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Abstract. We study the asymptotic behavior, as ε tends to zero, of the

functionals F k
ε introduced by Coleman and Mizel in the theory of nonlinear

second-order materials; i.e.,

F k
ε (u) :=

ˆ

I

„

W (u)

ε
− k ε (u′)2 + ε3(u′′)2

«

dx, u ∈ W 2,2(I),

where k > 0 and W : R → [0, +∞) is a double-well potential with two potential

wells of level zero at a, b ∈ R. By proving a new nonlinear interpolation
inequality, we show that there exists a positive constant k0 such that, for
k < k0, and for a class of potentials W , (F k

ε ) Γ(L1)-converges to

F k(u) := mk #(S(u)), u ∈ BV (I; {a, b}),

where mk is a constant depending on W and k. Moreover, in the special case

of the classical potential W (s) =
(s2

−1)2

2
, we provide an upper bound on the

values of k such that the minimizers of F k
ε cannot develop oscillations on some

fine scale and a lower bound on the values for which oscillations occur, the
latter improving a previous estimate by Mizel, Peletier and Troy.
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1. Introduction

In this note we address some features of the limiting behavior of the minimizers
of a class of second-order singular perturbation energies. The model we analyze
was introduced in 1984 by Coleman and Mizel in the context of the theory of
second-order materials and was then studied in [2] in collaboration with Marcus.

Coleman and Mizel proposed a model for nonlinear materials in which the free
energy depends on both first and second order spatial derivatives of the mass den-
sity. In this way they expected to prove the occurrence of layered structures of
the ground states (as observed in concentrated soap solutions and metallic al-
loys) without appealing to non-local energies (such as, for example, the Otha-
Kawasaki functional [15]). Specifically, they introduced the free-energy functional
F k

ε : L1(I) −→ (−∞,+∞] given by

F k
ε (u, I) =







ˆ

I

(

W (u)

ε
− k ε (u′)2 + ε3(u′′)2

)

dx if u ∈ W 2,2(I),

+∞ if u ∈ L1(I) \ W 2,2(I),
(1.1)
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where I ⊂ R is a bounded open interval, u (the mass density) is the order parameter
of the system, ε, k > 0, and W : R → [0,+∞) is a double-well potential with two
potential wells of level zero at a, b ∈ R.

As ε goes to zero, the functional (1.1) accounts for the energy stored by a one-
dimensional physical system occupying the interval I. This model can be viewed
as a scaled second-order Landau expansion of the classical Cahn-Hillard model for
sharp phase transitions; i.e.,

min

{
ˆ

I

W (u) dx : u ∈ L1(I),

 

I

u dx = λa + (1 − λ) b

}

, 0 < λ < 1.

For the Cahn-Hillard model the lack of uniqueness is usually solved in the context
of first-order gradient theory of phase transitions considering the simplest diffuse
phase-transitions model; i.e., the Van der Waals model. The latter is obtained by
adding a singular gradient perturbation to the previous functional. After scaling,
the new functional Fε : L1(I) −→ [0,+∞] reads as

Fε(u) =







ˆ

I

(

W (u)

ε
+ ε(u′)2

)

dx if u ∈ W 1,2(I),

+∞ if u ∈ L1(I) \ W 1,2(I).

If W grows at least linearly at infinity, Modica and Mortola [11, 12] proved that
sequences (uε) with equi-bounded energy (i.e. such that supε Fε(uε) < +∞) can-
not oscillate as, up to subsequences, they converge in L1(I) to a function u ∈
BV (I; {a, b}). Moreover, the Γ(L1)-limit of Fε is given by

F(u) =

{

m#(S(u)) if u ∈ BV (I; {a, b}),
+∞ otherwise in L1(I),

(1.2)

for a suitable constant m depending on the double-well potential W .
The above phenomenon characterizes first order phase transitions of every ma-

terial having positive surface energy.
On the other hand, in nature there are materials that relieve energy whenever

the measure of their surface is increased. These materials have a so-called negative
surface energy. To give a mathematical description of this kind of materials within
the framework of the gradient theory of phase transitions, Coleman and Mizel
introduced the energy F k

ε .
The requirement for an energy of the form of F k

ε to be bounded from below
forces the coefficient in front of the highest gradient squared to be nonnegative. On
the other hand different phenomena can occur depending on the coefficient k in
front of ε (u′)2. Specifically, for negative constants k, different authors showed that
this model leads to the same asymptotic behavior of the first order perturbation,
avoiding oscillations and converging to a sharp interface functional. The case k < 0
was settled by Hilhorst, Peletier and Schätzle in [6], where the authors proved
that the functionals F k

ε Γ(L1)-converge to a limit functional of type (1.2). The
case k = 0 was instead considered by Fonseca and Mantegazza. In [3] the authors
established the same limit behavior thanks to a compactness result for sequences
with equi-bounded energy obtained exploiting some a priori bounds given by the
growth assumption on the double-well potential W and by a Gagliardo-Nirenberg
interpolation inequality.

In this paper we investigate the case k > 0.
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The presence of a negative contribution due to the term involving the first order
derivative makes the problem quite unusual in the context of higher-order models
of phase transitions.

In particular, since the three different terms in the energy are of the same order,
their competition’s outcomes strongly depend on the value of k.

Heuristically, large values of k make the phases highly unstable favoring oscilla-
tions between them and correspond to negative surface tensions.

This was rigorously proved by Mizel, Peletier and Troy in [10]. The authors
considered the classical potential W (s) = 1

2 (s2 − 1)2 and showed that, for k >

0.9481, limε→0 min F k
ε = −∞ and that there exists a class of minimizers of F k

ε

which are non-constant periodic functions oscillating between the two potential
wells. Finer properties of these minimizers have been studied also in [9].

It is worth mentioning here that analogous results have been obtained for the
non-local perturbations of the Van der Waals model in one-dimensional space, as
the already mentioned Otha–Kawasaki model (see, for example, the forerunner
study of Müller [13] in the context of coherent solid-solid phase transitions). These
energies, when viewed as functionals of a suitable primitive of the order parameter
of the system, become second-order functionals with a potential constraint on the
first derivative, and lead to similar results.

What was left open by the analysis carried out in [10] is the case of “small”,
positive constants k. We prove here that, under the assumptions that the potential
W (s) is quadratic in a neighborhood of the wells (to fix the ideas, suppose from
now on a = −1, b = 1) and grows at least as s2 at infinity (both hypothesis being
necessary as discussed in Section 3), small values of k make the phases stable and
correspond to positive surface tensions; i.e., the asymptotic behavior of F k

ε is again
described by a sharp interface limit as in (1.2).

