
SINGULAR BEHAVIOR AND GENERIC REGULARITY OF
MIN-MAX MINIMAL HYPERSURFACES

OTIS CHODOSH, YEVGENY LIOKUMOVICH, AND LUCA SPOLAOR

Abstract. We show that for a generic 8-dimensional Riemannian manifold with
positive Ricci curvature, there exists a smooth minimal hypersurface. Without the
curvature condition, we show that for a dense set of 8-dimensional Riemannian met-
rics there exists a minimal hypersurface with at most one singular point. This extends
previous work on generic regularity that only dealt with area-minimizing hypersur-
faces.

These results are a consequence of a more general estimate for a one-parameter
min-max minimal hypersurface Σ ⊂ (M, g) (valid in any dimension):

H0(Snm(Σ)) + Index(Σ) ≤ 1

where Snm(Σ) denotes the set of singular points of Σ with a unique tangent cone
non-area minimizing on either side.

Introduction

It is well known that 7-dimensional area minimizing hypersurfaces can have isolated
singularities. Using work of Hardt–Simon [HS85], Smale proved in [Sma93] that in an
8-dimensional manifold M with H7(M ;Z) 6= 0, there exists a smooth embedded area
minimizing hypersurface for a generic choice of metric. In other words, he showed that
isolated singularities of an area-minimizing 7-dimensional hypersurface can generically
be perturbed away.

One may thus seek to find a smooth embedded minimal hypersurface in all 8-
manifolds M equipped with a generic metric g, even when H7(M ;Z) = 0. Here,
we find such a hypersurface in the case of positive Ricci curvature, and give a par-
tial answer in general. We let Met2,α(M) denote the space of Riemannian metrics of
regularity C2,α on M and Met2,α

Ric>0(M) ⊂ Met2,α(M) denote the open subset of Ricci
positive metrics.

Theorem 1 (Generic regularity with positive Ricci in dimension 8). Let M8 be a
compact smooth 8-manifold. There is an open and dense set G ⊂ Met2,α

Ric>0(M) so that
for g ∈ G, there exists a smooth embedded minimal hypersurface Σ ⊂M .

Without the curvature condition, we have the following partial result.

Theorem 2 (Generic almost regularity in dimension 8). Let M8 be a compact smooth
8-manifold. There exists a dense set G ⊂ Met2,α(M) so that for g ∈ G, there exists a
smooth embedded minimal hypersurface Σ ⊂M with at most one singular point.

We actually prove more general results valid in all dimensions, see Theorem 3 below.
1
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As mentioned above, the principal motivation for such results is to study generic
regularity of non-minimizing, high-dimensional minimal submanifolds. This contrasts
with previous works on generic regularity:

• Hardt–Simon [HS85] (resp. Smale [Sma93]), cf. [Liu19], show that regular sin-
gularities of (one-sided) minimizing hypersurfaces can be perturbed away by
perturbing the boundary (resp. metric).
• White [Whi85, Whi19] shows that minimizing integral 2-cycles are smoothly

embedded surfaces for a generic metric.
• Moore [Moo06, Moo07] shows that parametrized minimal (2-dimensional) sur-

faces are free of branch points for a generic ambient metric.

In fact, our work proves that generically there exists a minimal hypersurface of
optimal regularity avoiding certain singularities in ambient dimensions beyond the
singular dimension. Indeed, Theorem 2 is a consequence of a more general result
stated below.

Theorem 3 (Generic removability of isolated singularities). Consider a compact smooth
(n + 1)-manifold, for n ≥ 7. There is a dense set G ⊂ Met2,α(M) with the following
properties:

• If g ∈ G then there exists a minimal hypersurface Σ, smooth away from a closed
singular set of Hausdorff dimension at most n−7, so that for S0 ⊂ Sing(Σ) the
set of singular points with regular tangent cones, we have H0(S0) ≤ 1.
• If g ∈ G ∩Met2,α

Ric>0(M) then the same statement holds, except we can conclude
that H0(S0) = 0.

In order to remove the topological condition H7(M ;Z) 6= 0 of Smale, we will use
the Almgren–Pitts min-max construction [Pit81], which guarantees the existence of a
minimal hypersurface Σn in a closed Riemannian manifold (Mn+1, g). As in the area-
minimizing case, when the dimension n satisfies 2 ≤ n ≤ 6, the Almgren–Pitts minimal
hypersurface is smooth, but for larger values of n there may be an at most (n − 7)-
dimensional singular set (this follows from work of Schoen–Simon [SS81]). However
tangent cones to min-max hypersurfaces are a priori only stable, while only area-
minimizing cones have complements that are foliated by smooth minimal hypersurfaces
(cf. [BDGG69, Law91]) and it seems that such a foliation is needed (at least on one
side) to perturb the singularity away by adjusting the metric [HS85].

The key technical result of this paper is that (for one-parameter min-max) at all
points—except possibly one—of the singular set with a regular tangent cone, the tan-
gent cone is area minimizing on at least one side. Put another way, we show that
tangent cones that are not area minimizing on either side “contribute to the Morse
index” from the point of view of min-max (and these are precisely the cones that we
are unable to perturb away using Hardt–Simon [HS85]).

0.1. Detailed description of results. Let (Mn+1, g) be a closed Riemannian man-
ifold. By a sweepout of M we will mean a family of (possibly singular) hypersurfaces
{Φ(x) = ∂Ω(x)}x∈[0,1], where each hypersurface Φ(x) is the boundary of an open set
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Ω(x) with Ω(0) = ∅ and Ω(1) = M , and we denote the family of such sweepouts by S
(see Section 2 for the precise definition). The width, W (M), is then defined by

W (M) = inf
Φ∈S

{
sup
x

M(Φ(x))

}
.

Given a stationary integral varifold V , with suppV regular outside of a set of n− 7
Hausdorff dimension, we define

hnm(V ) :=

{
p ∈ supp(V ) :

for all r > 0 small, suppV ∩Br(p) is not one-sided

homotopy area minimizing on either side (in Br(p)).

}
In other words, p ∈ hnm(V ) implies that in any small ball there are one-sided ho-

motopies on both sides of suppV that strictly decrease area without ever increasing
area. Let R denote the set of integral varifolds, whose support is a complete embedded
minimal hypersurface regular away from a closed singular set of Hausdorff dimension
n − 7. Finally, we let Index(V ) denote the Morse index of the regular part of the
support of V , that is

Index(V ) = Index(supp(Reg(V ))) .

Then the main technical estimate of this paper is the following result.

Theorem 4 (Index plus non-area minimizing singularities bound). For n ≥ 7, let
(Mn+1, g) be a closed Riemannian manifold of class C2. There exists a stationary
integral varifold V ∈ R such that |V |(M) = W , which satisfies

(1) H0(hnm(V )) + Index(V ) ≤ 1 .

If equality holds in (1), then for any point p ∈ suppV \ hnm(V ) there is ε > 0 so that
suppV is area-minimizing to one side in Bε(p). Finally, if we write V =

∑
i κi |Σi|,

then κi ≤ 2 for every i; if Σi is one-sided then κi = 2 and if κj = 2 for some j then
each Σi is stable.

The above bound is valid in all dimensions and can be seen as a generalization of
the work of Calabi–Cao concerning min-max on surfaces [CC92]. Indeed if we define
Snm(V ) by1

Snm(V ) :=

{
p ∈ supp(V ) :

V is locally a C1,ω graph over its unique tangent cone C
at p and both sides of C are not one-sided minimizing

}
then we will see that Snm(V ) ⊂ hnm(V ) in Lemma 26. In particular, (1) implies that

H0(Snm(V )) + Index(V ) ≤ 1.

Thus, if we are guaranteed to have Index(V ) = 1 (e.g., in positive curvature) we see
that Snm(V ) = ∅. This is precisely the higher dimensional analogue of the result of
Calabi–Cao (cf. Figure 1 and the remark below).

See also the more recent work of Mantoulidis [Man17] which makes a more explicit
connection with Morse index, using the Allen–Cahn approach (as developed by Guaraco

1Here ω is a modulus of continuity, and we could take it to be logarithmic, as suggested by the
work of [Sim83a]. Notice in fact that at all isolated singularities S0, minimal surfaces have unique
tangent cone and are locally C1,log deformation of the cone itself.
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and Gaspar [Gua18, GG19]) rather than Almgren–Pitts; it would be interesting to
elucidate the relationship between Mantoulidis’s Allen–Cahn techniques and our proof
of Theorem 4.

Figure 1. The figure eight geodesic c is an example of a min-max closed
geodesic that is stable and has one singularity with non-area minimizing
tangent cone.

Remark. By the index bound in Theorem 4, any tangent cone to V has stable regular
part. Moreover, we note that the Simons cones [Sim68] in R8 (formed from products
of two spheres) are all stable and area minimizing on (at least) one side (cf. [Law91]).
We particularly emphasize that the Simons cone

C1,5 := {(x, y) ∈ R2 × R6 : 5|x|2 = |y|2}
is one-sided minimizing (and stable), but is not minimizing on the other side. It seems
to be an open question whether or not there exists an n-dimensional stable cone that
does not minimize area on either side, for n ≥ 7.

