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1. Introduction

In this paper we study the dynamic crack growth in viscoelastic materials with long memory. When no
crack is present, important contributions in the theory of linear viscoelasticity are due to such scientists
as Maxwell, Kelvin, and Voigt. Their names are associated with two well-known models of dissipative
solids which can be described in terms of a spring and a dash-pot in series (Maxwell’s model) or in parallel
(Kelvin-Voigt’s model), see [16]. Boltzmann was the first to develop a three-dimensional theory of isotropic
viscoelasticity in [2], and later Volterra in [17] obtained similar results for anisotropic solids.

In literature we can find two different classes of materials in the case of viscoelastic deformations: materials
with short memory and materials with long memory. The first case is associated to a local model, which
means that the state of stress at the instant t only depends on the strain at that instant. In the second
case, instead, the associated model is non-local in time, in the sense that the state of stress at the instant t
depends also on the past history up to time t of the strain. According to [11, 12], in the case of viscoelastic
materials with long memory the general stress-strain relation is the following

σ(t, x) := G(0, x)∇u(t, x) +

∫ t

−∞
G′(t− τ, x)∇u(τ, x)dτ, t ∈ (−∞, T ], x ∈ Ω,

for a suitable choice of the memory kernel G, and with some prescribed boundary conditions.
To describe our model we start with a short description of the standard approach to dynamic fracture in

the case of linearly elastic materials with no viscosity. In this situation, the deformation of the elastic part
of the material evolves according to elastodynamics; for an antiplane displacement, elastodynamics together
with the stress-strain relation σ(t, x) = ∇u(t, x), leads to the following wave equation

ü(t, x)− div σ(t, x) = f(t, x), t ∈ [0, T ], x ∈ Ω \ Γt, (1.1)

with some prescribed boundary and initial conditions. Here, Ω ⊂ Rd is a bounded open set, which represents
the cross-section of the body in the reference configuration, Γt ⊂ Ω models the cross-section of the crack at
time t, u(t, ·) : Ω \Γt → R is the antiplane displacement, and f(t, ·) : Ω \Γt → R is a forcing term. From the
mathematical point of view, a first step towards the study of the evolution of fractures is to solve the wave
equation (1.1) when the time evolution of the crack is assigned, see for example [3, 7, 8, 14].

In this paper, we consider Maxwell’s model in the case of dynamic fracture, when the crack evolution
t 7→ Γt is prescribed. In this case, the memory kernel G has an exponential form (see for example [16]), and
the displacement satisfies the following equation

ü(t, x)− (c1 + c2)∆u(t, x) + c2

∫ t

−∞
e−(t−τ)∆u(τ, x)dτ = f(t, x), t ∈ (−∞, T ], x ∈ Ω \ Γt, (1.2)
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where c1 and c2 are two positive constants. As in [6, 11], we suppose that the past history of the displacement
up to time 0 is already known, therefore, it is convenient to write equation (1.2) as

ü(t, x)− (c1 + c2)∆u(t, x) + c2

∫ t

0

e−(t−τ)∆u(τ, x)dτ

= f(t, x)− c2
∫ 0

−∞
e−(t−τ)∆v(τ, x)dτ, t ∈ [0, T ], x ∈ Ω \ Γt, (1.3)

where the function v represents the past history, that is v(t, x) = u(t, x) for every t ∈ (−∞, 0] and x ∈ Ω\Γt.
The main results of this paper are Theorem 4.1 and Theorem 5.3, in which we prove, by two different

methods, the existence of a solution to (1.3). This is done not only in the antiplane case, but also in the
more general case of linear elasticity in dimension d; that is, when the displacement is vector-valued and the
elastic energy depends on the symmetrized gradient of the displacement.

The first method, considered in Theorem 4.1, is based on a generalization of Lax-Milgram’s Theorem ([13,
Chapter 3, Theorem 1.1]). We follow the lines of the proof of Theorem 2.1 in [5]. In doing so, the main
difficulty is given by the fact that the set Ω \Γt, where equation (1.3) holds, depends on time. This requires
the introduction of suitable function spaces used to adapt the proof in [5].

The second method, provided by Theorem 5.3, is based on a time discretization scheme that yields a
solution which, in addition, satisfies the energy-dissipation inequality (5.51). This procedure, adopted in [7]
for wave equation (1.1) in a time-dependent domain, consists of the following steps: time discretization,
construction of an approximate solution, discrete energy estimates, and passage to the limit.

The main difficulty in applying this procedure, in the same way it was done in [7], is the identification
of the term in the energy-dissipation inequality which corresponds to the non–local in time viscous term∫ t

0
e−(t−τ)∆u(τ, x)dτ appearing in (1.3).
To fix this issue, we introduce an auxiliary variable w and we transform our equation (1.3) into an

equivalent system (see Definition 5.1) of two equations in the two variables u and w, without long memory
terms, which has to be solved on the time-dependent domain Ω \ Γt. The advantage of this strategy lies in
the fact that we transform a non-local model (the equation) into a local one (the system).

We discretize the time interval [0, T ] by using the time step τn := T
n . To define the approximate solution

(un, wn) at time (k+1)τn, we solve an incremental problem (see (5.13)) depending on the values of (un, wn) at
times (k−1)τn and kτn. Since the new system has a natural notion of energy, we also obtain a discrete energy
estimate for (un, wn). Then, we extend (un, wn) to the whole interval [0, T ] by a suitable interpolation, and
by using the energy estimates together with a compactness result we pass to the limit, along a subsequence
of (un, wn). It is now possible to prove that the limit of this subsequence of (un, wn) is a solution to the
system, which is equivalent to our equation (1.3). As a byproduct, from the discrete energy estimates we
obtain the energy-dissipation inequality (5.51).

The paper is organized as follows. In Section 2 we fix the notation adopted throughout the paper. In
Section 3 we list the standard assumptions on the family of cracks {Γt}t∈[0,T ], we state the evolution problem
in the general case, and we specify the notion of solution to the problem. In Section 4 and 5 we deal with the
existence of a solution to the viscoelastic dynamic model; in particular in Section 4, we provide a solution
by means of a generalization of Lax-Milgram’s theorem by Lions. After that, in Section 5, as previously
anticipated, we define a system equivalent to the equation. In particular, in Subsection 5.1 we implement the
time discretization method on such a system, and we conclude with Subsection 5.2 by showing the validity
of the energy-dissipation inequality, and of the initial conditions.

2. Notation

In this section we fix some notation that will be used throughout the paper. The space of m× d matrices
with real entries is denoted by Rm×d; in case m = d, the subspace of symmetric matrices is denoted by Rd×dsym.

Given a function u : Rd → Rm, we denote its Jacobian matrix by ∇u, whose components are (∇u)ij := ∂jui
for i = 1, . . . ,m and j = 1, . . . , d; when u : Rd → Rd, we use eu to denote the symmetric part of the gradient,
namely eu := 1

2 (∇u + ∇uT ). Given a tensor field A : Rd → Rm×d, by divA we mean its divergence with

respect to rows, namely (divA)i :=
∑d
j=1 ∂jAij for i = 1, . . . ,m.

We denote the d-dimensional Lebesgue measure by Ld and the (d− 1)-dimensional Hausdorff measure by
Hd−1; given a bounded open set Ω with Lipschitz boundary, by ν we mean the outer unit normal vector
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to ∂Ω, which is defined Hd−1-a.e. on the boundary. The Lebesgue and Sobolev spaces on Ω are defined as
usual; the boundary values of a Sobolev function are always intended in the sense of traces.

The norm of a generic Banach space X is denoted by ‖ · ‖X ; when X is a Hilbert space, we use (·, ·)X
to denote its scalar product. We denote by X ′ the dual of X and by 〈·, ·〉X′ the duality product between
X ′ and X. Given two Banach spaces X1 and X2, the space of linear and continuous maps from X1 to X2

is denoted by L (X1;X2); given A ∈ L (X1;X2) and u ∈ X1, we write Au ∈ X2 to denote the image of u
under A.

Moreover, given an open interval (a, b) ⊂ R and p ∈ [1,∞], we denote by Lp(a, b;X) the space of Lp

functions from (a, b) to X; we use Hk(a, b;X) to denote the Sobolev space of functions from (a, b) to X with
k derivatives in L2(a, b;X). Given u ∈ H1(a, b;X), we denote by u̇ ∈ L2(a, b;X) its derivative in the sense
of distributions. When dealing with an element u ∈ H1(a, b;X) we always assume u to be the continuous
representative of its class, and therefore, the pointwise value u(t) of u is well defined for every t ∈ [a, b]. We
use C0

w([a, b];X) to denote the set of weakly continuous functions from [a, b] to X, namely, the collection of
maps u : [a, b] → X such that t 7→ 〈x′, u(t)〉X′ is continuous from [a, b] to R, for every x′ ∈ X ′. We adopt
the notation Lip([a, b];X) to denote the space of Lipschitz functions from the interval [a, b] into the Banach
space X.

3. Formulation of the evolution problem, notion of solution

Let T be a positive real number and d ∈ N. Let Ω ⊂ Rd be a bounded open set (which represents the
reference configuration of the body) with Lipschitz boundary. Let ∂DΩ be a (possibly empty) Borel subset
of ∂Ω, on which we prescribe the Dirichlet condition, and let ∂NΩ be its complement, on which we give the
Neumann condition. Let Γ ⊂ Ω be the prescribed crack path. We assume the following hypotheses on the
geometry of the cracks:

(E1) Γ is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;
(E2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ is the union

of two disjoint open sets U+ and U− with Lipschitz boundary;
(E3) {Γt}t∈(−∞,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for every −∞ < s ≤ t ≤ T .

Notice that the set Γt represents the crack at time t. Thanks to (E1)–(E3) the space L2(Ω\Γt;Rd) coincides
with L2(Ω;Rd) for every t ∈ (−∞, T ]. In particular, we can extend a function u ∈ L2(Ω \ Γt;Rd) to a
function in L2(Ω;Rd) by setting u = 0 on Γt. Since Hd−1(Γ ∩ ∂Ω) = 0 the trace of u ∈ H1(Ω \ Γ;Rd) is
well defined on ∂Ω. Indeed, we may find a finite number of open sets with Lipschitz boundary Uj ⊂ Ω \ Γ,
j = 1, . . . k, such that ∂Ω \ Γ ⊂ ∪kj=1∂Uj . There exists a positive constant C, depending only on Ω and Γ,
such that

‖u‖L2(∂Ω;Rd) ≤ C‖u‖H1(Ω\Γ;Rd) for every u ∈ H1(Ω \ Γ;Rd). (3.1)

Similarly, we can find a finite number of open sets Vj ⊂ Ω \ Γ, j = 1, . . . l, with Lipschitz boundary, such
that Ω \ Γ = ∪lj=1Vj . By using the second Korn’s inequality in each Vj (see, e.g., [15, Theorem 2.4]) and
taking the sum over j we can find a positive constant CK , depending only on Ω and Γ, such that

‖∇u‖2L2(Ω;Rd×d) ≤ CK(‖u‖2L2(Ω;Rd) + ‖eu‖2
L2(Ω;Rd×dsym)

) for every u ∈ H1(Ω \ Γ;Rd). (3.2)

We set H := L2(Ω;Rd), Hd
s := L2(Ω;Rd×dsym), HN := L2(∂NΩ;Rd) and HD := L2(∂DΩ;Rd); the symbols

(·, ·) and ‖ · ‖ denote the scalar product and the norm in H or in Hd
s , according to the context. Moreover,

we define the following spaces

V := H1(Ω \ Γ;Rd) and Vt := H1(Ω \ Γt;Rd) for every t ∈ (−∞, T ].

