρ)

(
2c(K0 + ρ) +

1

2

)[∫
Bκρ

|∇u|2 + |{u > 0} ∩Bκρ|

]
.

Eventually, by choosing K0, ρ0 such that

β1β2(c(K0 + ρ0) + ρ0)

(
2c(K0 + ρ0) +

1

2

)
≤ η/4,

we conclude that u ≡ 0 in Bκρ, for all ρ ≤ ρ0. �

Remark 4.3. In literature, the property proved in Lemma 4.2 is called non-degeneracy. As it was noted
for example in [33, Remark 2.8], there are two other equivalent versions of this result, where instead of the
claim (15), one can consider

‖u‖L∞(Bρ(x0)) ≤ K0ρ =⇒ u ≡ 0 in Bκρ(x0) ∩BR,
or

−
∫
Bρ(x0)

u dx ≤ K0ρ =⇒ u ≡ 0 in Bκρ(x0) ∩BR,

up to possibly modify the constants K0, ρ0 (but not their dependence only on N,κ, η).

Remark 4.4. As it was first highlighted in [9], Lemma 4.2 holds for all sets that are optimal for a torsion
energy-type functional only with respect to inward perturbations. These sets are referred to as shape subso-
lutions or inward minimizing sets and one can easily prove that if Ω is optimal for problem (8), then it is
a shape subsolution for the torsion energy. Thus the non-degeneracy property of Lemma 4.2 follows from [9,
Theorem 2.2]. Nevertheless we do not follow this approach since for our scope we need finer regularity properties
of optimal sets that can not be deduced only by means of inward perturbations.

Remark 4.5. To obtain the regularity properties for minimizers we seek in this section, the previous lemma
has to be paired with Lemma 4.6 below. Its proof is, as for the previous lemma, inspired by [8, Lemma 4.10],
which is in turn based on [4]. One not completely obvious difference is that, contrary to the setting of [8], the
parameter η is not fixed in our setting, thus we need to keep track of it in the proofs. This dependence on η will
involve a dependence on R, the radius of the ball containing all competitors in Theorem 1.2. In particular the
density estimates which ensue by the previous lemmata will depend on R, and this is a main obstacle in order
to remove the equiboundedness hypothesis on competitors in (2).
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Lemma 4.6. Let α ∈ (0, N), R, η, ε, Ω and u be as in Lemma 4.2. There exists a constant M , depending only
on N , α, R and η such that, for all x0 ∈ BR, if

−
∫
∂Bρ(x0)∩BR

u dHN−1 ≥Mρ,

then u > 0 in Bρ(x0) ∩BR.

Proof. First of all, we can reduce to the case when Bρ(x0) ⊂ BR, up to take M (depending only on N,R) big
enough. We define v ∈ H1

0 (BR) as the solution to{
−∆v = 1, on Bρ,

v = u, in RN \Bρ(x0).

By maximum principle we have v > 0 in Bρ(x0) and therefore

{u > 0}∆{v > 0} = {u = 0} ∩Bρ(x0).

Using this information, the quasi-minimality condition (13) of u and the property of the function fη, see (7),
we obtain

1

2

∫
Bρ(x0)

|∇u|2 −
∫
Bρ(x0)

u ≤ 1

2

∫
Bρ(x0)

|∇v|2 −
∫
Bρ(x0)

v +

(
1

η
+ Cε

)
|{u = 0} ∩Bρ(x0)|,

for some constant C = C(N,α,R). Now we can use the equation satisfied by v and the fact that ε < 1 < 1/η,
to show

1

2

∫
Bρ(x0)

|∇u−∇v|2 ≤ C + 1

η
|{u = 0} ∩Bρ(x0)|.

Then, as in [8, Proof of Lemma 4.10] or in [4, Proof of Lemma 3.2], one obtains

M2

2
|{u = 0} ∩Bρ(x0)| ≤ C + 1

η
|{u = 0} ∩Bρ(x0)|,

which by choosing M ≥ 2
√

C+1
η entails that |{u = 0} ∩Bρ(x0)| = 0, and the proof is concluded. �

The main consequence of Lemmas 4.2 and 4.6 is the following result, stated first in [4, Section 3], see also [36,
Section 3 and 5].

Lemma 4.7. Let α ∈ (0, N), R, η, ε, Ω and u be as in Lemma 4.2. There exist constants θ(N,α,R, η) and
ρ0(N,α,R, η) such that

i) u is Lipschitz continuous with constant L = L(N,α,R). In particular, Ω = {u > 0} is an open set.
ii) For every x0 ∈ ∂Ω and every ρ ≤ ρ0, we have

θ ≤ |Ω ∩Bρ(x0)|
|Bρ|

≤ 1− θ.

Remark 4.8. Notice that the constants determining the Lipschitz regularity and the density estimates of the
previous result do not depend on ε.

This last result is the starting point of the higher regularity we need, that we treat in Section 6.

5. Equivalence between the constrained and the unconstrained problem

In this section we show that unconstrained minima of Gε,η and volume constrained minima of Fα,ε are actually
the same. We begin by showing that for ε small, the minimizers of Gε,η in BR are close to a ball in L∞. To do
that, we first start with an estimate that assures the L1−proximity of an optimal set for problem (8) to a ball
with radius not too large.

Lemma 5.1. Let α ∈ (0, N), R > ω
− 1
N

N and ε, η ∈ (0, 1). Let Ωε,η be an optimal set for (8) and Bε,η a ball of
measure |Ωε,η| such that

A(Ωε,η) =
|Ωε,η∆Bε,η|
|Ωε,η|

.

Then we have

|Ωε,η∆Bε,η| ≤
2C0

σ
|Ωε,η|1+α−2

N ε,

where C0(N,α) > 0 is the constant appearing in Lemma 2.1 and σ = σ(N) > 0 is the geometric constant from
the quantitative Saint Venant inequality, see (5).
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Proof. Using Lemma 2.1 and the definition of fη, we get

E(Ωε,η)− E(Bε,η) ≤ ε(Vα(Bε,η)− Vα(Ωε,η)) + (fη(|Bε,η|)− fη(|Ωε,η|))

≤ C0ε|Bε,η∆Ωε,η|
[
|Ωε,η|

α
N + |Bε,η|

α
N

]
.

On the other hand, thanks to the quantitative version of the Saint-Venant inequality (Theorem 2.2), and since
|Ωε,η| = |Bε,η|, we have (up to translations) that

σ

(
|Ωε,η∆Bε,η|
|Ωε,η|

)2

≤ E(Ωε,η)|Ωε,η|−1− 2
N − E(Bε,η)|Bε,η|−1− 2

N

≤ 2C0ε|Ωε,η|−1+α−2
N |Ωε,η∆Bε,η|

so that

|Ωε,η∆Bε,η| ≤
2C0

σ
|Ωε,η|1+α−2

N ε,

which proves the lemma. �

A consequence almost immediate of the previous lemma is that the measure of the ball Bε,η is not too large.

Lemma 5.2. Let α and R be as in the previous lemma. There exists η1 = η1(N,α,R) ≤ η0 such that for all
ε ∈ (0, 1) and η ≤ η1, we have that any optimal set for problem (8) satisfies

|Ωε,η| ≤ 2.

Proof. Of course the statement of the lemma is trivial as long as |BR| ≤ 2. Thus we take R large enough so
that |BR| > 2. Let us suppose for the sake of contradiction that |Ωε,η| > 2. We are then going to reach a
contradiction as long as

1/η ≥ Ca(N,α)RN+2 + Cb(N,α),

for given constants Ca(N,α) and Cb(N,α) which will be precised later on in the proof. Since the functional

ε 7→ Gε,η(Ωε,η),

is nondecreasing, we get

sup
ε∈(0,1)

Gε,η(Ωε,η) = G1,η(Ω1,η) ≤ E(B) + Vα(B),

where B is a ball of unit measure. On the other hand, using the Saint-Venant inequality, the positivity of Vα,
the fact that Ωε,η ⊂ BR and since |Ωε,η| > 2 we have

E(B) + Vα(B) ≥ Gε,η(Ωε,η) ≥ E(Bε,η) +
1

η
(|Ωε,η| − 1) ≥ ω

N+2
N

N RN+2E(B) +
1

η
.

By letting Ca(N,α) = (−E(B))ω
N+2
N

N and Cb(N,α) = E(B) + Vα(B), and by choosing η1 = η1(N,α,R) such
that η1 ≤ η0 and

1

η1
> E(B) + Vα(B) + (−E(B))ω

N+2
N

N RN+2,

we reach the desired contradiction. �

We note that in the above lemma, η1 depends on R and in particular η1 ≈ 1
RN+2 .

Corollary 5.3. In the assumptions of Lemma 5.1, there exists a positive constant c1 = c1(N,α) such that, for
all ε ∈ (0, 1) and η ≤ η1, we have

(20) |Ωε,η| ≤ 2, |Ωε,η∆Bε,η| ≤ c1ε.

Proof. It is a direct consequence of Lemmas 5.2 and 5.1. �

Next we show that, for ε small, the boundary of any optimizer Ωε,η is close to the one of the corresponding
optimal ball Bε,η in the definition of asymmetry, with respect to the Hausdorff distance dH (see [5, Definition
4.4.9] for the definition and properties of the Hausdorff distance).

Lemma 5.4. Under the assumptions of Corollary 5.3, for all δ > 0 there exists εδ = εδ(δ,N, α,R) ∈ (0, ε0)
such that for all ε ≤ εδ, we have

distH(∂Ωε,η, ∂Bε,η) ≤ δ.
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Proof. By (20) we have that |Ωε,η \Bε,η| ≤ c1ε. We fix δ > 0 and call Bδ(Bε,η) := Bε,η+Bδ the δ-neighborhood
of Bε,η. If Ωε,η \Bδ(Bε,η) is empty, then there is nothing to prove. Otherwise there exists x ∈ Ωε,η \Bδ(Bε,η)
so that by point (ii) of Lemma 4.7 there exists ρ0(N,R, α) such that for ρ ≤ ρ1 := min{ρ0(N,R, α), δ} it holds

ωNθρ
N ≤ |Bρ(x) ∩ Ωε,η| ≤ |Ωε,η \Bε,η| ≤ c1ε.