Even assuming the existence of a stable minimal cone which is not area minimizing on
either sides, it is hard to decide if the above bound is optimal. In dimension n = 1, such
an example is provided by the classical starfish example (cf. Figure 1), whose tangent
cone at the singular point (the union of two lines through the origin) is indeed stable
non-area minimizing on either sides (and the starfish fails to be one-sided homotopy
minimizing on either side).

We conjecture that if there is a regular stable minimal cone that is not area-
minimizing on either side, then it can arise as the tangent cone to a min-max min-
imal hypersurface (possibly in a manifold geometrically similar to the starfish); note
that were this to occur, Theorem 4 would imply that the resulting hypersurface would
necessarily be stable.

Theorem 4 generalizes the index upper bound of Marques and Neves [MN16] for
Riemannian manifolds Mn+1, 3 ≤ n + 1 ≤ 7 (see also [Zho15]). In recent years
there has been tremendous progress in the understanding of the geometry of minimal
hypersurfaces constructed using min-max methods in these dimensions (see [DLT13a],
[MN19], [CM20], [Zho19], [Son18] and references therein).

For manifolds of dimension n + 1 ≥ 8 much less is known. When Ricci curvature
is positive Zhou obtained index and multiplicity bounds for one-parameter min-max
minimal hypersurface [Zho17] (see also the work of Ramı́rez-Luna [RL19] and Bellettini
[Bel20]). Upper Morse index bounds are known to hold in arbitrary manifolds of any
dimensions for hypersurfaces constructed by Allen–Cahn, as proven by Hiesmayr and
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Gaspar [Hie18, Gas20] (see also the recent work of Dey showing that the Almgren–
Pitts and Allen–Cahn approaches are equivalent [Dey20]). Li proved [Li19] existence
of infinitely many distinct minimal hypersurface constructed via min-max methods for
a generic set of metrics, using the Weyl law of Liokumovich–Marques–Neves [LMN18].

0.2. Overview of the proof. The construction of a minimal hypersurface in Almgren-
Pitts min-max theory proceeds by considering a sequence of sweepouts {Φi(x)} with
the supremum of the mass supx M(Φi(x)) → W (M) as i → ∞. It is then proved
that we can find a subsequence {ik} and {Φik(xk)} with mass tending to W , so that
|Φik |(xk) converges to some V ∈ R.

We outline the proof of Theorem 4. For the sake of simplicity, let’s focus on the non-
cancellation case, i.e., when all multiplicities of V are one (in the case of cancellation we
must argue slightly differently but the main strategy is the same). The main geometric
idea is to show that there cannot be two disjoint open sets U1, U2 so that Σ = suppV
fails to be one-sided homotopy minimizing on the same side in both U1 and U2. This
property is reminiscent of (but different from) almost minimizing property introduced
by Pitts to prove regularity of min-max minimal hypersurfaces.

Granted this fact, it is easy to deduce the bound (1). For example, if Index(Σ) = 1
and hnm(Σ) = {p}, then we can localize the index in some U disjoint from p. Because
Σ is unstable in U , we can find area decreasing homotopies to both sides there, and we
can also find Br(p) disjoint from U with area decreasing homotopies (by definition).
This contradicts the above fact.

As such, we want to show the one-sided homotopy minimizing property in pairs by
using the fact that V is a min-max minimal hypersurface. However, this leads us to
a major difficulty. Indeed, the approximating currents Φik(xk) might cross Σ many
times, making it difficult to glue in one-sided homotopies to push down the mass.

At a technical level, the main tool used in this paper is that it is possible to simplify
the one-parameter case of min-max theory by constructing a nested optimal sweepout
Φ(x) with sup M(Φ(x)) = W . This allows us to work with one sweepout Φ(x) instead
of a sequence of sweepouts. The nested property allows us to directly “glue in” the
one-sided homotopies to push down the mass.

The existence of a nested optimal sweepout follows from a monotonization technique
from [CL20]. There Chambers and Liokumovich proved that each sweepout Φi(x)
can be replaced by a nested sweepout Ψi(x) with sup M(Ψi(x)) ≤ sup M(Ψi(x)) + 1

i
.

“Nested” here means that Ψi(x) = ∂Ω(x) for a family of open sets with Ω(x) ⊂ Ω(y)
if x < y. The proof used ideas of Chambers and Rotman [CR18] on existence of
monotone homotopies of closed curves on surfaces.

After we reparametrize Ψi(x) by the volume swept out we obtain a sequence of
families that is uniformly Lipschitz in flat topology. By Arzelà–Ascoli a subsequence
will converge to an optimal sweepout.

In the Almgren–Pitts theory, a “pull-tight” procedure is used to find a varifold
achieving the width with good properties. We can apply this procedure to our sweepout
to deduce that one of the critical varifolds in the sweepout is a smooth (up to small
singular set) minimal hypersurface. We would then like to prove that this hypersurface
satisfies (1). However, this poses another issue, namely that it could a priori be possible
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⇒

⇒

Figure 2. A diagram of how to use two disjoint regions that are not one-
sided homotopy minimizing to either side to push down the mass. The
“bumps” have smaller mass than the original surface and are homotopic
along one-sided homotopies that never increase mass. By doing one
homotopy fully and then the other, we can see that the mass is always
strictly decreased in this range. This can then be glued into a nested
sweepout without increasing mass of the adjacent leaves.

to push the mass of the sweepout near this critical value down, while not decreasing
the global width. This could lead to an infinite sequence of “pushing down” operations
that could create extra critical points not dealt with previously.

As such, our second main technical tool is that we construct an optimal sweepout
Φ(x) with the following special property. For every point x0 with supx∈U M(Φ(x)) = W
for every neighbourhood U of x0, there does not exist an open interval I 3 x0 and a
family {Φ′(x)} that coincides with Φ for x /∈ I and satisfying supx∈I′ M(Φ′(x)) < W
for every closed interval I ′ ⊂ I. (In fact, we will prove a somewhat stronger property
that holds for open, half-open and closed intervals I). In other words, we can not make
a small “dip” in the graph of M(x), pushing it below W in the neighbourhood of x0.

This property of Φ allows us to easily prove the “homotopy minimizing to one-side”
property of V discussed above (and thus Theorem 4). A diagram of the procedure to
prove this can be found in Figure 2.

It thus remains to explain how we perturb remaining singularities. Hardt-Simon (cf.
[HS85]) proved that one sided perturbations of area minimizing cones with isolated
singularities are smooth, and Liu extended this result to one sided stationary minimiz-
ers (cf. [Liu19]). The proofs of the bounds in Theorems 1, 2, and 3 are then obtained
by combining a weak generalization of White [Whi94], where “stability” is replaced by
the stronger hypothesis that the surface is homotopic minimizing to one side, with a
simple surgery procedure in an annulus around the singularity, to show that singular
points with regular tangent cones in Sing(V ) \ hnm(V ) are not generic. As such, the
main results follow from (1) when combined with a result of Simon on uniqueness of
the blow up at certain singularities [Sim83a]. The rest of the theorem follows from the
index lower bound in manifolds with positive Ricci curvature.

0.3. Organization of the paper. The paper is divided into four sections. The first
section contains the basic definitions and some useful geometric tools. The second
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section introduces the notion of non-excessive optimal sweepouts, which is a key idea
in the present work. The third section proves Theorem 4, while the last section is
dedicated to the proofs of Theorems 2 and 3.

0.4. Acknowledgements. We are grateful to Zhihan Wang for pointing out an error
in the original version of this paper and for pointing out an interesting alternative
approach to prove Theorem 1.

O.C. was partially supported by a Terman Fellowship, a Sloan Fellowship, and an
NSF grant DMS-1811059/2016403. Y. L. was partially supported by NSERC Discovery
grant. L. S. acknowledges the support of the NSF grant DMS-1951070.

1. Geometric preliminaries

In this section we introduce the main notations, we prove the existence of optimal
nested sweepouts and we recall some useful geometric tools.

1.1. Notations. Let (Mn+1, g) be a closed Riemannian manifold. By scaling, it suf-
fices to consider Vol(M, g) = 1, which we will always assume below. We use Zn(M ;Z2)
to denote the space of mod 2 flat cycles in M . The topology on the space Zn(M ;Z2)
is induced by the usual flat norm F .

We will make extensive use of the notion of Caccioppoli set. A measurable set E ⊂M
is Caccioppoli if

Per(E) := sup

{∫
M

χE divω : ω ∈ X(M) , ‖ω‖C0 ≤ 1

}
<∞ ,

where χE denotes the indicator function of E. By De Giorgi’s strutcure theorem we
have that the distributional derivative DχE (which is is a Radon measure) of a set of
finite perimeter E is given by DχE = νEHn ∂∗E, where ∂∗E is the reduced boundary
of E, which is a n-rectifiable set, and νE is the normal direction to ∂∗E pointing outside
E definedHn-a.e.. This allows us to identify DχE with an element of Zn(M ;Z2), which
we will abuse notation and denote by

∂E := νEHn ∂∗E .

In particular, with this identification we have

M(∂E) = Per(E) and F(∂E, ∂F ) = ‖χE − χF‖L1 = Vol(E∆F ) ,

where E∆F denotes the symmetric difference between two sets. As usual, the perimeter
of E in an open set U , denoted by Per(E |U), is the total variation of DχE in the set
U .

