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Abstract. We consider shape optimization problems for general integral functionals of
the calculus of variations that may contain a boundary term. In particular, this class
includes optimization problems governed by elliptic equations with a Robin condition on
the free boundary. We show the existence of an optimal domain under rather general
assumptions and we study the cases when the optimal domains are open sets and have
a finite perimeter.
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1. Introduction

Let D ⊂ Rd be a bounded open set with a Lipschitz boundary. In this paper, we are
interested in the following shape optimization problem.

Problem. Find a domain Ω which solves the minimization problem

inf
{
J (Ω) : Ω ⊂ D, Ω Lipschitz

}
,

where the shape functional J is defined by

J (Ω) := min

{∫
Ω
j(x, u,∇u) dx+

∫
∂Ω
g(x, u) dHd−1 : u ∈W 1,p(Ω)

}
.

Here p > 1, Hd−1 is the (d−1)-dimensional Hausdorff measure, and the integrands
j and g satisfy suitable properties.

The prototype of our class of integral functionals can be obtained by solving the PDE
with Robin boundary condition {

−∆u = f in Ω

βu+ ∂νu = 0 on ∂Ω
(1.1)

and minimizing the corresponding energy

1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx+

β

2

∫
∂Ω
u2 dHd−1,

among all domains Ω ⊂ D with prescribed Lebesgue measure |Ω|. This corresponds to the
integrands

j(x, s, z) =
1

2
|z|2 − f(x)s+ c, g(x, s) =

β

2
s2,

where c is the Lagrange multiplier associated to the measure constraint on Ω. The stability
of solutions of elliptic equations under Robin boundary conditions, with respect to the
variation of the domain, has been studied in [8].

When the Robin boundary condition is replaced by the Dirichlet condition

u = 0 on ∂Ω,
1
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and g(x, 0) = 0, the boundary integral disappears, and the corresponding shape optimiza-
tion problem has been considered in [9]. The shape optimization problem under Robin
boundary condition on ∂Ω, in a general form, was first studied by Bucur-Giacomini in
[7]. They considered the right-hand side f = 0 but with a Dirichlet condition of the form
u = u0 on a prescribed part D0 of D. The addition of a zero-order term in our frame-
work is the natural variational formulation of problem (1.1) and raises several technical
difficulties.

The key idea, introduced in [7], consists in extending all functions u ∈ W 1,p(Ω) to the
whole Rd by setting u = 0 outside Ω. In this way, the Sobolev property of the extension is
clearly lost; however, the extended functions belong to some SBV space, which allows us
to write the boundary integral corresponding to a function u as an integral on the jump
set of u. In this way, the dependence on the domain Ω can be removed, and the problem is
reduced to the minimization of a functional of the calculus of variations which includes a
standard integral term and an additional integral term over the jump set of the competing
functions u.

The main result (see Section 2.3 for more details) of our paper is the existence of an
optimal shape Ω which is open and has finite perimeter. To achieve this result we first
consider the relaxation of our initial problem to the family of sets

A(D) :=
{

Ω ⊂ D : Ω open, ∂Ω is Hd−1-rectifiable and Hd−1(∂Ω) <∞
}

by setting for Ω ∈ A(D)

J (Ω) := inf
u∈W 1,p(Ω)

{∫
Ω
j(x, u,∇u) dx+

∫
∂Ω

[
g(x, u+) + g(x, u−)

]
dHd−1

}
, (1.2)

where ∇u, u+, u− will be defined in Section 2. Next, we show that the shape optimization
problem can be reformulated in terms of the following free discontinuity functional

F(u) =

∫
{u6=0}

j(x, u,∇u) dx+

∫
Ju

[
g(x, u+) + g(x, u−)

]
dHd−1, (1.3)

defined on the set of functions

FD :=
{
u ∈ SBV(Rd) : u = 0 on Rd \D

}
,

where Ju denotes the jump set of u. The paper is organized as follows:

(1) The relaxed shape optimization problem reduces to a problem of the calculus of
variations; more precisely, we consider

min
{
F(u) : u ∈ FD

}
. (1.4)

Indeed, if Ω̄ is an optimal shape for the minimization problem associated to the
relaxed functional (1.2), then Ω̄ coincides (see Lemma 3.1) with the set {ū 6= 0},
where ū is a solution of the variational problem (1.4).

(2) The functional in (1.4) is not coercive on FD; thus, to obtain lower semicontinuity
and compactness, we extend the functional to the functional space

XD :=
{
u : u ∨ ε, u ∧ (−ε) ∈ GSBV(Rd) ∀ε > 0, u = 0 on Rd \D

}
,

where GSBV(Rd) is the space of all functions u such that

u ∧M and u ∨ (−M) are in SBV (Rd) for every M > 0.

In this extended framework, we prove (see Theorem 2.12) that, under some as-
sumptions on the integrands j and g, the minimization problem

min
{
F(u) : u ∈ XD

}
admits a solution ū ∈ XD which, a priori, may not belong to SBV(Rd).
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(3) The next step is achieved as a consequence of Theorem 4.6, which asserts that

|ū| ≥ α > 0 where ū 6= 0,

and, as an immediate consequence, that ū ∈ GSBV(Rd). This solution is then
proved to be more regular, i.e.,

ū ∈ SBV(Rd) with ū = 0 on Rd \D
as a corollary of Lemma 4.1, which tells us that ū ∈ L∞(Rd). In particular (see
Theorem 2.13), the optimal shape Ω̄ has finite perimeter.

(4) Using an argument concerning the Mumford-Shah-type functional

MS(u) :=

∫
Rd
f(x,∇u) dx+Hd−1(Ju)

in Theorem 2.14 we prove that the optimal shape Ω̄ = {ū 6= 0} is open (and thus
belongs to A(D)) and there holds

J (Ω̄) = inf
{
J (Ω) : Ω ∈ A(D), Ω Lipschitz

}
.

2. Preliminaries and main results

Throughout this paper, we indicate by | · | the d-dimensional Lebesgue measure and by
Hd−1 the (d−1)-dimensional Hausdorff measure. We use χE to indicate the characteristic
function of a subset E of Rd, defined by

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E.

We denote by Du the distributional derivative of a function u and by Br(x) the open ball
centered at x with radius r.

2.1. Lower semicontinuity and compactness in SBV(Rd). The natural framework of
our paper is the SBV space, the class of special functions of bounded variation which was
introduced by De Giorgi and Ambrosio in [11] and used by De Giorgi, Carriero and Leaci
in [12] to successfully solve the free discontinuity minimum problems. Before giving the
formal definition, we recall some well-known notions and we refer to [1] and to the book
[3] for all details.

Definition 2.1. Let A ⊂ Rd be an open set. Given a function u ∈ L1(A), the total
variation of u in A is defined as∫

A
|Du| := sup

{∫
A
udiv(φ) dx : φ ∈ C1

c (A,Rd), ‖φ‖∞ ≤ 1

}
.

The space BV(A) of all functions with bounded total variation in A is then

BV(A) :=

{
u ∈ L1(A) :

∫
A
|Du| < +∞

}
.

In other words, a function u ∈ L1(A) belongs to BV(A) if and only if its distributional
derivative Du belongs to the space of finite vector-valued Radon measures.

Given a function u : Rd → R the precise representative of u, which belongs to the same
class in L1(Rd), is defined by setting

u(x) := lim
r→0
−
∫
Br(x)

u(y) dy.

If u ∈W 1,p(Rd), 1 < p <∞, the limit above exists up to a set of p-capacity zero (shortly
Cp-a.e., where Cp denotes the p-capacity), while if u ∈ BV(Rd) it exists up to a set of

Hd−1 measure zero. If u ∈ BV(A) we denote by ∇u the part of the measure Du which is
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absolutely continuous with respect to the Lebesgue measure, and byDsu the corresponding
singular part. The asymptotic values of u near a point of discontinuity, are defined by

u−(x) = sup

{
t ∈ R : lim

r→0

∣∣Br(x) ∩ {u < t}
∣∣

|Br(x)|
= 0

}
,

u+(x) = inf

{
t ∈ R : lim

r→0

∣∣Br(x) ∩ {u > t}
∣∣

|Br(x)|
= 0

}
,

and the jump set Ju is the set where u+ 6= u−.