Notice that the choice of ρ1 ≤ δ assures that |Bρ(x) ∩ Ωε,η| ≤ |Ωε,η \ Bε,η|. In conclusion choosing ρ = ρ1, we
have

ωNθρ
N
1 ≤ c1ε,

which is not possible as soon as

ε ≤ εδ :=
ωNθ

c1
ρN1 .

With the same argument, by using the density estimates for the exterior of Ωε,η, we show that Bε,η ⊂ Bδ(Ωε,η)
where Bδ(Ωε,η) := Ωε,η +Bδ. This concludes the proof. �

It is worth noting that the constant εδ in the lemma above depends also on R. This is one of the main
difficulties in trying to get rid of the equiboundedness assumption of Theorem 1.2.

Remark 5.5. In view of the previous result, we fix ε1(N,α,R) as the εδ from Lemma 5.4 with the choice of
δ := 1/2.

If ε ≤ ε1, then in the proof of Theorem 5.7, we will be allowed to inflate a set while remaining in a sufficiently
big ball BR.

We can now show the equivalence between the constrained and the unconstrained problems. We will use the
following elementary lemma.

Lemma 5.6. Let α ∈ [0, N ], P,Q > 0 be two positive real numbers and let u : [0, 1)→ R be the function defined
by

u(t) =
P (1− tN+2)−Q(1− tN+α)

1− tN
.

Then there exists q = q(N,α, P ) > 0 and C = C(N,α, P ) > 0 such that inf [0,1) u ≥ C(N,α) for any Q < q.

Proof. Let us write u(t) = Pf(t)−Qg(t) where

f(t) =
1− tN+2

1− tN
g(t) =

1− tN+α

1− tN
.

Both f and g can be extended by continuity in 1 with the values, respectively, of f(1) = N+2
N and g(1) = N+α

N .
Since such extensions are continuous and strictly positive on [0, 1], they admit strictly positive minimum and
maximum in there. Let mf = min[0,1] f > 0 and Mg = max[0,1] g. Then we get, for any t ∈ [0, 1), that

u(t) = Pf(t)−Qg(t) ≥ Pmf −QMg.

We conclude the proof by observing that, as long as

Q <
Pmf

2Mg
:= q,

we have, for all t ∈ [0, 1),

u(t) ≥ Pmf −QMg ≥ Pmf − qMg =
Pmf

2
=: C(N,α, P ),

and the claim is proved. �

Theorem 5.7. Let α ∈ (0, N) and B be a ball of unit measure. There exists R0 = R0(N) such that, for all
R ≥ R0, there exists ε2 = ε2(N,α,R) ≤ ε1 and η2 = η2(N,α,R) ≤ η1 such that, for all η ≤ η2 and ε ≤ ε2, we
have that

min {Gε,η(Ω) : Ω ⊂ BR}
≥ inf {Fα,ε(Ω) : Ω ⊂ BR, |Ω| = 1} =: µ(N,α, ε,R).

As a consequence, problems (6) and (8) are equivalent.

Proof. It is easy to check that

min {Gε,η(Ω) : Ω ⊂ BR} ≤ inf {Fα,ε(Ω) : Ω ⊂ BR, |Ω| = 1} ,

as the two functionals coincide on sets of measure 1. Then, if the first claim of the theorem holds, it follows
that on the set of minimizers (of the first or of the second problem) the two functionals do coincide, that is,
problems (6) and (8) are equivalent.

We prove the first claim of the theorem by contradiction. Let

Ωε,η ⊂ BR, σε,η ∈ R, |Ωε,η| = 1 + σε,η, Gε,η(Ωε,η) < µ,
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and we also note that, since for all Ω ⊂ BR it holds Fα,ε(Ω) ≤ εVα(B), then µ ≤ εVα(B). We moreover assume,
without loss of generality, that Ωε,η are minimizers for problem (8). We treat separately the case σε,η > 0 and
σε,η < 0.

Case σε,η > 0. We first observe that σε,η → 0 as η → 0. Indeed

Gε,η(Ωε,η) = Fα,ε(Ωε,η) +
1

η
σε,η

and so

0 ≤ 1

η
σε,η = Gεη(Ωε,η)−Fα,ε(Ωε,η) ≤ εVα(B)− E(BR),

using the assumption Gε,η(Ωε,η) ≤ µ ≤ εVα(B), the positivity of Vα and the fact that the torsion energy is
decreasing by inclusion. This implies that σε,η → 0 as η → 0.

Let now λε,η < 1 be such that |λε,ηΩε,η| = 1, therefore

λε,η = 1− σε,η
1

N(1 + σε,η)
+ Cσ2

ε,η,

for some C = C(N) ∈ R. Since the new set λε,ηΩε,η is now admissible in the constrained minimization
problem (6), and since

Gε,η(Ωε,η) = E(Ωε,η) + εVα(Ωε,η) +
σε,η
η

< µ ≤ E(Ωε,η)λN+2
ε,η + εVα(Ωε,η)λN+α

ε,η

= E(Ωε,η)

(
1− σε,η

N + 2

N(1 + σε,η)
+ Cσ2

ε,η

)
+ εVα(Ωε,η)

(
1− σε,η

N + α

N(1 + σε,η)
+ Cσ2

ε,η

)
,

we deduce that

σε,η
η

< (−E(Ωε,η))σε,η
N + 2

N(1 + σε,η)
− εVα(Ωε,η)σε,η

N + α

N(1 + σε,η)
+ Cσ2

ε,ηFα,ε(Ωε,η)

≤ (−E(Ωε,η))σε,η
N + 2

N(1 + σε,η)
+ Cσ2

ε,ηεVα(B),

where we have again used the fact that εVα(B) bounds from above the functional Fα,ε. Thus

1

η
≤ C(N,α)(−E(Ωε,η)) ≤ −C(N,α)E(BR),

which leads to a contradiction as soon as η2 <
1

C(N,α)(−E(BR)) = C(N,α)
RN+2 .

Case σε,η < 0. For this case let us call

ρε,η := (1 + σε,η)−1/N ,

so that |ρε,ηΩε,η| = 1.
We recall from the previous sections that a minimizer Ωε,η for Gε,η exists, and by Lemma 5.4, up to take

ε2 ≤ ε1 as in Remark 5.5, and η2 < η1 as in Lemma 5.2, the rescaled set ρε,ηΩε,η is still contained in BR, as
soon as, for example, R0 > 6.

In fact, thanks to Lemma 3.3 and the Saint Venant inequality, we have

(21) E(B) ≤ E(ρε,ηΩε,η) ≤ ρN+2
ε,η

E(B)

4
, hence, ρN+2

ε,η ≤ 4,

therefore, it is easy to check that ρε,ηΩε,η ⊂ BR.
Let us define the function

g : [1, ρε,η]→ R, g(r) = E(rΩε,η) + εVα(rΩε,η) + η(rN |Ωε,η| − 1).

We want to show that the minimum of the function g is attained at r = ρ := ρε,η. This is equivalent to show
that for some η the inequality

g(r) ≥ E(ρΩε,η) + εVα(ρΩε,η), for all r ∈ [1, ρ],

holds true. Up to rearranging the terms, and by the homogeneity of the functionals E and Vα such an inequality
reads as

η

(
1−

(
r

ρ

)N)
≤ (−E(ρΩε,η))

(
1−

(
r

ρ

)N+2
)
− εVα(ρΩε,η)

(
1−

(
r

ρ

)N+α
)
.

Setting t := r
ρ < 1, and observing that rN |Ωε,η| = tN , the last inequality is equivalent to

η ≤ (−E(ρΩε,η))(1− tN+2)− εVα(ρΩε,η)(1− tN+α)

1− tN
.
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We recall now that Vα(ρΩε,η) ≤ Vα(B) by the Riesz inequality, while E(ρΩε,η) ≤ ρN+2E(B)
4 ≤ E(B), by

Lemma 3.3 and (21). Thus

(−E(ρΩε,η))(1− tN+2)− εVα(ρΩε,η)(1− tN+α)

1− tN

≥ −E(B)(1− tN+2)− εVα(B)(1− tN+α)

1− tN
.

Thus it is enough to show that for some η > 0 it holds

η ≤ −E(B)(1− tN+2)− εVα(B)(1− tN+α)

1− tN
:= uε(t).

To conclude that uε > 0 in [0, 1) we directly apply Lemma 5.6 with uε in place of u, −E(B) in place of P ,
and εVα(B) in place of Q. Up to choose ε2 small enough, depending only on N and α, we can satisfy the
requirement of the Lemma. This concludes the proof. �

We highlight that, from now on, we can fix an η > 0 so that Theorem 5.7 holds true, and therefore we have
the equivalence of the constrained minimization problem for Fα,ε and the unconstrained problem for Gε,η. It
is then consistent to denote an optimal set for Gε,η or Fα,ε by Ωε (and uε its torsion function), dropping the
dependence on η.

On the other hand, we stress that this choice of η does depend on R!

6. Higher regularity of minimizers

In this section we show that the mild regularity proved in Section 4 can be improved to a higher regularity
of minimizers for Gε,η or, equivalently, Fα,ε. More precisely, we will show that minimizers of Fα,ε are such that
their boundary can be parametrized on the sphere so that the C2,γ−norm of such a perturbation is arbitrarily
small, up to choose ε small enough.

For this whole section, we fix R > R0 and ε ≤ ε2(N,α,R) so that Theorem 5.7 holds. Then we denote Ωε an
optimal set for problem (8) and let uε be its torsion function, extended to zero outside Ωε. Hence uε is optimal
for problem (12).

We begin with a simple geometric result, whose proof is just a rephrasing of Lemma 5.4, since now we have
the additional information that |Ωε| = 1.

Lemma 6.1. With the notations above, the sequence Ωε converges to B in L1 as ε → 0. Moreover, for any
δ > 0 there exists εδ > 0 such that if ε < εδ, then

∂Ωε ⊂ ∂B +Bδ = {x ∈ RN : dist(x, ∂B) < δ}.