We let V denote the set of varifolds of (Mn+1, g). Given a cycle Γ ∈ Zn(M ;Z2), we
will write |Γ| for the associated integral varifold. In particular if Γ = ∂Ω, then

|Γ| = Hn ∂∗Ω ⊗ δT∂∗Ω and µΓ := Hn ∂∗Ω

is the total variation measure of the measure DχΩ. Finally, given a set Σ regular outside
a set of dimension n− 7, we will denote with |Σ| the associated integral varifold.
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1.2. Optimal nested sweepouts. We start by recalling the notion of sweepouts that
we will use in this paper.

Definition 5 (Sweepout). A sweepout of M is a map Φ : [0, 1] → Zn(M ;Z2) contin-
uous in F -topology such that Φ(x) = ∂Ω(x), where {Ω(x) : x ∈ [0, 1]} is a family
of Caccioppoli sets with Ω(0) the 0-cycle and Ω(1) = M . We will denote with S the
collection of all such sweepouts. Moreover, we define the width W to be

W = inf
Φ∈S

sup
x∈[0,1]

M(Φ(x)) .

It is a consequence of the isoperimetric inequality that W > 0.

We will switch freely between the equivalent notation M(Φ(x)) and Per(Ω(x)). We
now introduce the notion of optimal nested sweepouts and prove their existence.

Definition 6 (Optimal nested volume parametrized (ONVP) sweepout). A sweepout
{Φ(x) = ∂Ω(x) : x ∈ [0, 1]} is called

• optimal if supx∈[0,1] M(Φ(x)) = W ;
• nested if Ω(x1) ⊂ Ω(x2), for all 0 ≤ x1 ≤ x2 ≤ 1;
• volume parametrized if Vol(Ω(x)) = x, for every x ∈ [0, 1] (recall that we have

assumed Vol(M, g) = 1).

Nested volume parametrized sweepouts enjoy nice compactness properties.

Lemma 7 (Compactness for nested volume parametrized sweepouts). Let (Φi)i be a
sequence of nested volume-parametrized sweepouts with mass uniformly bounded, that
is

(2) sup
i∈N

sup
x∈[0,1]

M(Φi(x)) ≤M <∞ .

Then there exists a subsequence (Φik)k converging uniformly to a nested volume parametrized
sweepout Ψ such that

(3) sup
x

M(Ψ(x)) ≤ lim inf
k

(
sup
x

M(Φik(x))

)
.

Proof. The sequence of continuous functions Φi : [0, 1] → Zn−1(M ;Z2) is uniformly
Lispchitz continuous, since for every 0 ≤ x < y ≤ 1 we have

F(Φi(x),Φi(y)) ≤ Vol(Ωi(y) \ Ωi(x)) = Vol(Ωi(y))− Vol(Ωi(x)) = y − x

and Φi(0) = ∅ for every i, so by Arzelà–Ascoli Theorem there exists a subsequence
Φik and a nested volume parametrized sweepout Ψ: [0, 1] → Zn(M ;Z2) such that Φik

converges uniformly to Ψ. Then (3) follows from (2) and the lower semi-continuity of
M with respect to the flat topology. �

Optimal nested volume parametrized sweepouts exist.

Theorem 8 (Existence of (ONVP) sweepouts). For any closed Riemannian manifold
(M, g) there exists an optimal nested volume-parametrized sweepout.



GENERIC MIN-MAX 9

Proof. Let {Ψi}i be a min-max sequence of sweepouts with limi→∞ supx M(Ψi(x)) =
W . By [CL20, Theorem 1.4] we can replace {Ψi(x)}i by a sequence of nested sweep-
outs {Φi}i, such that Φi(x) = f−1

i (x) for some Morse function fi : M → [0, 1] and
limi→∞ supx M(Φi(x)) = W . Let φi(x) = Vol(f−1

i ([0, x])). Note that φi : [0, 1]→ [0, 1]
is a continuous strictly increasing function. Then

(
Φi ◦ φ−1

i

)
i

is a sequence of nested

volume-parametrized sweepouts. By Lemma 7, a subsequence of {Φi ◦φ−1
i }i converges

to a (ONVP) sweepout. �

Finally we recall the definition of critical set for a sweepout.

Definition 9 (Critical set). Given a sweepout Φ, we define

M(x) = lim sup
r→0

{M(Φ(y)) : |y − x| < r}.

If Φ is an optimal sweepout, we define the critical domain of Φ to be the set

m(Φ) = {x ∈ [0, 1] : M(x) = W} .

We will say that a sequence xi → x ∈m(Φ) is a min-max sequence if |Φ|(xi) converges
in the varifold sense to a varifold V of mass W , i.e. |V |(M) = W . We denote the set
of such varifolds by C(Ψ).

In fact, it is convenient to refine this definition somewhat.

Definition 10 (Left and right critical set). Given a sweepout Φ, we say that x ∈mL(Φ)
if there are xi ↗ x with

M(Ψ(xi))→ W

and similarly, x ∈mR(Φ) if there are xi ↘ x with

M(Ψ(xi))→ W.

Note that m(Φ) = mL(Φ) ∪mR(Φ) (and mL(Φ) ∩mR(Φ) need not necessarily be
empty).

Definition 11 (Varifolds of optimal regularity). For an open set U ⊂ M we say that
a varifold V is in R(U) if

V U =
K∑
k=i

κi |Σi| ,

for Σi ⊂ U embedded minimal hypersurfaces that are regular away from a closed
singular set of Hausdorff dimension n − 7, and κi ∈ N integer multiplicities. We set
R = R(M).

Abusing notation, we will say that a (singular) hypersurface Σ is in R(U) if the
associated varifold satisfies |Σ| ∈ R(U).

As we will discuss later, Almgren–Pitts theory [Pit81] implies that given an optimal
sweepout Ψ, there is V ∈ C(Ψ) with V ∈ R.



10 O. CHODOSH, Y. LIOKUMOVICH, AND L. SPOLAOR

1.3. (Homotopic) one sided minimizers. The notions of one sided minimizers and
homotopic minimizers will be useful when dealing with our deformations theorems, as
we will see in Section 3.

Let U ⊂Mn+1 be an open set. Given a Caccioppoli set E ⊂ Ω with E∆Ω ⊂ U and
ε ≥ 0, we denote the inner families of deformations between E and Ω in U which do
not increase the volume more than ε by

Iε(Ω, E |U) :=

{Ω(t)}t∈[0,1] :

Ω(0) = E, Ω(1) = Ω, (Ω(t)∆Ω) \ U = ∅,
Ω(t1) ⊂ Ω(t2) for t1 < t2,

Per(Ωt) + ε ≤ Per(Ω)

 ,

and analogously for Ω ⊂ E with E∆Ω ⊂ U , we define the outer families of deformations
between Ω and E in U which do not increase the volume more than ε by

Oε(Ω, E |U) :=

{Ω(t)}t∈[0,1] :

Ω(0) = Ω, E = Ω(1), (Ω(t)∆Ω) \ U = ∅,
Ω(t1) ⊂ Ω(t2) for t1 < t2

Per(Ωt) ≤ Per(Ω) + ε

 .

Moreover, given Ω and ε ≥ 0, we denote the collections of inner and outer Caccioppoli
sets that can be reached by an inner or outer family of deformations by

Iε(Ω |U) = {E ⊂ Ω : E∆Ω ⊂ U, Iε(Ω, E |U) 6= ∅},
Oε(Ω |U) = {E ⊃ Ω : E∆Ω ⊂ U, Oε(Ω, E |U) 6= ∅} .

In both definitions, if we do not include an ε-subscript, it should be understood that
we are taking ε = 0; this will happen most of the time below, but we will crucially
rely on the definition with ε > 0 to obtain regular homotopic minimizers in certain
situations.

Definition 12 (Homotopic inner and outer minimizers). Given a Caccioppoli set Ω
we say that a Caccioppoli set L(Ω |U) ∈ I(Ω |U) is a homotopic inner minimizer for
Ω in U , if

(1) Per(L(Ω |U) |U) ≤ Per(Ω′ |U), for every Ω′ ∈ I(Ω |U) and
(2) if E ∈ I(Ω |U) satisfies (1) and E∆L(Ω |U) ⊂M \L(Ω |U) then E = L(Ω |U).

Similarly, define R(Ω |U) ∈ O(Ω |U) to be a homotopic outer minimizer for Ω in U , if

(1) Per(R(Ω |U) |U) ≤ Per(Ω′ |U), for every Ω′ ∈ I(Ω |U);
(2) if E ∈ I(Ω |U) satisfies (1) and E∆R(Ω |U) ⊂ R(Ω |U)\E then E = R(Ω |U).

We say that a Caccioppoli set Ω is an inner (resp. outer) homotopic minimizer in U
if Ω is a homotopic inner (resp. outer) minimizer relative to itself.

It is easy to see that inner and outer homotopic minimizers for a fixed set Ω always
exist.