The main difficulty in the achievement of the above result lies in the proof of a
compactness theorem analog to the one obtained in the case of the Modica–Mortola
functional. Indeed, the negative term in the energy F k

ε when k > 0 gives no a priori
bounds on minimizing sequences. Here we solve this problem showing the existence
of constants k0, ε0 > 0 such that a new nonlinear interpolation inequality holds (see
Lemma 3.1 and Proposition 3.3):

k

ˆ

I

ε(u′)2 dx ≤
ˆ

I

(

W (u)

ε
+ ε3(u′′)2

)

dx, (1.3)

for every k < k0, u ∈ W 2,2(I) and ε ≤ ε0. This inequality enables us to estimate
from below our functionals with F 0

ε (the one corresponding to k = 0) for which a
compactness result has been proved in [3]. Therefore, for k < k0 every sequence of
functions with equi-bounded energy F k

ε converges in L1(I) (up to subsequences) to
a function u ∈ BV (I; {±1}) (see Proposition 3.4).

On account of this result, we then complete the Γ-convergence analysis of the
family of functionals F k

ε by proving in Theorem 4.1 that, for every k < k0, the
functionals F k

ε Γ(L1)-converge to

F k(u) :=

{

mk #(S(u)) if u ∈ BV (I; {±1}),
+∞ otherwise in L1(I),

(1.4)
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where mk > 0 is given by the following optimal profile problem (whose solution’s
existence is part of the result),

mk := min

{
ˆ

R

(W (u) − k(u′)2 + (u′′)2) dx : u ∈ W 2,2
loc (R),

lim
x→−∞

u(x) = −1, lim
x→+∞

u(x) = 1

}

.

In the last part of the paper we address the problem of estimating the constants
k for which there are no oscillations in the asymptotic minimizers. In order to
compare our results with those in [10], we focus here on the explicit potential

W (s) = (s2−1)2

2 they considered. Since the estimate we could derive for k0 are very
rough, in Section 5 we investigate the following different problem,

k1 := inf
L>0

inf
{

RL
−L(u), u ∈ W 2,2(−L,L) : u′(±L) = 0, u′ 6= 0

}

, (1.5)

where for every interval (α, β) and every u ∈ W 2,2(α, β), Rβ
α(u) is the Rayleigh

quotient defined as

Rβ
α(u) :=



























ˆ β

α

(W (u) + (u′′)2) dx

ˆ β

α

(u′)2 dx

if

ˆ β

α

(u′)2 dx > 0,

+∞ otherwise.

(1.6)

Problem (1.5) is clearly related to the computation of the optimal constant in the
nonlinear interpolation inequality (1.3) and seems to be a challenging open problem.

Clearly, for k ≥ k1, minimizers of F k
ε exhibit an oscillating behavior. On the

other hand, we are able to show that for k < min{k1,
√

2/2} there are no oscillations.
Indeed, for these values of k, we prove a L1 compactness result in BV (I; {±1}) for
sequences of functions equi-bounded in energy and having at least one zero of the
first derivative (see Proposition 5.1 and notice that this condition is fulfilled by
any sequence of functions which is supposed to oscillate). This compactness result,
although analogous to the one provided for k < k0, is actually more difficult, be-
cause in this last case the energy is not everywhere positive, but can be in principle
negative near the boundary (see Lemma 5.4).

The benefit of this refined compactness result is that we can provide an upper
bound and a lower bound on k1, having the same order of magnitude. The lower
bound we obtain for k1 follows by carefully tracing the constants in the linear in-
terpolation inequality and amounts to 1/8. The upper bound k1 < 0, 9385, instead,
is an improvement of the estimate given in [10] (k1 ≤ 0, 9481) and is obtained by
testing profiles made by suitably combined linear and quadratic parts.

What is not yet comprised in the present analysis is a better understanding of
the interpolation constants k0 and k1. We think, indeed, that for every k < k1 the
functionals F k

ε do not develop microstructures and Γ-converge to a sharp interface
functional of type (1.2) up to an additive constant depending on the presence of
possible boundary layers’ energies.

Finally, a comment on the n-dimensional case is in order. In Remark 3.5, we
briefly discuss the main idea of the interpolation inequality for smooth domains in
R

n, which gives the compactness in any space dimension. After the submission of
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our paper, a preprint [1] dealing with the n-dimensional version of F k
ε appeared. In

[1] the authors generalize Theorem 4.1 to any space dimension by means of blow-up
arguments, while the investigation on the bounds of the interpolation constant is
not addressed. Furthermore, we point out that a satisfactory description of the
dependence of the limit interface energy density mn (using the notation of [1]) on
the space dimension n is still missing. Specifically, it would be worth investigating if
mn = m1, as it happens, for instance, for the classical Modica–Mortola functional
[11, 12] and for F k

ε when k = 0 as shown in [3].

2. Notation and preliminaries

In this section we set our notation and we recall some preliminary results we
employ in the sequel.

With I ⊂ R we always denote an open bounded interval and with ε, k two
positive constants. Moreover, we fix a class of double-well potentials with the
following properties: W : R → [0,+∞) is continuous, W−1({0}) = {±1} (the
location of the wells clearly can be fixed arbitrarily), and satisfies

(w) there exists cW > 0 such that W (s) ≥ cW (s ∓ 1)2 for ±s ≥ 0.

Note that in particular the standard double-well potential W (s) = (s2−1)2

2 belongs
to this class.

We consider the functionals F k
ε defined in (1.1) and, whenever the domain of

integration is clear from the context, we simply write F k
ε (u) in place of F k

ε (u, I).
We denote by Eε = F 0

ε the functional introduced in [3]; that is

Eε(u, I) :=







ˆ

I

(

W (u)

ε
+ ε3(u′′)2

)

dx if u ∈ W 2,2(I),

+∞ if u ∈ L1(I) \ W 2,2(I).

As we heavily use it in the sequel, we recall here the statement of one of the
main results of [3] (see [3, Proposition 2.7]).

Proposition 2.1. Let (uε) ⊂ W 2,2(I) satisfy supε Eε(uε, I) < +∞. Then, there
exist a subsequence (not relabeled) and a function u ∈ BV (I, {±1}) such that uε →
u in L1(I).

We also recall two classical interpolation inequalities (see [7, Theorem 1.2 and
(1.22) pag. 10] and [4, 14]).

Proposition 2.2. For every a, b ∈ R, a < b, and every function u ∈ W 2,2(a, b),
the following inequalities hold:

(i) (optimal constant)

‖u′‖L2(a,b) ≤ c ‖u′′‖L2(a,b) + k(c) ‖u‖L2(a,b), (2.1)

for every c > 0, with k(c) = 1
c + 12

(b−a)2 ;

(ii) there exists a constant c > 0 such that

‖u′‖
L

4
3 (a,b)

≤ c
(

‖u‖
1
2

L1(a,b)‖u′′‖
1
2

L2(a,b) + ‖u‖L1(a,b)

)

. (2.2)

Finally, we prove the following interpolation inequality with boundary terms.
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Proposition 2.3 (Interpolation with boundary terms). For every a, b ∈ R with
a < b, u ∈ W 2,2(a, b) and c > 0, it holds

c

ˆ b

a

(u′)2 ≤ c3

ˆ b

a

(u′′)2 +

ˆ b

a

(u ± 1)2

c
+(c u′(b)+u(b)± 1)2 − (c u′(a)+u(a)± 1)2.