Definition 2.2. Let A ⊂ Rd be an open set. The class SBV(A) of special functions with
bounded variation on A consists of all u ∈ BV(A) such that the total variation of the
singular measure Dsu is given by

|Dsu| = |u+ − u−|Hd−1 Ju.

As mentioned in the introduction, the space SBV(Rd) is the natural one to solve the
minimization problem (1.4). However, the coercivity in SBV(Rd) of the functional F in
(1.3) is not guaranteed because pathological behaviors are, in principle, still possible.

Definition 2.3. Let A ⊂ Rd be an open set. The class GSBV(A) is defined as the set of
functions u such that

u ∧M and u ∨ (−M) are in SBV (A) for every M > 0.

In other words, a function belongs to GSBV(A) if and only if any truncation that makes
the L∞-norm finite is an element of SBV(A).

Following the strategy proposed in [6] and taking into account that we do not have a
natural constraint on the L∞-norm, we need first to work on the space

XD :=
{
u : u ∨ ε, u ∧ (−ε) ∈ GSBV(Rd) ∀ε > 0, u = 0 on Rd \D

}
.

In this way we may avoid wild oscillations near {u = 0} and, at the same time, we may
work with the bounded truncations u∧M , u∨ (−M). Going back to the main framework,
we need to introduce the weak convergence in SBV(Rd) ∩ L∞(Rd).

Definition 2.4. Let A ⊂ Rd be an open set. A sequence {un}n∈N converges to u weakly
in SBV(A) ∩ L∞(A) if the following properties are satisfied:

(1) un(x)→ u(x) at a.e. x ∈ A,

(2) ∇un ⇀ ∇u weakly in L1(A),

(3) both ‖un‖∞ and Hd−1(Jun) are uniformly bounded.

The lower semicontinuity of functionals defined in SBV(A) was first studied by Ambrosio
in [2] and will be crucial in the following.

Theorem 2.5 (Ambrosio). Let ϕ(x, s, z) be a Carathéodory function on Rd×R×Rd and
let ψ(x, a, b) be a continuous function on Rd × R× R. Suppose that:

(i) the function ϕ(x, s, ·) is convex;
(ii) there is r > 1 such that the estimate

ϕ(x, s, z) ≥ |z|r

holds true for all z ∈ Rd, all s ∈ R and a.e. x ∈ Rd;
(iii) the function ψ is nonnegative and satisfies the triangular inequality, namely

ψ(x, a, b) ≤ ψ(x, a, c) + ψ(x, c, b).
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Then for every open set A ⊂ Rd the functional

F (u) =

∫
A
ϕ(x, u,∇u) dx+

∫
Ju

ψ(x, u+, u−) dHd−1

is lower semicontinuous in SBV(A) with respect to the L1
loc(A) convergence.

Remark 2.6. In [2] the result above was actually obtained under weaker assumptions on
ϕ and ψ. However, in our case, we have

β1

[
g(u+) + g(u−)

]
≤ ψ(x, u+, u−) ≤ β2

[
g(u+) + g(u−)

]
,

with β1, β2 positive, and g positive; hence the triangular inequality is automatically satis-
fied in view of the assumptions in Section 2.2.

Remark 2.7. In Theorem 2.5, the assumption ϕ(x, ·, ·) continuous for a.e. x can be weak-
ened. Indeed, using an approximation argument and Beppo Levi’s monotone convergence
theorem, one can require ϕ(x, ·, ·) to be lower semicontinuous only.

Remark 2.8. Note that this result also applies to sequences un in GSBV(A). Indeed, using
the same notation, we can write the functional as

F (u) =

∫
A∩{|u|<M}

ϕ(x, u,∇u) dx+

∫
Ju∩{|u|<M}

ψ(x, u+, u−) dHd−1 + o(1) = F1(u) + o(1)

which means that F1 is lower semicontinuous in SBV(A) with respect to the L1
loc(A)

topology. In particular, we have

lim inf
n

F1(un) ≥ F1(u)

so that, by taking the limit as M →∞, we easily deduce that the same is true with F in
place of F1.

We conclude this section with a few results giving the coercivity of functionals in SBV(A)
and GSBV(A). The first one was proved by Ambrosio in [1].

Theorem 2.9 (Ambrosio). Let A be an open bounded set in Rd, let φ : [0,∞) → [0,∞]
be a convex non-decreasing function satisfying the condition

lim
t→∞

φ(t)

t
=∞,

and let Θ : [0,∞]→ [0,∞] be a concave non-decreasing function such that

lim
t→0+

Θ(t)

t
=∞.

Let (un)n∈N ⊂ SBV(A) ∩ L∞(A) be a sequence such that ‖un‖L∞ ≤ C for a suitable
constant C, and

sup
n∈N

{∫
A
φ(|∇un|) dx+

∫
Jun

Θ(|u+
n − u−n |) dHd−1

}
<∞. (2.1)

Then there exists a subsequence converging in measure to a function u ∈ SBV(A)∩L∞(A)
such that

∇uhk ⇀ ∇u weakly in L1(A).

Remark 2.10. If we take the concave non-decreasing function

Θ(t) :=

{
0 if t = 0,

1 if t > 0,
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and the convex non-decreasing function φ(t) = |t|q, then condition (2.1) reads as

sup
n∈N

{∫
A
|∇un|q dx+Hd−1(Jun)

}
<∞. (2.2)

The functional appearing in (2.2) is usually known as the Mumford-Shah functional and
we will use it again to show that optimal domains Ω are open.

Lemma 2.11. Let (un)n∈N ⊂ GSBV(A) be a sequence of functions and assume that the
following properties hold:

(1) there exist c1, c2 > 0 and q > 1 such that ‖un‖Lq(A) ≤ c1 and ‖∇un‖Lq(A) ≤ c2;

(2) there exists c3 > 0 such that
∫
Jun

[|u+
n |q + |u−n |q] dHd−1 ≤ c3;

(3) there exists c4 > 0 such that Hd−1(Jun) ≤ c4.

Then un converges, up to subsequences, strongly in Lq(A) to a function u ∈ GSBV(A)
that satisfies the properties (1), (2) and (3) with the same constants above.

Proof. Using (1) we immediately deduce that un converges up to subsequences to some u
weakly in Lq(A) which satisfies the inequality

‖u‖Lq(A) ≤ lim inf
n→∞

‖un‖Lq(A) ≤ c1.

Therefore, using a standard result in functional analysis, to prove that un converges
strongly to u in Lq(A) it is enough to prove the convergence of the norms:∫

A
|un|q dx

n→∞−−−→
∫
A
|u|q dx.

Now notice that the weak derivative of un can be written as the sum of the absolutely
continuous part and the singular one; namely, we have

Dun = ∇un · dx+
(
u+
n − u−n

)
νn · dHd−1 Jun ,

where νn is the normal unit vector to Jun . Let wn := |un|q. A simple computation shows
that for its weak derivative we have

|Dwn| = q|un|q−1|∇un| · dx+
∣∣|u+

n |q − |u−n |q
∣∣ · dHd−1 Jun

so that its total variation as a measure is given by∫
A
|Dwn| = q

∫
A
|un|q−1|∇un| dx+

∫
Jun

∣∣|u+
n |q − |u−n |q

∣∣ dHd−1

≤ q
∫
A

[|un|q + |∇un|q] dx+

∫
Jun

[
|u+
n |q + |u−n |q

]
dHd−1

≤ q [cq1 + cq2] + c3 =: Cq.

This means that wn converges to some w in BV(A) and, in particular, it converges strongly
in L1(A) to w. Finally, we notice that∫

A
|Dun| =

∫
A
|∇un| dx+

∫
Jun

∣∣u+
n − u−n

∣∣ dHd−1

≤
∫
A

(1 + |∇un|q) dx+

∫
Jun

(
1 + |u+

n |q + |u−n |q
)
dHd−1

≤ |A|+Hd−1(Jun) +

∫
A
|∇un|q dx+

∫
Jun

[
|u+
n |q + |u−n |q

]
dHd−1

≤ |A|+ c4 + cq2 + c3 =: C̃q,|A|,
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which means that un converges strongly to u in L1(A) and weakly in Lq(A). Therefore,
using the fact that ∫

A
|un|q dx =

∫
A
|wn| dx

n→∞−−−→
∫
A
|w| dx,

we easily deduce that |u|q = w, concluding the proof of the result. �

2.2. Assumptions on j and g. We will now briefly describe the assumptions on j and
g that are sufficient to obtain our main results. The model integrands are respectively

j(x, u,∇u) = |∇u|p − f(x)u+ 1,

where f is a function that belongs to a Lebesgue space, and

g(x, u) = β|u|q

for some β > 0 so that for p = q = 2 we obtain the Robin-type problem (1.1). In particular,
we require that j satisfies some (or all) of the following properties:

(j1) x 7→ j(x, s, ξ) is measurable for all (s, ξ) ∈ R × Rd, (s, ξ) 7→ j(x, s, ξ) is lower
semicontinuous for almost every x ∈ Rd and ξ 7→ j(x, s, ξ) is convex for all s ∈ R
and almost every x ∈ Rd.