Lemma 13 (Existence of homotopic minimizers). For any Caccioppoli set Ω and open
set U we can find a homotopic inner (resp. outer) minimizer L(Ω |U) (resp. R(Ω |U))
for Ω in U . Moreover, if E ∈ I(Ω |U) (resp. E ∈ O(Ω |U)) then

(4) Per(L(Ω |U) |U) ≤ Per(E |U) (resp. Per(R(Ω |U) |U) ≤ Per(E |U)) .
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In particular, if

Per(E |U) < Per(Ω |U)

then L(Ω |U) (resp. R(Ω |U)) does not coincide with Ω.

Proof. We consider only the case of inner minimizers as the outer minimizers are han-
dled identically.

This is once again an application of Arzelà–Ascoli theorem. Indeed, notice that
I(Ω |U) 6= ∅, since Ω ∈ I(Ω |U), so we can consider a minimizing sequence (Ej)j, that
is

lim
j

Per(Ej |U) = inf{Per(E |U) : E ∈ I(Ω |U)}

and let {Ej(x) : x ∈ [0, 1]} ∈ I(Ω, Ej;U) be the corresponding inner volume non
increasing sweepout between Ej and Ω. We can assume that it is volume parametrized
(being nested). Moreover Per(Ej(x) |U) is uniformly bounded by Per(Ω |U), so by
Arzelà–Ascoli there is a subsequence converging to {E∞(x)} ∈ I(Ω, E∞ |U), with E∞
satisfying the desired minimality property by lower semi-continuity of the perimeter.

Finally, again by Arzelà–Ascoli, we can find L(Ω |U) ⊂ Ω in the set of minimizers,
which infimizes the flat distance to ∂Ω, and so satisfies condition (2) (otherwise there
would be a competitor closer to Ω in flat norm). �

We recall the definition of one-sided minimizers, which will be useful in the sequel
when we perform cut and paste arguments.

Definition 14 (One sided minimizers). Let E be a Caccioppoli set. We say that E is
locally one-sided inner (resp. outer) area-minimizing in U if for every A b U and V
with V∆E ⊂ A, we have

Per(E |A) ≤ Per(V |A)

whenever V ⊂ E (resp. E ⊂ V ). We say that E is strictly locally one-sided inner
(resp. outer) area-minimizing if the inequality holds strictly except when E = V as
Caccioppoli sets.

We show that homotopic minimizers are in fact strict one sided minimizers into the
region they sweep out.

Lemma 15 (Homotopic minimizers are one sided minimizers in the swept out region).
Suppose L(Ω |U) is an homotopic inner (resp. outer) minimizer for Ω in U . Then
L(Ω |U) (resp. R(Ω |U)) is strict locally outer (resp. inner) one-sided minimizing in
U ∩ Ω (resp. U \ Ω) .

Proof. We consider homotopic inner minimizers; the case of outer minimizers is similar.
If L(Ω |U) is not a strict outer minimizer in U∩Ω then there is V ′ with L(Ω |U) ⊂ V ′

and L(Ω |U)∆V ′ ⊂ A b U and

Per(V ′ |A) ≤ P (L(Ω |U) |A).

We can minimize perimeter in A among all such V ′ to find V . Namely,

(5) Per(V |A) ≤ Per(W |A)
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for all W with W∆V ⊂ A \ L(Ω |U). Since L(Ω |U) ∈ I(Ω |U), there is {U(x) : x ∈
[0, 1]} ∈ I(Ω, L(Ω |U) |U). Set Ω(x) = U(x) ∪ V . Since V satisfies (5), we have that

Per(Ωt |A) ≤ Per(Ut |A).

This implies that Ω(1) = V satisfies (1) of Definition 12 and V∆L(Ω |U) ⊂ A\L(Ω |U),
therefore by (2) of Definition 12, it follows that V = L(Ω |U). This completes the
proof. �

We have the following lemma that will allow us to find bounded mass homotopies in
certain situations.

Lemma 16 (Interpolation lemma). Fix L > 0. For every ε > 0 there exists δ > 0, such
that the following holds. If Ω0,Ω1 are two sets of finite perimeter, such that Ω0 ⊂ Ω1,
Per(Ωi) ≤ L and Vol(Ω1 \ Ω0) ≤ δ, then there exists a nested F-continuous family
{∂Ωt}t∈[0,1] with

Per(Ωt) ≤ max{Per(Ω1),Per(Ω2)}+ ε

for all t ∈ [0, 1]

Proof. Let Ω be a Caccioppoli set that minimizes perimeter among sets Ω′ with Ω0 ⊂
Ω′ ⊂ Ω1.

Fix r > 0 such that for every x ∈M the ball B(x, 2r) is 2-bi-Lipschitz diffeomorphic
to the Euclidean ball of radius 2r. Let {B(xi, r)}Ni=1 be a collection of balls covering M .
By coarea inequality we can find a radius ri ∈ [r, 2r], so that M(∂B(xi, ri)∩Ω\Ω0) ≤ δ

r
.

Let U1 = B(x1, r1)∩Ω\Ω0. By a result of Falconer (see [Fal80], [Gut07, Appendix 6])

there exists a family of hypersurfaces sweeping out U1 of area bounded by c(n)δ
n
n+1 . It

follows (see [CL20, Lemma 5.3]) that there exists a nested family {Ξ1(t)} of Caccioppoli
sets with Ξ1(0) = Ω0 and Ξ1(1) = Ω0 ∪ U1 and satisfying

Per(Ξ1(t)) ≤ Per(Ω0) + 2c(n)δ
n
n+1

Let Ω1 = Ω0 ∪ U1. Observe, that the minimality of Ω implies that

Per(Ω1) ≤ Per(Ω0) +
2δ

r

Inductively, we define Ωk = Ωk−1 ∪ Uk and Uk = B(xk, rk) ∩ Ω \ Ωk−1. As above we
can construct a nested homotopy of Caccioppoli sets Ξk(t) from Ωk−1 to Ωk, satisfying

Per(Ξk(t)) ≤ Per(Ω0) + 2c(n)δ
n
n+1 +

2Nδ

r

We choose δ > 0 so small that Per(Ξk(t)) < Per(Ω0)+ε. It follows then that we have
obtained a homotopy from Ω0 to Ω satisfying the desired perimeter bound. Similarly,
we construct a homotopy from Ω to Ω1. �

Finally, we have the following result. Recall that White [Whi94] proves that strictly
stable smooth minimal hypersurfaces are locally area-minimizing. A generalization of
such a result to the case of hypersurfaces with singularities (i.e., elements of R) would
be very interesting. The following (weaker) result will suffice for our needs; it can be
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seen as a result along these lines, except “stability” is replaced by a stronger hypothesis:
the surface is homotopic minimizing to one side.2

Proposition 17 (Comparing the notions of minimizing vs. homotopic minimizing for
minimal surfaces). Suppose that Ω is a Caccioppoli set and for some strictly convex
open set U ⊂ M with smooth boundary, the associated varifold V = |∂Ω| satisfies
V ∈ R(U). Assume that suppV ∩ U is connected.

Suppose that Ω is inner (resp. outer) homotopy minimizing in U . Then, at least one
of the following two situations holds:

(1) for all p ∈ suppV ∩ U , there is ρ0 > 0 so that for ρ < ρ0, Bρ(p) ⊂ U and Ω is
inner (resp. outer) minimizing in Bρ(p), or

(2) there exists a sequence of Caccioppoli sets Ei 6= Ω with |∂Ei| ∈ R(U) so that
E∆Ω ⊂ Ω ∩ U (resp. Ωc ∩ U), |∂Ei| has stable regular part, and ∂Ei → ∂Ω in
the flat norm.

Remark. It is interesting to ask if the second possibility occurs; it seems possible that
one could rule this out in the case where V has regular tangent cones that are all
strictly minimizing in the sense of Hardt–Simon [HS85, §3].

Proof of Proposition 17. We consider the “inner” case, as the “outer” case is similar.
Let Eε ∈ Iε(Ω |U) minimize perimeter among all sets in Iε(Ω |U) (as usual, the exis-
tence of Eε follows from Arzelà–Ascoli). We claim that Eε is area-minimizing to the
inside of Ω in sufficiently small balls.

More precisely, for r > 0 sufficiently small, suppose there was a Caccioppoli set E ′

so that E ′∆Eε ⊂ Br(p)∩U ∩Ω and Per(E ′ |U) < Per(Eε |U). As long as r was chosen
sufficiently small, Lemma 16 guarantees that E ′ ∈ Iε(Ω |U). This is a contradiction.

Now, consider p ∈ Reg V ∩ U . We note that Eε is almost minimizing (with no
constraint coming from Ω) in the sense of [Tam84], and thus has C1,α boundary in
Br(p) ∩ U , thanks to standard results on the obstacle problem; see [Tam84, §1.9,
§1.14(iv)]. As such, away from Sing V (which has Hausdorff dimension at most n− 7)
we can thus conclude that ∂∗Eε is regular, stationary and stable.3 A capacity argument
then implies that |∂Eε| ∈ R(U) and ∂∗Eε is stable. Therefore, the maximum principle
for (possibly singular) hypersurfaces [Ilm96] implies that either Eε = Ω or ∂∗Eε ∩
suppV = ∅. In the first case, we can conclude that Ω is inner minimizing in small balls
(since Eε is).