(2.3)

Proof. We have the following identity

c2(u′)2 + (c2u′′ + cu′ + u ± 1)2

= c4(u′′)2 + (u ± 1)2 + 2c(cu′ + u ± 1)(cu′′ + u′). (2.4)

Then, integrating both sides of (2.4) we find

ˆ b

a

c2(u′)2 dx +

ˆ b

a

(c2u′′ + cu′ + u ± 1)2 dx

=

ˆ b

a

(c4(u′′)2 + (u ± 1)2) dx + c
(

(cu′(b) + u(b) ± 1)2 − (cu′(a) + u(a) ± 1)2
)

.

Hence, dividing by c > 0 we get the thesis. ¤

3. Compactness

In this section we prove one of the main result of this paper, namely the existence
of a constant k0 > 0 such that, for every k < k0, the functional F k

ε satisfy the same
compactness property of Proposition 2.1. As an easy consequence, we then obtain
the existence of the solution to the optimal profile problem for F k

ε .

3.1. Nonlinear interpolation and compactness. In this subsection we prove a
nonlinear version of the standard L2-interpolation inequality of type (i) Proposi-
tion 2.2.

Lemma 3.1 (Nonlinear interpolation). There exists a constant k0 > 0 such that

k0

ˆ b

a

(u′)2 dx ≤ 1

(b − a)2

ˆ b

a

W (u) dx + (b − a)2
ˆ b

a

(u′′)2 dx, (3.1)

for every u ∈ W 2,2(a, b) and for every a, b ∈ R with a < b.

Proof. Up to translations and rescalings, it is enough to prove (3.1) for (a, b) =
(0, 1). To this end, we set

m :=

ˆ 1

0

u′ dx.

From the fundamental theorem of calculus, it follows that,

|u′ − m| ≤
ˆ 1

0

|u′′| dx, (3.2)

and hence
ˆ 1

0

(u′)2 dx ≤ 2

ˆ 1

0

(u′′)2 dx + 2m2.

Therefore, to prove (3.1) it is enough to show the existence of a constant c > 0 such
that

m2 ≤ c

ˆ 1

0

(

W (u) + (u′′)2
)

dx. (3.3)
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If m2 ≤ 4
´ 1

0
(u′′)2 dx, then (3.3) clearly follows. If this is not the case, applying

Jensen’s inequality, we have

|m| ≥ 2

ˆ 1

0

|u′′| dx.

Then, from (3.2), we get
|m|
2

≤ |u′|. (3.4)

This implies that u is strictly monotone in (0, 1) and, therefore, u does not vanish
in at least one of the two intervals (0, 1/2) and (1/2, 1). To fix the ideas, we assume
that u > 0 in (0, 1/2) (the case u < 0 is analogous). Hence, by (2.1) applied for
instance with c = 1 (we set below C := 2 · 74) and hypothesis (w), we have

ˆ
1
2

0

(u′)2 dx ≤
ˆ

1
2

0

(

C (u − 1)2 + 2 (u′′)2
)

dx ≤
ˆ 1

0

(

C

cW
W (u) + 2 (u′′)2

)

dx.

(3.5)

Since (3.4) implies m2 ≤ 8
´

1
2

0
(u′)2 dx, from (3.5) we get (3.3) and thus the thesis.

¤

Remark 3.2. Dividing R into disjoint intervals of length 1 and applying (3.1) we
may deduce

k0

ˆ

R

(u′)2 dx ≤
ˆ

R

(W (u) + (u′′)2) dx, (3.6)

for every u ∈ W 2,2
loc (R) with k0 > 0 as in Lemma 3.1.

Now we prove that Lemma 3.1 together with a simple decomposition argument
yield a lower bound for F k

ε in terms of the functional Eε.

Proposition 3.3. For every interval I and δ > 0, there exists ε0 > 0 such that,
for every k > 0, 0 < ε ≤ ε0, and u ∈ L1(I),

(

1 − k

k0
− δ

)

Eε(u, I) ≤ F k
ε (u, I). (3.7)

Proof. A change of variable gives

F k
ε (u, I) =

ˆ

I/ε

(W (v) − k(v′)2 + (v′′)2) dx,

where I/ε = {x ∈ R : ε x ∈ I} and v(x) := u(εx). Set nε :=
[ |I|

ε

]

; we divide the

interval I/ε into nε pairwise disjoint open intervals Ii
ε, i = 1, . . . , nε, of length |I|

ε nε
.

Then, by applying (3.1) on each interval Ii
ε we get

F k
ε (u, I) =

nε
∑

i=1

ˆ

Ii
ε

(W (v) − k(v′)2 + (v′′)2) dx

≥
(

1 − k

k0

ε2n2
ε

|I|2
)

ˆ

I/ε

W (v) dx +
(

1 − k

k0

|I|2
ε2n2

ε

)

ˆ

I/ε

(v′′)2 dx.

Since

lim
ε→0

εnε

|I| = 1,

we get the thesis just by unscaling. ¤
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The following compactness result is now an immediate consequence of Proposi-
tion 3.3 and Proposition 2.1.

Proposition 3.4 (Compactness). Let k < k0 and let (uε) ⊂ W 2,2(I) be a sequence
satisfying supε F k

ε (uε) < +∞. Then there exist a subsequence (not relabeled) and a
function u ∈ BV (I; {±1}) such that uε → u in L1(I).

Remark 3.5. Proposition 3.3 can be easily generalized to any space dimension n.
Namely, an immediate consequence of it is the existence of a constant kn ≥ k0/n > 0
such that, for every smooth bounded domain Ω ⊂ R

n, u ∈ W 2,2(Ω), k < kn, and ε
small

k

ˆ

Ω

ε |∇u|2 dx ≤
ˆ

Ω

(

W (u)

ε
+ ε3 |∇2u|2

)

dx. (3.8)

Indeed, by a standard covering argument it is enough to discuss the case of a
rectangle Ω = I1 × · · · × In and then the conclusion follows by an easy application
of Fubini’s Theorem. Let Îi = I1 × · · · × Ii−1 × Ii+1 × · · · × In and k = k0−δ

n , we
have

ˆ

Ω

k0 − δ

n
ε |∇u|2 =

n
∑

i=1

ˆ

Îi

ˆ

Ii

k0 − δ

n
ε |∂iu|2 dxidx̂i

(3.7)

≤
n

∑

i=1

ˆ

Îi

ˆ

Ii

(

W (u)

n ε
+

ε3

n
|∂iiu|2

)

dxidx̂i

≤
ˆ

Ω

(

W (u)

ε
+ ε3 |∇2u|2

)

dx.