To get the desired regularity of minimizers, we will apply results from [4], and techniques developed in [8],
and later on in [14].

We will need the following result [4, Theorem 4.5 and Theorem 4.8], [3, Theorem 2].

Theorem 6.2. Let ε ≤ ε2, Ωε and uε be as above. The following facts hold true.

(i) There is a Borel function quε : ∂Ωε → R such that, in the sense of the distributions, one has

(22) −∆uε = χΩε − quεHN−1b∂Ωε, in BR.

(ii) There exist constants 0 < c < C < +∞, depending on R, N , α, such that c ≤ quε ≤ C.
(iii) For all points x ∈ ∂∗Ωε = ∂∗{uε > 0}, the measure theoretic inner unit normal νuε(x) is well defined

and, as ρ→ 0,

Ωε − x
ρ

→ {x : x · νuε(x) ≥ 0}, in L1(BR).

(iv) For HN−1 almost all x ∈ ∂∗{uε > 0} we have

uε(x+ ρx)

ρ
−→ quε(x)(x · νuε(x))+, in W 1,p(BR) for every p ∈ [1,+∞).

(v) HN−1(∂Ωε \ ∂∗Ωε) = 0.

Remark 6.3 (On the meaning of quε). For a regular set Ω, by means of a shape derivative argument, one can
show that quε(x) = |∂νuε|(x) for x ∈ ∂Ωε = ∂{uε > 0}. The slightly more complicated arguments that follow
are due since we only know, for the moment, that minimizers of problem (6) are open sets of finite perimeter.
Namely, following ideas from [4] and [3], in order to show some higher regularity we first need to show some
regularity results for quε . Formally it is possible to see that the first variation of Gε,η reads as∣∣∣∣∂uε(x)

∂ν

∣∣∣∣2−εvΩε(x) = Λ, x ∈ ∂Ωε,
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where uε is the torsion function of Ωε, vΩε its Riesz potential and Λ some constant. Thus, since quε stays far
from zero and infinity (thanks to Theorem 6.2(ii)), then the regularity of quε =

∣∣∂uε
∂ν

∣∣ is the same as that of vΩε .
Such relation on the other hand is not necessarily true, because of the lack of regularity of ∂Ω, but will turn out
to be true on ∂∗Ω, the reduced boundary of Ω.

Before rigorously developing the argument described in the previous remark, we show a simple regularity
result for the Riesz potentials. This is rather standard, but we give a proof for the sake of completeness.

Lemma 6.4. Let α ∈ (1, N) and let A be a bounded open set. Then w := χA ∗ | · |α−N is of class C1,γ(A) for
some γ ∈ (0, 1).

Proof. Let

wε(x) =

∫
A

dy

(|x− y|+ ε)N−α
, for x ∈ A,

and

wi(x) =

∫
A

∂xi

(
1

|x− y|N−α

)
dy = (α−N)

∫
A

xi − yi
|x− y|N−α+2

dy,

for i = 1, . . . , N . Notice that, where |x− y| ≈ 0, then

xi − yi
|x− y|N−α+2

≈ 1

|x− y|N−α+1
.

Since α > 1, then N − α+ 1 < N so that the wi are well defined. It is also clear that wε is a smooth function.
We define A1

ε := {y ∈ A : |x− y| ≥
√
ε} and A2

ε = A \A1
ε. Notice that by absolute continuity of the Lebesgue

integral, it holds ∫
A2
ε

xi − yi
|x− y|N−α+2

dy = oε(1) and

∫
A2
ε

∂xi
dy

(|x− y|+ ε)N−α
= oε(1),

where oε(1) does not depend on x, but only on the measure |A2
ε|. Thanks to this, we have that (for a constant

C depending only on N , α),

|∂xiwε(x)− wi(x)|

=

∣∣∣∣∣∣∣(α−N)

∫
A1
ε

xi − yi
|x− y|N−α+2

 1(
1 + ε

|x−y|

)N−α+2
− 1

 dy
∣∣∣∣∣∣∣+ oε(1)

≤ (N − α)(N − α+ 2)

∫
A1
ε

1

|x− y|N−α+1

(
ε

|x− y|
+ o

(
ε

|x− y|

))
+ oε(1)

≤ C
√
ε+ oε(1) = oε(1).

Thus ∂xiwε(x)−wi(x)→ 0 uniformly in RN . Since wε converges pointwise to w, this implies that w is derivable
and that

∂xiw(x) = (α−N)

∫
A

xi − yi
|x− y|N−α+1

dy.

It is now easy to show that ∂xiw(x) is an Hölder continuous function. This concludes the proof. �

In what follows we drop the subscript ε from Ωε and uε as here ε is fixed and there is no risk of confusion.
The general strategy, and part of the details in the proof of the following theorem are inspired by an argument
first proposed in [3] and readapted later on in [8].

Theorem 6.5. Let R > R0, α ∈ (1, N) and ε ≤ ε2, and let Ω be a minimizer for Gε,η, u be its torsion function,
vΩ = v = χΩ ∗ | · |α−N be its Riesz potential and qu be as in Theorem 6.2. Then the function x 7→ q2

u(x)− εv(x)
is constant on ∂∗Ω.

Proof. Let us assume, for the sake of contradiction, that there are x0, x1 ∈ ∂∗Ω such that

q2
u(x0)− εv(x0) < q2

u(x1)− εv(x1).

We construct a family of diffeomorphisms which preserves the volume at the first order by deflating Ω around
x0, and inflating it around x1. Let κ < 1 and ρ < 1 be two parameters. Let ϕ ∈ C1

0 (B1(0)) be a non-null,
radially symmetric function supported in B1(0). Then we define, keeping in mind that νxi denotes the inner
normal,

τρ,κ(x) = τ(x) = x+
∑

i∈{0,1}

(−1)iκρϕ

(
|x− xi|

ρ

)
νxiχBρ(xi).
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The field τ is a diffeomorphism for ρ and κ small enough. Notice that τ(x)−x is null outside Bρ(x0)∪Bρ(x1).
A simple computation shows that

∇τ(x) = Id+
∑

i∈{0,1}

(−1)iκϕ′
(
|x− xi|

ρ

)
x− xi
|x− xi|

⊗ νxiχBρ(xi),

so that3

(23) det(∇τ(x)) = 1 +
∑

i∈{0,1}

(−1)iκϕ′
(
|x− xi|

ρ

)
x− xi
|x− xi|

· νxiχBρ(xi) + o(κ).

We call Ωρ = τ(Ω). We are going to show that for κ, ρ small enough it holds Gε,η(Ωρ) < Gε,η(Ω), contradicting
the minimality of Ω. To do that we deal with the first variation of each term of the sum defining Gε,η. We
stress that the computations regarding the volume and the torsion contributions are identical to those performed
originally in [3] (see also [8] and [14], where the same idea is applied). We add them for the sake of completeness.

Let us begin with the volume term. We claim that

(24) fη(Ωρ)− fη(Ω) = o(ρN ), as ρ→ 0.

To see that, thanks to (7) we only have to show that

1

ρN
(|Ωρ| − |Ω|)→ 0, as ρ→ 0.

Using the Area formula and the change of variables x = xi + ρy, we have that

1

ρN
(|Ωρ| − |Ω|) =

1

ρN

(∫
Ωρ

1 dx−
∫

Ω

1 dx

)

=
1

ρN

∑
i∈{0,1}

(∫
χΩρ∩Bρ(xi)(x) dx−

∫
χΩ∩Bρ(xi)(x) dx

)
=

∑
i∈{0,1}

∫
χ( Ω−xi

ρ )∩B1(0)
(y) det(∇τ(xi + ρy))− χ( Ω−xi

ρ )∩B1(0)
(y) dy.

We can then deduce by Theorem 6.2 point (iii) that
Ωρ−xi
ρ → {x · νxi ≥ 0} in L1(BR), whence

lim
ρ→0

1

ρN
(|Ωρ| − |Ω|) =

∑
i∈{0,1}

∫
{x·νxi>0}∩B1(0)

(−1)iκϕ′(|y|)
(
y

|y|

)
· νxi dy = 0,

where the last equality is due to the radial symmetry of ϕ. Now that (24) is settled, we deal with the torsion
energy term. We claim that

(25)
1

ρN
(E(Ωρ)− E(Ω)) ≤ κ(qu(x0)2 − qu(x1)2)C(ϕ) + oρ(1) + o(κ),

where

(26) C(ϕ) =

∫
B1(0)∩{y·ν=0}

ϕ(|y|) dHN−1(y) = −
∫
B1(0)∩{y·ν>0}

ϕ′(|y|)y · ν
|y|

dy,

and the last equality follows from the divergence Theorem, recalling that ν is a inner normal and div(ϕ(|y|)ν) =
ϕ′(|y|)y·ν|y| . Moreover, we note that ν can be any unit direction of RN : changing direction does not affect the

value of C(ϕ), thanks to the radial symmetry of ϕ. To show (25) it suffices to prove that

(27)
1

ρN

(∫
Ωρ

|∇ũρ|2 dx−
∫

Ω

|∇u|2 dx

)
= κ(qu(x0)2 − qu(x1)2)C(ϕ) + oρ(1) + o(κ),

where ũρ = u ◦ τ−1, and that

(28)

∫
Ωρ

ũρ dx−
∫

Ω

u dx = o(ρN ), as ρ→ 0.

Indeed ũρ is a test function in the definition of E(Ωρ) so that (27) and (28) imply directly (25).