We can thus assume that the latter possibility holds for all ε > 0 sufficiently small.
Taking εj → 0, there is E ∈ I0(Ω|U) so that Eεj → E with respect to the flat norm.
If E = Ω, then the second possibility in the conclusion of the proposition holds for
Ej = Eεj .

The final case to consider is E 6= Ω. By curvature estimates for stable minimal
hypersurfaces [SS81], |∂E| ∈ R(Ω) and thus ∂∗E ∩ suppV = ∅ again by the maximum

2Note that one certainly needs a condition on the singularities rather than just a condition on
the regular part like strict stability, since as we show in Proposition 24, the existence of (regular)
non-minimizing tangent cones implies that the hypersurface is not homotopic minimizing irrespective
of any stability condition that might hold on the regular part.

3Cf. the proof of [Liu19, Proposition 2.1] for the proof of stability.



14 O. CHODOSH, Y. LIOKUMOVICH, AND L. SPOLAOR

principle. By assumption that Ω is inner perimeter minimizing, we have that

Per(E |U) = Per(Ω |U).

Using Lemma 15, we thus see that Ω is minimizing in Ω ∩ Ec ∩ U , which implies that
it is inner minimizing in small balls, as asserted. �

2. Non-excessive sweepouts

In this section we introduce the concept of excessive intervals and excessive points
for a sweepout and prove that there is a sweepout, such that every point in the critical
domain is not excessive.

Definition 18 (Excessive points and intervals). Suppose {Φ(x) = ∂Ω(x)} is a sweep-
out. Given a connected interval I (we allow I to be open, closed, or half-open) we
will say that {ΦI(x) = ∂ΩI(x)}x∈Ī is an I-replacement family for Φ if ΩI(a) = Ω(a),
ΩI(b) = Ω(b) and for all x ∈ I,

lim sup
I3y→x

M(ΦI(y)) < W.

We say that a connected interval I is an excessive interval for Φ if there is an I-
replacement family for Φ. We say that a point x is left (resp. right) excessive for Φ if
there is an excessive interval I for Φ so that (x − ε, x] ⊂ I (resp. [x, x + ε) ⊂ I) for
some ε > 0.

The goal of this section is to prove the following result.

Theorem 19 (Existence of non-excessive min-max hypersurface). There exists a (ONVP)
sweepout Ψ such that every x ∈ mL(Ψ) is not left excessive and every x ∈ mR(Ψ) is
not right excessive.

2.1. Preliminary results. We establish several results that will be used in the proof
Theorem 19.

Lemma 20 (Extension lemma I). If I, J are excessive for Φ and I ∩J 6= ∅, then I ∪J
is excessive for Φ.

Proof. Let {∂ΩI(x)}x∈I and {∂ΩJ(x)}x∈J be I and J replacement families for Φ.
Let a1 = inf{x ∈ I}, a2 = inf{x ∈ J} and b1 = sup{x ∈ I}, b2 = sup{x ∈ J}.

Assume without any loss of generality that a1 ≤ a2 and b1 ≤ b2 and at least one of the
two inequalities is strict.

Let K = I ∩ J ; let a, b denote, respectively, left and right boundary points of K
and c = a+b

2
∈ K. Let Ω̃ be a Cacciopolli set minimizing perimeter among all Ω′

with Ω(a) ⊂ Ω′ ⊂ Ω(b). Define φ1 : [a1, c] → [a1, b1] and φ2 : [c, b2] → [a2, b2] given
by φ1(x) = a1 + b1−a1

c−a1 (x − a1) and φ2(x) = a2 + b2−a2
b2−c (x − c). We define an I ∪ J

replacement family for Φ by setting

ΦI∪J(x) =

{
∂(ΩI(φ1(x)) ∩ Ω̃) x ∈ [a1, c]

∂(ΩJ(φ2(x)) ∪ Ω̃) x ∈ [c, b2]
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Observe that ΦI∪J is continuous since ΦI∪J(c) = ∂Ω̃. It follows from our choice of
Ω̃ that M(ΦI∪J(x)) ≤ M(ΦI(φ−1

1 (x))) < W for x ∈ I ∩ (−∞, c] and M(ΦI∪J(x)) ≤
M(ΦJ(φ−1

2 (x))) < W for x ∈ J ∩ [c,∞). �

Lemma 21 (Extension lemma II). If I is excessive for Φ and J has J ∩ I 6= ∅ and is
excessive for

Ψ(x) :=

{
ΦI(x) x ∈ I
Φ(x) x 6∈ I

then J ∪ I is excessive for Φ.

Proof. Define an I ∪ J-replacement family ΦI∪J for Φ by

ΦI∪J(x) =


Φ(x) x ∈ [0, 1] \ (I ∪ J)

ΦI(x) x ∈ I \ J
ΨJ(x) x ∈ J

where ΨJ is a J-replacement family for Ψ. �

The following is the technical core of the proof of Theorem 19.

Proposition 22 (Existence of maximal excessive intervals). Given an (ONVP) sweep-

out Φ, if Ĵ is excessive for {Φ(x) = ∂Ω(x)}, then there exists an excessive interval

J ⊃ Ĵ so that J is maximal in the sense that if J̃ is excessive with J̃ ∩ J 6= ∅, then
J̃ ⊂ J .

Proof. Let
α := sup{|J̃ | : J̃ excessive , Ĵ ∩ J̃ 6= ∅}.

Choose excessive intervals J̃n with J̃n ∩ Ĵ 6= ∅ and |J̃n| → α. By Lemma 20, we can

replace J̃n by J̃n ∪ Ĵ , and thus assume that Ĵ ⊂ J̃n. In particular J̃n ∩ J̃m 6= ∅ for all
m,n. Using Lemma 20 again, we can replace J̃n by

n⋃
m=1

J̃m

so that the J̃n form an increasing sequence of excessive intervals (still with |J̃n| → α).
Note that the interior of an excessive interval is still excessive, so we can consider
Jn := (J̃n)◦. Note that |Jn| → α and the Jn are increasing.

We will show below that
J ′ :=

⋃
n

Jn

is excessive. Write J ′ = (a, b). Granted the fact that J ′ is excessive, we claim that
one of the intervals (a, b), (a, b], [a, b), or [a, b] is the desired maximal excessive interval.
Note that by Lemma 20, if [a, b) and (a, b] are excessive, then so is [a, b], so we can
choose the largest excessive interval out of these four choices and call it J . Suppose
that J̃ is excessive with J̃∩J 6= ∅. Then, J∪J̃ is excessive by Lemma 20 and Ĵ ⊂ J∪J̃ .
Thus,

|J ∪ J̃ | ≤ α,
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so J̃ ⊂ J̄ (where J̄ is the closure of J). Now, J ∪ J̃ is excessive, but strictly larger than
J̃ (by assumption). This contradicts the choice of J as the largest excessive interval
out of (a, b), (a, b], [a, b), and [a, b]. This shows that J is maximal, as desired.

It thus remains to prove that J ′ = ∪nJn is excessive for a nested sequence of open
excessive intervals Jn. Write Jn = (an, bn) and set a′n = an + 1

n
, b′n = bn − 1

n
.

Fix i = 0, 1, . . . and assume we have real numbers 0 < A1, . . . , Ai < W and integers
ni ≥ i (with n1 < n2 < · · · < ni) so that for n ≥ ni, there is a Jn-replacement
{Φn

i (x) = ∂Ωn
i (x)} so that

Per(Ωn
i (x)) ≤ Aj

for x ∈ [a′j, b
′
j] and 1 ≤ j ≤ i. (Note that for i = 0, we can find such objects because

the Jn are excessive.)
We will choose 0 < Ai+1 < W , and ni+1 > max{ni, i + 1} so that we can construct

Jn-replacements {Φn
i+1(x) = ∂Ωn

i+1(x)} for n ≥ ni+1 with

Per(Ωn
i+1(x)) ≤ Aj

for x ∈ [a′j, b
′
j] and 1 ≤ j ≤ i + 1. Granted this, we can easily (inductively) complete

the proof by passing Φ
ni+1

i+1 to a subsequential limit (using Arzelà–Ascoli).
It is useful to introduce the following notation, used in the construction of Φn

i+1.
Given two nested sets of finite perimeter V ⊂ W , we let

• MV,W an outermost Caccioppoli set minimizing perimeter among all the Cac-
cioppoli sets Ω with V ⊂ Ω ⊂ W ;
• {V(V,W )(x)}x the optimal nested homotopy from V to W .

For n ≥ ni, we set

Ln :=MΩ(an),Ω
ni
i (a′i+1), Un :=MΩ

ni
i (b′i+1),Ω(bn)

Note that for n ≤ m, Lm ⊂ Ln and Un ⊂ Um. Hence, Ln and Un have F -limits as
n→∞. For ε > 0 fixed so that

max
{

Per
(
Ωni(a′i+1)

)
,Per

(
Ωni
i (b′i+1)

)}
+ ε < W,

Lemma 16 thus guarantees that there is ni+1 ≥ i + 1 sufficiently large so that for
n ≥ ni+1,

sup
t

Per
(
V(Ln,Ln1 )(t)

)
< W, sup

t
Per

(
V(Un1 ,Un)(t)

)
< W.