(j2) The function j(x, 0, 0) belongs to L1(Rd) and for a.e. x ∈ Rd we have j(x, 0, 0) ≥ 0.
(j3) There are p > 1 and L > 0 such that

j(x, s, ξ)− j(x, s, 0) ≥ L|ξ|p, (2.3)

and functions f ∈ L∞(Rd), a ∈ L1(Rd), and 1 < q ≤ p for which

j(x, s, 0) ≥ −f(x)|s|q − a(x), (2.4)

holds for a.e. x ∈ Rd. Furthermore, the function f satisfies the estimate

‖f‖L∞(Rd) ≤
L

2q
λβ1/L,q(BD), (2.5)

where β1 is introduced in assumption (g3), BD is any ball of volume |D| and for
α > 1 and b > 0 we define

λb,α(B) := min
u∈W 1,α(B)\{0}

∫
B |∇u|

α dx+ b
∫
∂B |u|

α dHd−1∫
B |u|α dx

.

(j4) There exists ε0 > 0 such that for a.e. x ∈ Rd there holds

j(x, s, 0)− j(x, t, 0) ≥ 0 for all s < t < ε0.

Furthermore, if q is the exponent given in (j3), then

p ≥ q > max

1,
p

2p− 1

p+
(p− 1)2

(d− 1)p

2

1 +
√

1 + 4(p−1)
(d−1)p

 . (2.6)

(j5) The lower bound (2.3) is an equality, namely

j(x, s, ξ)− j(x, s, 0) = L|ξ|p.

Furthermore, there are M0 > 0 large and a positive constant Cj such that

j(x, s, 0)− j(x, t, 0) ≥ −Cj |s|q for all s ≥ t > M0. (2.7)

In a similar fashion, we require that g satisfies some (or all) of the following properties:

(g1) x 7→ g(x, s) is measurable for all s ∈ R and s 7→ g(x, s) is lower semicontinuous for
a.e. x ∈ Rd.

(g2) For every x ∈ Rd we have g(x, 0) = 0.
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(g3) There exists a continuous positive function β1 : Rd → (0,∞) such that

g(x, s) ≥ β1(x)|s|q (2.8)

for a.e. x ∈ Rd and all s ∈ R, where q is as in (j3). Furthermore, β1 :=
minx∈Rd β1(x) > 0.

(g4) There exists a continuous positive function β2 : Rd → [0,∞) such that

β2(x)|s|q ≥ g(x, s) ≥ β1(x)|s|q

for a.e. x ∈ Rd and all s ∈ R, where q is as in (j3). Furthermore, β2 :=
maxx∈Rd β2(x) > β1.

2.3. Main results. The first step, the existence of a solution ū for the minimization
problem (1.4) with XD in place of FD, is obtained under very mild assumptions:

Theorem 2.12. Suppose that j and g satisfy (j1)–(j3) and (g1)–(g3) respectively. Then
the minimization problem

min
{
F(u) : u ∈ XD

}
admits a solution ū ∈ XD. Furthermore, the relaxed shape optimization problem associated
to the functional (1.2) is solved by Ω̄ := {ū 6= 0} on the class

{Ω ⊂ D : Ω measurable} ⊃ A(D).

The proof of the second assertion is an easy consequence of Lemma 3.1. However, the
solution ū only belongs to XD so we need an additional effort to show that ū ∈ FD or, in
other words, that ū has finite L∞-norm (see Lemma 4.1) and also that it is bounded from
below by a positive constant (see Theorem 4.6).

Theorem 2.13. Let j and g be as in Theorem 2.12. If we further assume (j4) and (g4),
then ū solves (1.4) and ū ≥ 0. In other words, ū ∈ FD and, consequently, Per(Ω̄) < ∞,
so that the optimal shape Ω̄ = {ū > 0} belongs to the class{

Ω ⊂ D : ∂Ω is Hd−1-rectifiable with Hd−1(∂Ω) <∞
}
⊃ A(D).

Finally, following the strategy in [7], we prove that Ω̄ is open and therefore it minimizes
J on the class A(D) which we recall to be defined as

A(D) :=
{

Ω ⊂ D : Ω open, ∂Ω is Hd−1-rectifiable with Hd−1(∂Ω) <∞
}
.

The key point here is the essential closedness of the jump set associated to the optimal
function ū and, obviously, having ‖ū‖∞ finite plays a fundamental role here.

Theorem 2.14. Let j and g be as in Theorem 2.12. If we further assume (j4), (g4), and
(j5), then the optimal set Ω̄ = {ū > 0} is open. Moreover, it turns out that

J (Ω̄) = inf
{
J (Ω) : Ω ∈ A(D), Ω Lipschitz

}
.

3. Proof of the main results

The goal of this section is to give a proof of the main results and, at the same time,
introduce all the technical tools we need to carry out our analysis. The main references here
are [9] for the existence of optimal solutions in the case of Dirichlet boundary conditions,
and [6, 7] for the other properties and a Poincaré-type inequality.
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3.1. Reduction to the auxiliary problem. In order to address the minimization of the
functional (1.2), we now consider the already mentioned free discontinuity functional

F(u) :=

∫
{u6=0}

j(x, u,∇u) dx+

∫
Ju

[
g(x, u+) + g(x, u−)

]
dHd−1.

Our goal is to show that the minimization problem

min
{
F(u) : u ∈ FD

}
is, under mild assumptions on j and g, equivalent to the minimization of J among all Ω
in A(D) in such a way that the following holds:

ū = argminu∈FDF(u) =⇒ min
{
J (Ω) : Ω ∈ A(D)

}
= J ({ū 6= 0}).

The reason we introduce another functional is that it is much easier to deal with the
minimization with respect to functions rather than sets.

Lemma 3.1. Assume that j and g satisfy (j2) and (g2). If ū is a minimizer of the
auxiliary functional given in (1.3), which we recall to be

F(u) :=

∫
{u6=0}

j(x, u,∇u) dx+

∫
Ju

[
g(x, u+) + g(x, u−)

]
dHd−1,

then the shape optimization problem

min
{
J (Ω) : Ω ∈ A(D)

}
admits a solution of the form Ω̄ = {ū 6= 0}.

Proof. Let u ∈W 1,p(Ω) and extend it to zero outside of Ω. It is easy to verify that∫
Ω
j(x, u,∇u) dx =

∫
Rd
j(x, u,∇u) dx−

∫
Rd\Ω

j(x, 0, 0) dx

=

∫
Rd
j(x, u,∇u) dx+

∫
Ω
j(x, 0, 0) dx−

∫
Rd
j(x, 0, 0) dx

=

∫
{u6=0}

j(x, u,∇u) dx+

∫
Ω
j(x, 0, 0) dx

≥
∫
Rd
j(x, u,∇u)χ{u6=0} dx

since j(x, 0, 0) ≥ 0 by assumption (j2). In a similar fashion, one has∫
∂Ω
g(x, u) dHd−1 =

∫
Ju

[
g(x, u+) + g(x, 0)

]
dHd−1 −

∫
∂Ω
g(x, 0) dHd−1

=

∫
Ju

g(x, u+) dHd−1

as a consequence of assumption (g2). If u is not regular enough, we obviously replace the
latter integral as in the formula for F , namely∫

Ju

[
g(x, u+) + g(x, u−)

]
dHd−1,

since u− might not be equal to zero. Now, if ū is a minimizer for F , setting Ω̄ := {ū 6= 0},
the inequalities above give for every Ω ∈ A(D)

J (Ω) ≥ F(ū) ≥ J (Ω̄),

which concludes the proof. �
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3.2. Proof of Theorem 2.12: existence of a minimizer. We now prove that the
auxiliary functional F has a minimizer ū in the class XD, namely that the problem

min
{
F(u) : u ∈ XD

}
admits a solution ū. However, both the SBV-regularity and the L∞-regularity of ū are
unclear at this point and will be dealt with in the next section. To prove the existence in
the class XD, the first ingredient is a Poincaré-type inequality that was proved in [6] with
p = 2 and α ∈ [1, 2].