Here we briefly comment on the assumption (w) on the double-well potential W .
We show with two explicit examples that the two following conditions

(i) lim inf |s|→+∞
W (s)

s2 > 0,

(ii) lim infs→0
W (±1+s)

s2 > 0,

(which together are equivalent to (w)) are necessary to establish (3.7).
Indeed, let l, α > 0 be two parameters to be fixed later and such that (6 l ε)−1 ∈

N. Consider the two families of periodic functions, of period (6 l ε)−1, (uε) and (vε)
defined in (0, 1) in the following way. On a half period, both uε and vε are defined
by a line of slope α/ε, an arc of parabola, and another line of slope −α/ε, as in the
Figure 1; moreover, uε(0) = 0 and vε(0) = 1 .

For the sake of simplicity, to shorten the present computation, assume that W
is monotone on the intervals (−∞,−1), (−1, 0), (0, 1), (1,+∞) (note that this
hypothesis is not necessary).

It is readily verified that:

(a) |u′′
ε | = |v′′

ε | ≤ 2 α
l ε2 always and |u′

ε| = |v′
ε| = α

ε on a set of measure 2
3 ,

(b) |uε| ≤ 2 l α, so that, for l α large enough, we have W (uε) ≤ W (2 l α),

(c) and |vε − 1| ≤ 2 l α, so that W (vε) ≤ W (1 + 2 l α).
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arc of parabola

slope α
ε slope −α

ε

lεlε lε

uε

vε

0

1

Figure 1. The functions uε and vε.

Now, if (3.7) holds true, from estimates (a), (b), (c) it follows that

k0 ≤

ˆ 1

0

(

ε3 (u′′
ε )2 +

W (uε)

ε

)

dx

ˆ 1

0

ε (u′
ε)

2 dx

≤
ε3

(

2α

l ε2

)2

+
W (2 l α)

ε

ε
(α

ε

)2 2

3

=
6

l2
+

3

2

W (2 l α)

α2
,

k0 ≤

ˆ 1

0

(

ε3 (v′′
ε )2 +

W (vε)

ε

)

dx

ˆ 1

0

ε (v′
ε)

2 dx

≤
ε3

(

2α

l ε2

)2

+
W (1 + 2 l α)

ε

ε
(α

ε

)2 2

3

=
6

l2
+

3

2

W (1 + 2 l α)

α2
.

Then, if (i) does not hold true, taking the limit as α goes to +∞ and then as l goes
to +∞ gives contradiction. Similarly, if (ii) is not satisfied, taking the limit as α
goes to 0 and then l tends to +∞ yields a contradiction as well.

3.2. Optimal profile problem. As a consequence of Lemma 3.1, we prove here
the existence of a solution to the optimal profile problem for F k

ε , with k < k0.
Specifically, we consider the following set of functions

A :=
{

f ∈ W 2,2
loc (R) : f(x) = 1 if x > T, f(x) = −1 if x < −T, for some T > 0

}

and we define

mk := inf

{
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx : f ∈ A
}

. (3.9)

We have the following result.

Proposition 3.6 (Existence of an optimal profile). Let k0 be as in Lemma 3.1.
For every k < k0 the constant mk is positive and

mk = min

{
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx : f ∈ W 2,2
loc (R),

lim
x→−∞

f(x) = −1, lim
x→+∞

f(x) = 1

}

.
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Before proving Proposition 3.6, we introduce the functions Gk, Hk : R
2 −→ R given

by

Gk(w, z) := inf

{
ˆ 1

0

(

W (g) − k(g′)2 + (g′′)2
)

dx : g ∈ C2([0, 1]),

g(0) = w, g(1) = 1, g′(0) = z, g′(1) = 0

}

and

Hk(w, z) := inf

{
ˆ 1

0

(

W (h) − k(h′)2 + (h′′)2
)

dx : h ∈ C2([0, 1]),

h(0) = −1, h(1) = w, h′(0) = 0, h′(1) = z

}

.

If G := G0 and H := H0 are the corresponding functions for k = 0 it is easy to
check (see also [3, Section 2]) that

lim
(w,z)→(1,0)

G(w, z) = lim
(w,z)→(−1,0)

H(w, z) = 0.

Then, by the positivity of k and by virtue of (3.1) we have
(

1 − k

k0

)

G ≤ Gk ≤ G and
(

1 − k

k0

)

H ≤ Hk ≤ H,

which lead immediately to

lim
(w,z)→(1,0)

Gk(w, z) = lim
(w,z)→(−1,0)

Hk(w, z) = 0 ∀ k < k0. (3.10)

Proof of Proposition 3.6. By virtue of the nonlinear interpolation inequality of Lemma
3.1, the proof of this proposition is an easy modification of that of [3, Lemma 2.5].

The positivity of mk follows from Remark 3.2 and [3, Lemma 2.5], since

mk = inf
f∈A

ˆ

R

(W (f)− k(f ′)2 + (f ′′)2) dx ≥
(

1− k

k0

)

inf
f∈A

ˆ

R

(W (f) + (f ′′)2) dx > 0.

Now we prove that mk = m̃k, where

m̃k := inf

{
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx : f ∈ W 2,2
loc (R),

lim
x→−∞

f(x) = −1, lim
x→+∞

f(x) = 1

}

.

Clearly, mk ≥ m̃k. For the converse inequality, fix σ > 0 and let f be an admissible
function for m̃k such that

ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx ≤ m̃k + σ.

We show that it is possible to find two sequences (xj) and (yj) converging to +∞
and −∞ respectively, and such that

|f ′(xj)| + |f ′(yj)| + |f(xj) − 1| + |f(yj) + 1| → 0,

as j → +∞. Indeed, in view of Remark 3.2 we have

(k0 − k)

ˆ

R

(f ′)2 dx ≤
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx ≤ m̃k + σ.
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Thus, since k < k0 we deduce that f ′ ∈ L2(R) and so there exist two sequences of
points xj → +∞ and yj → −∞ such that

lim
j→+∞

f ′(xj) = lim
j→−∞

f ′(yj) = 0.

Let g and h be two admissible functions for Gk(f(xj), f
′(xj)) and Hk(f(yi), f

′(yi)),
respectively, such that

ˆ 1

0

(W (g) − k(g′)2 + (g′′)2) dx ≤ Gk(f(xj), f
′(xj)) + σ,

ˆ 1

0

(W (h) − k(h′)2 + (h′′)2) dx ≤ Hk(f(yj), f
′(yj)) + σ,

and set

gj(x) := g(x − xj), hj(x) := h(x − yj + 1).

We define

fj(x) :=































1 if x ≥ xj + 1,

gj(x) if xj ≤ x ≤ xj + 1,

f(x) if yj ≤ x ≤ xj ,

hj(x) if yj − 1 ≤ x ≤ yj ,

−1 if x ≤ yj − 1.