For n ≥ ni+1, we define

Φ̃n
i+1(x) =



∂ (Ωn
i (x+ 1) ∩ Ln)) x ∈ [an − 1, bn − 1]

∂ṼLn,Lni (x) x ∈ [bn − 1, ani ]

∂ (Ωni
i (x) ∪ Lni ∩ Uni) x ∈ [ani , bni ]

∂ṼUni ,Un(x) x ∈ [bni , an + 1]

∂ (Ωn
i (x− 1) ∪ Un) x ∈ [an + 1, bn + 1].

Here, the Ṽ are the homotopies V reparametrized to be defined on the given intervals
(the exact parametrization is immaterial). It is easy to check that Φ̃n

i+1 is continuous.
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Let Φn
i+1 denote the reparametrization of Φ̃n

i+1 by volume. We have arranged that
Φn
i+1 is a Jn-replacement. Moreover, for x ∈ [a′i+1, b

′
i+1], we have that Φn

i+1(x) = Φni
i (x),

so
M(Φn

i+1(x)) ≤ Aj
for x ∈ [a′j, b

′
j] and 1 ≤ j ≤ i. Finally, we can set

Ai+1 := sup
x∈[a′i+1,b

′
i+1]

M(Φni
i+1(x)) < W

(which is independent of n). This completes the proof. �

2.2. Proof Theorem 19. We are now able to complete proof of Theorem 19
Let Φ be a nested optimal sweepout. Consider the collection A of the maximal

(with respect to inclusion) excessive intervals for Φ, that is I ∈ A if for every excessive
interval I ′ such that I ′ ∩ I 6= ∅, we have I ⊃ I ′. The existence of maximal intervals
follows from Proposition 22 proven above.

Notice that by definition I 6= J ∈ A implies that I ∩ J = ∅, so we can define a new
sweepout Ψ in the following way

Ψ(x) =

{
ΦI(x) if x ∈ I ∈ A
Φ(x) otherwise .

Note that Ψ is a nested optimal sweepout, so up to reparametrization we can assume it
is (ONVP), and moreover by construction m(Ψ) ⊂m(Φ). Suppose that x ∈mL(Ψ) is
left excessive. Then, there is a Ψ-excessive interval J with (x−ε, x] ⊂ J . We claim that
there is I ∈ A with J ⊂ I. Indeed, if J ∩ I = ∅ for all I ∈ A, then J is a Φ-excessive
interval, contradicting the definition of A. On the other hand, if there is I ∈ A with
J ∩ I 6= ∅, then J ∪ I is excessive by Lemma 21. Thus, J ⊂ I by definition of A again.
Thus, for y ∈ (x − ε, x] ⊂ I, Ψ(y) = ΨI(y). By the definition of replacement family,
we know that if xi ∈ (x− ε, x] has xi → x, then

lim sup
i→∞

M(ΨI(xi)) < W.

However, this contradicts the assumption that x ∈ mL(Ψ). The same proof works to
prove that x ∈mR(Ψ) is not right excessive. This finishes the proof. �

3. Deformation Theorems and Proof of Theorem 4

In this section we conclude the proof of Theorem 4. By Theorem 19, there exists an
(ONVP) sweepout Φ so that every x ∈mL(Φ) is not left excessive and every x ∈mR(Φ)
is not right excessive. By Almgren–Pitts pull-tight and regularity theory [Pit81], we
find that for some x0 ∈ m(Φ), there is a min-max sequence xi → x0 so that |Φ(xi)|
converges to some V ∈ R. Indeed, we can pull-tight Φ to find a sweepout (in the sense
of Almgren–Pitts, not in the (ONVP) sense considered in this paper) Φ̃; we have that
C(Φ̃) ⊂ C(Φ) and some V ∈ C(Φ̃) is in R. By replacing Φ(x) by Φ(1−x) if necessary,
we can then assume for the rest of this section that:

(6)
there is a (ONVP) sweepout {Φ(x) = ∂Ω(x)} and xi ↗ x0 ∈mL(Φ), so that

|Φ(xi)| → V ∈ R and Φ is not left excessive at x0
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We then consider two cases: M(Φ(x0)) = W (no cancellation) and M(Φ(x0)) < W
(cancellation). We analyze the geometric properties of V in both cases separately,
proving deformation theorems reminiscent of those in [MN16].

3.1. No cancellation. Throughout this subsection we will assume the no cancellation
condition

M(Φ(x0)) = W .

In this case we have that |Φ(xi)| → |∂Ω|, see for instance [DLT13b, Proposition A.1],
so we can rephrase our assumption (6) as

(7)
there is a (ONVP) sweepout {Φ(x) = ∂Ω(x)} and xi ↗ x0 ∈mL(Φ), so that

|Φ(xi)| → |Σ| := |∂Ω| ∈ R and Φ is not left excessive at x0.

In particular, in this case the multiplicity bound of Theorem 4 follows immediately.

Proposition 23. Let Σ be as in (7). Suppose Σ is not homotopic minimizing to either
side in some open set U . Then the following holds:

(1) for every x 6∈ U there exists r > 0, such that Σ is minimizing to one side in
Br(x);

(2) for every open set U ′ disjoint from U , we have that Σ is homotopic minimizing
to one side in U ′.

Proof. We prove statement (1). There is δ > 0 and Caccioppoli sets E−1 ∈ I(Ω |U)
and E+

1 ∈ O(Ω |U) with

(8) Per(E±1 |U) ≤ Per(Ω |U)− δ ,

and nested families {Ω−1 (x) : x ∈ [0, 1]} ∈ I(Ω, E−1 |U) and {Ω+
1 (x) : x ∈ [0, 1]} ∈

O(Ω, E+
1 |U). Furthermore, by Lemma 13, we can assume that E+

1 are inner and E−1
are outer homotopic minimizers in U .

Let x ∈ Σ \U and assume, for contradiction, that Σ is not area minimizing on both
sides in every ball Br(x), r < dist(x, U). Let E−2 ⊂ Ω, with Ω \ E−2 ⊂ Br(x), denote a
Caccioppoli set that is a strict outer minimizer in Ω ∩ Br(x). Similarly, let Ω ⊂ E+

2 ,
with E+

2 \ Ω ⊂ Br(x), denote a Caccioppoli set that is a strict inner minimizer in
Ω ∩Br(x). We have

Per(Ω) > max{Per(E±2 )}
If we choose r > 0 sufficiently small, then, by Lemma 16, there exist nested families
{Ω−2 (x) : x ∈ [0, 1]} and {Ω+

2 (x) : x ∈ [0, 1]} that interpolate between E−2 and Ω and
between Ω and E+

2 and satisfying

(9) Per(Ω±2 (x)) ≤ Per(Ω) +
δ

2

Let (xl, xr) 6= ∅ be the interval (since Φ is nested) such that

Φ(x) ∩ (∪iE+
i \ ∪iE−i ) 6= ∅
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Then we define a family Ψ̄ : [xl − 2, xr + 2]→ Zn(M ;Z2) by setting

Ψ̄(x) :=



∂
(
Ω(x+ 2) ∩ E−1 ∩ E−2

)
if x ∈ (xl − 2, x0 − 2]

∂
(
Ω−1 (x− x0 + 2) ∩ E−2

)
if x ∈ [x0 − 2, x0 − 1]

∂
(
Ω+

1 (x− x0 + 1) ∩ E−2
)

if x ∈ [x0 − 1, x0]

∂
(
Ω−2 (x− x0) ∪ E+

1

)
if x ∈ [x0, x0 + 1]

∂
(
Ω+

2 (x− x0 − 1) ∪ E+
1

)
if x ∈ [x0 + 1, x0 + 2]

∂
(
Ω(x− 2) ∪ E+

1 ∪ E+
2

)
if x ∈ [x0 + 2, xr + 2)

It is easy to see that Ψ̄ is continuous, and moreover notice that, since by Lemma 15
E+

1 is a strict inner minimizer in U and E−1 strict outer minimizers in U , we have that

lim sup
y→x

M(Ψ̄(y)) < lim sup
y→x

M(Φ̄(y)) ≤ W

for x ∈ (xl − 2, x0 − 2] ∪ [x0 − 2, xr − 2). Since the families Ω±1 (x) do not increase the
volume of Σ in Ui and using (8) and (9), we also have

M(Ψ̄(x)) ≤ W − δ

2
∀x ∈ [x0 − 2, x0 + 2] .

We let Ψ be the volume reparametrization of the nested sweepout Ψ̄, then Ψ is a
(xl, xr)-replacement for Φ, thus giving a contradiction with the fact that x0 ∈ (xl, xr)
and x0 ∈mL(Φ).

The proof of statement (2) is completely analogous. �

Proposition 24. Let Σ be as in (7), then the following holds

(1) Index(Σ) ≤ 1;
(2) If Index(Σ) = 1, then for every point x ∈ Σ there exists r > 0, such that Σ is

minimizing to one side in Br(x);
(3) If hnm(Σ) is non-empty, then Σ is stable, H0(hnm(Σ)) = 1 and for every point

x ∈ Σ \ hnm(Σ) there exists r > 0, such that Σ is minimizing to one side in
Br(x).

In particular, Theorem 4 holds in the case of no cancellations.