Notice that in the definition of Vt and V , we are considering only the distributional gradient of u in Ω \ Γt
and in Ω \ Γ, respectively, and not the one in Ω. Taking into account (3.2), we shall use on the set Vt (and
also on the set V ) the equivalent norm

‖u‖Vt := (‖u‖2 + ‖eu‖2)
1
2 for every u ∈ Vt.

Furthermore, by (3.1), we can consider for every t ∈ (−∞, T ] the set

V Dt := {u ∈ Vt : u = 0 on ∂DΩ},

which is a closed subspace of Vt.
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We assume that the elasticity and viscosity tensors A and B satisfy the following assumptions:

A,B ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (3.3)

A(x)η1 · η2 = η1 · A(x)η2, B(x)η1 · η2 = η1 · B(x)η2 for a.e. x ∈ Ω and for every η1, η2 ∈ Rd×dsym, (3.4)

A(x)η · η ≥ CA|η|2, B(x)η · η ≥ CB|η|2 for a.e. x ∈ Ω and for every η ∈ Rd×dsym, (3.5)

for some positive constants CA and CB independent of x, and the dot denotes the Euclidean scalar product
of matrices.

Let β a positive real number. We wish to study the following viscoelastic dynamic system

ü(t)− div((A + B)eu(t)) +

∫ t

−∞

1

β
e−

t−τ
β div(Beu(τ))dτ = f(t) in Ω \ Γt, t ∈ (−∞, T ), (3.6)

together with the boundary conditions

u(t) = z(t) on ∂DΩ, t ∈ (−∞, T ), (3.7)[
(A + B) eu(t)−

∫ t

−∞

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = N(t) on ∂NΩ, t ∈ (−∞, T ), (3.8)[

(A + B) eu(t)−
∫ t

−∞

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = 0 on Γt, t ∈ (−∞, T ), (3.9)

where the data satisfy

(D1) f ∈ L2
loc((−∞;T ];H);

(D2) N ∈ L2
loc((−∞;T ];HN ) such that Ṅ ∈ L2

loc((−∞;T ];HN );
(D3) z ∈ L2

loc((−∞;T ];V ) such that ż ∈ L2
loc((−∞;T ];V ), z̈ ∈ L2

loc((−∞;T ];H), and z(t) ∈ Vt for every
t ∈ (−∞, T ].

Notice that in (3.6)–(3.9) the explicit dependence on x is omitted to enlighten notation.
As usual, the Neumann boundary conditions are only formal, and their meaning will be specified in

Definition 3.1. To this aim, we define Vloc(−∞, T ) as the space of all function u ∈ L2
loc((−∞, T ];V ) such

that u̇ ∈ L2
loc((−∞, T ];H), u(t) ∈ Vt for a.e. t ∈ (−∞, T ), and∫ T

−∞
e
t
β ‖eu(t)‖dt < +∞. (3.10)

Now we are in position to explain in which sense we mean that u ∈ Vloc(−∞, T ) is a solution to the
viscoelastic dynamic system (3.6)–(3.9). Roughly speaking, we multiply (3.6) by a test function, we integrate
by parts in time and in space, and taking into account (3.7)–(3.9) we obtain the following definition.

Definition 3.1 (Weak solution). We say that u ∈ Vloc(−∞, T ) is a weak solution to system (3.6) with
boundary conditions (3.7)–(3.9) if u(t)− z(t) ∈ V Dt for a.e. t ∈ (−∞, T ), and

−
∫ T

−∞
(u̇(t), v̇(t))dt+

∫ T

−∞
((A + B)eu(t), ev(t))dt−

∫ T

−∞

∫ t

−∞

1

β
e−

t−τ
β (Beu(τ), ev(t))dτdt

=

∫ T

−∞
(f(t), v(t))dt+

∫ T

−∞
(N(t), v(t))HNdt

for every v ∈ C∞c (−∞, T ;V ) such that v(t) ∈ V Dt for every t ∈ (−∞, T ].

Now, let us consider a, b ∈ [0, T ] such that a < b. We define the spaces

V(a, b) := {u ∈ L2(a, b;V ) ∩H1(a, b;H) : u(t) ∈ Vt for a.e. t ∈ (a, b)},
VD(a, b) := {v ∈ V(a, b) : v(t) ∈ V Dt for a.e. t ∈ (a, b)},
DD(a, b) := {v ∈ C∞c (a, b;V ) : v(t) ∈ V Dt for every t ∈ [a, b]},

and we have the following lemma.

Lemma 3.2. The space V(a, b) is a Hilbert space with respect to the following norm

‖ϕ‖V(a,b) :=
Ä
‖ϕ‖2L2(a,b;V ) + ‖ϕ̇‖2L2(a,b;H)

ä 1
2
, ϕ ∈ V(a, b).
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Moreover, VD(a, b) is a closed subspace of V(a, b), and DD(a, b) is a dense subset of the space of functions
belonging to VD(a, b) which vanish on a and b.

Proof. It is clear that ‖·‖V(a,b) is a norm induced by a scalar product on the set V(a, b). We just have to
check the completeness of this space with respect to this norm. Let {ϕk}k ⊂ V(a, b) be a Cauchy sequence.
Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences in L2(a, b;V ) and L2(a, b;H), respectively, which are complete
Hilbert spaces. Thus, there exists ϕ ∈ L2(a, b;V ) with ϕ̇ ∈ L2(a, b;H) such that ϕk → ϕ in L2(a, b;V ) and
ϕ̇k → ϕ̇ in L2(a, b;H). In particular there exists a subsequence {ϕkj}j such that ϕkj (t)→ ϕ(t) in V for a.e.
t ∈ (a, b). Since ϕkj (t) ∈ Vt for a.e. t ∈ (a, b) we deduce that ϕ(t) ∈ Vt for a.e. t ∈ (a, b). Hence ϕ ∈ V(a, b)

and ϕk → ϕ in V(a, b). With a similar argument, we can prove that VD(a, b) ⊂ V(a, b) is a closed subspace.
For the proof of the last statement we refer to [9, Lemma 2.8]. �

Now, suppose we know the past history of the system up to time 0. In particular, let up ∈ Vloc(−∞, 0)
be a weak solution to (3.6)–(3.9) on the interval (−∞, 0) in the sense of Definition 3.1, in such a way that 0
is a Lebesgue’s point for both up and u̇p. This implies that there exist u0 ∈ V0, with u0 − z(0) ∈ V D0 , and
u1 ∈ H such that

lim
h→0+

1

h

∫ 0

−h
‖up(t)− u0‖2V0

dt = 0, lim
h→0+

1

h

∫ 0

−h
‖u̇p(t)− u1‖2dt = 0.

From this assumption, by defining

F0(t) :=
1

β
e−

t
β

∫ 0

−∞
e
τ
βBeup(τ)dτ,

we can reformulate (3.6)–(3.9) on the interval [0, T ] in the following way:

ü(t)− div((A + B)eu(t)) +

∫ t

0

1

β
e−

t−τ
β div(Beu(τ))dτ = f(t)− divF0(t) in Ω \ Γt, t ∈ (0, T ), (3.11)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (3.12)[
(A + B) eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = N(t) + F0(t)ν on ∂NΩ, t ∈ (0, T ), (3.13)[

(A + B) eu(t)−
∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = F0(t)ν on Γt, t ∈ (0, T ), (3.14)

u(0) = u0, u̇(0) = u1. (3.15)

Thanks to (D1)–(D3) and (3.10) (on the interval (−∞, 0]), we have f ∈ L2(0, T ;H), F0 ∈ C∞([0, T ];Hd
s ),

N ∈ H1(0, T ;HN ), and z ∈ H2(0, T ;H) ∩H1(0, T ;V ) with z(t) ∈ Vt for every t ∈ [0, T ].
More in general, given F ∈ H1(0, T ;Hd

s ) we will study the following viscoelastic dynamic system

ü(t)− div((A + B)eu(t)) +

∫ t

0

1

β
e−

t−τ
β div(Beu(τ))dτ = f(t)− divF (t) in Ω \ Γt, t ∈ (0, T ), (3.16)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (3.17)[
(A + B) eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = F (t)ν on ∂NΩ, t ∈ (0, T ), (3.18)[

(A + B) eu(t)−
∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ

]
ν = F (t)ν on Γt, t ∈ (0, T ), (3.19)

u(0) = u0, u̇(0) = u1. (3.20)

Notice that system (3.11)–(3.15) is a particular case of system (3.16)–(3.20). As we have already specified
for system (3.6)–(3.9), also for (3.16)–(3.20) the Neumann boundary conditions are only formal, and their
meaning is clarified by the following definition.
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Definition 3.3. We say that u ∈ V(0, T ) is a weak solution to the viscoelastic dynamic system (3.16)–(3.20)
on the interval [0, T ] if u− z ∈ VD(0, T ),

−
∫ T

0

(u̇(t), v̇(t))dt+

∫ T

0

((A + B)eu(t), ev(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), ev(t))dτdt

=

∫ T

0

(f(t), v(t))dt+

∫ T

0

(F (t), ev(t))dt (3.21)

for every v ∈ DD(0, T ), and

lim
t→0+

‖u(t)− u0‖ = 0, lim
t→0+

‖u̇(t)− u1‖(V D0 )′ = 0. (3.22)

Remark 3.4. From Lemma 3.2, if a function u ∈ V(0, T ) satisfies (3.21) for every v ∈ DD(0, T ), then it
satisfies the same equality for every v ∈ VD(0, T ) such that v(0) = v(T ) = 0.

4. Existence by using Dafermos’ method

In this section we present an existence result which is to be considered in the framework of functional
analysis; in particular it derives from an idea of C. Dafermos (see [5]) based on a generalization of Lax-
Milgram’s Theorem by J.L. Lions (see [13]). We start by stating the main result of this section.

Theorem 4.1. There exists a weak solution u ∈ V(0, T ) to the viscoelastic dynamic system (3.16)–(3.20) on
the interval [0, T ] in the sense of Definition 3.3. Moreover, there exists a positive constant C = C(T,A,B, β)
such that

‖u‖V(0,T ) ≤ C
(
‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;Hds ) + ‖z̈‖L2(0,T ;H) + ‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖

)
. (4.1)

Remark 4.2. Without loss of generality we may assume that the Dirichlet datum and the initial displace-
ment are identically equal to zero. Indeed, the function u is a weak solution to the viscoelastic dynamic
system (3.16)–(3.20) according to Definition 3.3 if and only if the function u∗ defined by

u∗(t) := u(t)− u0 + z(0)− z(t),
satisfies

−
∫ T

0

(u̇∗(t), ψ̇(t))dt+

∫ T

0

((A + B)eu∗(t), eψ(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu∗(τ), eψ(t))dτdt

=

∫ T

0

(f∗(t), ψ(t))dt+

∫ T

0

(F ∗(t), eψ(t))dt,

for every ψ ∈ DD(0, T ), and

lim
t→0+

‖u∗(t)‖ = 0, lim
t→0+

‖u̇∗(t)− u1
∗‖(V D0 )′ = 0,

where f∗ := f − z̈, u1
∗ := u1 − ż(0), and for every t ∈ [0, T ]

F ∗(t) := F (t) +

∫ t

0

1

β
e−

t−τ
β Bez(τ)dτ − (A + B)ez(t)− (A + e−

t
βB)(eu0 − ez(0)).