Clearly, fj is a test function for mk and for k < k0 we have

m̃k + σ ≥
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx ≥
ˆ xj

yj

(W (f) − k(f ′)2 + (f ′′)2) dx

=

ˆ

R

(W (fj) − k(f ′
j)

2 + (f ′′
j )2) dx −

ˆ xj+1

xj

(W (gj) − k(g′j)
2 + (g′′j )2) dx

−
ˆ yj

yj−1

(W (hj) − k(h′
j)

2 + (h′′
j )2) dx

≥ mk − Gk(f(xj), f
′(xj)) − Hk(f(yj), f

′(yj)) − 2σ.

Hence we conclude letting j → +∞ and appealing to (3.10).
Finally, it remains to prove that m̃k admits a minimizer. To this end, let (fn) ⊂

W 2,2
loc (R) be a sequence which realizes m̃k. Then, by Remark 3.2 we have

lim
n→+∞

(

1− k

k0

)

ˆ

R

(W (fn)+(f ′′
n )2) dx ≤ lim

n→+∞

ˆ

R

(W (fn)−k(f ′
n)2+(f ′′

n )2) dx = m̃k.

Hence, again by interpolation and appealing to the Sobolev embedding theorem,
we deduce that (up to subsequence) the sequence of C1 functions (fn) converges in

W 1,∞
loc (R) to a C1 function f with

ˆ

R

(W (f) + (f ′′)2) dx < +∞.

By (3.6), it follows that

0 ≤
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx < +∞. (3.11)
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For every T > 0, by the W 1,∞
loc (R)-convergence of (fn), Fatou Lemma and the lower

semicontinuity of the L2-norm of the second derivative, we have
ˆ T

−T

(W (f) − k(f ′)2 + (f ′′)2) dx ≤ lim inf
n→+∞

ˆ T

−T

(W (fn) − k(f ′
n)2 + (f ′′

n )2) dx

≤ lim inf
n→+∞

ˆ

R

(W (fn) − k(f ′
n)2 + (f ′′

n )2) dx, (3.12)

where the last inequality in (3.12) is a consequence of (3.6) written for the two half
lines (−∞, T ) and (T,+∞). Then, taking into account (3.11) and passing to the
sup on T > 0 we get
ˆ

R

(W (f)−k(f ′)2+(f ′′)2) dx ≤ lim inf
n→+∞

ˆ

R

(W (fn)−k(f ′
n)2+(f ′′

n )2) dx = m̃k. (3.13)

Thus, it remains only to show that the limit function f is admissible. Since this is
a direct consequence of the third step of the proof of [3, Lemma 2.5], we leave some
minor details to the reader and conclude the proof. ¤

4. Γ-convergence

On account of the compactness result Proposition 3.4, in this section we compute
the Γ-limit of the functionals F k

ε when k < k0.

Theorem 4.1. For every k < k0, the sequence (F k
ε ) Γ(L1)-converges to the func-

tional F k : L1(I) −→ [0,+∞] given by

F k(u) :=

{

mk #(S(u)) if u ∈ BV (I; {±1}),
+∞ if u ∈ L1(I) \ BV (I; {±1}), (4.1)

where #(S(u)) is the number of jumps of u in I and mk is as in (3.9).

Proof. We divide the proof into two parts, proving the Γ-liminf and the Γ-limsup
inequality, respectively.

Part I: Γ-liminf. Let u ∈ L1(I) and (uε) ⊂ L1 such that uε → u. We want to
show that

lim inf
ε→0

F k
ε (uε) ≥ mk#(S(u)). (4.2)

Clearly, it is enough to consider the case limε→0 F k
ε (uε) = lim infε→0 F k

ε (uε) < +∞.
Therefore, by virtue of Proposition 3.4, u ∈ BV (I; {±1}). Moreover, from (3.7) we

immediately deduce ‖u′′
ε‖L2(I) ≤ cε−

3
2 , so that (2.2) gives

ε u′
ε → 0 in L1(I). (4.3)

Let #(S(u)) := N , S(u) := {s1, . . . , sN} with s1 < s2 < . . . < sN , and set
δ0 := min{si+1−si : i = 1, . . . N−1}. Fix 0 < δ < δ0/2. Then (up to subsequences)

uε → u, εu′
ε → 0 a.e. in B(si, δ),

for every i = 1, . . . , N . Hence if we let σ > 0, for every i = 1, . . . , N we may find
two points x+

ε,i, x
−
ε,i ∈ B(si, δ) such that, for sufficiently small ε > 0,

|uε(x
+
ε,i) − 1| < σ, |uε(x

−
ε,i) + 1| < σ, |εu′

ε(x
+
ε,i)| < σ, |εu′

ε(x
+
ε,i)| < σ. (4.4)

To fix the ideas, without loss of generality, suppose x−
ε,i < x+

ε,i and set

ĝε,i(x) := gε,i

(

x −
x+

ε,i

ε

)

and ĥε,i(x) := hε,i

(

x −
x−

ε,i + 1

ε

)

,
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with gε,i and hε,i admissible for Gk(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) and Hk(uε(x

−
ε,i), εu

′
ε(x

−
ε,i)),

respectively, and satisfying

ˆ 1

0

(

W (gε,i) − k(g′ε,i)
2 + (g′′ε,i)

2
)

dx ≤ Gk(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) +

ε

2

and
ˆ 1

0

(

W (hε,i) − k(h′
ε,i)

2 + (h′′
ε,i)

2
)

dx ≤ Hk(uε(x
−
ε,i), εu

′
ε(x

−
ε,i)) +

ε

2
.

Now we suitably modify the sequence (uε) “far” from each jump point si. To this
end, for every i = 1, . . . , N we define on R the functions vε,i as

vε,i(x) :=







































1 if x ≥ x+

ε,i

ε + 1

ĝε,i(x) if
x+

ε,i

ε ≤ x ≤ x+

ε,i

ε + 1

uε(εx) if
x−

ε,i

ε ≤ x ≤ x+

ε,i

ε

ĥε,i(x) if
x−

ε,i

ε − 1 ≤ x ≤ x−
ε,i

ε

−1 if x ≤ x+

ε,i

ε − 1.

Since each vε,i is a test function for mk, we have

mk ≤
ˆ

R

(W (vε,i) − k(v′
ε,i)

2 + (v′′
ε,i)

2) dx =

ˆ

x
+
ε,i

ε
+1

x
−

ε,i

ε
−1

(W (vε,i) − k(v′
ε,i)

2 + (v′′
ε,i)

2) dx

≤
ˆ x+

ε,i

x−
ε,i

(W (uε)

ε
− kε(u′

ε)
2 + ε3(u′′

ε )2
)

dx+

+ Gk(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) + Hk(uε(x

−
ε,i), εu

′
ε(x

−
ε,i)) + ε.