Proof. Note that if U ∩ Σ is smooth and unstable, it is easy to see that Σ is not
homotopic minimizing to either side in U (just consider the normal flow generated by
a compactly supported unstable variation of fixed sign). Statements (2) and (3) of the
Proposition now immediately follow from Proposition 23. The upper bound on the
index (1) follows from (2) of Proposition 23 and Lemma 25 below. �

Lemma 25 (Localizing the index). Suppose that Σ ∈ R is two-sided and has Index(Σ) ≥
2. Then, there is Σ∗1,Σ

∗
2 ⊂ Σ smooth hypersurfaces with boundary so that the Σ∗i are

both unstable (for variations fixing the boundary).

Proof. A standard capacity argument implies that there is a subset Σ′ ⊂ Σ where Σ′

is a smooth minimal surface with smooth boundary and Index(Σ′) ≥ 2 (with Dirichlet
boundary conditions). Let u denote the second (Dirichlet) eigenfunction (with eigen-
value λ < 0) for the stability operator for Σ. Because u must change sign, there are
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at least two nodal domains Σ1,Σ2 ⊂ Σ. One can find subsets with smooth boundary
Σ∗i ⊂ Σi so that Σ∗i are unstable. This follows from the argument in [Cha84, p. 21]
(namely, by considering (u|Σi − ε)+ in the stability operator for ε → 0 chosen so that
{u|Σi > ε} has smooth boundary). �

Lemma 26. Snm(Σ) ⊂ hnm(Σ).

Proof. Suppose that p ∈ Snm(V ), we claim that Σ is not homotopic minimizing to
either side in Bε(p) for any ε > 0 sufficiently small. Indeed, by assumption, the unique
tangent cone C = ∂ΩC to Σ at p is not minimizing to either side. This implies that
there are Caccioppoli sets E−C ⊂ ΩC ⊂ E+

C so that E±C∆ΩC ⊂ B1 ⊂ Rn+1 and so that

PerRn+1(E±C |B1) ≤ PerRn+1(ΩC |B1)− δ.
Choose C1,ω coordinates on M around p so that Ω = ΩC in Bε(p) and so that
gij(p) = δij, which we can do since g ∈ C2 and Σ is a C1,ω deformation of C near
p by assumption. Then, set

E(x) :=


(Ω \Bε) ∪ (|x|E−C ∩Bε) x < 0

Ω x = 0

(Ω \Bε) ∪ (|x|E+
C ∩Bε) x > 0

We have that
Perg(E(x))− Perg(Ω) = −|x|nδ(1 + o(1))

as x → 0 (since the metric gij converges to the flat metric δij after rescaling |x| → 1,
by the C1,ω regularity of the chart). This shows that Σ is not homotopic minimizing
to either side in Bε(p), so p ∈ hnm(Σ) as claimed. �

3.2. Cancellation. We will assume the cancellation condition

M(Φ(x0)) < W

throughout this subsection. In particular, we can find q ∈ Reg V so that for all ε > 0
sufficiently small,

Per(Ω |Bε(q)) < |V |(Bε(q))

where ∂Ω = Φ(x0). Like in the previous section we set Σ := suppV .
Furthermore we set V =

∑
i κi |Σi|, where each Σi is a minimal hypersurface with

optimal regularity and κi ∈ N are constant multiplicities, by the constancy theorem
[Sim83b, Theorem 41.1]. So (6) becomes

(10)

there is a (ONVP) sweepout {Φ(x) = ∂Ω(x)} and xi ↗ x0 ∈mL(Φ), so that

|Φ(xi)| → V =
∑
i

κi |Σi| ∈ R, Φ is not left excessive at x0 and

there is q ∈ Σ such that Per(Ω |Bε(q)) ≤ |V |(Bε(q))− δ(ε) for all ε > 0 .

We write Ω = Ω(x0) and observe that Σ ⊂ Ω. We would like to claim that Σ is
homotopically minimizing, but this condition might not make sense if Σ is one-sided.
However, thanks to the cancellation we can actually prove that Σ is area-minimizing
in its neighborhood in Ω away from a small ball around q.
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Definition 27. We will call a set Ω′ a (q, ε, τ,Σ,Ω)-competitor if(
Ω \Bτ (Σ)

)
∪
(
Bε(q) \ Σ

)
⊂ Ω′ $ Ω \ Σ

An (q, ε, τ,Σ,Ω)-competitor Ω′ will be called a minimizing competitor if its perimeter
is strictly less than perimeter of any (q, ε, τ,Σ,Ω)-competitor Ω′′ with Ω′ ⊂ Ω′′. (Note
that we do not require Per(Ω′) to be less that the perimeter of all competitors, but
only those that contain Ω′).

Proposition 28. Suppose (10) holds, then for every ε > 0 there is τ > 0, such that
minimizing (q, ε, τ,Σ,Ω)-competitor does not exist.

Proof. For contradiction suppose there exists a minimizing (q, ε, τ,Σ,Ω)-competitor U .
Observe that for every δ > 0 we can find (q, ε, τ,Σ,Ω)-competitors Ω′ with Per(Ω′) ≤
Per(Ω) + δ. It follows that

Per(U) ≤ Per(Ω) < W

by the cancellation assumption. If we choose τ > 0 sufficiently small, then by Lemma
16 there exists a nested family {E(x) : x ∈ [0, 1]} with E(0) = U , E(1) = Ω and

Per(E(x)) < W

Let (xl, x0] be the connected interval such that Ω(x)\U 6= ∅, where {Φ(x) = ∂Ω(x)},
and define family Ψ: (xl, x0 + 1]→ Zn(M,Z2) by

Ψ(x) :=

{
∂(Ω(x) ∩ U) if x ∈ (xl, x0]

∂E(x− x0) if x ∈ [x0, x0 + 1]

Clearly Ψ is continuous, since Ω = Ω(x0) and moreover we have that

lim sup
y→x

M(Ψ(y)) < lim sup
y→x

M(Φ(x)) ≤ W

for every x ∈ (xl, x0) by strict minimality condition in Definition 27. For every x ∈
[x0, x0 + 1] we also have M(Ψ(x)) = M(∂E(x)) < W . This implies that x0 is left
excessive for Φ which is a contradiction. �

Proposition 29. Suppose V =
∑

i κi |Σi| is as in (10), then each Σi has stable regular
part and hnm(V ) = ∅. Moreover, for every point x ∈ support(V ) there exists r > 0,
such that the support of V is minimizing to one side in Br(x)

Proof. First we observe that we can find two points q1 and q2 in Reg V , such that for
all ε > 0 sufficiently small,

Per(Ω |Bε(qj)) < |V |(Bε(q))

By Proposition 28 we have non-existence of minimizing (qj, ε, τ,Σ,Ω)-competitors for
j = 1, 2. This implies that Σi is area minimizing to one side in a small ball around
every point of V . In particular, we have H0(hnm(V ))) = 0.

The stability of the regular part of each Σi also follows from the non-existence of
minimizing (q, ε, τ,Σ,Ω)-competitors. Indeed, if a component Σi has index ≥ 1, then
for ε > 0 sufficiently small, the minimal hypersurface Σi\Bε(q) with fixed boundary will
be unstable by a standard capacity argument. If Σi is two-sided, then by considering a
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minimization problem to one side of Σi in Bτ (Σi) \Bε(q) we can find open set U ⊂ Ω,
such that Ω \ U is a minimizing (q, ε, τ,Σ,Ω)-competitor.

Suppose Σi is one-sided. Since Σi ⊂ Ω we have that Bτ (Σi) \ Σi ⊂ Ω for all
sufficiently small τ > 0. In particular, for small τ < ε we can minimize in the class
of hypersurfaces {S ⊂ Bτ (Σi) : S ∩ Bε(q) = Σi ∩ Bε(q)} to obtain a minimizer Σ′i in
the same homology class and open set U ⊂ Ω with ∂U = Σi ∪ Σ′i. Then Ω \ U is a
minimizing (q, ε, τ,Σ,Ω)-competitor. �

3.3. Multiplicity 2 bound. In this subsection we show that if κi > 2 for some i, then
x0 is excessive, by using simple comparisons with disks. Notice that if any multiplicity
satisfies κi ≥ 2 then we must be in the cancellation case considered above.

Lemma 30 (Multiplicity 2 bound). Let V =
∑

i κi |Σi| be as in (6). Then κi ≤ 2 for
every i.

Proof. Suppose by contradiction κi ≥ 3 for some i. Then let p ∈ Reg(Σi), p 6= q (where
q is the cancellation point considered above). Consider a ball Br(p), r <

1
2
dist(p, q),

sufficiently small so that Σi ∩ Br(p) is two-sided. Let τ(r) > 0 be a small constant to
be chosen later and set U = Br(p) ∩Bτ (Σi).

Consider sequence xj ↗ x0 with |∂Ω(xj)| → V . We can assume that the radius r
was chosen sufficiently small, so that

(11) M(∂Ω(xj) ∩ U) ≥
(
κi −

1

10

)
ωnr

n ,

for all j large enough, where ωn denotes the measure of the n-dimensional ball of radius
one.

Let Ω′j ⊂ Ω(xj), Ω′j \ U = Ω(xj) \ U , be a strict one-sided outer area mini-
mizer in Ω(xj) ∩ U . Observe that if Ω′j does not converge to Ω(x0), then lim Ω′j is

a (q, 1
2
dist(p, q), τ,Σ,Ω(x0))-competitor, which contradicts Proposition 28.