Lemma 3.2. Let p > 1, α ∈ [1, p] and b,m > 0. For every u ∈ SBV(Rd) that satisfies the
inequality |{u 6= 0}| ≤ m, there holds∫

Rd
|∇u|p dx+ b

∫
Ju

[
|u+|p + |u−|p

]
dHd−1 ≥ λb,α(B)

(∫
Rd
|u|α dx

)p/α
, (3.1)

where B is a ball of measure m and λb,α(B) the first Robin eigenvalue. Moreover, the
equality holds if and only if u is the first eigenfunction associated to

λb,α(B) := min

{∫
B |∇u|

p dx+ b
∫
∂B |u|

p dHd−1(∫
B |u|α dx

)p/α : u ∈W 1,p(B) \ {0}

}
.

Remark 3.3. This inequality can be extended to any value of p > 1 because in [6] one can

work with SBV1/p(Rd) in place of SBV1/2(Rd) making minimal changes.

We are now ready to prove the existence of a solution in the class XD using the lower
semicontinuity and compactness results obtained in Section 2.1.

Proof of Theorem 2.12. We divide the proof into two steps, but first we recall that the
notion of convergence on XD is the following one:

un
XD−−→ u ⇐⇒

un ∨ ε
GSBV(Rd)−−−−−−→ u ∨ ε

un ∧ (−ε) GSBV(Rd)−−−−−−→ u ∧ (−ε)
for all ε > 0.

Part 1: Coercivity of the functional F
Let (un)n∈N be a sequence in XD such that F(un) ≤ C for a suitable positive constant

C. The function un is not in SBV(Rd) so we cannot apply the Poincaré-type inequality
mentioned above directly. However, by definition, the truncated function defined as

vn,ε := (un − ε) ∨ 0 + (un + ε) ∧ 0

belongs to GSBV(Rd) for all ε > 0; to replace un by vn,ε we first notice that combining
(2.3) and (2.8) with F(u) ≤ C leads to a more precise estimate, namely

L

∫
Rd
|∇un|p dx+ β1

∫
Jun

[
|u+
n |q + |u−n |q

]
dHd−1 ≤ C ′ −

∫
{un 6=0}

j(x, un, 0) dx,

where β1 := minx∈Rd β1(x) > 0. Using assumption (2.4) on the right-hand side, we
immediately deduce that

L

∫
Rd
|∇un|p dx+ β1

∫
Jun

[
|u+
n |q + |u−n |q

]
dHd−1 ≤ C1 +

∫
Rd
f(x)|un|q dx, (3.2)

where

C1 := C ′ +

∫
Rd
a(x) dx.

Now ∇vn,ε coincides with ∇un in {|un| ≥ ε} and is equal to zero otherwise so that the
following inequality is satisfied:∫

Rd
|∇un|p dx ≥

∫
Rd
|∇vn,ε|p dx.
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Furthermore, it is easy to notice that∫
Jun

[
|u+
n |q + |u−n |q

]
dHd−1 ≥

∫
Jvn,ε

[
|v+
n,ε|q + |v−n,ε|q

]
dHd−1

since Jvn,ε ⊂ Jun for all ε > 0 and |un| ≥ |vn,ε| by construction. By assumption (2.5) f
is in L∞ so that, using the fact that |vn,ε ± ε| ≥ |un| when un is respectively positive or
negative, we obtain∫

Rd
f(x)|un|q dx ≤ ‖f‖L∞(Rd)

∫
Rd
|un|q dx

≤ ‖f‖L∞(Rd)

[∫
{un≥0}

|vn,ε + ε|q dx+

∫
{un≤0}

|vn,ε − ε|q dx

]

≤ q‖f‖L∞(Rd)

[∫
Rd
|vn,ε|q dx+ εq|D|

]
.

Therefore, from (3.2) we obtain a similar estimate for vn,ε that reads as

L

∫
Rd
|∇vn,ε|p dx+ β1

∫
Jvn,ε

[
|v+
n,ε|q + |v−n,ε|q

]
dHd−1

≤ C1 + q‖f‖L∞(Rd)

[∫
Rd
|vn,ε|q dx+ εq|D|

]
.

(3.3)

The assumption p ≥ q comes into play here because of the Poincaré-type inequality and
of the fact that 1 + |∇u|p ≥ |∇u|q, which gives

L

∫
Rd
|∇u|p dx+ L|D| ≥ L

∫
Rd
|∇u|q dx. (3.4)

Now plug (3.4) into (3.3) and let C2 := C1 + L|D| to obtain∫
Rd
|∇vn,ε|q dx+

β1

L

∫
Jvn,ε

[
|v+
n,ε|q + |v−n,ε|q

]
dHd−1

≤ C2

L
+
q‖f‖L∞(Rd)

L

[∫
Rd
|vn,ε|q dx+ εq|D|

]
.

The Poincaré-type inequality (3.1) - which holds for GSBV functions as well - allows us
to bound the left-hand side from below so that the estimate above leads to

‖vn,ε‖qLq(Rd)

[
λβ1
L
,q

(B)−
q‖f‖L∞(Rd)

L

]
≤ C ′′L +

q‖f‖L∞(Rd)

L
εq|D|

which, taking into account that 2q‖f‖L∞(Rd) ≤ Lλβ1/L,q(B) by assumption (2.5), gives

‖vn,ε‖Lq(Rd) ≤ C̃ε := C̃1 + C̃2ε.

This means that vn,ε is uniformly bounded in Lq(Rd) as the constant on the right-hand
side is independent of n. It follows from (3.2) that∫

Jun

[
|u+
n |q + |u−n |q

]
dHd−1 ≤ C̃1 + C̃2ε

β1
.

If we now denote by J≥εun the set of all jumps of un which are bigger than (or equal to) ε,
namely the set

J≥εun = Jun ∩
(
{u+

n ≤ −ε} ∪ {u−n ≥ ε}
)
,

then the estimate above can be rewritten as

εqHd−1
(
J≥εun

)
≤ C̃1 + C̃2ε

2β1
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since |u+
n |q + |u−n |q ≥ 2εq by definition. Therefore, for ε small enough we have

Hd−1
(
J≥εun

)
≤ C̃1

2β1
ε−q,

and, using the fact that Jvn,ε = J≥εun leads to

Hd−1
(
Jvn,ε

)
≤ C̃1

2β1
ε−q.

The right-hand side is uniformly bounded with respect to n, and hence we can apply the
compactness Theorem 2.9 (more precisely, Remark 2.10) to infer that

vnk,ε
k→∞−−−→ uε ∈ GSBV(Rd)

with respect to L1(Rd) convergence. We do not achieve SBV-regularity because Ambrosio’s
theorem requires a uniform bound on the L∞-norm. Nevertheless, a diagonal argument
and pointwise convergence show that there exists some ū ∈ XD such that uε = ū ∨ ε.

Part 2: Lower semicontinuity of the functional F
Let (un)n∈N ⊂ XD be a sequence converging to u and let vn,ε be defined as in the first

step. With no loss of generality we may assume F(un) ≤ C for a suitable positive constant
C. We first rewrite F(u) = F1(u) + F2(u), where

F1(u) :=

∫
Rd

(j(x, u,∇u)− j(x, u, 0)) dx+

∫
Jun

[
g(x, u+) + g(x, u−)

]
dHd−1

F2(u) :=

∫
Rd
j(x, u, 0) dx.

We now apply Ambrosio’s lower semicontinuity Theorem 2.5 to infer that the F1 is lower
semicontinuous in GSBV(Rd), which means that

lim inf
n→∞

F1(vn,ε) ≥ F1(vε),

where vε is the limit of vn,ε in GSBV(Rd) for ε > 0 fixed. It remains to prove that F2 is
lower semicontinuous or, in other words, that∫

Rd
j(x, vε, 0) dx ≤ lim inf

n→∞

∫
Rd
j(x, vn,ε, 0) dx.