Moreover, if u∗ satisfies for some positive constants C∗ the following estimate

‖u∗‖V(0,T ) ≤ C∗
(
‖f∗‖L2(0,T ;H) + ‖F ∗‖H1(0,T ;Hds ) + ‖u1

∗‖
)
, (4.2)

then u satisfies (4.1). Indeed, since

‖f∗‖L2(0,T ;H) ≤ ‖f‖L2(0,T ;H) + ‖z̈‖L2(0,T ;H),

and for some positive constants C̄ = C(T,A,B, β) we have

‖F ∗‖H1(0,T ;Hds ) ≤ ‖F‖H1(0,T ;Hds ) +
(

1 +
2

1
2

β

)∥∥∥∫ ·
0

1

β
e−
·−τ
β Bez(τ)dτ

∥∥∥
L2(0,T ;Hds )

+
2

1
2

β
‖B‖∞‖z‖L2(0,T ;V )

+ ‖A + B‖∞‖z‖H1(0,T ;V ) + (‖A‖∞ + ‖e−
·
β ‖H1(0,T )‖B‖∞)(‖u0‖V + ‖z(0)‖V )

≤ C̄(‖F‖H1(0,T ;Hds ) + ‖z‖H1(0,T ;V ) + ‖u0‖V ),
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from (4.2) we deduce

‖u‖V(0,T ) ≤ ‖u∗‖V(0,T ) + T
1
2 (‖u0‖V + ‖z(0)‖V ) + ‖z‖V(0,T )

≤ C
(
‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;Hds ) + ‖z̈‖L2(0,T ;H) + ‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖

)
,

where C = C(T,A,B, β) is a positive constant.

Based on Remark 4.2, we now assume that the Dirichlet datum and the initial displacement are identically
equal to zero. To prove the theorem in this case, we first prove that our weak formulation (3.21) with initial
conditions (3.22) is equivalent to another one, which we call Dafermos’ Equality. After that, by means of a
Lions’ theorem we prove that there exists an element which satisfies this equality. Namely, by defining for
every a, b ∈ [0, T ] such that a < b the space

ED0 (a, b) := {ϕ ∈ C∞([a, b];V ) : ϕ(a) = 0, ϕ(t) ∈ V Dt for every t ∈ [a, b]},

we can state the following equivalence result.

Proposition 4.3. Suppose that there exists u ∈ VD(0, T ) which satisfies the initial condition u(0) = 0 in
the sense of (3.22), and such that Dafermos’ Equality holds:∫ T

0

(u̇(t), ϕ̇(t))dt+

∫ T

0

(t− T )
[
(u̇(t), ϕ̈(t))− ((A + B)eu(t), eϕ̇(t))+

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eϕ̇(t))dτ

]
dt

= T (u1, ϕ̇(0))−
∫ T

0

(t− T ) [(f(t), ϕ̇(t)) + (F (t), eϕ̇(t))] dt for every ϕ ∈ ED0 (0, T ). (4.3)

Then u satisfies (3.21), u(0) = 0 and u̇(0) coincides with u1 in (V D0 )′. Moreover, if u ∈ VD(0, T ) is a weak
solution in the sense of Definition 3.3, then it satisfies (4.3).

At this point, we state and prove some lemmas and propositions needed for the proof of Proposition 4.3.
In particular, in the following lemma, we highlight a useful relation between DD(0, T ) and ED0 (0, T ).

Lemma 4.4. For every v ∈ DD(0, T ) the function defined by

ϕv(t) =

∫ t

0

v(τ)

τ − T
dτ

is well defined and satisfies ϕv ∈ ED0 (0, T ).

Proof. Firstly, we can notice that ϕv is well defined because v is a function with compact support, hence it
vanishes in a neighborhood of T . Moreover, ϕv(0) = 0 by definition and ϕv ∈ C∞([0, T ];V ) because it is
a primitive of a function with the same regularity. Now, we can observe that v(τ) ∈ V Dτ ⊂ V Dt for every

τ ≤ t, therefore we have v(τ)
τ−T ∈ V Dt for every τ ≤ t, and by the properties of Bochner’s integral we get

ϕv(t) ∈ V Dt . �

In the next proposition we show that the distributional second derivative in time of a weak solution is an
element of the space L2(0, T ; (V D0 )′). Therefore, such a solution has an initial velocity in the space (V D0 )′.

Proposition 4.5. Let u ∈ VD(0, T ) be a function which satisfies (3.21). Then the distributional derivative
of u̇ belongs to the space L2(0, T ; (V D0 )′).

Proof. Let Λ ∈ L2(0, T ; (V D0 )′) be defined in the following way: for a.e. t ∈ (0, T )

〈Λ(t),v〉 := −((A+B)eu(t), ev)+

∫ t

0

1

β
e−

t−τ
β (Beu(τ), ev)dτ+(f(t),v)+(F (t), ev) for every v ∈ V D0 , (4.4)

where 〈·, ·〉 represents the duality product between (V D0 )′ and V D0 .
Let us consider a test function ϕ ∈ C∞c (0, T ), then for every v ∈ V D0 the function ψ(t) := ϕ(t)v belongs to
the space C∞c (0, T ;V0), and consequently ψ ∈ DD(0, T ). Now we multiply both sides of (4.4) by ϕ(t) and
we integrate it on (0, T ). Thanks to (3.21) we can write∫ T

0

〈Λ(t),v〉ϕ(t)dt =−
∫ T

0

((A + B)eu(t), eψ(t))dt+

∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eψ(t))dτdt
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+

∫ T

0

(f(t), ψ(t))dt+

∫ T

0

(F (t), eψ(t))dt = −
∫ T

0

(u̇(t),v)ϕ̇(t)dt,

which implies 〈∫ T

0

Λ(t)ϕ(t)dt,v
〉

=
〈
−
∫ T

0

u̇(t)ϕ̇(t)dt,v
〉

for every v ∈ V D0 .

Hence, we get ∫ T

0

Λ(t)ϕ(t)dt = −
∫ T

0

u̇(t)ϕ̇(t)dt for every ϕ ∈ C∞c (0, T )

as elements of (V D0 )′, which concludes the proof. �

Remark 4.6. Proposition 4.5 implies that u̇ ∈ H1(0, T ; (V D0 )′), hence it admits a continuous representative.
Therefore, we can say that there exists u̇(0) ∈ (V D0 )′ such that

lim
t→0+

‖u̇(t)− u̇(0)‖(V D0 )′ = 0. (4.5)

In the next proposition we show how the weak formulation (3.21) changes if we use test functions which
do not vanish at zero. In particular, we use the notation η(T ) to refer to the family of open neighborhoods
of T , and we consider the following spaces

LipD(0, T ) := {ψ ∈ Lip([0, T ];V ) : ψ(t) ∈ V Dt for every t ∈ [0, T ]},

LipD0,T (0, T ) := {ψ ∈ LipD(0, T ) : ∃Iψ ∈ η(T ), s.t. ψ(t) = 0 for every t ∈ Iψ ∪ {0}},

LipDT (0, T ) := {Ψ ∈ LipD(0, T ) : Ψ(T ) = 0}.

Proposition 4.7. Let u ∈ VD(0, T ) be a function which satisfies (3.21) for every ψ ∈ LipD0,T (0, T ). Then u
satisfies the equality

−
∫ T

0

(u̇(t), Ψ̇(t))dt+

∫ T

0

((A + B)eu(t), eΨ(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eΨ(t))dτdt

=

∫ T

0

(f(t),Ψ(t))dt+

∫ T

0

(F (t), eΨ(t))dt+ 〈u̇(0),Ψ(0)〉, (4.6)

for every Ψ ∈ LipDT (0, T ).

Proof. Let us consider Ψ ∈ LipDT (0, T ) and define for every ε ∈ (0, T3 ) the function

ψε(t) :=


t
εΨ(0) t ∈ [0, ε]

Ψ(t− ε) t ∈ [ε, T − 2ε](
− t
ε + T−ε

ε

)
Ψ(T − 3ε) t ∈ [T − 2ε, T − ε]

0 t ∈ [T − ε, T ].

It is easy to see that ψε ∈ LipD0,T (0, T ), and by using ψε as test function in (3.21) we get Iε + Imε + Jmε = 0,
where the three terms Iε, I

m
ε , and Jmε are defined in the following way:

Iε :=−
∫ T−2ε

ε

(u̇(t), Ψ̇(t− ε))dt+

∫ T−2ε

ε

((A + B)eu(t), eΨ(t− ε))dt−
∫ T−2ε

ε

(f(t),Ψ(t− ε))dt

−
∫ T−2ε

ε

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eΨ(t− ε))dτdt−

∫ T−2ε

ε

(F (t), eΨ(t− ε))dt,

Imε := −−
∫ ε

0

(u̇(t),Ψ(0))dt+−
∫ ε

0

((A + B)eu(t), teΨ(0))dt−−
∫ ε

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), teΨ(0))dτdt

−−
∫ ε

0

(f(t), tΨ(0))dt−−
∫ ε

0

(F (t), teΨ(0))dt,

and

Jmε : = −
∫ T−ε

T−2ε

(u̇(t),Ψ(T − 3ε))dt+−
∫ T−ε

T−2ε

((A + B)eu(t), (−t+ T − ε)eΨ(T − 3ε))dt
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−−
∫ T−ε

T−2ε

∫ t

0

1

β
e−

t−τ
β (Beu(τ), (−t+ T − ε)eΨ(T − 3ε))dτdt−−

∫ T−ε

T−2ε

(f(t), (−t+ T − ε)Ψ(T − 3ε))dt

−−
∫ T−ε

T−2ε

(F (t), (−t+ T − ε)eΨ(T − 3ε))dt.

Let us study the convergence of Iε, I
m
ε , and Jmε as ε → 0+. First of all, we notice that from the definition

of ψε and the Lipschitz continuity of Ψ we have

‖ψε −Ψ‖2L2(0,T ;V ) =

∫ ε

0

∥∥∥ t
ε

Ψ(0)−Ψ(t)
∥∥∥2

V
dt+

∫ T−2ε

ε

‖Ψ(t− ε)−Ψ(t)‖2V dt

+

∫ T−ε

T−2ε

∥∥∥(− t

ε
+
T − ε
ε

)
Ψ(T − 3ε)−Ψ(t)

∥∥∥2

V
dt

≤ 2‖Ψ(0)‖2V
∫ ε

0

t2

ε2
dt+ 2

∫ ε

0

‖Ψ(t)‖2V dt+

∫ T−2ε

ε

L2
Ψ|t− ε− t|2dt

+ 2‖Ψ(T − 3ε)‖2V
∫ T−ε

T−2ε

(
− t

ε
+
T − ε
ε

)2

dt+ 2

∫ T−ε

T−2ε

‖Ψ(t)‖2V dt

≤ 4

3
ε‖Ψ‖2L∞(0,T ;V ) + 2

∫ ε

0

‖Ψ(t)‖2V dt+ 2

∫ T−ε

T−2ε

‖Ψ(t)‖2V dt+ L2
Ψε

2(T − 3ε) −−−−→
ε→0+

0.