3We are using the formula det(Id+ ξB) = 1 + trace(B)ξ + o(ξ).
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The computation of (27) is exactly as in [8, Proof of Lemma 4.15] (it is done also in [3, Section 2] and [14]),
hence we do not repeat it here. To show (28), we compute

1

ρN

(∫
Ωρ

ũρ(z) dz −
∫

Ω

u(x) dx

)
=

1

ρN

∫
Ω

(
u ◦ τ−1(τ(x)) det(∇τ(x))− u(x)

)
dx

=
∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )

(
u(xi + ρy) det(∇τ(xi + ρy))− u(xi + ρy)

)
dy

=
∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )
(−1)i

u(xi + ρy)

ρ
ρ κϕ′(|y|) y

|y|
· νxi dy+o(κ) = oρ(1) + o(κ),

where we performed the change of variable x = xi + ρy, we exploited (23) and used Theorem 6.2, points (iii)
and (iv).
Next we deal with the Riesz energy term Vα. We are going to show that

(29)
1

ρN
(Vα(Ωρ)− Vα(Ω)) = κ(v(x1)− v(x0))C(ϕ) + o(k) + oρ(1),

where C(ϕ) is the constant defined in (26). The proof of this variation is longer than the previous ones. Let us
denote by vρ(·) = χΩρ ∗ | · |α−N the Riesz potential of Ωρ, and by v(·) = χΩ ∗ | · |α−N the Riesz potential of Ω.
We have

(30)

1

ρN
(Vα(Ωρ)− Vα(Ω)) =

1

ρN

(∫
Ωρ

vρ(x) dx−
∫

Ω

v(x) dx

)

=
1

ρN

∫
Ω

(
vρ(τ(x)) det(∇τ(x))− v(x)

)
dx

=
1

ρN

∫
Ω\(Bρ(x0)∪Bρ(x1))

(vρ(x)− v(x)) dx

+
1

ρN

∑
i=0,1

∫
Ω∩Bρ(xi)

(
vρ(τ(x)) det(∇τ(x))− v(x)

)
dx.

We compute the last two addends of the previous formula separately:

1

ρN

∫
Ω∩Bρ(x0)

(
vρ(τ(x)) det(∇τ(x))− v(x)

)
dx

=

∫
B1(0)∩( Ω−x0

ρ )

(
vρ(τ(x0 + ρy)) det(∇τ(x0 + ρy))− v(x0 + ρy)

)
dy

=

∫
B1(0)∩( Ω−x0

ρ )

(
vρ(τ(x0 + ρy))(1 + κ

y

|y|
· νx0

ϕ′(|y|) + o(κ))− v(x0 + ρy)
)
dy

=

∫
B1(0)∩( Ω−x0

ρ )

(
vρ(τ(x0 + ρy))− v(x0 + ρy)

)
dy

+

∫
B1(0)∩( Ω−x0

ρ )

(
vρ(τ(x0 + ρy))κ

y

|y|
· νx0

ϕ′(|y|)
)
dy.

First of all we focus on the first term of the chain of inequalities above. By Lemma 6.4, and by Ascoli-Arzelà
Theorem, vρ uniformly converges in B1(0) to some function ṽ as ρ → 0, and, since its pointwise limit is v, we
have that ṽ = v. As a consequence, using also Lemma 6.4 and the dominate convergence Theorem, we have∫

B1(0)∩( Ω−x0
ρ )
|vρ(τ(x0 + ρy))− v(x0 + ρy)| dy

≤
∫
B1(0)∩( Ω−x0

ρ )
|vρ(τ(x0 + ρy))− vρ(x0 + ρy)|+ |vρ(x0 + ρy)− v(x0 + ρy)| dy

≤
∫
B1(0)∩( Ω−x0

ρ )
|kρϕ(|y|)νx0

|1+γ dy + oρ(1)→ 0,

as ρ→ 0. Moreover, since χ
B1(0)∩( Ω−x0

ρ ) → χB1(0)∩{x·νx0
>0} (see Theorem 6.2 (iii)), we have that

lim
ρ→0

∫
B1(0)∩( Ω−x0

ρ )

(
vρ(τ(x0 + ρy))κ

y

|y|
· νx0ϕ

′(|y|)
)
dy

= v(x0)κ

∫
B1(0)∩{x·νx0>0}

νx0
· y
|y|
ϕ′(|y|) dy = −κC(ϕ)v(x0),
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as ρ→ 0, where we have used (26), the fact that

|vρ(τ(x0 + ρy))− v(x0)| ≤ |vρ(τ(x0 + ρy))− vρ(x0)|+ |vρ(x0)− v(x0)| → 0,

uniformly on the compact sets and, again, the dominate convergence Theorem. A completely analogous com-
putation shows that

1

ρN

∫
Ω∩Bρ(x1)

(
vρ(τ(x)) det(∇τ(x))− v(x)

)
dx→ κC(ϕ)v(x1),

as ρ→ 0.
We wish to show now that the first addend on the right-hand side of (30) converges to 0 as ρ → 0. To this

aim, we compute

(31)

vρ(x)− v(x)

ρN
=

1

ρN

(∫
Ωρ

dy

|x− y|N−α
−
∫

Ω

dy

|x− y|N−α

)

=
1

ρN

∫
Ω

(
det(∇τ(y))

|x− τ(y)|N−α
− 1

|x− y|N−α

)
dy

=
∑

i∈{0,1}

1

ρN

∫
Ω∩Bρ(xi)

(
det(∇τ(y))

|x− τ(y)|N−α
− 1

|x− y|N−α

)
dy

=
∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )

(
1

|x− τ(xi + ρy)|N−α
− 1

|x− (xi + ρy)|N−α

)
dy

+
∑

i∈{0,1}

(−1)i
∫
B1(0)∩( Ω−xi

ρ )

κϕ′(|y|)νxi ·
y
|y|

|x− τ(xi + ρy)|N−α
dy + o(κ).

We remark that the last two addends converge to the same constant, with opposite sign. Thus in the limit they
elide themselves: ∑

i∈{0,1}

(−1)i
∫
B1(0)∩( Ω−xi

ρ )

κϕ′(|y|) · νxi
y
|y|

|x− τ(xi + ρy)|N−α
dy → 0 as ρ→ 0.

Now we notice that for any X,Y, Z ∈ RN it holds that

1

|X − Y |N−α
− 1

|X − Z|N−α
≤ (N − α+ 1)

min(1, |Y − Z|)
min(|X − Y |N−α, |X − Y |N−α+1)

.

Such an inequality can be proved easily by convexity, see for instance [18, formula (2.11)]. By applying such an
inequality in the first two addends of the right-hand side of (31) with X = x, Y = xi + ρy and Z = τ(xi + ρy)
we get that ∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )

(
1

|x− τ(xi + ρy)|N−α
− 1

|x− (xi + ρy)|N−α

)
dy

≤ C(N,α)
∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )

min(1, |τ(xi + ρy)− (xi + ρy)|)
min(|x− (xi + ρy)|N−α, |x− (xi + ρy)|N−α+1)

dy

≤ C(N,α)‖ϕ‖C0ρ
∑

i∈{0,1}

∫
B1(0)∩( Ω−xi

ρ )

1

min(|x− (xi + ρy)|N−α, |x− (xi + ρy)|N−α+1)
dy

≤ C(N,α, ϕ)ρ
∑
i=0,1

∫
B1(0)

1

|x− (xi + ρy)|N−α
dy +

∫
B1(0)

1

|x− (xi + ρy)|N−α+1
dy.

In the second inequality we used the fact that

min(1, |τ(xi + ρy)− (xi + ρy)|) ≤ ‖ϕ‖C0ρ.

Since the last two integrals are finite, being α > 1, we get the desired claim, that is (29).
The conclusion now readily follows: by minimality of Ω and thanks to (24), (25) and (29) we have that

0 ≤ Gε,η(Ωρ)− Gε,η(Ω)

≤ κρNC(ϕ)
(

(qu(x0)2 − qu(x1)2) + ε(v(x1)− v(x0))
)

+ o(ρN ) + ρNo(κ).

Since from the assumptions we have (qu(x0)2 − qu(x1)2) + ε(v(x1) − v(x0)) < 0, by choosing ρ and κ small
enough, we get the desired contradiction. The proof is concluded. �

An immediate consequence of Lemma 6.4 and Theorem 6.5 is the following.
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Corollary 6.6. Let Ω, u and qu be as above. For some constant Λε > 0, we have

q2
u(x)− εvΩ(x) = Λε, for x ∈ ∂∗Ω.

Moreover, qu ∈ C1,γ for some γ ∈ (0, 1) and

‖qu‖C1,γ ≤ C(N,α,R).

Finally, to prove that the boundary of Ωε is locally the graph of a C2,γ function on the boundary of a ball, we
only need to implement the improvement of flatness technique from [4, Section 7 and 8], which can be readapted
with minimal changes to our setting as shown in [22, Appendix].

Definition 6.7. Let µ± ∈ (0, 1] and k > 0. A weak solution u of (22) is of class F (µ−, µ+, k) in Bρ(x0) with
respect to direction ν ∈ SN−1 if

(a) x0 ∈ ∂{u > 0} and

u = 0, for (x− x0) · ν ≤ −µ−ρ, x ∈ Bρ(x0),

u(x) ≥ qu(x0)[(x− x0) · ν − µ+ρ], for (x− x0) · ν ≥ µ+ρ, x ∈ Bρ(x0).

(b) |∇u(x0)| ≤ qu(x0)(1 + k) in Bρ(x0) and oscBρ(x0)qu ≤ kqu(x0).

We note that if k = +∞, then condition (b) is automatically satisfied, that is, no bounds on the gradient are
required. The fact that our minimizers are nearly spherical sets of class C2,γ is now a direct consequence of the
following regularity result, which was first proved in [4, Theorem 8.1] and [25, Theorem 2].

Theorem 6.8. Let u be a weak solution to (22) in BR and assume that qu is C1,γ for some constant γ ∈ (0, 1)
in a neighborhood of {u > 0}. Then there are constants µ and k, depending only on N , α, R, max qu, min qu,
‖qu‖C1,γ such that:

If u is of class F (µ, 1,+∞) in B4ρ(x0) with respect to some direction ν ∈ SN−1 with µ ≤ µ and ρ ≤ kµ2,
then there exists a C2,γ function f : RN−1 → R with ‖f‖C2,γ ≤ C(N,α,R, ‖qu‖C1,γ ) such that, calling

graphνf := {x ∈ RN : x · ν = f(x− (x · ν)ν)},
then

∂{u > 0} ∩Bρ(x0) = (x0 + graphν(f)) ∩Bρ(x0).