We first apply Fatou’s lemma taking into account the estimate (2.4) and deduce that∫
Rd
j(x, vε, 0) dx+

∫
Rd
−f(x)|vε|q dx

≤ lim inf
n→∞

∫
Rd
j(x, vn,ε, 0) dx+ lim inf

n→∞

∫
Rd
−f(x)|vn,ε|q,

and the conclusion follows if we are able to prove that vn,ε → vε strongly in Lq. Using
the same argument of the coercivity step, and the fact that F(un) ≤ C, we apply Lemma
2.11 to vn,ε to deduce the strong convergence in Lq(Rd) to vε, concluding the proof. �

Remark 3.4. The function ū obtained so far is not, a priori, in SBV(Rd) and not even in
GSBV(Rd), because the estimate

Hd−1(Juε) . ε
−q

does not provide any upper bound to Hd−1(Jū). We will prove in next section that the
L∞-norm of u is bounded so that

ūε := (ū− ε) ∨ 0 + (ū+ ε) ∧ 0 ∈ SBV(Rd).
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Next, under additional assumptions for which ū will be a nonnegative function, we will
also show that

ū(x) ≥ α > 0 for a.e. x ∈ {x : ū(x) 6= 0},
which gives ū ∈ SBV(Rd), hence ū ∈ FD.

We conclude this section by giving a sufficient condition on the function j such that the
solution ū can be taken positive. This is important in the proof of Theorem 2.13.

Corollary 3.5. Under the same assumptions of Theorem 2.12, if the integrand j also
satisfies (j4), then the solution ū is nonnegative, and therefore

Ω̄ = {ū 6= 0} = {ū > 0}.

Proof. Let E := {ū < 0} ⊂ Ω̄ and define ūE as the function that coincides with ū in Rd\E
and is equal to zero in E. Then (taking L = 1 for simplicity) we have

F(ū)−F(ūE) ≥
∫
E

[j(x, ū,∇ū)− j(x, 0, 0)] dx

≥
∫
E

[|∇ū|p + j(x, ū, 0)− j(x, 0, 0)] dx,

and the latter is nonnegative because j(x, ū, 0)−j(x, 0, 0) ≥ 0 as j(x, s, 0) is nonincreasing
with respect to s and ū < 0 in E. �

4. Proof of Theorem 2.13: Ω̄ has finite perimeter

So far we have been able to prove that a solution to the shape optimization problem
exists and has the form Ω̄ = {ū 6= 0}. By the implication

ū ∈ L∞(Rd) =⇒ ū ∧ (−ε), ū ∨ ε ∈ SBV(Rd) for all ε > 0,

our goal becomes to prove that ū ∈ L∞(Rd) and, under additional assumptions on the
integrands j and g, ū is SBV-regular because this gives (see Section 4.2) the property
Per(Ω̄) < ∞. This is achieved by finding α > 0 such that ū ≥ α almost everywhere in
{ū 6= 0} in Theorem 4.6. Consequently, we deduce ū ∈ FD and Ω̄ has finite perimeter.

4.1. Minimizers of F are L∞-regular. To prove that Ω̄ has finite perimeter, we first
need to show that any minimizer ū of the functional (1.3) in FD is bounded from above.

Lemma 4.1. Let j, g and ū be as in Theorem 2.12 and further assume that j satisfies the
assumption (j4). Then there exists M > 0 such that ‖ū‖∞ ≤M . In particular, ū belongs
to the functional space{

u : u ∨ ε, u ∧ (−ε) ∈ SBV(Rd) ∀ε > 0, u = 0 on Rd \D
}
.

The proof is based on the argument of [4, Theorem 12], but here Poincaré inequality
(3.1) plays a key role. To fix some notation, consider the rescaling function

r(M) :=
|D|1/d

|ΩM |1/d
, where ΩM := Ω̄ ∩ {ū > M},

and the scaled set Ω#
M := r(M) · ΩM in such a way that |Ω#

M | = |D|.

Proof. Choose ūM := ū∧M as a test function (recall that ū is nonnegative as a consequence
of assumption (j4)) and use the minimality of ū to write

F(ū) ≤ F(ū ∧M).
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We obtain∫
ΩM

(
j(x, ū,∇ū)− j(x,M, 0)

)
dx+

∫
Jū∩{ū−>M}

[
g(x, ū+) + g(x, ū−)

]
dHd−1

+

∫
Jū∩{ū−<M<ū+}

g(x, ū+) dHd−1 ≤ 0,

and we notice that the last addendum is positive. By assumption (2.8) we get∫
Jū∩ΩM

[
g(x, ū+) + g(x, ū−)

]
dHd−1 ≥ β1

∫
Jū∩ΩM

[
|ū+|q + |ū−|q

]
dHd−1.

Similarly, we can write∫
ΩM

(j(x, ū,∇ū)− j(x,M, 0)) dx =

∫
ΩM

(j(x, ū,∇ū)± j(x, ū, 0)− j(x,M, 0)) dx

and, using assumption (2.3) yields∫
ΩM

(j(x, ū,∇ū)− j(x, ū, 0)) dx ≥ L
∫

ΩM

|∇ū|p dx ≥ L
∫

ΩM

|∇ū|q dx− L|ΩM |.

Putting all these inequalities together gives

L

∫
ΩM

|∇ū|q dx+ β1

∫
Jū∩ΩM

[
|ū+|q + |ū−|q

]
dHd−1

≤ L|ΩM |+
∫

ΩM

(j(x,M, 0)− j(x, ū, 0)) dx,

which, as a consequence of (2.7), gives∫
ΩM

|∇ū|q dx+
β1

L

∫
Jū∩ΩM

[
|ū+|q + |ū−|q

]
dHd−1 ≤

(
1 +

Cj
L
M q

)
|ΩM |.

Let v := max{ū−M, 0}. A simple computation shows that∫
ΩM

|∇ū|q dx =

∫
Rd
|∇v|q dx, Jv = Jū ∩ ΩM ,∫

Jū∩ΩM

[
|ū+|q + |ū−|q

]
dHd−1 ≥

∫
Jv

[
|v+|q + |v−|q

]
dHd−1.

We can therefore apply Poincaré inequality (3.1) to the function v and infer that∫
ΩM

|∇ū|q dx+
β1

L

∫
Jū∩ΩM

[
|ū+|q + |ū−|q

]
dHd−1 ≥ λβ1

L
,q

(ΩM )

∫
Rd
|v|q dx,

and the right-hand side can easily be rewritten by noticing that∫
Rd
|v|q dx =

∫
ΩM

|ū−M |q dx.

Now apply Hölder’s inequality to estimate the latter from below, namely∫
ΩM

|ū−M |q dx ≥ |Ω|−q/q′
[∫

ΩM

(ū−M) dx

]q
.

Let f(M) :=
∫

ΩM
(ū−M) dx and put everything together to rewrite the inequality as

λβ1/L,q(ΩM )f(M)q ≤
(

1 +
Cj
L
M q

)
|ΩM |q.
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The inequality is not precise enough because f(M) and |ΩM | have the same exponent, so

the idea is to now introduce the scaling Ω#
M and write

λβ1r(M)1−q/L,q(Ω
#
M )f(M)qr(M)q ≤

(
1 +

Cj
L
M q

)
|ΩM |q,

which, using the definition of r(M), gives

λβ1r(M)1−q/L,q(Ω
#
M )f(M)qr(M)q−1|D|1/d ≤

(
1 +

Cj
L
M q

)
|ΩM |q+1/d.

Since |ΩM | = −f ′(M), we can rewrite the inequality as

− f ′(M)

f(M)qd/(qd+1)
≥

[(
1 +

Cj
L
M q

)−1

λβ1r(M)1−q/L,q(Ω
#
M )r(M)q−1

]d/(qd+1)

|D|1/(qd+1)

≥

[(
1 +

Cj
L
M q

)−1

λβ1r(M)1−q/L,q(B)r(M)q−1

]d/(qd+1)

|D|1/(qd+1),

where B is a ball of volume |D|. Indeed, the eigenvalue λb,q(·) is minimized (at fixed
volume) by the ball, so

λb,q(ΩM ) ≥ λb,q(BM ), with |BM | = |ΩM |.
On the other hand, given a domain C and a positive parameter t, it is

λb,q(tC) = t−2λb,q(C),

and therefore λb,q(Br) is monotone decreasing with respect to the radius r, hence with
respect to the volume. In particular, taking into account that ΩM ⊂ D, we have

λβ1r(M)1−q/L,q(Ω
#
M ) ≥ λβ1r(M)1−q/L,q(B).