(4.7)

From (3.3), (4.7), and the absolute continuity of Lebesgue’s integral, we have∣∣∣ ∫ T−2ε

ε

((A + B)eu(t), eΨ(t− ε))dt−
∫ T

0

((A + B)eu(t), eΨ(t))dt
∣∣∣ ≤ ∣∣∣ ∫ ε

0

((A + B)eu(t), eΨ(t))dt
∣∣∣

+
∣∣∣ ∫ T−2ε

ε

((A + B)eu(t), eΨ(t− ε)− eΨ(t))dt
∣∣∣+
∣∣∣ ∫ T

T−2ε

((A + B)eu(t), eΨ(t))dt
∣∣∣

≤ ‖A + B‖∞
[ ∫ ε

0

‖u(t)‖V ‖Ψ(t)‖V dt+

∫ T

T−2ε

‖u(t)‖V ‖Ψ(t))‖V dt

+ ‖u‖L2(0,T ;V )‖ψε −Ψ‖L2(0,T ;V )

]
−−−−→
ε→0+

0. (4.8)

In the same way we can prove that∫ T−2ε

ε

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eΨ(t− ε))dτdt −−−−→

ε→0+

∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eΨ(t))dτdt, (4.9)∫ T−2ε

ε

(f(t),Ψ(t− ε))dt −−−−→
ε→0+

∫ T

0

(f(t),Ψ(t))dt, (4.10)∫ T−2ε

ε

(F (t), eΨ(t− ε))dt −−−−→
ε→0+

∫ T

0

(F (t), eΨ(t))dt. (4.11)

Notice that, by virtue of the continuity of the translation operator in L2, and again by the absolute continuity
of Lebesgue’s integral, we can write∣∣∣ ∫ T−2ε

ε

(u̇(t), Ψ̇(t− ε))dt−
∫ T

0

(u̇(t), Ψ̇(t))dt
∣∣∣

≤
∣∣∣ ∫ ε

0

(u̇(t), Ψ̇(t))dt
∣∣∣+
∣∣∣ ∫ T−2ε

ε

(u̇(t), Ψ̇(t− ε)− Ψ̇(t))dt
∣∣∣+
∣∣∣ ∫ T

T−2ε

(u̇(t), Ψ̇(t))dt
∣∣∣

≤
∫ ε

0

‖u̇(t)‖‖Ψ̇(t)‖dt+ ‖u̇‖L2(0,T ;H)‖Ψ̇(· − ε)− Ψ̇(·)‖L2(0,T ;H) +

∫ T

T−2ε

‖u̇(t)‖‖Ψ̇(t))‖dt −−−−→
ε→0+

0.

(4.12)

Taking into account (4.8)–(4.12) we conclude that

Iε −−−−→
ε→0+

−
∫ T

0

(u̇(t), Ψ̇(t))dt+

∫ T

0

((A + B)eu(t), eΨ(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eΨ(t))dτdt
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−
∫ T

0

(f(t),Ψ(t))dt−
∫ T

0

(F (t), eΨ(t))dt.

Now we analyze the limit of Imε as ε→ 0+. By (4.5) we obtain

−
∫ ε

0

(u̇(t),Ψ(0))dt =
(
−
∫ ε

0

u̇(t)dt,Ψ(0)
)

=
〈
−
∫ ε

0

u̇(t)dt,Ψ(0)
〉
−−−−→
ε→0+

〈u̇(0),Ψ(0)〉. (4.13)

Moreover ∣∣∣−∫ ε

0

((A + B)eu(t), teΨ(0))dt
∣∣∣ ≤ ‖A + B‖∞‖Ψ(0)‖V−

∫ ε

0

t‖u(t)‖V dt

≤ ‖A + B‖∞‖Ψ‖L∞(0,T ;V )

(ε
3

) 1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (4.14)

In the same way, we can prove that

−
∫ ε

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), teΨ(0))dτdt −−−−→

ε→0+
0, (4.15)

−
∫ ε

0

(f(t), tΨ(0))dt −−−−→
ε→0+

0, (4.16)

−
∫ ε

0

(F (t), teΨ(0))dt −−−−→
ε→0+

0, (4.17)

hence, by (4.13)–(4.17) we obtain Imε −−−−→
ε→0+

−〈u̇(0),Ψ(0)〉.
Finally, we study the behaviour of Jmε as ε→ 0+. Since Ψ(T ) = 0, we can write∣∣∣−∫ T−ε

T−2ε

(u̇(t),Ψ(T − 3ε))dt
∣∣∣ ≤ 1

ε
1
2

‖u̇‖L2(0,T ;H)‖Ψ(T − 3ε)−Ψ(T )‖ ≤ 3LΨ‖u̇‖L2(0,T ;H)ε
1
2 −−−−→
ε→0+

0. (4.18)

Moreover∣∣∣−∫ T−ε

T−2ε

((A + B)eu(t), (−t+ T − ε)eΨ(T − 3ε))dt
∣∣∣

≤ ‖A + B‖∞‖Ψ(T − 3ε)‖V
(
−
∫ T−ε

T−2ε

(T − t)‖u(t)‖V dt+

∫ T−ε

T−2ε

‖u(t)‖V dt
)

≤ ‖A + B‖∞‖Ψ‖L∞(0,T ;V )

((7

3

) 1
2

+ 1
)
ε

1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (4.19)

By following the same strategy used in (4.19), we can prove that

−
∫ T−ε

T−2ε

∫ t

0

1

β
e−

t−τ
β (Beu(τ), (−t+ T − ε)eΨ(T − 3ε))dτdt −−−−→

ε→0+
0, (4.20)

−
∫ T−ε

T−2ε

(f(t), (−t+ T − ε)Ψ(T − 3ε))dt −−−−→
ε→0+

0, (4.21)

−
∫ T−ε

T−2ε

(F (t), (−t+ T − ε)eΨ(T − 3ε))dt −−−−→
ε→0+

0. (4.22)

Thanks to (4.18)–(4.22) we can say that Jmε → 0 as ε→ 0+, and this concludes the proof. �

We can now prove the equivalence result between the viscoelastic dynamic system (3.16)–(3.20) (in the
sense of Definition 3.3) and Dafermos’ Equality (4.3), stated in Proposition 4.3.

Proof of Proposition 4.3. Let u ∈ VD(0, T ) be a function with u(0) = 0, and which satisfies (4.3). Let us
consider v ∈ DD(0, T ). By Lemma 4.4, the function defined by

ϕv(t) =

∫ t

0

v(τ)

τ − T
dτ (4.23)



A DYNAMIC MODEL FOR VISCOELASTICITY IN DOMAINS WITH TIME-DEPENDENT CRACKS 11

is well defined and belongs to the space ED0 (0, T ). By taking ϕv as a test function in (4.3) we obtain

−
∫ T

0

(u̇(t), ϕ̇v(t) + (t− T )ϕ̈v(t))dt+

∫ T

0

(
(A + B)eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, e((t− T )ϕ̇v(t))

)
dt

=

∫ T

0

(f(t), (t− T )ϕ̇v(t))dt+

∫ T

0

(F (t), e((t− T )ϕ̇v(t)))dt, (4.24)

since ϕ̇v(0) = v(0)
−T = 0. Notice that v(t) = (t−T )ϕ̇v(t) and consequently v̇(t) = ϕ̇v(t) + (t−T )ϕ̈v(t), by the

definition of ϕv itself. This, together with (4.24), allows us to conclude that u ∈ VD(0, T ) satisfies (3.21) for
every v ∈ DD(0, T ).

Now we prove that u1 coincides with u̇(0). Since the function u satisfies (3.21) for every v ∈ DD(0, T ), in

particular, from Remark 3.4, it satisfies the same equality for every v ∈ LipD0,T (0, T ). Thanks to Proposition

4.7, the function u satisfies (4.6) for every v ∈ LipDT (0, T ), and therefore for every function in the space

EDT (0, T ) := {v ∈ C∞([0, T ];V ) : ∃Iv ∈ η(T ), s.t. v(t) = 0 for every t ∈ Iv, v(t) ∈ V Dt for every t ∈ [0, T ]}.

Moreover, if we define ϕv as in (4.23) we have ϕv ∈ ED0 (0, T ), and we can use it as a test function in (4.3)
to deduce

−
∫ T

0

(u̇(t), v̇(t))dt+

∫ T

0

((A + B)eu(t), ev(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), ev(t))dτdt

=

∫ T

0

(f(t), v(t))dt+

∫ T

0

(F (t), ev(t))dt+ (u1, v(0)). (4.25)

By taking the difference between (4.6) and (4.25) we get 〈u1−u̇(0), v(0)〉 = 0 for every v ∈ EDT (0, T ). Since for
every v ∈ V D0 there exists a function v ∈ EDT (0, T ) such that v(0) = v, we can obtain that 〈u1− u̇(0),v〉 = 0
for every v ∈ V D0 , and so u1 − u̇(0) = 0 as element of (V D0 )′. This proves the first part of the proposition.

Vice versa, let u ∈ VD(0, T ) be a weak solution in the sense of Definition 3.3. Therefore, u satisfies (3.21)
for every v ∈ DD(0, T ), and as we have already shown before, u satisfies (4.6), with u1 in place of u̇(0), for

every function v ∈ LipDT (0, T ). Let us consider ϕ ∈ ED0 (0, T ), then vϕ(t) = (t− T )ϕ̇(t) ∈ LipDT (0, T ), and so
it can be used as a test function in (4.6). By noticing that v̇ϕ(t) = ϕ̇(t) + (t− T )ϕ̈(t) and vϕ(0) = −T ϕ̇(0)
we obtain the thesis. �

In view of the previous proposition, it will be enough to prove the existence of a solution to Dafermos’
Equality (4.3). In particular, we shall prove the existence of t0 ∈ (0, T ] and of a function u ∈ VD(0, t0)
such that u(0) = 0, and which satisfies Dafermos’ Equality on the interval [0, t0]. In order to do this, we
use an abstract result due to Lions (see [13, Chapter 3, Theorem 1.1 and Remark 1.2]). We first introduce
the necessary setting. Let X be a Hilbert space and Y ⊂ X be a linear subspace, endowed with the scalar
product (·, ·)Y which makes it a pre-Hilbert space. Suppose that the inclusion of Y in X is a continuous
map, i.e., there exists a positive constant C such that

‖u‖X ≤ C‖u‖Y for every u ∈ Y . (4.26)

Let us consider a bilinear form B : X × Y → R such that

B(·, ϕ) : X → R is a linear continuous function on X for every ϕ ∈ Y , (4.27)

B(ϕ,ϕ) ≥ α‖ϕ‖2Y for every ϕ ∈ Y , for some positive constant α. (4.28)

Now, we can state the aforementioned existence theorem.

Theorem 4.8 (J.L. Lions). Suppose that hypotheses (4.26)–(4.28) are satisfied, and let L : Y → R be a
linear continuous map. Then there exists u ∈ X such that

B(u, ϕ) = L(ϕ) for every ϕ ∈ Y .