Then, as the intervals (x−
ε,i, x

+
ε,i) are pairwise disjoint for i = 1, . . . , N , in view of

the non-negative character of F k
ε for k < k0, we get

lim
ε→0

F k
ε (uε) ≥ lim inf

ε→0

N
∑

i=1

ˆ x+

ε,i

x−
ε,i

(W (uε)

ε
− kε(u′

ε)
2 + ε3(u′′

ε )2
)

dx

≥N mk−lim sup
ε→0

N
∑

i=1

(

Gk(uε(x
+
ε,i), εu

′
ε(x

+
ε,i)) + Hk(uε(x

−
ε,i), εu

′
ε(x

−
ε,i))

)

.

Finally, letting σ → 0+, we conclude by (3.10).

Part II: Γ-limsup. Let u ∈ BV (I; {±1}) with S(u) as in Part I, and set s0 := α,

sN+1 := β. For i = 1, . . . , N define Ii := [ si−1+si

2 , si+si+1

2 ] and δ0 := mini{si+1−si}.
Fix 0 < δ < δ0 and f ∈ A such that f(x) = 1 if x > T , f(x) = −1 if x < −T ,

for some T > 0, and
ˆ

R

(W (f) − k(f ′)2 + (f ′′)2) dx ≤ mk +
δ

N
.

Starting from this f we construct a recovery sequence (uε) for our Γ-limit.
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There exists ε0 > 0 such that for every 0 < ε < ε0 we have δ
2ε > T . For ε < ε0,

we define

uε :=



































f
(x − si

ε

)

if x ∈ Ii and [u](si) > 0,

f
(

− x − si

ε

)

if x ∈ Ii and [u](si) < 0,

u(x) otherwise,

where [u](si) := u(si) − u(si−1), for i = 2, . . . , N .
It can be easily shown that (uε) ⊂ W 2,2(I) and uε → u in L1(I). Moreover,

lim
ε→0

F k
ε (uε) = lim

ε→0

N
∑

i=1

ˆ

Ii

(W (uε)

ε
− kε(u′

ε)
2 + ε3(u′′

ε )2
)

dx

= lim
ε→0

{

∑

i=1,...,N : [u](si)>0

ˆ

Ii/ε

(W (f(x)) − k(f ′(x))2 + (f ′′(x))2) dx

+
∑

i=1,...,N : [u](si)<0

ˆ

Ii/ε

(W (f(−x)) − k(f ′(−x))2 + (f ′′(−x))2) dx
}

≤ mkN + δ = mk#S(u) + δ,

hence we conclude by the arbitrariness of δ > 0. ¤

5. Phase transitions vs. oscillations

Throughout the last two sections we fix W (s) = (s2−1)2

2 .
In the spirit of Mizel, Peletier and Troy [10], in this section we provide a com-

pactness result, alternative to that of Proposition 3.4, which asserts the existence
of a range of values of k such that sequences with equi-bounded energy F k

ε , whose
derivative vanishes at least in one point of I, do not develop oscillations. The rea-
son for this new compactness result, as explained in the Introduction, is to give
reasonable bounds on these values of k.

The key parameter for our analysis is the following

k1 := inf
L>0

inf
u∈XL

0

RL
0 (u), (5.1)

where

XL
0 :=

{

u ∈ W 2,2(0, L) : lim
x→0

u′(x) = lim
x→L

u′(x) = 0, u′ > 0
}

,

and for every interval (a, b) and every u ∈ W 2,2(a, b), Rb
a(u) is the Rayleigh quotient

defined as

Rb
a(u) :=



























ˆ b

a

(W (u) + (u′′)2) dx

ˆ b

a

(u′)2 dx

if

ˆ b

a

(u′)2 dx > 0,

+∞ otherwise.

(5.2)

We note that for k > k1 there are functions for which the functionals F k
ε are

non-positive. Indeed, given k > k1, there exist L > 0 and u ∈ XL
0 such that

RL
0 (u) < k. (5.3)
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Let

v(x) :=

{

u(x) in (0, L),

u(2L − x) in (L, 2L).

We denote by w the (2L)-periodic extension of v to R. Note that by (5.3), for every
m ∈ Z,

F k
ε

(

w
(x

ε

)

, (mεL, (m + 1) εL)
)

< 0.

Then, it follows that for any interval (a, b)

lim
ε→0

F k
ε

(

w
(x

ε

)

, (a, b)
)

= lim
ε→0

b − a

εL
F k

ε

(

w
(x

ε

)

, (0, ε L)
)

= −∞.

That is, there are minimizers of F k
ε developing an oscillating structure, finer and

finer as ε approaches 0. A thorough study of oscillating minimizers has been carried
out in [10].

As a consequence, we have that k1 ≥ k0 > 0, where k0 is as in Lemma 3.1.
Indeed, if this is not the case, we can take k with k1 < k < k0. Then, reasoning as
above, since k > k1, there exists w ∈ W 2,2

loc (R) satisfying

lim
ε→0

F k
ε

(

w
(x

ε

)

, I
)

= −∞, for every interval I;

while, by Proposition 3.3, since k < k0, we also have

lim inf
ε→0

F k
ε

(

w
(x

ε

)

, I
)

≥ 0,

and thus a contradiction.
On the other hand, if we prescribe suitable boundary conditions (as, for instance,

periodic or homogeneous Neumann boundary conditions), in view of the analysis
performed in the previous sections, we can derive analogous Γ-convergence results
also for k < k1. To see this, consider a bounded interval I and a function u ∈
W 2,2(I). As W 2,2(I) ⊂ C1, 1

2 (I), we can write

I = {u′ = 0} ∪
⋃

i∈N

(ai, bi),

where (ai, bi) are the connected components of {u′ > 0} ∪ {u′ < 0}. Consider any
of these components (ai, bi): thanks to the boundary conditions, we have

u′(ai) = u′(bi) = 0.

Assume without loss of generality that u′ > 0 in (ai, bi) (the case u′ < 0 is analo-
gous). Since k < k1, it follows that

k ε

ˆ bi

ai

(u′)2 dx ≤
ˆ bi

ai

(W (u)

ε
+ ε3(u′′)2

)

dx.

Therefore, summing over i, we have

k ε

ˆ

I

(u′)2 dx =
∑

i∈N

k ε

ˆ bi

ai

(u′)2 dx

≤
∑

i∈N

ˆ bi

ai

(W (u)

ε
+ ε3(u′′)2

)

dx

≤
ˆ

I

(W (u)

ε
+ ε3(u′′)2

)

dx.
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This implies that

F k
ε (u, I) ≥

(

1 − k

k1

)

Eε(u, I). (5.4)

Hence, reasoning as in Theorem 4.1, we can rule out the development of oscillations
and prove an analogous Γ-convergence result.