Integrating in M between 0 and T < ‖ū‖∞ and taking into account that f is a positive
function yields

f(0)1/(qd+1) ≥ c|D|,q
∫ T

0

[(
1 +

Cj
L
M q

)−1

λβ1r(M)1−q/L,q(B)r(M)q−1

]d/(qd+1)

dM.

The left-hand side is bounded because f(0) is bounded from above by ‖ū‖L1(Rd); as for

the right-hand side, we apply [4, Lemma 13] to infer that

lim
M→‖ū‖∞

(
1 +

Cj
L
M q

)−1

λβ1r(M)1−q/L,q(B)r(M)q−1 =

(
1 +

Cj
L
‖ū‖q∞

)−1 β1

L
d.

This yields ‖ū‖∞ < ∞ as a consequence of the fact that qd/(qd + 1) ∈ (0, 1), concluding
the proof. �

Remark 4.2. Thanks to the L∞ estimate above, we deduce that ū given in the proof of
Theorem 2.12 belongs to{

u : u ∨ ε, u ∧ (−ε) ∈ SBV(Rd) ∀ε > 0, u = 0 on Rd \D
}
.

4.2. Bound from below. To prove that ū is bounded away from zero, we follow the
approach of [7, Theorem 3.5].

Definition 4.3 (Supersolution). We say that w ∈ FD ∩ {u ≥ 0} is a supersolution for
the functional

L(u) :=

∫
Rd

[j(x, u,∇u)− j(x, 0, 0)] dx+

∫
Ju

[
g(x, u+) + g(x, u−)

]
dHd−1

if for every v ∈ FD ∩ {u ≥ 0} with 0 ≤ w ≤ v we have

L(w) ≤ L(v).
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Lemma 4.4. Let j and g be as in Theorem 2.13, and let ū be the solution given in
Theorem 2.12. Then the positive and negative parts ū≥0 := ū∨ 0 and ū≤0 := (−ū)∨ 0 are
supersolutions for L.

Proof. Suppose that ū≥0 is not a supersolution of L and let v ∈ FD be a function with
0 ≤ ū≥0 ≤ v satisfying the strict inequality L(v) < L(ū≥0). To find a contradiction we
define the function

v̄(x) :=

{
ū(x) if ū(x) ≤ 0,

v(x) if ū(x) > 0,

and we obtain

F(ū)−F(v̄) ≥
∫
{ū>0}

[j(x, ū,∇ū)− j(x, v,∇v)] dx

+

∫
{ū>0}∩Jū

[
g(x, ū+) + g(x, ū−)

]
dHd−1 −

∫
{ū>0}∩Jv

[
g(x, v+) + g(x, v−)

]
dHd−1

because ū = v̄ on {ū < 0}. Finally, we use the inequality L(v) < L(ū≥0) to infer that

F(ū)−F(v̄) > 0,

which is in contradiction with the fact that ū is a minimizer for F .
A similar proof can be done for the function ū≤0 too. �

Remark 4.5. Despite the fact that both ū≥0 and −ū≤0 are supersolutions for F , we still
need to assume that (j4) holds so that

ū > 0 =⇒ ū = ū≥0 (see Corollary 3.5).

In particular, in our case ū is itself a supersolution for the functional L.

Theorem 4.6. Let j and g be as in Theorem 2.13 and let u be a supersolution in the
sense above. Then there exists a positive α such that

u ≥ α a.e. on {u > 0}. (4.1)

Proof. Let ε > 0 be such that uε := max{u, ε} ∈ SBV(Rd). Then uε ∈ FD and, by
comparison with u, we find that∫

Rd
[j(x, u,∇u)− j(x, 0, 0)] dx+

∫
Ju

[
g(x, u+) + g(x, u−)

]
dHd−1

≤
∫
Rd

[j(x, uε,∇uε)− j(x, 0, 0)] dx+

∫
Juε

[
g(x, u+

ε ) + g(x, u−ε )
]
dHd−1.

Using (j2), (g2) and (g4) we infer that∫
{u≤ε}

[|∇u|p + j(x, u, 0)− j(x, ε, 0)] dx+ β1

∫
Ju∩{u−<u+≤ε}

[
|u+|q + |u−|q

]
dHd−1

≤ β2ε
qHd−1 (∂e{u > ε} \ Ju) ,

because the jump part on {u− ≥ ε} ∩ Ju is the same while∫
{u−≤ε<u+}∩Ju

[
g(x, u+) + g(x, u−)

]
dHd−1

only appears on the left-hand side of the inequality so it can be estimated from below by
0. Finally, assumption (j4) gives that j(x, ·, 0) is decreasing, so that∫

{u≤ε}
[j(x, u, 0)− j(x, ε, 0)] dx ≥ 0
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and this term can be removed from the estimate above. It follows that

L

∫
{u≤ε}

|∇u|p dx+ β1

∫
{u−<u+≤ε}∩Ju

[
|u+|q + |u−|q

]
dHd−1 ≤ β2ε

qHd−1 (∂e{u > ε} \ Ju) .

This means that for almost every δ with 0 < δ < ε we have

L

∫
{u<ε}

|∇u|p dx+ β1δ
qHd−1 (∂e{δ < u < ε} ∩ Ju) ≤ β2ε

qHd−1 (∂e{u > ε} \ Ju) ,

in such a way that, setting

E(ε) :=

∫
{u≤ε}

|∇u|p dx, γ(δ, ε) := Hd−1 (∂e{δ < u < ε} ∩ Ju) ,

h(ε) := Hd−1 (∂e{u > ε} \ Ju) ,

we can rewrite the inequality as

E(ε) +
β1

L
δqγ(δ, ε) ≤ β2

L
εqh(ε). (4.2)

At this point one can simply adapt the proof of [7, Theorem 3.5], but there are a few
differences due to the fact that

LE(ε) ≤ β2ε
qh(ε) =⇒

[∫
{u<ε}

|∇u|p dx

]1/p

≤
(
β2

L

)1/p

εq/ph(ε)1/p.

We will now go over the proof presented in [7], pointing out the main changes we need to
make and why (2.6) plays a key role in our case.

Part 0: Setting of the problem.

For η > 0 set

εi :=
5

6
η +

2−i

6
η and δi =

2

3
η − 2−i

6
η

so that εi → ε∞ := 5
6η and δi → δ∞ := 2

3η as i→∞. If we define

Ω(δ, ε) := {δ < u < ε},

then we only need to show that there exists η0 > 0 such that

|Ω (δ∞, ε∞)|
∫ ε∞

δ∞

h(s) ds = 0 ∀η < η0. (4.3)

Indeed, the isoperimetric inequality applied to Ω(δ, ε) gives us

|Ω(δ, ε)|(d−1)/d ≤ Cd (h(ε) + h(δ) + γ(δ, ε)) ,

and applying (4.2) with η/2 < δ < ε < η yields

|Ω(δ, ε)|(d−1)/d ≤ β2

β1
Cd︸ ︷︷ ︸

=:Cd,β

(1 + 2q) [h(ε) + h(δ)] . (4.4)

This together with (4.3) is enough to infer that |Ω(δ∞, ε∞)| = 0, which means that u must
be at least 5

6η0 > 0 almost everywhere on its support, concluding the proof of (4.1).

Part 1: The main inequalities.