Moreover, the solution u satisfies

‖u‖X ≤
C

α
sup{|L(ϕ)| : ‖ϕ‖Y = 1}. (4.29)
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After defining for every a, b ∈ [0, T ] with a < b the space

VD0 (a, b) := {u ∈ VD(a, b) : u(a) = 0},
we can state the following proposition.

Proposition 4.9. There exists t0 ∈ (0, T ] and a function u ∈ VD0 (0, t0) which satisfies Dafermos’ Equality
(4.3) on the interval [0, t0] for every ϕ ∈ ED0 (0, t0). Moreover, there exists a positive constant C0 = C0(t0,A)
such that

‖u‖V(0,t0) ≤ C0

(
‖f‖L2(0,t0;H) + ‖F‖H1(0,t0;Hds ) + ‖u1‖

)
. (4.30)

Proof. We fix t0 ∈ (0, T ] such that ®
t0 <

1
2CA

if 1
2CA

< T

t0 = T otherwise.
(4.31)

For simplicity of notation, we denote the spaces VD0 (0, t0) and ED0 (0, t0) with the symbols Vt0 and Et0 ,
respectively. On the space Vt0 we take the usual scalar product, instead on the space Et0 we consider the
following one

(φ, ϕ)Et0 :=

∫ t0

0

[(φ̇(t), ϕ̇(t)) + (φ(t), ϕ(t))V ]dt+ t0(φ̇(0), ϕ̇(0)) for every φ, ϕ ∈ Et0 ,

and we denote by ‖ · ‖Et0 the norm associated.
Let us consider the bilinear form B : Vt0 × Et0 → R defined by

B(u, ϕ) :=

∫ t0

0

(u̇(t), ϕ̇(t)) + (t− t0)
[
(u̇(t), ϕ̈(t))−

(
(A + B)eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, eϕ̇(t)

)]
dt,

and the linear operator L : Et0 → R represented by

L(ϕ) := t0(u1, ϕ̇(0)) +

∫ t0

0

(t− t0)(Ḟ (t), eϕ(t))dt+

∫ t0

0

(F (t), eϕ(t))dt−
∫ t0

0

(t− t0)(f(t), ϕ̇(t))dt.

Notice that, from these definitions, Dafermos’ Equality (4.3) on the interval [0, t0] can be rephrased as follows

B(u, ϕ) = L(ϕ) for every ϕ ∈ Et0 .
Now we are in the framework of Theorem 4.8, and we want to show that (4.27) and (4.28) are satisfied.
Foremost, we prove the existence of a positive constant α such that

B(ϕ,ϕ) ≥ α‖ϕ‖2Et0 for every ϕ ∈ Et0 .

By definition we have

B(ϕ,ϕ) =

∫ t0

0

‖ϕ̇(t)‖2+(t−t0)
[
(ϕ̇(t), ϕ̈(t))−((A+B)eϕ(t), eϕ̇(t))+

∫ t

0

1

β
e−

t−τ
β (Beϕ(τ), eϕ̇(t))dτ

]
dt. (4.32)

Now we define

ψ(t) :=

∫ t

0

1

β
e−

t−τ
β eϕ(τ)dτ and consequently we have ψ̇(t) =

1

β
eϕ(t)−

∫ t

0

1

β2
e−

t−τ
β eϕ(τ)dτ ;

then (4.32) can be reworded as

B(ϕ,ϕ) =

∫ t0

0

‖ϕ̇(t)‖2 + (t− t0)[(ϕ̇(t), ϕ̈(t))− ((A + B)eϕ(t), eϕ̇(t)) + (Bψ(t), eϕ̇(t))]dt. (4.33)

Thanks to the chain rule and to the symmetry property (3.4), we can write

1

2

d

dt
‖ϕ̇(t)‖2 = (ϕ̇(t), ϕ̈(t)),

1

2

d

dt
((A + B)eϕ(t), eϕ(t)) = ((A + B)eϕ(t), eϕ̇(t)),

d

dt
(Bψ(t), eϕ(t)) = (Bψ̇(t), eϕ(t)) + (Bψ(t), eϕ̇(t)).

By substituting this information in (4.33), we get after some integration by parts

B(ϕ,ϕ) =

∫ t0

0

‖ϕ̇(t)‖2dt+
1

2

∫ t0

0

(t− t0)
d

dt
‖ϕ̇(t)‖2dt− 1

2

∫ t0

0

(t− t0)
d

dt
((A + B)eϕ(t), eϕ(t))dt
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+

∫ t0

0

(t− t0)
d

dt
(Bψ(t), eϕ(t))dt−

∫ t0

0

(t− t0)(Bψ̇(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0

‖ϕ̇(t)‖2dt+
1

2

∫ t0

0

((A + B)eϕ(t), eϕ(t))dt

−
∫ t0

0

(Bψ(t), eϕ(t))dt−
∫ t0

0

(t− t0)(Bψ̇(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0

‖ϕ̇(t)‖2dt+
1

2

∫ t0

0

((A + B)eϕ(t), eϕ(t))dt

−
∫ t0

0

(t− t0)(βBψ̇(t), ψ̇(t))dt−
∫ t0

0

(t− t0)(Bψ̇(t), ψ(t))−
∫ t0

0

(Bψ(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0

‖ϕ̇(t)‖2dt+
1

2

∫ t0

0

(Aeϕ(t), eϕ(t))dt

+
1

2

∫ t0

0

(B(eϕ(t)− ψ(t)), eϕ(t)− ψ(t))dt+

∫ t0

0

(t0 − t)(βBψ̇(t), ψ̇(t))dt. (4.34)

From the coerciveness in (3.5) and the definition of the V -norm, we have

(Aeϕ(t), eϕ(t)) ≥ CA‖ϕ(t)‖2V − CA‖ϕ(t)‖2 for every t ∈ [0, T ]. (4.35)

Moreover, since

ϕ(t) = ϕ(0) +

∫ t

0

ϕ̇(τ)dτ =

∫ t

0

ϕ̇(τ)dτ,

inequality (4.35) implies

1

2

∫ t0

0

(Aeϕ(t), eϕ(t))dt ≥ CA

2

∫ t0

0

‖ϕ(t)‖2V dt− CAt0
2

∫ t0

0

‖ϕ̇(t)‖2dt. (4.36)

By (4.34), (4.36), and in view of the choice done in (4.31), we can deduce

B(ϕ,ϕ) ≥ t0
2
‖ϕ̇(0)‖2 +

1− CAt0
2

∫ t0

0

‖ϕ̇(t)‖2dt+
CA

2

∫ t0

0

‖ϕ(t)‖2V dt ≥ 1

4
min{1, CA}‖ϕ‖2Et0 ,

which corresponds to the hypothesis (4.28), with

α =
1

4
min{1, CA}. (4.37)

We now show the validity of assumption (4.27). We have to prove that for every ϕ ∈ Et0 the functional
B(·, ϕ) is continuous on Vt0 , and that L : Et0 → R is a linear continuous operator on the space Et0 . To this
aim, we fix ϕ ∈ Et0 and we consider {uk}k ⊂ Vt0 such that

uk
Vt0−−−−→
k→∞

u.

Therefore

Uk := uk − u
L2(0,t0;V )−−−−−−−→
k→∞

0 and U̇k := u̇k − u̇
L2(0,t0;H)−−−−−−−→
k→∞

0.

By using Cauchy-Schwarz’s inequality we get

|B(Uk, ϕ)| ≤
∫ t0

0

|(U̇k(t), ϕ̇(t))|dt+ t0

∫ t0

0

|(U̇k(t), ϕ̈(t))|dt+ t0

∫ t0

0

|((A + B)eUk(t), eϕ̇(t))|dt

+ t0

∫ t0

0

∫ t

0

1

β
e−

t−τ
β |(BeUk(τ), eϕ̇(t))|dτdt

≤ ‖U̇k‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) + t0‖U̇k‖L2(0,t0;H)‖ϕ̈‖L2(0,t0;H)

+ t0‖A + B‖∞‖Uk‖L2(0,t0;V )‖ϕ̇‖L2(0,t0;V ) +
t0
β
‖B‖∞

∫ t0

0

∫ t

0

|(eUk(τ), eϕ̇(t))|dτdt.

(4.38)
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Notice that∫ t0

0

∫ t

0

|(eUk(τ), eϕ̇(t))|dτdt ≤ ‖ϕ̇‖L2(0,t0;V )

(∫ t0

0

(∫ t

0

‖Uk(τ)‖V dτ
)2

dt
) 1

2 ≤ t0‖ϕ̇‖L2(0,t0;V )‖Uk‖L2(0,t0;V ),

whence, by considering (4.38), we can say that there exist two positive constants C1 = C1(ϕ, t0) and
C2 = C2(A,B, t0, β, ϕ) such that

|B(Uk, ϕ)| ≤ C1‖U̇k‖L2(0,t0;H) + C2‖Uk‖L2(0,t0,V ) −−−−→
k→∞

0.

Now it remains to show that L is a continuous operator on Et0 , and since it is linear it is enough to show its
boundedness. Let ϕ ∈ Et0 , then

|L(ϕ)| ≤
∣∣∣ ∫ t0

0

î
(t− t0)(f(t), ϕ̇(t))− (t− t0)(Ḟ (t), eϕ(t))− (F (t), eϕ(t))

ó
dt
∣∣∣+ t0‖u1‖‖ϕ̇(0)‖. (4.39)

In particular there exists a positive constant C = C(f, F, t0) such that∫ t0

0

|(t− t0)(f(t), ϕ̇(t))− (F (t), eϕ(t))− (t− t0)(Ḟ (t), eϕ(t))|dt

≤ t0‖f‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) +
(∫ t0

0

‖(t− t0)Ḟ (t) + F (t)‖2dt
) 1

2 ‖ϕ‖L2(0,T ;V )

≤ t0‖f‖L2(0,t0;H)‖ϕ‖Et0 + 2
1
2 max{t0, 1}‖F‖H1(0,t0;Hds )‖ϕ‖Et0 ≤ C‖ϕ‖Et0 . (4.40)

Moreover, we have

t0‖u1‖‖ϕ̇(0)‖ ≤ t0‖u1‖t−
1
2

0 ‖ϕ‖Et0 = t
1
2
0 ‖u1‖‖ϕ‖Et0 . (4.41)

By applying Theorem 4.8 with X = Vt0 and Y = Et0 , we have the existence of a solution to (4.3) on the
interval [0, t0].

Furthermore, we can use (4.29) and (4.37), and by means of (4.39)–(4.41) we obtain (4.30) with

C0 :=
max{2 1

2 max{t0, 1}, t
1
2
0 }

1
4 min{1, CA}

.

�

Remark 4.10. At this point, from Remark 4.2 and Propositions 4.3 and 4.9, we can find a weak solution
to the viscoelastic dynamic system (3.16)–(3.20) on the interval [0, t0].

Now we want to show that it is possible to find a weak solution on the whole interval [0, T ]. Let b, c ∈ [t0, T )
be two real numbers such that b < c, then we can state the following lemma.