7. Proof of Theorem 1.2

In the last section we have shown that any minimizer for problem (2) has boundary close to that of a ball
(precisely, the ball which achieve the minimum in the definition of asymmetry), and is locally C2,γ− regular.
This, reasoning as in [8, Proof of Proposition 4.4], is enough to show that such a minimum is a nearly spherical
set, and to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Thanks to Theorem 5.7 and Lemma 3.2, for ε∗ small enough (depending on N,α,R),
there is a minimizer Ωε for (2) and we can assume without loss of generality that the barycenter of Ωε is xΩε = 0.
It is not difficult to show that the sequence of the translated sets Ωε with barycenter at the origin still converges
in L1 to the ball B of unit measure and centered at the origin, and thus the statement of Lemma 6.1 applies
for them. We call uε the torsion function of Ωε, so that Ωε = {uε > 0}. We claim that Ωε is a C2,γ nearly
spherical set. To see this, let k, µ be as in Theorem 6.8 and µ < µ to be fixed later. Since ∂B is smooth, there
exists ρ(µ) ≤ kµ2 such that, for all ρ ≤ ρ(µ) and all x ∈ ∂B, we have

∂B ∩B5ρ(x) ⊂
{
x : |(x− x) · νx| ≤ µρ

}
,

where hereafter νx is the inner unit normal to ∂B at x. By Lemma 6.1, up to take εE small enough (depending
possibly also on µ), there is a point x0 ∈ ∂Ωε ∩Bµρ(µ)(x) such that

∂Ωε ∩B4ρ(µ)(x0) ⊂ Bµρ(µ)

(
∂B ∩B5ρ(µ)(x)

)
⊂
{
x : |(x− x0) · νx| ≤ 4µρ(µ)

}
.

We notice that, with the notation of Definition 6.7, the second condition of part (a) holds if µ+ = 1, since
uε ≥ 0. Therefore uε is of class F (µ, 1,+∞) in B4ρ(µ)(x0) in direction νx and hence, by Theorem 6.8 and

Corollary 6.6, we infer that ∂Ωε ∩Bρ(µ)(x0) is the graph of a C2,γ function with respect to νx. So, up to further

decrease µ, there are functions ϕxε with C2,γ norm uniformly bounded such that

∂Ωε ∩Bρ(µ)(x) =
{
x+ ϕxε (x)x : x ∈ ∂B

}
.

As the balls {Bρ(µ)(x)}x∈∂B cover ∂B, by compactness there is a function ϕε ∈ C2,γ(∂B) with bounded C2,γ

norm. Moreover, up to take εE small enough, by Lemma 6.1, we can assume that ‖ϕε‖C2,γ′ is as small as we
wish. A direct application of [8, Theorem 3.3] (recalling also that Ωε has barycenter in the origin) entails that

E(Ωε)− E(B) ≥ C(N)‖ϕε‖2H1/2(∂B) ≥ C(N)‖ϕε‖2L2(∂B).
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Up to further decrease εE , by [27, equation (6.8)] we have

Vα(B)− Vα(Ωε) ≤ C ′(N,α)‖ϕε‖2L2(∂B).

By minimality of Ωε and the two bounds above, we have

C(N)‖ϕε‖2L2(∂B) ≤ E(Ωε)− E(B) ≤ ε(Vα(B)− Vα(Ωε)) ≤ C ′(N,α)ε‖ϕε‖2L2(∂B).

Since the constants C and C ′ are independent of ε, we can take εE small enough (depending on N,α,R) so
that, for all ε ≤ εE we have

E(Ωε) = E(B),

and by the rigidity of the Saint-Venant inequality, we conclude. �

8. A surgery result for the functional involving the first eigenvalue

In this section we prove the following surgery result. Throughout this section, Ω is an open set of unit
measure, B is the ball of unit measure centered at the origin and we define

F̃α,ε(Ω) = λ1(Ω) + εVα(Ω).

Proposition 8.1. Let α ∈ (1, N). There exist constants D(N,α), δ(N,α) < 1 and ε(N,α) such that if
ε ≤ ε(N,α) then for any open and connected set Ω ⊂ RN of unit measure satisfying λ1(Ω) − λ1(B) ≤ δ(N,α)

there exists an open, connected set Ω̂ of unit measure with diameter bounded by D and such that

F̃α,ε(Ω̂) ≤ F̃α,ε(Ω).

The proof of the proposition is quite technical and is mostly inspired by [32] (see also [10]). We have skipped
the proofs that are essentially identical, while we have detailed the points where substantial changes need to be
made.

Remark 8.2. On the analogies and differences with respect to [32]. The connectedness assumption is
a main difference with respect to the work in [32], though it does not change much the argument. The reason
for which we need to impose it is the presence in our functional of the repulsive Riesz potential energy. On the
other hand this difficulty is compensated by the fact that, by choosing ε small, we can arbitrarily impose that
the sets we take into account have small Fraenkel asymmetry. Moreover, dealing with only the first eigenvalue
simplifies many technical steps related to the orthogonality of the higher eigenfunctions.

Let us introduce some notation. Let Ω be a connected set such that with λ1(Ω)− λ1(B) ≤ δ(N,α), so that,
by the quantitative Faber-Krahn inequality (see Theorem 2.3), up to translations we have

|Ω∆B| = A(Ω) ≤
(
δ

σ̂

)1/2

,

where σ̂ = σ̂(N).
From now on we fix Ω so that B is the ball of unit measure attaining the asymmetry and we will no more

translate it. By defining K = K(N) := λ1(B) + 1 ≥ λ1(B) + δ(N,α) we get immediately

λ1(Ω) ≤ K.

We then call t :=
(

1
ωN

)1/N

the radius of the ball B and note that

|Ω \ [−t, t]N | ≤ |Ω∆B| = A(Ω), for all t ≥ t.
Let m̂ ∈ (0, 1/4) be such that

(4m̂)
2
N

λ1(B)
K ≤ 1

2
.

Moreover, we choose δ(N,α) small enough so that

(32) |Ω \ [−t̄, t̄]N | ≤ A(Ω) ≤

√
δ

σ̂
≤ m̂

22N
.

We first focus on the direction e1 and detail the construction in this case. We shall denote z = (x, y) ∈ R×RN−1

and by zi the i-th component of z ∈ RN . For any t ∈ R, we define

Ωt :=
{
y ∈ RN−1 : (t, y) ∈ Ω

}
,

and given any set Ω ⊆ RN , we define its 1-dimensional projections for 1 ≤ p ≤ N as

πp(Ω) :=
{
t ∈ R : ∃ (z1, z2, . . . , zN ) ∈ Ω, zp = t

}
.
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For every t ≤ −t̄ we call

Ω+(t) :=
{

(x, y) ∈ Ω : x > t
}
, Ω−(t) :=

{
(x, y) ∈ Ω : x < t

}
, ε(t) := HN−1(Ωt) .

Observe that

(33) m(t) :=
∣∣Ω−(t)

∣∣ =

∫ t

−∞
ε(s) ds ≤ 2m̂ .

We call u the first eigenfunction on Ω with unit L2 norm. We define then also, for every t ≤ t̄,

δ(t) :=

∫
Ωt

|∇u(t, y)|2 dHN−1(y) , µ(t) :=

∫
Ωt

u(t, y)2 dHN−1(y) ,

which makes sense since u is smooth inside Ω. It is convenient to give the further notation

φ(t) :=

∫
Ω−(t)

|∇u|2 =

∫ t

−∞
δ(s) ds .

Applying the Faber–Krahn inequality in RN−1 to the set Ωt, and using the rescaling property of eigenvalues on
RN−1, we know that

ε(t)
2

N−1λ1(Ωt) = HN−1(Ωt)
2

N−1λ1(Ωt) ≥ λ1(BN−1) ,

calling BN−1 the unit ball in RN−1. As a trivial consequence, we can estimate µ in terms of ε and δ: in fact,
noticing that u(t, ·) ∈ H1

0 (Ωt) and writing ∇u = (∇1u,∇yu), we have

µ(t) =

∫
Ωt

u(t, ·)2 dHN−1 ≤ 1

λ1(Ωt)

∫
Ωt

|∇yu(t, ·)|2 dHN−1 ≤ Cε(t)
2

N−1 δ(t).

We can now present two estimates which assure that u and ∇u can not be too big in Ω−(t).

Lemma 8.3. Let Ω ⊆ RN be an open and connected set of unit volume and with λ1(Ω) ≤ K. For every t ≤ −t̄
the following inequalities hold:∫

Ω−(t)

u2 ≤ C1ε(t)
1

N−1 δ(t) ,

∫
Ω−(t)

|∇u|2 ≤ C1ε(t)
1

N−1 δ(t) ,(34)

for some C1 = C1(N) (recalling that K for us is a precise constant depending only on N).

The proof of the above Lemma follows exactly as in [32, Lemma 2.3].
Let us go further into the construction, giving some additional definitions. For any t ≤ −t̄ and σ(t) > 0, we

define the cylinder Q(t) as

Q(t) :=
{

(x, y) ∈ RN : t− σ(t) < x < t, (t, y) ∈ Ω
}

=
(
t− σ(t), t

)
× Ωt ,

where for any t ≤ −t̄ we set

σ(t) = ε(t)
1

N−1 .

We let also Ω̃(t) = Ω+(t) ∪Q(t), and we introduce ũ ∈ H1
0

(
Ω̃(t)

)
as

ũ(x, y) :=


u(x, y) if (x, y) ∈ Ω+(t) ,

x− t+ σ(t)

σ(t)
u(t, y) if (x, y) ∈ Q(t) .

The fact that ũ vanishes on ∂Ω̃(t) is obvious; moreover, ∇u = ∇ũ on Ω+(t), while on Q(t) one has

∇ũ(x, y) =

(
u(t, y)

σ(t)
,
x− t+ σ(t)

σ(t)
∇yu(t, y)

)
.