Let us set for i ∈ N

ai :=

∫ εi

δi

h(s) ds and bi := |Ω(δi, εi)|.
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We claim that there are positive constants c1, c2 such that

ai ≤ c1
2i

η1−q/pai−1b
1/(dp′)
i−1 and bi ≤ c2

(
2i

η

)d/(d−1)

a
d/(d−1)
i−1 ,

where p′ = p/(p−1) is the conjugate exponent of p. The estimate of bi is obtained exactly

as in [7, Theorem 3.5]. As for the ai, the main difference (ηq/p−1 in place of η0) lies in the
fact that the coarea formula gives∫ ε

δ
h(s) ds =

∫
Ω(δ,ε)

|∇u| dx ≤ |Ω(δ, ε)|1/p′‖∇u‖Lp(Ω(δ,ε))

≤ |Ω(δ, ε)|1/p′
(
β2

L

)1/p

εq/ph(ε)1/p

≤ |Ω(δ, ε)|1/(dp′) [Cd,β(1 + 2q)]1/p
′
(
β2

L

)1/p

[h(ε) + h(δ)]1/p
′
εq/ph(ε)1/p

≤ |Ω(δ, ε)|1/(dp′) [Cd,β(1 + 2q)]1/p
′
(
β2

L

)1/p

εq/p [h(ε) + h(δ)] ,

where we have used (4.4). Integrating both sides of the inequality with respect to ε on
[εi, εi−1] and to δ on [δi−1, δ] leads to

ai

[
1

6
2−iη

]2

≤ [Cd,β(1 + 2q)]1/p
′
(
β2

L

)1/p

|Ω(δi−1, εi−1)|1/(dp′)εq/p
[

1

6
2−iη

]
ai−1,

and this concludes the proof of the claim.

Part 2: Combining the main inequalities.

We claim that we can find α > 0 such that Ui := aαi bi satisfies the inequality

Ui ≤
c̃

ηd/(d−1)+α(1−q/p)A
iUϑi−1,

where c, A > 0 and ϑ > 1. This is once again obtained as in [7, Theorem 3.5] by taking α
and ϑ solutions of the system α+

d

d− 1
= ϑα

α = ϑdp′,

which gives

α =
dp′

2

(
1 +

√
1 +

4

(d− 1)p′

)
, (4.5)

and consequently

ϑ =
α

dp′
=

1

2

(
1 +

√
1 +

4

(d− 1)p′

)
> 1.

Part 3: Decay for E(ε).

We now show that there exist ε0, c0 > 0 such that

E(ε) ≤ c0ε
p(q−1)/(p−1) ∀ε ≤ ε0. (4.6)

Indeed, using the inequality E(ε) ≤ β2

L ε
qh(ε) and the coarea formula yields

εE(ε) ≤
∫ 2ε

ε
E(s) ds ≤ β2

L
2qεq

∫ 2ε

ε
h(s) ds

=
β2

L
2qεq

∫
Ω(ε,2ε)

|∇u| dx ≤ β2

L
2qεq|Ω(ε, 2ε)|1/p′E(2ε)1/p.
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Taking ε0 so small that (β2/L)2q|Ω(0, 2ε0)|1/p′ ≤ 1 gives

E(ε) ≤ εq−1E(2ε)1/p for all ε ≤ ε0,

and now an iterative argument (see, e.g., [7, Lemma 3.6]) proves (4.6).

Part 4: Conclusion.

We claim that we can find η such that

U0 ≤ c̃−1/(ϑ−1)A−1/(ϑ−1)2
η(q−1)/(p−1)α, (4.7)

where α is given in Step 2. To verify (4.7), we notice that

U0 =
∣∣∣Ω(η

2
, η
)∣∣∣ [∫ η

η/2
h(s) ds

]α
=
∣∣∣Ω(η

2
, η
)∣∣∣ [∫

Ω( η
2
,η)
|∇u| dx

]α
≤
∣∣∣Ω(η

2
, η
)∣∣∣ [E(η)1/p

∣∣∣Ω(η
2
, η
)∣∣∣1/p′]α

=
∣∣∣Ω(η

2
, η
)∣∣∣1+α/p′

E(η)α/p

so that, thanks to the decay estimate (4.6) obtained above, we conclude that

U0 ≤ c0

∣∣∣Ω(η
2
, η
)∣∣∣1+α/p′

η(q−1)/(p−1)α.

This means that (4.7) is achieved if η is so small that

c0

∣∣∣Ω(η
2
, η
)∣∣∣1+α/p′

≤ c̃−1/(ϑ−1)A−1/(ϑ−1)2
,

so all it remains is to use induction on i and finally prove that

lim
i→∞

Ui = 0.

A simple computation shows that

Un ≤ c̃
ϑn−1
ϑ−1 η

−ϑ
n−1
ϑ−1

[
d
d−1

+α
(

1− q
p

)]
A
ϑ(ϑn−1)−nϑ+n

(ϑ−1)2 (U0)ϑ
n

≤ c̃−
1

ϑ−1A
ϑn

ϑ−1 η

[
α q−1
p−1
− d
d−1
−α
(

1− q
p

)]
ϑn

≤ c̃1

[
A

1
ϑ−1 η

α
(
q−1
p−1

+ q
p
−1
)
− d
d−1

]ϑn
so Un

n→∞−−−→ 0 if we can prove that the quantity inside the parenthesis is strictly smaller
than 1 for η sufficiently small. More precisely, we require

α

(
q − 1

p− 1
+
q

p
− 1

)
− d

d− 1
> 0,

and this is exactly condition (2.6) since α is given by formula (4.5). In particular, thanks
to assumption (j4) we conclude the proof. �

Remark 4.7. The assumption (2.6) seems rather restrictive, but looking at numerical
simulations suggests that

α

(
q − 1

p− 1
+
q

p
− 1

)
− d

d− 1
> 0

holds in a significant portion of the plane. Indeed, in Figure 1 we take d = 2 and introduce
the function

q(p) :=
p

2p− 1

p+
(p− 1)2

(d− 1)p

2

1 +
√

1 + 4(p−1)
(d−1)p


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in such a way that r2(p) is exactly the lower bound in (2.6). The range of admissible
values of p and q in which (2.6) holds is given by the portion between the two lines.

Out[!]=

2 4 6 8 10

2

4

6

8

10

r_1(p) = p

r_2(p) = max{1,q(p)}

Printed by Wolfram Mathematica Student Edition

Figure 1. The range of admissible values q for d = 2.

We are now in a position to conclude the proof that Ω̄ := {ū > 0} has finite perimeter.

Proof of Theorem 2.13. If ū is the solution given in Theorem 2.12, then (4.1) gives ū =
ū∨α for some α > 0. However, we know that the function ū∨ ε belongs to SBV(Rd) and
therefore using the bound from below and the chain rule in SBV we get

ū ∈ SBV(Rd) =⇒ Per(Ω̄) <∞.
Indeed, by definition, we have

χΩ̄ =

{
0 if α−1ū = 0,

1 if α−1ū ≥ 1,

which means that χΩ̄ and α−1ū are supported in the same set, namely Ω̄. It follows that
the perimeter can be estimated by

Per(Ω̄) = sup
‖φ‖∞≤1

∫
Rd

div(φ)χΩ̄ dx ≤ α−1‖ū‖BV(Rd),

and this last quantity is finite because ū ∈ SBV(Rd) ⊂ BV(Rd) and α > 0. �

5. Proof of Theorem 2.14: the set Ω̄ is open

5.1. Essential closedness of the jump set. The goal of this section is to exploit the
results obtained in [7, Section 4] and adapt them to deal with our functional, taking into
account that our model function is

j(x, u,∇u) = |∇u|p − f(x)u+ 1,

which leads to several issues related to the linear term −f(x)u. From now on, we shall
always assume that j satisfies the assumption (j5), which asserts that

j(x, u,∇u)− j(x, u, 0) = L|∇u|p.
Consider the associated Mumford-Shah functional

MS(u) := L

∫
Rd
|∇u|p dx+Hd−1(Ju)

in which the linear part does not appear. We start by recalling the notion of almost-quasi
minimality for the Mumford-Shah functional:
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Definition 5.1. Let u ∈ SBVp
loc(R

d) be a function such that u = 0 in Rd \ D. We say
that u is an almost-quasi minimizer for the functional MS(u) with Dirichlet boundary
conditions if there are Λ ≥ 1, α > 0 and cα > 0 such that∫

Bρ(x0)
L|∇u|p dx+Hd−1

(
Ju ∩ B̄ρ(x0)

)
≤
∫
Bρ(x0)

L|∇v|p dx+ ΛHd−1
(
Jv ∩ B̄ρ(x0)

)
+ cαρ

d−1+α

for all Bρ(x0) ⊂⊂ D and for every v ∈ SBVp
loc(R

d), v = 0 in Rd \D and

{v 6= u} ⊂ Bρ(x0).

The following result was proved in [7, Theorem 2.3] with a function f(x,∇u) in place
of j(x, u,∇u)− j(x, u, 0) under suitable assumptions which are satisfied with

f(x,∇u) = C|∇u|p.