Lemma 4.11. Let u ∈ VD(0, b) be a function which satisfies (3.21) on the interval [0, b], then the following
equality holds

〈u̇(b), ψ(b)〉 −
∫ b

0

(u̇(t), ψ̇(t))dt+

∫ b

0

((A + B)eu(t), eψ(t))dt−
∫ b

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eψ(t))dτdt

=

∫ b

0

(f(t), ψ(t))dt+

∫ b

0

(F (t), eψ(t))dt, (4.42)

for every ψ ∈ VD(0, b) such that ψ(0) = 0.
Moreover, if u ∈ VD(b, c) is a function which satisfies (3.21) on the interval [b, c], then the following

equality holds

−〈u̇(b),Ψ(b)〉 −
∫ c

b

(u̇(t), Ψ̇(t))dt+

∫ c

b

((A + B)eu(t), eΨ(t))dt−
∫ c

b

∫ t

b

1

β
e−

t−τ
β (Beu(τ), eΨ(t))dτdt

=

∫ c

b

(f(t),Ψ(t))dt+

∫ c

b

(F (t), eΨ(t))dt, (4.43)

for every Ψ ∈ VD(b, c) such that Ψ(c) = 0.



A DYNAMIC MODEL FOR VISCOELASTICITY IN DOMAINS WITH TIME-DEPENDENT CRACKS 15

Proof. We begin by proving (4.42). We consider ψ ∈ VD(0, b) such that ψ(0) = 0, and we define for ε ∈ (0, b)
the function

ψε(t) =

®
ψ(t) t ∈ [0, b− ε]
b−t
ε ψ(t) t ∈ [b− ε, b].

Since ψε ∈ VD(0, b) and ψε(0) = ψε(b) = 0, we can use it as a test function in (3.21) to obtain Iε + Jε = Kε,
where

Iε := −
∫ b−ε

0

(u̇(t), ψ̇(t))dt+−
∫ b

b−ε
(u̇(t), ψ(t))dt+

∫ b−ε

0

(
(A + B)eu(t)−

∫ b−ε

0

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, eψ(t)

)
dt,

Jε := −−
∫ b

b−ε
(b− t)(u̇(t), ψ̇(t))dt+−

∫ b

b−ε
(b− t)

(
(A + B)eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, eψ(t)

)
dt,

Kε :=

∫ b−ε

0

(f(t), ψ(t))dt+−
∫ b

b−ε
(b− t)(f(t), ψ(t))dt+

∫ b−ε

0

(F (t), eψ(t))dt+−
∫ b

b−ε
(b− t)(F (t), eψ(t))dt.

Thanks to the absolute continuity of Lebesgue’s integral and to Remark 4.6 we get

Iε −−−−→
ε→0+

−
∫ b

0

(u̇(t), ψ̇(t))dt+

∫ b

0

(
(A + B)eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, eψ(t)

)
dt+ 〈u̇(b), ψ(b)〉,

Jε −−−−→
ε→0+

0, Kε −−−−→
ε→0+

∫ b

0

(f(t), ψ(t))dt+

∫ b

0

(F (t), eψ(t))dt,

which concludes the proof of (4.42).
To prove (4.43), it is enough to consider for ε ∈ (0, c− b) the function

Ψε(t) =

®
t−b
ε Ψ(t) t ∈ [b, b+ ε]

Ψ(t) t ∈ [b+ ε, c]

where Ψ ∈ VD(b, c) such that Ψ(c) = 0, and to repeat similar argument before performed. �

Taking into account the previous lemma we can state and prove the following proposition.

Proposition 4.12. Let ũ ∈ VD(0, b) be a weak solution to the viscoelastic dynamic system (3.16)–(3.20) in

the sense of Definition 3.3 on the interval [0, b] which satisfies for some positive constants C̃ the following
estimate

‖ũ‖V(0,b) ≤ C̃
(
‖f‖L2(0,b;H) + ‖F‖H1(0,b;Hds ) + ‖u1‖

)
. (4.44)

Then, for every l ≥ 1 there exists c ∈ (b, b+ t0
l ] such that we can extend ũ to a function u ∈ VD(0, c) which

is a weak solution on the interval [0, c]. Moreover u satisfies for some positive constants C the following
estimate

‖u‖V(0,c) ≤ C
(
‖f‖L2(0,c;H) + ‖F‖H1(0,c;Hds ) + ‖u1‖

)
. (4.45)

Proof. We divide the proof into two steps. In the first one, we show how to extend the solution. After this,

in the second step, we prove (4.45). We firstly choose b̂ ∈ (b− t0
2l , b) in such a way that

• ũ(b̂) ∈ V and

‖ũ(b̂)‖2V ≤ −
∫ b

b− t02l
‖ũ(t)‖2V dt; (4.46)

• b̂ is a Lebesgue’s point for ˙̃u, that is

lim
ε→0+

−
∫ b̂+ε

b̂

‖ ˙̃u(t)− ˙̃u(b̂)‖dt = 0, (4.47)

and ˙̃u(b̂) ∈ H satisfies

‖ ˙̃u(b̂)‖2 ≤ −
∫ b

b− t02l
‖ ˙̃u(t)‖2dt. (4.48)
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Notice that (4.46)–(4.48) are possible because ũ ∈ V(0, b).
Step 1. Since ũ is a weak solution on the interval [0, b], then

−
∫ b

0

( ˙̃u(t), v̇(t))dt+

∫ b

0

((A + B)eũ(t), ev(t))dt−
∫ b

0

∫ t

0

1

β
e−

t−τ
β (Beũ(τ), ev(t))dτdt

=

∫ b

0

(f(t), v(t))dt+

∫ b

0

(F (t), ev(t))dt,

for every v ∈ VD(0, b) such that v(0) = v(b) = 0, and moreover ũ satisfies

lim
t→0+

‖ũ(t)‖ = 0 and lim
t→0+

‖ ˙̃u(t)− u1‖(V D0 )′ = 0. (4.49)

We define the function G ∈ H1(b̂, b̂+ t0
l ;Hd

s ) in the following way

G(t) := F (t) +

∫ b̂

0

1

β
e−

t−τ
β Beũ(τ)dτ.

Since t0
l ≤ t0, ũ(b̂) ∈ V , and ˙̃u(b̂) ∈ H, we can apply Remark 4.2, Propositions 4.3 and 4.9 on the interval

[b̂, b̂ + t0
l ], to find a function ū ∈ VD(b̂, b̂ + t0

l ) which satisfies, for every v ∈ VD(b̂, b̂ + t0
l ) such that

v(b̂) = v(b̂+ t0
l ) = 0, the following equality

−
∫ b̂+

t0
l

b̂

( ˙̄u(t), v̇(t))dt+

∫ b̂+
t0
l

b̂

((A + B)eū(t), ev(t))dt−
∫ b̂+

t0
l

b̂

∫ t

b̂

1

β
e−

t−τ
β (Beū(τ), ev(t))dτdt

=

∫ b̂+
t0
l

b̂

(f(t), v(t))dt+

∫ b̂+
t0
l

b̂

(G(t), ev(t))dt,

and also the following limits

lim
t→b̂+

‖ū(t)− ũ(b̂)‖ = 0, lim
t→b̂+

‖ ˙̄u(t)− ˙̃u(b̂)‖(V D0 )′ = 0. (4.50)

Notice that the initial data ũ(b̂) and ˙̃u(b̂) are well defined because ũ ∈ C0([0, b];H) and ˙̃u ∈ C0([0, b]; (V D0 )′).
Now we define the function

u(t) :=

®
ũ(t) t ∈ [0, b̂]

ū(t) t ∈ [b̂, b̂+ t0
l ],

(4.51)

and we claim that it is a weak solution on the interval [0, b̂+ t0
l ]. Notice that, since b̂ ≥ b− t0

2l then b̂+ t0
l > b.

To prove this, let us fix ψ ∈ DD(0, b̂+ t0
l ). Clearly ψ ∈ VD(0, b̂) and ψ(0) = 0, and since ũ is a weak solution

on [0, b̂], we can use (4.42) of Lemma 4.11 to get

( ˙̃u(b̂), ψ(b̂))−
∫ b̂

0

(u̇(t), ψ̇(t))dt+

∫ b̂

0

((A + B)eu(t), eψ(t))dt−
∫ b̂

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ)dτ, eψ(t))dt

=

∫ b̂

0

(f(t), ψ(t))dt+

∫ b̂

0

(F (t), eψ(t))dt. (4.52)

Moreover, ψ ∈ VD(b̂, b̂ + t0
l ) and ψ(b̂ + t0

l ) = 0, and since ū is a weak solution on [b̂, b̂ + t0
l ], by (4.43) of

Lemma 4.11 we obtain

−( ˙̄u(b̂), ψ(b̂))−
∫ b̂+

t0
l

b̂

(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

b̂

((A + B)eu(t), eψ(t))dt

−
∫ b̂+

t0
l

b̂

∫ t

b̂

1

β
e−

t−τ
β (Beu(τ)dτ, eψ(t))dt =

∫ b̂+
t0
l

b̂

(f(t), ψ(t))dt+

∫ b̂+
t0
l

b̂

(G(t), eψ(t))dt,

that is

−( ˙̄u(b̂), ψ(b̂))−
∫ b̂+

t0
l

b̂

(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

b̂

((A + B)eu(t), eψ(t))dt
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−
∫ b̂+

t0
l

b̂

∫ t

0

1

β
e−

t−τ
β (Beu(τ)dτ, eψ(t))dt =

∫ b̂+
t0
l

b̂

(f(t), ψ(t))dt+

∫ b̂+
t0
l

b̂

(F (t), eψ(t))dt.

(4.53)

From (4.47) and (4.50), by summing (4.52) and (4.53), we obtain the following equality

−
∫ b̂+

t0
l

0

(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

0

((A + B)eu(t), eψ(t))dt−
∫ b̂+

t0
l

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eψ(t))dτdt

=

∫ b̂+
t0
l

0

(f(t), ψ(t))dt+

∫ b̂+
t0
l

0

(F (t), eψ(t))dt. (4.54)

By setting c := b̂ + t0
l we have that the function u defined in (4.51) is a weak solution to the viscoelastic

dynamic system (3.16)–(3.20) in the sense of Definition 3.3 on the interval [0, c], since it satisfies (4.49) and
(4.54).

Step 2. Now, we want to prove (4.45). We can write

‖u‖2V(0,c) = ‖ũ‖2V(0,b̂)
+ ‖ū‖2V(b̂,c)

≤ ‖ũ‖2V(0,b) + ‖ū‖2V(b̂,c)
. (4.55)

Notice that ū − ũ(b̂) ∈ VD0 (b̂, c) is a function which satisfies Dafermos’ Equality (4.3) on the interval [b̂, c]
with the right-hand side equal to

t0( ˙̃u(b̂), ϕ̇(0))−
∫ c

b̂

(t− t0)
[
(f(t), ϕ̇(t)) + (G(t)− Aeũ(b̂)− e−

t−b̂
β Beũ(b̂), eϕ̇(t))

]
dt for every ϕ ∈ ED0 (b̂, c).