A simple calculation allows us to estimate the integrals of ũ and ∇ũ on Q(t).

Lemma 8.4. For every t ≤ −t̄, one has∫
Q(t)

|∇ũ|2 ≤ C2ε(t)
1

N−1 δ(t) ,

∫
Q(t)

ũ2 ≤ C2ε(t)
3

N−1 δ(t) ,

for a suitable constant C2 = C2(N).

The proof of the above Lemma follows as [32, Lemma 2.4].

Another simple but useful estimate concerns the Rayleigh quotients of the functions ũ on the sets Ω̃(t).

Lemma 8.5. There exists a constant C3 = C3(N) such that for every t ≤ −t̄, one has

λ1(Ω̃(t)) ≤ R
(
ũ, Ω̃(t)

)
≤ λ1(Ω) + C3ε(t)

1
N−1 δ(t) .
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The proof of the above Lemma follows as in [32, Lemma 2.5], but it is actually simpler since in our setting
only the first eigenfunction is involved and we do not need to take care of orthogonality constraints.

We can now enter in the central part of our construction. Basically, we aim to show that either Ω already

has bounded left “tail” in direction e1, or some rescaling of Ω̃(t) has energy lower than that of Ω.

Lemma 8.6. Let Ω be as in the assumptions of Lemma 8.3, and let t ≤ −t̄. There exist ε = ε(N,α) and
C4 = C4(N,α) > 2 such that, for all ε ≤ ε exactly one of the three following conditions hold:

(1) max
{
ε(t), δ(t)

}
> 1;

(2) (1) does not hold and m(t) ≤ C4

(
ε(t) + δ(t)

)
ε(t)

1
N−1 ;

(3) (1) and (2) do not hold and one has that λ1(Ω̂(t)) ≤ λ1(Ω) and

F̃α,ε
(
Ω̂(t)

)
< F̃α,ε(Ω),

where for t ≤ −t̄ we set Ω̂(t) :=
∣∣Ω̃(t)

∣∣− 1
N Ω̃(t).

Proof. Assume (1) is false. Then it is possible to apply Lemma 8.5, to get

(35) λ1

(
Ω̃(t)

)
≤ λ1(Ω) + C3ε(t)

1
N−1 δ(t) .

By the scaling properties of the eigenvalue and the fact that
∣∣Ω̂(t)

∣∣ = 1, we know that

λ1

(
Ω̂(t)

)
=
∣∣Ω̃(t)

∣∣ 2
N λ1

(
Ω̃(t)

)
.

By construction, ∣∣Ω̃(t)
∣∣ =

∣∣Ω+(t)
∣∣+
∣∣Q(t)

∣∣ = 1−m(t) + ε(t)
N
N−1 ,

hence the above estimates and (35) lead to

λ1(Ω̂(t)) =
(

1−m(t) + ε(t)
N
N−1

) 2
N

λ1

(
Ω̃(t)

)
≤
(

1− 2

N
m(t) +

2

N
ε(t)

N
N−1

)(
λ1(Ω) + C3ε(t)

1
N−1 δ(t)

)
≤ λ1(Ω)− 2λ1(B)

N
m(t) +

2K

N
ε(t)

N
N−1 +

(
2C3 +

2

N

)
ε(t)

1
N−1 δ(t) .

At this point, defining C4 := max { 2(K+1)
N + 2C3, 2}, if

m(t) ≤ C4

(
ε(t) + δ(t)

)
ε(t)

1
N−1 ,

then condition (2) holds true. Otherwise, we immediately have that

(36) λ1(Ω̂(t)) ≤ λ1(Ω)−
(

2λ1(B)

N
− 1

)
m(t) = λ1(Ω)− C5(N)m(t),

for a constant C5 > 0, therefore the first part of the third claim is verified.

Moreover, we can compute, using Lemma 2.1, the Riesz inequality and noting that |Ω∆Ω̃(t)| ≤ m(t)+ε(t)
N
N−1 ,

Vα(Ω̂(t)) ≤ Vα(Ω̃(t))
(

1−m(t) + ε(t)
N
N−1

)−N+α
N ≤

(
1 + 2

N + α

N
m(t)

)
Vα(Ω̃(t))

≤
(

1 + 2
N + α

N
m(t)

)(
Vα(Ω) + C0(N)|Ω∆Ω̃(t)|

[
|Ω| αN + |Ω̃(t)| αN

] )
≤ Vα(Ω) + 2

N + α

N
Vα(B)m(t) + 2C0(m(t) + ε(t)

N
N−1 ) + 8C0

N + α

N
m(t)

≤ Vα(Ω) + 2
N + α

N
Vα(B)m(t) + 2C0(1 +

1

C4
)m(t) + 8C0

N + α

N
m(t)

= Vα(Ω) + C6(N,α)m(t).

(37)

Then, putting together (36) and (37), we deduce

λ1(Ω̂(t)) + εVα(Ω̂(t))

≤ λ1(Ω) + εVα(Ω)− (C5 − εC6)m(t)

≤ λ1(Ω) + εVα(Ω)− C5

2
m(t),

up to take ε ≤ ε(N,α) < C5

2C6
, so that in this case condition (3) holds and the proof is concluded. �

Lemma 8.7. Let α ∈ (1, N). For every ε ≤ ε(N,α), and for any open and connected set Ω ⊆ RN of unit
volume, with λ1(Ω) ≤ K and

|Ω ∩ {(x, y) ∈ R× RN−1 : x < −t̄}| ≤ m̂,
there exists another open, connected set U−1 ⊆ RN , still of unit volume, such that
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(1) λ1(U−1 ) ≤ λ1(Ω) and F̃α,ε(U−1 ) ≤ F̃α,ε(Ω),

(2) U−1 ⊂
{

(x, y) ∈ R× RN−1 : x > −2C7 − 4− 2t̄
}

,

(3) |U−1 \ [−2t̄, 2t̄]N | ≤ m̂
22N−1 ≤ m̂.

Proof. Let us start defining

t̂ := sup
{
t ≤ −t̄ : condition (3) of Lemma 8.6 holds for t

}
,

with the usual convention that, if condition (3) is false for every t ≤ −t̄, then t̂ = −∞. We introduce now the
following subsets of (t̂,−t̄),

A : =
{
t ∈ (t̂,−t̄) : condition (1) of Lemma 8.6 holds for t

}
,

B : =
{
t ∈ (t̂,−t̄) : condition (2) of Lemma 8.6 holds for t

}
,

and we further subdivide them as

A1 :=
{
t ∈ A : ε(t) ≥ δ(t)

}
, A2 :=

{
t ∈ A : ε(t) < δ(t)

}
,

B1 :=
{
t ∈ B : ε(t) ≥ δ(t)

}
, B2 :=

{
t ∈ B : ε(t) < δ(t)

}
.

We aim to show that both A and B are uniformly bounded. Concerning A1, observe that∣∣A1

∣∣ ≤ ∫
A1

ε(t) dt =
∣∣∣{(x, y) ∈ Ω : x ∈ A1

}∣∣∣ ≤ ∣∣Ω∣∣ = 1 ,

so that |A1| ≤ 1. Concerning A2, in the same way and also recalling that λ1(Ω) ≤ K, we have∣∣A2

∣∣ ≤ ∫
A2

δ(t) dt =

∫
A2

∫
Ωt

∣∣∇u(t, y)
∣∣2 dHN−1(y) dt ≤

∫
Ω

∣∣∇u∣∣2 ≤ K ,

so that |A2| ≤ K. Summarizing, we have proved that

(38)
∣∣A∣∣ ≤ 1 +K .

Let us then pass to the set B1. To deal with it, we need a further subdivision, namely, we write B1 = ∪n∈NBn1 ,
where

(39) Bn1 :=

{
t ∈ B1 :

m̂

2n
< m(t) ≤ m̂

2n−1

}
.

We note that it is possible that some of the Bn1 are empty, in particular this happens for n < 2N − 1, because
m(t) ≤ |Ω\[−t̄, t̄]N | ≤ m̂

22N , but this does not affect our argument. Keeping in mind (33), we know that t 7→ m(t)
is an increasing function, and that for a.e. t ∈ R one has m′(t) = ε(t). Moreover, for every t ∈ B1 one has by
construction that

m(t) ≤ C4

(
ε(t) + δ(t)

)
ε(t)

1
N−1 ≤ 2C4 ε(t)

N
N−1 .

As a consequence, for every t ∈ Bn1 one has

m′(t) = ε(t) ≥ 1

C
m(t)

N−1
N ≥ 1

C
m̂

N−1
N

1(
2
N−1
N

)n .
This readily implies

1

C
m̂

N−1
N

1(
2
N−1
N

)n ∣∣Bn1 ∣∣ ≤ ∫
Bn1

m′(t) ≤ m̂

2n
,

which in turn gives ∣∣Bn1 ∣∣ ≤ Cm̂ 1
N

(
2−

1
N

)n
.

Finally, we deduce

(40)
∣∣B1

∣∣ =
∑
n∈N

∣∣Bn1 ∣∣ ≤ Cm̂ 1
N

∑
n∈N

(
2−

1
N

)n
= Cm̂

1
N

2
1
N

2
1
N − 1

.

Concerning B2, we can almost repeat the same argument: in fact, thanks to (34), for every t ∈ B2 we have

φ(t) =

∫
Ω−(t)

|∇u|2 ≤ C1 ε(t)
1

N−1 δ(t) ≤ C1 δ(t)
N
N−1 , with δ(t) = φ′(t) .

which is the perfect analogous of the above setting with δ and φ in place of ε and m respectively. Since as
already observed φ(t̄) ≤

∫
Ω
|∇u|2 ≤ K, in analogy with (39) we can define

Bn2 :=

{
t ∈ B2 :

K

2n+1
< φ(t) ≤ K

2n

}
,
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thus the very same argument which leads to (40) now gives

(41)
∣∣B2

∣∣ =
∑
n∈N

∣∣Bn2 ∣∣ ≤ C(K) 1
N
∑
n∈N

(
2−

1
N

)n
= C

(
K
) 1
N

2
1
N

2
1
N − 1

.