Theorem 5.2. Let u ∈ SBVp
loc(D) be an almost-quasi minimizer of MS(u) with Dirichlet

boundary conditions according to the definition above. Then

Hd−1
(
(J̄u \ Ju) ∩D

)
= 0,

which means that the jump set of u is essentially closed in D.

Proposition 5.3. Suppose that j satisfies (j1)–(j5) and g satisfies (g1)–(g4). Let ū ∈
SBV ∩ L∞(Rd) be the minimizer of F given in Theorem 2.12. Then

ū > α a.e. on {ū > 0}

for some α > 0, and the function (2β1)1/qαū is an almost-quasi minimizer of the Mumford-
Shah functional

MS(u) := L

∫
Rd
|∇u|p dx+Hd−1(Ju)

with Dirichlet boundary conditions on D.

Proof. The existence of the constant α is given in Theorem 2.14, so let Bρ(x0) ⊂ D and
take any v ∈ SBVloc(D) satisfying {v 6= ū} ⊂ Bρ(x0). Without loss of generality we can
replace v with w := (v ∧M) ∨ 0, where M ≥ ‖ū‖∞ is the constant given in Lemma 4.1.
Comparing ū and w we get

F(ū) ≤ F(w),

which immediately translates to∫
Rd
L|∇ū|p dx+

∫
Rd
j(x, ū, 0) dx+

∫
Jū

[
g(x, ū+) + g(x, ū−)

]
dHd−1

≤
∫
Rd
L|∇w|p dx+

∫
Rd
j(x,w, 0) dx+

∫
Jw

[
g(x,w+) + g(x,w−)

]
dHd−1.

Since ū and w coincide outside of Bρ(x0), we find that∫
Bρ(x0)

L|∇ū|p dx+

∫
Bρ(x0)

[j(x, ū, 0)− j(x,w, 0)] dx+ 2β1α
qHd−1

(
Jū ∩ B̄ρ(x0)

)
≤
∫
Rd
L|∇w|p dx+ 2β2M

qHd−1
(
Jw ∩ B̄ρ(x0)

)
+ γωdρ

d.

We now apply assumption (2.7) to infer that∫
Bρ(x0)

[j(x, ū, 0)− j(x,w, 0)] dx ≥ −Cj |Bρ(x0)|‖w‖q
Lq(Rd)

≥ −C ′jρd,
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and since we have∫
Bρ(x0)

L|∇ū|p dx+ 2β1α
qHd−1

(
Jū ∩ B̄ρ(x0)

)
≤
∫
Rd
L|∇w|p dx+ 2β2M

qHd−1
(
Jw ∩ B̄ρ(x0)

)
+ (γωd + C ′j)ρ

d,

this leads to the conclusion. �

5.2. Proof of the main result. We now use Proposition 5.3 to prove that Ω̄ = {ū 6= 0}
is open and thus belongs to the class A(D). As a consequence, we also show that

inf
{
J (Ω) : Ω ∈ A(D), Ω Lipschitz

}
= J (Ω̄).

Proof of Theorem 2.14. Let ū be the minimizer given in Proposition 5.3. Then

Hd−1
(
(J̄ū \ Jū) ∩D

)
= 0, (5.1)

which means that Jū is essentially closed inD. Also, the lower bound (4.1) givesHd−1(Jū) <
∞. If Ω̄ is the connected component of D \ Jū on which ū does not vanish (we have just
one component by minimality), then ∂Ω̄ ⊂

(
Jū ∩D

)
∪ ∂D implies Ω̄ open. Moreover, we

have ∫
∂Ω̄\Jū

[
g(x, ū+) + g(x, ū−)

]
Hd−1 = 0

since (5.1) implies

Hd−1
(
(∂Ω̄ \ Jū) ∩D

)
= 0,

while ū± = 0 almost everywhere on the portion on the boundary of D, because the latter
is Lipschitz and hence ū− = 0 almost everywhere on ∂D. To prove that

inf
{
J (Ω) : Ω ∈ A(D), Ω Lipschitz

}
= J (Ω̄)

we use Proposition 5.4 to find for each ε > 0 a function w ∈ FD with Jw ⊂ D such that

F(w) < F(ū) + ε.

We now follow the approach of [7]. By [10, Theorem 3.1], we can find a sequence wk ∈ FD
with Jwk essentially closed and polyhedral, wk ∈W 1,p(D \ Jwk) and such that

wk
k→∞−−−→ w strongly in Lp(Rd),

∇wk
k→∞−−−→ ∇w strongly in Lp(Rd),

F(wk)
k→∞−−−→ F(w).

The set D\ J̄wk is open, but the boundary is only Lipschitz outside of a Hd−1-measure zero
(because Jwk is essentially closed) subset A ⊆ J̄wk \ Jwk . We can cover A by arbitrarily
small “holes” with polyhedral boundary B1, . . . , BN in such a way that

Hk := Jwk ∪
( N⋃
j=1

Bj

)
has polyhedral boundary (thus Lipschitz). Now the set Ωk := D \ H̄k belongs to A(D)
and has a Lipschitz boundary, and therefore the restriction of wk to Ωk is a competitor
for the functional J (·). We can consider holes so small that

J (Ωk) ≤
∫

Ωk

j(x,wk,∇wk) dx+

∫
∂Ωk

g(x,wk) dHd−1 ≤ F(wk) + ε ≤ J (Ω̄) + ε

holds for k sufficiently large so, by taking a sequence εn → 0 and a corresponding sequence
of kn for which the inequality above holds, we obtain the thesis. �
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Proposition 5.4. Let v ∈ FD ∩ L∞(Rd) with Hd−1(Jv) < ∞. For all ε > 0 there is
w ∈ FD ∩ L∞(Rd) such that

Jw ⊂ D, Hd−1(Jw) <∞, F(w) ≤ F(v) + ε.

The proof follows the same argument as in [7, Proposition 3.12], with B = ∅, but there
is an important difference which is the definition of vξ. More precisely, we set

vξi (y) :=

{
vi(y

′, yd + ξ) if yd < fi(y
′)− ξ,

‖v‖∞ψi(y′, fi(y′)) if yd ≥ fi(y′)− ξ,

where ψi is the partition of unity introduced in the reference paper. The rest of the proof
follows in the same way because the term∫

Rd

[
j(x, vξ, 0)− j(x, v, 0)

]
dx

can be easily estimated by a constant when ξ > 0 is sufficiently small, taking into account

that the support of vξi is as close as we want to the one of vi by definition.

6. Further comments and open problems

In this section we raise some question that look, in our opinion, very interesting and that
could help to better understand the shape optimization problems with Robin conditions
at the free boundary.

Question 1. We obtained under very mild assumptions the existence of an optimal
domain Ω̄ in the class of measurable subsets of D. Under some slightly stronger assump-
tions we showed that Ω̄ has a finite perimeter and that Ω̄ is actually an open set. It would
be very interesting to investigate about further regularity properties of Ω̄. For instance,
according to the results in [5], the boundary of Ω̄ cannot have too sharp cuspids, and also
Ω̄ does not have too many internal fractures. The question if boundary cusps or internal
fractures may actually occur for an optimal domain Ω̄ is still open.

Question 2. The investigation on the higher regularity of optimal domains is also
interesting. Taking the model case

j(x, s, z) = |z|p − f(x)s+ 1, g(x, s) = |s|p with p > 1 (6.1)

is it possible to obtain C1,α regularity of the free boundary assuming f nonnegative and
bounded?

Question 3. In our model case (6.1) a key assumption in order to show the existence
of optimal sets Ω̄ that are open and with finite perimeter is the nonnegativity and bound-
edness of the datum f . It would be interesting to see if our results still hold with weaker
assumptions on f , such as

∃E1, E2 ⊂ D, |E1|, |E2| > 0 : f
∣∣
E1
> 0 and f

∣∣
E2
< 0,

or some Lp-norm of f is bounded while the∞-norm is not. A similar question for Dirichlet
boundary conditions has been recently considered in [9] by constructing right-hand sides

f ∈ W−1,p′(D) ∩ L1(D) such that the optimal set Ω̄ can be any p-quasi open set Ω ⊂ D.
We expect a similar behavior in our case, even if some new technical difficulties arise due
to the fact that solutions of a relaxed Robin problem of the form (1.2) in a general domain
Ω may have internal discontinuities.
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