Therefore, by following the estimates in (4.39)–(4.41), we can apply (4.29) of Theorem 4.8, with X = VD(b̂, c)

and Y = ED0 (b̂, c), to obtain the existence of a positive constant K = K(t0,A) such that

‖ū− ũ(b̂)‖V(b̂,c) ≤ K
[
‖f‖L2(b̂,c;H) + ‖G− Aeũ(b̂)− e−

·−b̂
β Beũ(b̂)‖H1(b̂,c;Hds ) + ‖ ˙̃u(b̂)‖

]
. (4.56)

Now notice that

‖G‖H1(b̂,c;Hds ) ≤ ‖F‖H1(b̂,c;Hds ) +
(β

2

) 1
2
(

1 +
1

β

)
‖B‖∞

(∫ b̂

0

1

β2
e−

2(b̂−τ)
β dτ

) 1
2 ‖ũ‖L2(0,b̂;V )

≤ ‖F‖H1(b̂,c;Hds ) +
1

2

(
1 +

1

β

)
‖B‖∞‖ũ‖V(0,b̂), (4.57)

and

‖Aeũ(b̂) + e−
·−b̂
β Beũ(b̂)‖H1(b̂,c;Hds ) ≤

[( t0
l

) 1
2 ‖A‖∞ + ‖B‖∞‖e−

·−b̂
β ‖H1(b̂,c)

]
‖ũ(b̂)‖V

≤
[( t0

l

) 1
2 ‖A‖∞ +

(β
2

) 1
2
(

1 +
1

β

)
‖B‖∞

]
‖ũ(b̂)‖V . (4.58)

Taking into account the information provided by (4.46)–(4.48), we can use estimates (4.56)–(4.58) to deduce
the existence of a positive constant C̄ = C̄(t0, l,A,B, β) such that

‖ū‖V(b̂,c) ≤ C̄
(
‖f‖L2(b̂,c;H) + ‖F‖H1(b̂,c;Hds ) + ‖ũ‖V(0,b)

)
. (4.59)

By (4.44), (4.55), and (4.59) we obtain the final estimate (4.45). �

Now we are in position to prove the main theorem of this section.

Proof of Theorem 4.1. Let us consider u0 ∈ VD(0, t0) a weak solution to the viscoelastic dynamic system
(3.16)–(3.20) in the sense of Definition 3.3 on the interval [0, t0], whose existence is guaranteed by Remark
4.10. Moreover, u0 satisfies (4.30). By applying a finite number of times Proposition 4.12 with l = 1 we can
extend u0 to ũ ∈ VD(0, b) which is a weak solution on the interval [0, b], where T − b < t0. Now we select

b̂ ∈ (T − t0, b) in such a way (4.46)–(4.48) are satisfied on the interval [T − t0, b]. By choosing l = t0
T−b̂
≥ 1,

since b̂+ t0
l = T , taking into account Proposition 4.12 we can extend ũ to a function u ∈ VD(0, T ) which is

a weak solution to the viscoelastic dynamic system (3.16)–(3.20) on the interval [0, T ]. Moreover u satisfies
(4.45) on [0, T ]. Finally, by applying Remark 4.2 we get the thesis. �
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5. Existence: A coupled system equivalent to the viscoelastic dynamic system

In this section, we illustrate a second method to find solutions to the viscoelastic dynamic system (3.16)–
(3.20) according to Definition 3.3. This method is based on a minimizing movement approach deriving from
the theory of gradient flows, and it is a classical tool used to prove the existence of solutions in the context
of fractures, see, e.g., [4], [7], [9]. By means of this method, we are also able to provide an energy-dissipation
inequality satisfied by the solution, and consequently, thanks to this inequality, we prove that such a solution
satisfies the initial conditions (3.20) in a stronger sense than the one stated in (3.22).

To this aim, let us define the following coupled system®
ü(t)− div(Aeu(t))− div(B(eu(t)− w(t))) = f(t)− div(F (t)− e−

t
βBw0) in Ω \ Γt, t ∈ (0, T ),

βẇ(t) + w(t) = eu(t)
(5.1)

with the following boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (5.2)

[Aeu(t) + B(eu(t)− w(t))]ν = (F (t)− e−
t
βBw0)ν on ∂NΩ, t ∈ (0, T ), (5.3)

[Aeu(t) + B(eu(t)− w(t))]ν = (F (t)− e−
t
βBw0)ν on Γt, t ∈ (0, T ), (5.4)

u(0) = u0, w(0) = w0, u̇(0) = u1, (5.5)

where w0 ∈ Hd
s . Also in this case, the strong formulation of the coupled system (5.1)–(5.5) is only formal.

By setting
V := V(0, T ), VD := VD(0, T ), DD := DD(0, T ),

we give the following definition.

Definition 5.1. We say that (u,w) ∈ V ×H1(0, T ;Hd
s ) is a weak solution to the coupled system (5.1)–(5.5)

if the following conditions hold:

• u− z ∈ VD and

−
∫ T

0

(u̇(t), ϕ̇(t))dt+

∫ T

0

(Aeu(t), eϕ(t))dt+

∫ T

0

(B(eu(t)− w(t)), eϕ(t))dt

=

∫ T

0

(f(t), ϕ(t))dt+

∫ T

0

(F (t), eϕ(t))dt−
∫ T

0

e−
t
β (Bw0, eϕ(t))dt, (5.6)

for every ϕ ∈ DD;
• for a.e. t ∈ (0, T ) ®

βẇ(t) + w(t) = eu(t)

w(0) = w0
(5.7)

where the equalities are to be understood in the sense of the Hilbert space Hd
s ;

• the initial conditions (3.22) are satisfied.

The following result proves that the new problem is equivalent to the first one.

Theorem 5.2. The viscoelastic dynamic system (3.16)–(3.20) is equivalent to the coupled system (5.1)–(5.5).

Proof. Let us consider a weak solution (u,w) ∈ V×H1(0, T ;Hd
s ) to the coupled system (5.1)–(5.5) according

to Definition 5.1. In view of the theory of ordinary differential equations valued in Hilbert spaces, by (5.7)
we can write

w(t) = w0e−
t
β +

∫ t

0

1

β
e−

t−τ
β eu(τ)dτ for every t ∈ [0, T ]. (5.8)

Moreover, by definition u − z ∈ VD and (5.6) holds for every ϕ ∈ DD. By substituting (5.8) in (5.6) we
obtain

−
∫ T

0

(u̇(t), ϕ̇(t))dt+

∫ T

0

(
(A + B)eu(t)−

∫ t

0

1

β
e−

t−τ
β Beu(τ)dτ, eϕ(t)

)
dt−

∫ T

0

e−
t
β (Bw0, eϕ(t))dt

=

∫ T

0

(f(t), ϕ(t))dt+

∫ T

0

(F (t), eϕ(t))dt−
∫ T

0

e−
t
β (Bw0, eϕ(t))dt.
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Therefore, since, again by definition, (3.22) holds, u is a weak solution to the viscoelastic dynamic system
(3.16)–(3.20) in the sense of Definition 3.3.

Vice versa, if we consider a solution u ∈ V to the viscoelastic dynamic system (3.16)–(3.20), then u−z ∈ VD
and

−
∫ T

0

(u̇(t), ϕ̇(t))dt+

∫ T

0

((A + B)eu(t), eϕ(t))dt−
∫ T

0

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eϕ(t))dτdt

=

∫ T

0

(f(t), ϕ(t))dt+

∫ T

0

(F (t), eϕ(t))dt, (5.9)

for every ϕ ∈ DD. Let w0 ∈ Hd
s and let w be the function defined in (5.8). It is easy to see that

w ∈ H1(0, T ;Hd
s ) and by summing to both hand sides of (5.9) the term

−
∫ T

0

e−
t
β (Bw0, eϕ(t))dt,

we get (5.6). This, together with (3.22), shows that (u,w) ∈ V × H1(0, T ;Hd
s ) is a weak solution to the

coupled system (5.1)–(5.5) in the sense of Definition 5.1. The proof is then complete. �

Now we are in position to state the main result of this section.

Theorem 5.3. There exists a weak solution (u,w) ∈ V × H1(0, T ;Hd
s ) to the coupled system (5.1)–(5.5)

according to Definition 5.1. Moreover, u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H) ∩H1(0, T ; (V D0 )′), and

lim
t→0+

u(t) = u0 in V and lim
t→0+

u̇(t) = u1 in H.

The proof of this result will be given at the end of this section.

5.1. Discretization in time. In this subsection we prove Theorem 5.3 by means of a time discretization
scheme in the same spirit of [7].

Let us fix n ∈ N and set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1, w0

n := w0, F 0
n := F (0), h0

n := Bw0. (5.10)

We define

V kn := V Dkτn , zkn := z(kτn) for k = 0, . . . , n,

F kn := F (kτn), hkn := e−
kτn
β Bw0, fkn := −

∫ kτn

(k−1)τn

f(τ)dτ for k = 1, . . . , n.

For k = 1, ..., n let (ukn, w
k
n) be the minimizer in V kn ×Hd

s of the functional

(u,w) 7→ 1

2τ2
n

‖u− 2uk−1
n + uk−2

n ‖2 +
1

2
(Aeu, eu) +

1

2
(B(eu− w), eu− w)

+
β

2τ2
n

(B(w − wk−1
n ), w − wk−1

n )− (fkn , u)− (F kn − hkn, eu). (5.11)

Using the coerciveness (3.5), it is easy to see that the functional in (5.11) is convex and bounded from below
by

1

4
min

{ 1

2τ2
n

, CA,
1

τ2
n

CBβ
}

(‖u‖2V + ‖w‖2)− Ckn,

for a suitable positive constant Ckn. The existence of a minimizer then follows from the lower semicontinuity
of the functional with respect to the strong (and hence to the weak) convergence in V kn ×Hd

s .
To simplify the exposition, for k = 0, ..., n we define

δukn :=
ukn − uk−1

n

τn
and δ2ukn :=

δukn − δuk−1
n

τn
. (5.12)

The Euler equation for (5.11) gives

(δ2ukn, ϕ) + (Aeukn, eϕ) + (B(eukn − wkn), eϕ− ψ) + β(Bδwkn, ψ) = (fkn , ϕ) + (F kn − hkn, eϕ), (5.13)
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for every (ϕ,ψ) ∈ V kn ×Hd
s , where δwkn is defined for every k = 1, . . . , n as in (5.12), and δu0

n = u1 by (5.10).
Notice that by choosing as a test function the pair (ϕ, 0) with ϕ ∈ V kn , we get

(δ2ukn, ϕ) + ((A + B)eukn − Bwkn, eϕ) = (fkn , ϕ) + (F kn − hkn, eϕ),

which is a discrete-in-time approximation of (5.6). On the other hand, if we use as a test function in (5.13)
the pair (0, ψ) with ψ ∈ Hd

s , we have

(βδwkn + wkn − eukn, ψ) = 0,

whence βδwkn + wkn − eukn = 0 (as element of Hd
s ), which is an approximation in time of (5.7).

In the next lemma we show an estimate for the family {(ukn, wkn)}nk=1, which is uniform with respect to n,
and it will be used later to pass to the limit in the discrete equation (5.13).

Lemma 5.4. There exists a positive constant C, independent of n, such that

max
i=1,..,n

‖δuin‖+ max
i=1,..,n

‖euin‖+ max
i=1,..,n

‖win‖+

n∑
i=1

τn‖δwin‖2 ≤ C. (5.14)

Proof. To simplify our computations, we define the following two bilinear symmetric forms

a : (V ×Hd
s )× (V ×Hd

s )→ R b : Hd
s ×Hd

s → R
a((u,w), (ϕ,ψ)) := (Aeu, eϕ) + (B(eu− w), eϕ− ψ), b(w,ψ) := β(Bw,ψ).