Putting (38), (40) and (41) together, we find

(42)
∣∣A∣∣+

∣∣B∣∣ ≤ C7 = C7(N,α) .

We need now to distinguish two cases for Ω.
Case I. One has t̂ = −∞.
If this case happens, then condition (3) of Lemma 8.6 never holds true, i.e., for every t ≤ −t̄ either condition (1)
or (2) holds. Recalling the definition of A and B and (42), we deduce that, choosing simply U−1 = Ω,

U−1 ⊂
{

(x, y) ∈ R× RN−1 : x > −C7 − t̄
}
⊂
{

(x, y) ∈ R× RN−1 : x > −2C7 − 4− 2t̄
}

Therefore, the remaining parts of the claim of Lemma 8.7 is immediately obtained, noting that clearly

|U−1 \ [−2t̄, 2t̄]N | ≤ |Ω \ [−t̄, t̄]N | ≤ m̂

22N
≤ m̂

22N−1
.

Case II. One has t̂ > −∞.
In this case, let us notice the connectedness of Ω assures that it must be m(t̂) > 0, hence (t̂,−t̄) ⊆ A ∪ B
and thus by (42) t̂ ≥ −t̄ − C7. Let us now pick some t? ∈ [t̂ − 1, t̂] for which condition (3) holds, and define

U−1 := Ω̂(t?). By definition, U−1 has unit volume, and

λ1(U−1 ) ≤ λ1(Ω), F̃α,ε(U−1 ) < F̃α,ε(Ω),

being condition (3) true for t?.

Observe now that by definition, for every 2 ≤ p ≤ N , one has πp
(
Ω̃(t?)

)
= πp

(
Ω+(t?)

)
, hence

diam
(
πp(U

−
1 )
)

= diam
(
πp
(
Ω̂(t?)

))
= diam

(
πp

(∣∣Ω̃(t?)
∣∣− 1

N Ω̃(t?)
))
≤ 2 diam

(
πp
(
Ω̃(t?)

))
= 2 diam

(
πp
(
Ω+(t?)

))
≤ 2 diam

(
πp(Ω)

)
,

where we have used that
∣∣Ω̃(t?)

∣∣ ≥ 1/2. On the other hand, it is clear from the construction that

U−1 = |Ω̃(t?)|− 1
N Ω̃(t?) ⊂ 2Ω̃(t?) ⊂

{
(x, y) ∈ R× RN−1 : x > 2t? − 2

}
.

As a consequence, being t? ≥ t̂− 1 ≥ −t̄− C7 − 1, we deduce

U−1 ⊂
{

(x, y) ∈ R× RN−1 : x > −2t̄− 2C7 − 4
}
.

Concerning the last part of the claim, recalling again that

U−1 = |Ω̃(t?)|− 1
N Ω̃(t?) ⊂ 2Ω̃(t?),

we infer that

|U−1 \ [−2t̄, 2t̄]N | ≤ 2|Ω \ [−t̄, t̄]N | ≤ m̂

22N−1
,

so the proof is concluded also in this case. �

In order to conclude our surgery result, we need to iterate Lemma 8.7. First, we apply it to U−1 , in direction
e1 for t ≥ 2t̄ =: t+1 . Then we will recursively apply it to the new set that we obtain, in order to get a uniform
boundedness in all the other N − 1 coordinate directions. We need to take care that, while rescaling, the
diameter of the projections in the directions we already dealt with remains bounded.

For the first step, dealing with U−1 in direction e1 for t ≥ t+1 , Lemma 8.6 can be repeated analogously with
a suitable change of notation, for t ≥ t+1 ≥ t̄:

Ω+(t) =
{

(x, y) ∈ Ω : x < t
}
, Ω−(t) =

{
(x, y) ∈ Ω : x > t

}
,

ε(t) = HN−1(Ωt), m(t) =

∫ +∞

t

ε(s) ds ≤ 2m̂,

φ(t) =

∫
Ω−(t)

|∇u|2 =

∫ +∞

t

δ(s) ds.

We can then prove the following Lemma.

Lemma 8.8. Let α ∈ (1, N). For every ε ≤ ε(N,α), given U−1 the set from Lemma 8.7, there exists another
open, connected set U+

1 ⊆ RN , still of unit volume, such that

(1) λ1(U+
1 ) ≤ λ1(U−1 ) ≤ λ1(Ω) and F̃α,ε(U+

1 ) ≤ F̃α,ε(U−1 ) ≤ F̃α,ε(Ω),
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(2) U+
1 ⊂

{
(x, y) ∈ R× RN−1 : −4C7 − 8− 4t+1 < x < 2C7 + 4 + 2t+1

}
, and therefore

diam(π1(U+
1 )) ≤ C+

1 (N,α) := 6C7 + 12 + 6t+1 ,

(3) |U+
1 \ [−2t+1 , 2t

+
1 ]N | ≤ m̂

22(N−1) ≤ m̂.

Proof. We argue exactly as in the proof of Lemma 8.7, noting that, since λ1(U−1 ) ≤ λ1(Ω), the set still satisfies
the condition λ1(U−1 ) ≤ K and moreover

|U−1 ∩ {(x, y) ∈ R× RN−1 : x > t+1 = 2t̄}| ≤ m̂.

This clearly gives that

U+
1 ⊂ {(x, y) ∈ R× RN−1 : x < 2C7 + 4 + 2t+1 }.

Concerning the other bound, it is enough to observe, as in the proof of Lemma 8.7, that

U+
1 ∩ {(x, y) : x < t+1 } ⊂ 2(U−1 ∩ {(x, y) : x < t+1 }).

�

We can now iterate the argument in all the other coordinate directions to prove Proposition 8.1.

Proof of Proposition 8.1. First of all, we note that K(N,α) ≥ λ1(B) + δ and we set δ as in (32), ε(N,α) as in
Lemma 8.6. Let us fix Ω ⊂ RN an open (smooth) set of unit volume with λ1(Ω) ≤ K. Thanks to Lemma 8.7
and Lemma 8.8, we have found a new open and connected set of unit measure U+

1 with

λ1(U+
1 ) ≤ λ1(Ω), F̃α,ε(U+

1 ) ≤ F̃α,ε(Ω),

and moreover

diam(π1(U+
1 )) ≤ C+

1 (N,α), |U+
1 \ [−2t+1 , 2t

+
1 ]N | ≤ m̂

22(N−1)
.

We now iterate the argument in all the remaining directions. Let us show it for e2. We call first t−2 := 2t+1 = 4t̄
and repeat Lemma 8.7 to U+

1 in direction e2 for z2 ≤ −t−2 so that we can find a new open and connected set of
unit measure U−2 such that

λ1(U−2 ) ≤ λ1(U+
1 ), F̃α,ε(U−2 ) ≤ F̃α,ε(U+

1 ),

diam(π1(U−2 )) ≤ 2C+
1 (N,α), U−2 ⊂ {z ∈ RN : z2 > −2C7 − 4− 2t−2 },

|U−2 \ [−2t−2 , 2t
−
2 ]N | ≤ m̂

22(N−1)−1
.

Then we call t+2 = 2t−2 and repeat Lemma 8.8 to U−2 in direction e2 for z2 ≥ t+2 in order to find a new open and
connected set of unit measure U+

2 such that

λ1(U+
2 ) ≤ λ1(U−2 ), F̃α,ε(U+

2 ) ≤ F̃α,ε(U−2 ),

diam(π1(U+
2 )) ≤ 22C+

1 (N,α), diam(π2(U+
2 )) ≤ C+

2 (N,α),

|U+
2 \ [−2t−2 , 2t

−
2 ]N | ≤ m̂

22(N−2)
,

where we can take C+
2 (N,α) := 6C7 + 12 + 6t+2 . We note that the last condition

|U−2 \ [−2t+2 , 2t
+
2 ]N | ≤ m̂

22(N−2)
≤ m̂,

is needed so that we can restart the cutting procedure in direction e3 knowing that |U+
2 ∩ {z3 ≤ −2t+2 }| ≤ m̂,

which is the condition required for Lemma 8.3. Iterating this procedure other N − 2 times, we obtain in the
end an open and connected set of unit measure U+

N such that

λ1(U+
N ) ≤ λ1(Ω), F̃α,ε(U+

N ) ≤ F̃α,ε(Ω),

diam(πp(U
+
N )) ≤ 22(N−p)C+

p (N,α), for p = 1, . . . , N,

where C+
p (N,α) := 6C7 + 12 + 6t+p and t+p = 22p−1t̄ for all p = 1, . . . N . Clearly Ω̂ = U+

N is a good choice for
proving the claim. �

9. Proof of Theorem 1.1

As outlined in the introduction, the proof of Theorem 1.1 can be obtained as the juxtaposition of two
independent results. Hence, we divide the section in two parts. In the first one, we prove the minimality of

the ball for the functional F̃α,ε among equibounded sets. Then we use the surgery argument of Section 8 to
conclude the proof of Theorem 1.1.
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9.1. Rigidity of the ball in the class of equibounded sets. We aim to prove the following result.

Proposition 9.1. Let α ∈ (1, N) and R > R0. There is εRλ1
= εRλ1

(N,α,R) such that, for all ε ≤ εRλ1
, the unit

ball is the unique minimizer for problem

(43) min
{
λ1(Ω) + εVα(Ω) : Ω ⊂ BR, |Ω| = 1

}
.

The previous result is an easy consequence of Theorem 1.2 and the Kohler-Jobin inequality [28, 7], which we
recall.

Lemma 9.2 (Kohler-Jobin inequality). For every open set Ω ⊂ RN of finite measure, it holds the following
scale invariant inequality

(44)
λ1(Ω)

λ1(B)
≥
(

(−E(B))

(−E(Ω))

) 2
N+2

,

where B ⊂ RN is any ball in RN . Equality holds if and only if Ω is a ball up to sets of null capacity.