On the contrary, if we do not impose any boundary conditions on u, the estimate
of the energy of u in a neighborhood of the extrema of the interval I requires a
further investigation.

Such investigation is the main issue of this section. The principal result as-
serts that for k < min{k1,

√
2/2}, even without prescribing boundary conditions,

minimizers of F k
ε cannot develop an oscillatory structure.

Proposition 5.1. Let k < min{k1,
√

2
2 }; let (uε) ⊂ W 2,2(I) be a sequence such

that u′
ε = 0 at least in one point of I and satisfying lim infε→0 F k

ε (uε) < +∞, then
there exist a subsequence (not relabeled) and a function u ∈ BV (I; {±1}) such that
uε → u in L1(0, 1).

The proof of Proposition 5.1 is a straightforward consequence of Proposition 5.3
below and of Proposition 2.1.

Remark 5.2. Unfortunately, at this stage it is still unclear if in Proposition 5.1
taking the minimum between k1 and

√
2/2 is really necessary or it is a technical

hypothesis.

Proposition 5.3. For every k < min{k1,
√

2
2 } there exist two constants Ck, C > 0

such that
F k

ε (u) ≥ CkEε(u) − C, (5.5)

for every ε > 0 and for every u ∈ W 2,2(I) such that u′ vanishes at least in one
point of I.

The following lemma is the main ingredient in the proof of Proposition 5.3.

Lemma 5.4. Let u ∈ W 2,2(I) and suppose that u′ vanishes at least in one point of
I := (α, β). Let b ∈ I be the smallest point such that u′(b) = 0. Then, there exists
s > 0 such that, for every η ∈ (0, 1) we have

F k
ε (u, (α, b)) ≥

(

1 − 2√
2
(1 + η)k

)

Eε(u, (α, b)) − 1

ηs
. (5.6)

Proof. By symmetry, we assume without loss of generality, that u′ > 0 in (α, b).
We start proving a preliminary inequality. We distinguish two cases:

(1) u > 0;
(2) there exists a ∈ (α, b) such that u(a) = 0.

In case (1), we employ the interpolation inequality (2.3) on the interval (α, b), with

c2 =
√

2ε2, obtaining

ε√
2

ˆ b

α

(u′)2 dx ≤ ε3

ˆ b

α

(u′′)2 +

ˆ b

α

(u − 1)2

2ε
+

4
√

2

2
(u(b) − 1)2. (5.7)

In case (2), let α < a < b < β and

u > 0 in (a, b), u′ > 0 in (α, b), u(a) = u′(b) = 0.

(see also Figure 2). We prove that an analogous of (5.7) holds true.
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u

α a b

Figure 2. The function u in a neighborhood of α.

Application of the interpolation inequality (2.3) on the interval (α, a), with c2 =√
2ε2, gives

ε√
2

ˆ a

α

(u′)2 dx ≤ ε3

ˆ a

α

(u′′)2 +

ˆ a

α

(u + 1)2

2ε
+

4
√

2

2
(

4
√

2εu′(a) + 1)2, (5.8)

while the same computation on (a, b) yields

ε√
2

ˆ b

a

(u′)2 dx ≤ ε3

ˆ b

a

(u′′)2 +

ˆ b

a

(u − 1)2

2ε
+

4
√

2

2
(u(b)−1)2−

4
√

2

2
(

4
√

2εu′(a)−1)2.

(5.9)
From (5.9) we deduce

4
√

2

2
(

4
√

2εu′(a)−1)2 ≤ ε3

ˆ b

a

(u′′)2− ε√
2

ˆ b

a

(u′)2 dx+

ˆ b

a

(u − 1)2

2ε
+

4
√

2

2
(u(b)−1)2.

(5.10)
Since for every δ ∈ (0, 1) we have (A + B)2 ≤ (1 + δ)A2 + (1 + 1

δ )B2, we may write

(
4
√

2εu′(a) + 1)2 ≤ (1 + δ)(
4
√

2εu′(a) − 1)2 + 4
(

1 +
1

δ

)

. (5.11)

Then, gathering (5.8) and (5.11), we find

ε√
2

ˆ a

α

(u′)2 dx ≤ ε3

ˆ a

α

(u′′)2 +

ˆ a

α

(u + 1)2

2ε
+

+
4
√

2

2
(1 + δ)(

√
2εu′(a) − 1)2 + 2

4
√

2
(

1 +
1

δ

)

. (5.12)

By estimating in (5.12) the quantity ( 4
√

2εu′(a) − 1)2 with (5.10), we get

ε√
2

ˆ a

α

(u′)2 dx ≤ (1 + δ)

ˆ b

α

( (u − 1)2

2ε
+ ε3(u′′)2

)

dx+

− ε

2

ˆ b

a

(u′)2 dx + C (u(b) − 1)2 +
C

δ
.

Thus finally

ε√
2

ˆ b

α

(u′)2 dx ≤ (1 + δ)

ˆ b

α

( (u − 1)2

2ε
+ ε3(u′′)2

)

dx + C u(b)2 +
C

δ
. (5.13)
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Then, in view of (5.7) and (5.13), to get the thesis for η = cδ (for a suitable constant
c > 0) it suffices to show that

u2(b) ≤ δ

ˆ b

α

(W (u)

ε
+ ε3(u′′)2

)

dx +
1

δ
(5.14)

for every δ ∈ (0, 1).
We prove (5.14). Consider ν ∈ (0, 1) to be fixed later. If b−a ≤ νε, by exploiting

u′(b) = 0 and the fundamental theorem of calculus, we have

u2(b) = (u(b) − u(a))2 ≤ (b − a)

ˆ b

a

(u′)2 dx ≤ (b − a)3
ˆ b

α

(u′′)2 dx

≤ ν3ε3

ˆ b

α

(u′′)2 dx,

from which (5.14) follows with δ = ν3.
So now suppose b − a > νε. Again we distinguish two cases. If

(u(b) − u(b − νε))2 >
u2(b)

4
, (5.15)

then, arguing as above we find

(u(b) − u(b − νε))2 ≤ ν3ε3

ˆ b

α

(u′′)2 dx,

thus (5.15) directly yields (5.14) again with δ = ν3.
If (5.15) does not hold true, then, from u2(b)/2 ≤ (u(b)−u(b−νε))2+u2(b−νε),

to get (5.14) it is enough to estimate u2(b − νε).

By the Young Inequality ν2A2 + B2

ν2 ≥ 2AB we have

ν2

ˆ b

α

W (u)

ε
dx +

1

ν2
≥ 2

(

ˆ b

α

W (u)

ε
dx

)1/2

≥ 2
(

ˆ b

b−νε

(u2 − 1)2

2ε
dx

)1/2

.

On the other hand, using the Jensen Inequality we find
ˆ b

b−νε

(u2 − 1)2 dx ≥ 1

νε

(

ˆ b

b−νε

(u2 − 1) dx
)2

.