We conclude that lim Ω′j = Ω(x0). On the other hand, by comparing Ω(xj) \ U to
Ω′j and assuming that τ(r) was chosen sufficiently small, we have that one-sided area
minimizing property of Ω′j implies

M(∂Ω′j ∩ U) ≤ Per(U) ≤
(

2 +
1

10

)
ωnr

n ,

For τ(r) sufficiently small and j large we can apply Lemma 16 to find a nested family
E(x) interpolating between Ω′j and Ω, such that

Per(E(x)) ≤ max{M(∂Ω′j \ U),M(∂Ω(x0) \ U)}+

(
2 +

2

10

)
ωnr

n

≤ W −
(

1− 3

10

)
ωnr

n.

By combining families Ω(x) ∩ Ω′j and E(x) we obtain that x0 is left-excessive. �

3.4. Proof of Theorem 4. The result follow immediately by combining Corollary 19
with Propositions 23, 24, 29 and Lemma 30. �
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4. Proof of Theorems 1, 2, and 3

In this section we prove Theorem 3 (Theorems 1 and 2 follow immediately from
Theorem 3 when combined with the facts that when n = 8 all singularities are regular
and that the set of bumpy metrics is open and dense [Whi91, Whi17]). Theorem 3 will
follow from Theorem 4 and Proposition 17, together with a simple surgery procedure.

4.1. Surgery procedure. We show here how to regularize minimal hypersurfaces with
regular singularities under the assumption that the hypersurface minimizes area in a
small ball around each singularity.

Proposition 31 (Perturbing away regular singularities of locally area minimizing sur-
faces). For (Mn+1, g) a compact C2,α-Riemannian metric and Σ ∈ R a minimal hy-
persurface, recall that S0(Σ) ⊂ Sing Σ is defined to be the set of singular points with
a regular tangent cone. There is g̃ ∈ Met2,α(M) arbitrarily close to g and Σ̃ arbi-
trarily close in the Hausdorff sense to Σ so that Σ̃ is minimal with respect to Σ and
S0(Σ̃) ⊂ hnm(Σ̃) = hnm(Σ).

Proof. For every p ∈ S0(Σ) \ hnm(Σ), and ε0 = ε0(p) so that Σ∩ (Bε0(p) \ p) is regular,
we will show how to perturb g and Σ so that p becomes regular. We will do this
by making an arbitrarily small change to g, Σ supported in Bε0(p). Because S0 is
discrete (but not necessarily closed when n ≥ 9) it is easy to enumerate the elements
of S0(Σ) \ hnm(Σ) and make a summably small change around each point. As such, it
suffices to consider just the perturbation near p.

By definition, taking ε < ε0 sufficiently small, Σ∩Bε(p) is one-sided homotopy area-
minimizing. For concreteness write Σ ∩ Bε(p) = ∂Ω in Bε(p) and assume that Ω is
inner homotopy minimizing. By Lemma 26, the tangent cone at p is area-minimizing
(to the same side).

We claim that (after taking ε > 0 smaller if necessary) there is a sequence of Σi ∈
R(Bε(p)) with stable regular part, with Σi ⊂ Ω, Σi disjoint from Σ, and Σi → Σ.
Indeed, we can apply Proposition 17 to conclude that either (after shrinking ε > 0), Ω
is area-minimizing to the inside, or there are Σi as asserted.

In the case that Ω is area-minimizing to the inside, we can still construct the Σi by
shrinking ε > 0 even further so that Ω is strictly area-minimizing to the inside and then
minimizing area with respect to a boundary Σ∩∂Bε(p)+δi, for a sequence δi → 0; i.e.,
the boundary of Σ∩Bε(p) pushed slightly into Ω. By the unique minimizing property,
the minimizers will converge back to Σ in Bε(p).

For i sufficiently large we can write the intersection of Σi with the annulus A(p, ε/5, ε)
as a graph of function ui over Σ.

Reasoning as in Hardt–Simon [HS85, Theorem 5.6] (cf. [Liu19, Theorem 3.1]), for i
sufficiently large, Σi will be regular in Bε/2(p). We now set

Σ̃i = (Σi ∩Bε/5) ∪ (Σ \Bε(p)) ∪ ((Σ + χui) ∩ A(p, ε/5, ε))

where χ is a smooth cutoff function with χ ≡ 1 on Bε/5 and χ ≡ 0 on B3ε/5. Note that

Hg(Σ̃i) is supported in B4ε/5(p) \Bε/5(p)
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and ‖Hg(Σ̃i)‖C2,α = o(1) as i→∞.

Now, define g̃ = efg, in this new metric, since Σ̃ is smooth, we have the transforma-
tion

Hg̃(Σ̃) = e−f
(
Hg(Σ̃) +

∂f

∂ν

)
,

where ν is the normal direction to Σ. Setting Hg̃(Σ̃), this reduces to the equation

Hg(Σ̃) +
∂f

∂ν
= 0

which implies that f = −Hg(Σ̃)ζ(ν), for a function ζ(t) such that z′(0) = 1 and z ≡ 0

for |t| ≥ ε/100 is a solution. Since, as observed, Hg(Σ̃) is supported in A(p, ε/5, 4ε/5),
so is the metric change, and since ‖u‖C4,α ≤ o(1) and χ is smooth, we have

‖g − g̃‖2,α = ‖ef − 1‖C2,α‖g‖2,α ≤ C ‖u‖C4,α ‖g‖2,α = o(1)

as i→∞. This completes the proof. �

4.2. Proof of Theorem 3. For g ∈ Met2,α(M), apply Theorem 4 to find V ∈ R with

H0(hnm(V )) + Index(V ) ≤ 1.

We can apply Proposition 31 to Σ = suppV to find a metric g̃ that is arbitrarily C2,α-
close to g and a g̃ minimal hypersurface Σ̃ ∈ R so that S0(Σ) ⊂ hnm(Σ). (Note that
if Index(V ) = 1, then hnm(Σ) = ∅, so S0(Σ) = ∅.) This completes the first part of the
proof.

We now consider g ∈ Met2,α
Ric>0(M).4 If Σ is two-sided, then Index(Σ) ≥ 1, so we

can argue as above. On the other hand if Σ is one-sided, then [Σ] 6= 0 ∈ Hn(M,Z2).

We can then find Σ̂ ∈ [Σ] by minimizing area in the homology class. The surface Σ̂
may have singularities, but they are all locally area minimizing. Thus, we can apply
Proposition 31 to Σ yielding Σ̃ and g̃ with S0(Σ̃) = ∅. �
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[MN19] Fernando Codá Marques and Andr’e Neves. Morse index of multiplicity one min-max

minimal hypersurfaces. arXiv: Differential Geometry, 2019.
[Moo06] John Douglas Moore. Bumpy metrics and closed parametrized minimal surfaces in Rie-

mannian manifolds. Trans. Amer. Math. Soc., 358(12):5193–5256, 2006.
[Moo07] John Douglas Moore. Correction for: “Bumpy metrics and closed parametrized minimal

surfaces in Riemannian manifolds” [Trans. Amer. Math. Soc. 358 (2006), no. 12, 5193–
5256 (electronic); mr2238914]. Trans. Amer. Math. Soc., 359(10):5117–5123, 2007.

[Pit81] Jon T. Pitts. Existence and regularity of minimal surfaces on Riemannian manifolds,
volume 27 of Mathematical Notes. Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1981.

[RL19] Alejandra Ramı́rez-Luna. Orientability of min-max hypersurfaces in manifolds of positive
Ricci curvature. https: // arxiv. org/ abs/ 1907. 12519 , 2019.

[Sim68] James Simons. Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88:62–105,
1968.

[Sim83a] Leon Simon. Asymptotics for a class of nonlinear evolution equations, with applications
to geometric problems. Ann. of Math. (2), 118(3):525–571, 1983.

https://arxiv.org/abs/2004.05120
https://arxiv.org/abs/1901.08440
https://arxiv.org/abs/1904.02289
https://arxiv.org/abs/1706.05946
https://arxiv.org/abs/1706.05946
https://arxiv.org/abs/1907.12519


26 O. CHODOSH, Y. LIOKUMOVICH, AND L. SPOLAOR

[Sim83b] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre
for Mathematical Analysis, Australian National University. Australian National University
Centre for Mathematical Analysis, Canberra, 1983.

[Sma93] Nathan Smale. Generic regularity of homologically area minimizing hypersurfaces in eight-
dimensional manifolds. Comm. Anal. Geom., 1(2):217–228, 1993.

[Son18] Antoine Song. Existence of infinitely many minimal hypersurfaces in closed manifolds.
https: // arxiv. org/ abs/ 1806. 08816 , 2018.

[SS81] Richard Schoen and Leon Simon. Regularity of stable minimal hypersurfaces. Comm. Pure
Appl. Math., 34(6):741–797, 1981.

[Tam84] Italo Tamanini. Regularity results for almost minimal oriented hypersurfaces in Rn.
Quaderni del Dipartimento di Matematica dell’ Università di Lecce, 1:1–92, 1984.
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