Proof of Proposition 9.1. We follow here a smart and easy technique proposed in [8]. Let Ω ⊂ BR be an (open)
set with |Ω| = 1 and we call B a ball of unit measure centered for the sake of simplicity in the origin, as BR.
By rewriting (44) as

(45)
λ1(Ω)

λ1(B)
− 1 ≥

(
(−E(B))

(−E(Ω))

)ϑ
− 1, with ϑ =

2

N + 2
,

and since ϑ ∈ (0, 1), by concavity we have

tϑ − 1 ≥ (2ϑ − 1)(t− 1), for all t ∈ [1, 2].

If E(B) ≥ 2E(Ω), then we have, using (45),

λ1(Ω)

λ1(B)
− 1 ≥ cϑ

(
(−E(B))

(−E(Ω))
− 1

)
,

with cϑ = 2ϑ − 1. The above inequality implies that

λ1(Ω)− λ1(B) ≥ cϑλ1(B)
(E(Ω)− E(B))

(−E(Ω))
≥ cϑλ1(B)

(−E(B))
(E(Ω)− E(B)),

where we have used also the Saint-Venant inequality.
Since, by Theorem 1.2 for all ε ≤ εE(N,α,R), the ball of unit measure is the only minimizer for the functional

Ω 7→ E(Ω) + εVα(Ω), for Ω ⊂ BR, |Ω| = 1,

we deduce that,

λ1(Ω)− λ1(B) ≥ cϑλ1(B)

(−E(B))
(E(Ω)− E(B)) ≥ ε cϑλ1(B)

(−E(B))
(Vα(B)− Vα(Ω)).

On the other hand, if E(B) < 2E(Ω), we can still obtain from (45)

λ1(Ω)

λ1(B)
− 1 ≥ 2ϑ − 1 ≥ 2ϑ − 1

(−E(B))
(E(Ω)− E(B)) ≥ 2ϑ − 1

(−E(B))
ε(Vα(B)− Vα(Ω)).

In conclusion, we have proved that, for all

ε ≤ εRλ1
= εE

cϑλ1(B)

(−E(B))
,

we have that

λ1(Ω) + εVα(Ω) ≥ λ1(B) + εVα(B), for all Ω ⊂ BR, |Ω| = 1,

and the proof is concluded. �

9.2. Conclusion of the proof of Theorem 1.1. We are now in position to prove the main result of the
paper.

Proof of Theorem 1.1. First of all, as it is standard when dealing with quantitative inequalities, we can perform
the minimization only in the class of sets with λ1(A) − λ1(B) ≤ δ(N,α). In fact, it is clearly enough to take
ελ1 < δ/Vα(B): in the other case when λ1(A)− λ1(B) > δ, and ε ≤ ελ1 we have

λ1(A) + εVα(A) ≥ λ1(B) + δ + εVα(A) ≥ λ1(B) + εVα(B),

thus the claim holds for free.
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Clearly one can take a minimizing sequence (An)n∈N made of smooth sets. We show that the elements of the
minimizing sequence (An) can be chosen to be also connected. Let us take a smooth open set of unit measure
A, which is made of an at most countable number of connected components,

A = ∪k∈NAk.

For all ϑ > 0, we consider the segment Sk connecting the components Ak and Ak+1 and we consider Tk,ϑ =

∪x∈SkBζ(x), choosing ζ so that |Tk,ϑ| ≤ ϑ
2k

. We call now

Aϑ := ∪k∈NTk,ϑ ∪A ⊃ A, Âϑ := |Aϑ|−1/NAϑ,

and note that

|Aϑ| ≤ 1 + ϑ, |Âϑ| = 1.

By monotonicity and scaling of the eigenvalue, we immediately deduce

λ1(Aϑ) ≤ λ1(A), λ1(Âϑ) ≤ |Aϑ|2/Nλ1(A) ≤ (1 +
2

N
ϑ)λ1(A).

On the other hand, by Lemma 2.1 and scaling of the Riesz energy,

Vα(Âϑ) = |Aϑ|−
N+α
N Vα(Aϑ) ≤ Vα(A) + C(N,α)ϑ.

All in all, we have that, for all ϑ > 0,

F̃α,ε(Âϑ) ≤ F̃α,ε(A) + C(N,α)ϑ,

and by arbitrariety of ϑ, applying this procedure to all the elements of the minimizing sequence, we deduce that
assuming all elements of the sequence to be connected is not restrictive.

At this point we can take (An)n∈N a minimizing sequence for problem (1), made of smooth, connected sets
of unit measure. Up to take ελ1

≤ ε, for all n, we can apply Proposition 8.1 to An and we find a new open and

connected set, Ân, of unit measure and with

F̃α,ε(Ân) ≤ F̃α,ε(An), diam(Ân) ≤ D(N,α).

Hence, (Ân)n∈N is still a minimizing sequence for problem (43), made by sets with uniformly bounded diameter.
It is eventually enough to restrict the minimization problem to a ball BR with R = D(N,α), and we can find
that the unit ball is the unique optimal set for problem (43), thanks to Proposition 9.1. We note that, since now
R has been fixed equal to D(N,α), then the constant εRλ1

now depends only on N,α and we conclude taking

ελ1
= min{εD(N,α)

λ1
, ε, δ/Vα(B)}. �

10. The non-existence results

In this section we show Theorem 1.6.

Proof of Theorem 1.6. We give the proof just for the case of the torsion energy, since the other one is analogous.
Notice that any set in U(δ) is bounded. Moreover any minimizer must be connected. Otherwise, if Ω is made up
by the union of two disjoint open sets Ω1 and Ω2 we have that E(Ω) does not change by sending toward infinity
Ω1 while keeping Ω2 fixed, while Vα under such a translation strictly decreases, contradicting the minimality.
Now, any connected open set lying in U(δ) has bounded diameter, with a bound depending only on δ and N :

diam(Ω) ≤ d(δ), for all Ω ∈ U(δ).

By choosing an horizontal open necklace-type set of k = kδ = bδ−Nc4 tangent balls of radius c(N, δ)δ disposed
on a line, one finds that there is a geometric constant C(N) such that d(δ) ≤ C(N)δ1−N . Here c(N, δ) =
δ−N/bδ−Nc ∈ (1, 2) is so that the necklace-type set has total measure 1. Therefore, for all Ω ∈ U(δ), we can
compute the following lower bound on Fα,ε:

(46) Fα,ε(Ω) = E(Ω) + εVα(Ω) ≥ E(B) + ε
1

d(δ)N−α
≥ E(B) + εC(N)δ(N−1)(N−α),

where we have used the Saint-Venant inequality.
We now construct a disconnected set with energy lower than the right-hand side of (46), as long as N−α < 1.

This will immediately entail non-existence of minimizers. Let k = kδ ∈ N and d(δ) be the parameters defined

above. We define the set Ω̃ :=
⋃k
i=1Br(xi), with |Br(xi)| = 1

k for all i ∈ {1, . . . , k} and where xi ∈ Rn are

chosen so that the balls are mutually disjoint. By construction Ω̃ ∈ U(δ). We set

q = min
{
|xi+1 − xi| : i = 1, . . . , N − 1

}
.

4For any x ∈ R, we denote bxc the integer part of x.



A SPECTRAL SHAPE OPTIMIZATION PROBLEM WITH A NONLOCAL COMPETING TERM 31

Notice that we can choose q as large as we want, up to change the values of the points xi (which can be
arbitrarily mutually distant). Letting B be the ball of unit measure, by scaling we have

(47)

Fα,ε(Ω̃) = k−
2
N E(B) + εk−

α
N Vα(B) + ε

∑
i 6=j

∫
Br(xi)

∫
Br(xj)

1

|x− y|N−α
dxdy

≤ c0(N)

(
k−

2
N E(B) + εk−

α
N Vα(B) +

k(k − 1)ε

k2qN−α

)
≤ c0(N)

(
k−

2
N E(B) + εk−

α
N Vα(B) +

ε

qN−α

)
≤ c1(N)

(
E(B)δ2 + εVα(B)δα + εqα−N

)
≤ 2c1(N)

(
E(B)δ2 + εVα(B)δα

)
,

where c0(N), c1(N) are geometric constants and the last inequality holds by choosing q big enough. Hence, by
combining (46) and (47), setting c(N) := 2c1(N) we contradict the minimality as soon as

E(B) + εδ(N−1)(N−α) > c(N)
(
E(B)δ2 + εVα(B)δα

)
,

that is if

(−(E(B))
(
1− c(N)δ2

)
≤ ε

(
C(N)δ(N−1)(N−α) − c(N)Vα(B)δα

)
:= εuα,N (δ)

Since α > N − 1, then (N − 1)(N − α) < α so that there exists 1 > δ0(N,α) > 0 such that for all 0 < δ < δ0 it
holds

uα,N (δ) = C(N)δ(N−1)(N−α) − c(N)Vα(B)δα > 0, and 1− c(N)δ2 ≥ 1

2
.

Thus the contradiction follows as long as

ε ≥ εmax(α,N, δ) :=
(−(E(B))

(
1− c(N)δ2

)
2uα,N (δ)

.

This concludes the proof. �
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[26] H. Knüpfer and C. B. Muratov. On an isoperimetric problem with a competing non-local term I. The planar case. Comm.

Pure Appl. Math. 66 (2013), 1129–1162.
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Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna (Italy)

Email address: berardo.ruffini@unibo.it


	1. Introduction
	Foreword
	Motivation and background
	1.1. Main results
	1.2. Outline of the proof and structure of the paper

	2. Setting, notations and some preliminary results
	2.1. The functionals: definitions and properties
	2.2. Quasi-open sets and the minimization problem
	2.3. Some notions of geometric measure theory

	3. An existence result for an auxiliary problem
	4. First regularity properties of minimizers of the unconstrained problem
	5. Equivalence between the constrained and the unconstrained problem
	6. Higher regularity of minimizers
	7. Proof of Theorem 1.2
	8. A surgery result for the functional involving the first eigenvalue
	9. Proof of Theorem 1.1
	9.1. Rigidity of the ball in the class of equibounded sets
	9.2. Conclusion of the proof of Theorem 1.1

	10. The non-existence results
	References