Therefore

ν2

ˆ b

α

W (u)

ε
dx +

1

ν2
≥

√
2

ν1/2

ˆ b

b−νε

u2 − 1

ε
dx ≥

√
2ν1/2(u2(b − νε) − 1),

where in the last inequality we also used the fact that b − νε > a, and u, u′ > 0 in
(a, b). Eventually we have

u2(b − νε) ≤ ν3/2

√
2

ˆ b

α

W (u)

ε
dx +

1

ν5/2
+ 1.

Taking δ = c ν3/2 for a suitable constant c > 0, (5.14) follows and thus the thesis.
¤

Proof of Proposition 5.3. The proof is straightforward combining Lemma 5.4 and
(5.4). Indeed, let I = (α, β). Since W 2,2(I) ⊂ C1, 1

2 (I), we write

I = {u′ = 0} ∪
⋃

i∈N

(ai, bi),
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where (ai, bi) are the connected components of {u′ > 0} ∪ {u′ < 0}. Note that by
hypothesis {u′ = 0} 6= ∅. If we consider an interval (ai, bi) three cases can occur:

(1) ai = α;
(2) bi = β;
(3) α < ai < bi < β, and hence u′(ai) = u′(bi) = 0.

Notice that both cases (1) and (2) can occur at most for one value of i.
In cases (1) and (2), we use (5.6) (and its analogous involving a neighborhood

of β) and the hypothesis k <
√

2
2 to deduce that there exists a positive constant

Ck > 0 such that

F k
ε (u, (ai, bi)) ≥

(

1 − 2√
2
(1 + η)k

)

Eε(u, (ai, bi)) −
1

ηs
≥ Ck Eε(u, (ai, bi)) − C.

In case (3), by definition of k1, since u′(ai) = u′(bi) = 0, we immediately infer

F k
ε (u, (ai, bi)) ≥

(

1 − k

k1

)

Eε(u, (ai, bi)).

Summing over i and combining the two previous estimates, we deduce (5.3). ¤

6. Estimates on the interpolation constant k1

In order to compare our results with those by Mizel, Peletier and Troy [10], in
this section we provide two estimates, one from below and one from above, on the
interpolation constant k1, the one from above improving the bound in [10].

To establish an estimate from below on k1, the idea is to use the interpolation
inequality (i) of Proposition 2.2, which gives a good bound on k1 on “large” inter-
vals, and to combine it with an inequality of Jensen type which is good on “small”
intervals.

Let u ∈ XL
0 ; since u′(L) = 0 we get

ˆ L

0

(u′)2 dx ≤ L2

2

ˆ L

0

(u′′)2 dx. (6.1)

Indeed, for every x ∈ (0, L) we have

|u′(x)|2 ≤
(

ˆ L

x

|u′′(t)| dt
)2

≤ (L − x)

ˆ L

0

|u′′(t)|2 dt,

thus integrating on (0, L) gives (6.1).
Then, recalling the definition of RL

0 (u), by (6.1) we deduce the first bound

inf
u

RL
0 (u) ≥ 2

L2
, for every L > 0. (6.2)

Now let u ∈ XL
0 and assume moreover that u > 0 in (0, L) (the case u < 0 being

analogous). Then proposition 2.2 (i) gives
ˆ L

0

(u′)2 dx ≤ 4
(1

c
+

12

L2

)2
ˆ L

0

(u − 1)2

2
dx + 2 c2

ˆ L

0

(u′′)2 dx. (6.3)

Hence, (6.3) yields

RL
0 (u) ≥

(

max

{

2 c2, 4
(1

c
+

12

L2

)2
})−1

, for every c, L > 0. (6.4)



20 M. CICALESE, E.N. SPADARO AND C.I. ZEPPIERI

Now we prove (6.4) for a generic u ∈ XL
0 without any extra assumption on its

sign. Assume that there exits a ∈ (0, L) such that u(a) = 0. Then, we claim that

RL
0 (u) ≥ min

{

Ra
0(u), RL

a (u)
}

. (6.5)

Indeed, set

I1 :=

ˆ a

0

(

W (u) + (u′′)2
)

dx, I2 :=

ˆ L

a

(

W (u) + (u′′)2
)

dx,

J1 :=

ˆ a

0

(u′)2 dx, J2 :=

ˆ L

a

(u′)2 dx,

and note that J1, J2 6= 0. A straightforward algebraic computation gives

RL
0 (u) =

I1 + I2

J1 + J2
≥ min

{ I1

J1
,
I2

J2

}

,

from which (6.5) follows. Since u|(0,a) and u|(a,L) are now functions with constant

sign, we infer (6.4) for every u ∈ XL
0 .

Then, gathering (6.2) and (6.4), we conclude that

inf
u∈XL

0

RL
0 (u) ≥ max

{

2

L2
,

(

max

{

2c2, 4
(1

c
+

12

L2

)2
})−1

}

, ∀ c > 0. (6.6)

Optimizing on c, L > 0, and an explicit calculation yields

k1 ≥ inf
c,L>0

max

{

2

L2
,

(

max

{

2 c2, 4
(1

c
+

12

L2

)2
})−1

}

= 0, 141467.

Concerning the estimate from above, we test the value of the Rayleigh quotient
RL

0 on functions u which satisfy

u′(0) = u(L) = 0 and u′ < 0 in (0, L).

Indeed, if we set

v(x) :=

{

−u(x) in (0, L),

u(2L − x) in (0, L),

then, v ∈ X 2L
0 and R2L

0 (v) = RL
0 (u). To make the formula easier, we consider a

piecewise defined function consisting of an arc of parabola and a line:

u(x) =

{

−a
2 x2 + h if 0 ≤ x ≤ δ

−a δ x + h + a δ2

2 if δ ≤ x ≤ h
a δ + δ

2 .

It is easy to verify that u is a continuous differentiable function in (0, L), with
L = h

a δ + δ
2 , and u′(0) = 0 = u(L).
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Straightforward (but long) computations of the different terms in the energy lead
to the following result:

I1 :=

ˆ L

0

W (u) =
h

2 a δ
+

δ

4
− δ h2

2
+

a δ3 h

12
+

δ h4

4
− a δ3 h3

12
+

a2 δ5 h2

40
+

− a3 δ7 h

224
+

a4 δ9

2880
− a2 δ5

120
− h3

3 a δ
+

h5

10α δ
;

I2 :=

ˆ L

0

(u′′)2 = a2 δ;

I3 :=

ˆ L

0

(u′)2 =
a δ

6
(6h − a δ2).

Now, minimizing the ratio I1+I2

I3
in a, δ, h > 0, the definition of k1 and an explicit

computation yield

k1 = inf
a,L,h>0

I1 + I2

I3
≤ 0.9385,

which improves the estimate contained in [10] (0.9481) of the lower bound for which
oscillations occur.
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