Thanks to (3.5) we have that a((ϕ,ψ), (ϕ,ψ)) ≥ 0 and b(ψ,ψ) ≥ 0 for every ϕ ∈ V and ψ ∈ Hd
s . Now we

set ωkn := (ukn, w
k
n) for k = 0, . . . , n, and we take (ϕ,ψ) = τn(δukn − δzkn, δwkn) ∈ V kn ×Hd

s as a test function
in (5.13), where δz0

n := ż(0) and δzkn is defined as in (5.12). Therefore, we obtain

‖δukn‖2 − (δuk−1
n , δukn)− τn(δ2ukn, δz

k
n) + a(ωkn, ω

k
n)− a(ωk−1

n , ωkn)− τna(ωkn, (δz
k
n, 0)) + τnb(δw

k
n, δw

k
n)

= τn(fkn , δu
k
n − δzkn) + τn(F kn , eδu

k
n − eδzkn)− τn(hkn, eδu

k
n − eδzkn). (5.15)

By means of the following identities

‖δukn‖2 − (δuk−1
n , δukn) =

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
τ2
n

2
‖δ2ukn‖2,

a(ωkn, ω
k
n)− a(ωk−1

n , ωkn) =
1

2
a(ωkn, ω

k
n)− 1

2
a(ωk−1

n , ωk−1
n ) +

τ2
n

2
a(δωkn, δω

k
n),

from (5.15) we infer

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
1

2
a(ωkn, ω

k
n)− 1

2
a(ωk−1

n , ωk−1
n ) + τnb(δw

k
n, δw

k
n) ≤ τnW k

n , (5.16)

where

W k
n := (fkn , δu

k
n − δzkn) + (F kn , eδu

k
n − eδzkn)− (hkn, eδu

k
n − eδzkn) + (δ2ukn, δz

k
n) + a(ωkn, (δz

k
n, 0)).

We fix i ∈ {1, . . . , n} and we sum in (5.16) over k = 1, . . . , i to obtain the following discrete energy inequality

1

2
‖δuin‖2 +

1

2
a(ωin, ω

i
n) +

i∑
k=1

τnb(δw
k
n, δw

k
n) ≤ E0 +

i∑
k=1

τnW
k
n , (5.17)

where

E0 :=
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0).

Let us now estimate the right-hand side of (5.17) from above. By means of Cauchy-Schwarz and Young’s
inequalities we can write∣∣∣ i∑

k=1

τn(fkn , δu
k
n − δzkn)

∣∣∣ ≤ ‖f‖2L2(0,T ;H) +
1

2
‖ż‖2L2(0,T ;H) +

1

2

i∑
k=1

τn‖δukn‖2, (5.18)

∣∣∣ i∑
k=1

τn(hkn, δz
k
n)
∣∣∣ ≤ 1

2

i∑
k=1

τne−
2kτn
β ‖Bw0‖2 +

1

2

i∑
k=1

τn‖δzkn‖2 ≤
T

2
‖Bw0‖2 +

1

2
‖ż‖2L2(0,T ;H), (5.19)
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∣∣∣ i∑
k=1

τn(F kn , eδz
k
n)
∣∣∣ ≤ 1

2

i∑
k=1

τn‖F kn‖2 +
1

2

i∑
k=1

τn‖eδzkn‖2

≤ T‖F (0)‖2 + T 2‖Ḟ‖2L2(0,T ;Hds ) +
1

2
‖ż‖2L2(0,T ;V ), (5.20)∣∣∣ i∑

k=1

τna(ωkn, (δz
k
n, 0))

∣∣∣ ≤ 1

2
‖A‖2∞

i∑
k=1

τn‖eukn‖2 +
1

2
‖B‖2∞

i∑
k=1

τn‖eukn − wkn‖2 +

i∑
k=1

τn‖eδzkn‖2

≤ 1

2
(‖A‖2∞ + ‖B‖2∞)

[ i∑
k=1

τn‖eukn‖2 +

i∑
k=1

τn‖eukn − wkn‖2
]

+ ‖ż‖2L2(0,T ;V ). (5.21)

Notice that the following discrete integrations by parts hold

i∑
k=1

τn(δ2ukn, δz
k
n) = (δuin, δz

i
n)− (δu0

n, δz
0
n)−

i∑
k=1

τn(δuk−1
n , δ2zkn), (5.22)

i∑
k=1

τn(hkn, eδu
k
n) = (hin, eu

i
n)− (h0

n, eu
0
n)−

i∑
k=1

τn(δhkn, eu
k−1
n ), (5.23)

i∑
k=1

τn(F kn , eδu
k
n) = (F in, eu

i
n)− (F 0

n , eu
0)−

i∑
k=1

τn(δF kn , eu
k−1
n ), (5.24)

where δhkn, δF kn , and δ2zkn are defined as in (5.12). By (5.22) and

i∑
k=1

τn‖δuk−1
n ‖2 =

i−1∑
k=0

τn‖δukn‖2 ≤ T‖u1‖2 +

i∑
k=1

τn‖δukn‖2, (5.25)

we can write for every ε1 > 0∣∣∣ i∑
k=1

τn(δ2ukn, δz
k
n)
∣∣∣ ≤ 1

2ε1
‖δzin‖2 +

ε1

2
‖δuin‖2 + ‖u1‖‖ż(0)‖+

i∑
k=1

τn‖δuk−1
n ‖‖δ2zkn‖

≤ Cε1 + ‖z̈‖2L2(0,T ;H) +
ε1

2
‖δuin‖2 +

1

2

i∑
k=1

τn‖δukn‖2, (5.26)

where Cε1 is a positive constant depending on ε1. Thanks to (5.23) and to (5.25) (applied to euk−1
n in place

of δuk−1
n ) we have for every ε2 > 0∣∣∣ i∑

k=1

τn(hkn, eδu
k
n)
∣∣∣ ≤ 1

2ε2
‖hin‖2 +

ε2

2
‖euin‖2 + ‖eu0‖‖Bw0‖+

i∑
k=1

τn‖δhkn‖‖euk−1
n ‖

≤ Cε2 +
1

2β
‖Bw0‖2 +

ε2

2
‖euin‖2 +

1

2

i∑
k=1

τn‖eukn‖2, (5.27)

where Cε2 is a positive constant depending on ε2. Moreover, notice that

uin =

i∑
k=1

τnδu
k
n + u0,

hence by means of the discrete Holder’s inequality

‖uin‖ ≤
i∑

k=1

τn‖δukn‖+ ‖u0‖ ≤ T 1
2

( i∑
k=1

τn‖δukn‖2
) 1

2

+ ‖u0‖. (5.28)

By (5.24), (5.25) (applied again to euk−1
n in place of δuk−1

n ), and (5.28) we get for every ε3 > 0∣∣∣ i∑
k=1

τn(F kn , eδu
k
n)
∣∣∣ ≤ 1

2ε3
‖F in‖2 +

ε3

2
‖euin‖2 + ‖F (0)‖‖eu0‖+

i∑
k=1

τn‖δF kn‖‖euk−1
n ‖
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≤ Cε3 +
ε3

2
‖euin‖2 +

1

2
‖Ḟ‖2L2(0,T ;Hds ) +

1

2

i∑
k=1

τn‖eukn‖2, (5.29)

where Cε3 is a positive constant depending on ε3.
Now we consider (5.17)–(5.29). By choosing ε1 = 1

2 , ε2 = ε3 = CA
4 and using (3.4) and (3.5) we obtain

the existence of two positive constants C1 and C2 such that

1

4
‖δuin‖2 +

CA

4
‖euin‖2 +

CB

2
‖euin − win‖2 + βCB

i∑
k=1

τn‖δwkn‖2

≤ C1 + C2

i∑
k=1

τn

[
‖δukn‖2 + ‖eukn‖2 + ‖eukn − wkn‖2 +

k∑
l=1

τn‖δwln‖2
]
. (5.30)

By defining

ain := ‖δuin‖2 + ‖euin‖2 + ‖euin − win‖2 +

i∑
k=1

τn‖δwkn‖2,

from (5.30) we can derive

ain ≤ C̃1 + C̃2

i∑
k=1

τna
k
n,

for two positive constants C̃1 and C̃2. Taking into account a discrete version of Gronwall’s lemma (see, e.g.,
[1, Lemma 3.2.4]) we deduce that ain is bounded by a positive constant C∗ independent of i and n; i.e.

‖δuin‖2 + ‖euin‖2 + ‖euin − win‖2 +

i∑
k=1

τn‖δwkn‖2 ≤ C∗ for every i = 1, . . . , n and for every n ∈ N.

Therefore

‖δuin‖2 + ‖euin‖2 + ‖win‖2 +

i∑
k=1

τn‖δwkn‖2 ≤ 3C∗ for every i = 1, . . . , n and for every n ∈ N,

and this concludes the proof. �

We now want to pass to the limit into the discrete equation (5.13) to obtain a solution to the coupled
system (5.1)–(5.5) according to Definition 5.1. We start by defining the following interpolation sequences of
our limit solution

un(t) := ukn + (t− kτn)δukn, ũn(t) := δukn + (t− kτn)δ2ukn t ∈ [(k − 1)τn, kτn], k = 1, . . . , n,

u+
n (t) := ukn, ũ+

n (t) := δukn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

u−n (t) := uk−1
n , ũ−n (t) := δuk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

and the same approximations wn, w
+
n , w

−
n for the function w. By using this notation, we can state the

following convergence lemma.

Lemma 5.5. There exists (u,w) ∈ V × H1(0, T ;Hd
s ), with u − z ∈ VD, such that, up to a not relabeled

subsequence, we have

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇, (5.31)

wn
H1(0,T ;Hds )−−−−−−−−⇀

n→∞
w, w±n

L2(0,T ;Hds )−−−−−−−⇀
n→∞

w. (5.32)

Proof. Thanks to Lemma 5.4 the sequences

{un}n ⊂ H1(0, T ;H) ∩ L∞(0, T ;V ), {wn}n ⊂ H1(0, T ;Hd
s ) ∩ L∞(0, T ;Hd

s ),

{u±n }n ⊂ L∞(0, T ;V ), {w±n }n ⊂ L∞(0, T ;Hd
s ),

{ũ±n }n ⊂ L∞(0, T ;H),
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are uniformly bounded. Indeed, by means of (5.14) and (5.28) there exists a positive constant C̄ such that
‖uin‖V ≤ C̄ for every n ∈ N and i = 1, .., n, and therefore

‖un‖L∞(0,T ;V ) ≤ max
k=1,..,n

sup
t∈[(k−1)τn,kτn]

‖
(
1− k + tτ−1

n

)
ukn +

(
k − tτ−1

n

)
uk−1
n ‖V ≤ 2C̄.

By Banach-Alaoglu’s Theorem there exist some functions

u ∈ H1(0, T ;H), w ∈ H1(0, T ;Hd
s ), v1 ∈ L2(0, T ;V ), v2 ∈ L2(0, T ;Hd

s )

such that, up to a not relabeled sequence, we have

un
L2(0,T ;V )−−−−−−⇀
n→∞

u, u̇n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇, u+
n

L2(0,T ;V )−−−−−−⇀
n→∞

v1, (5.33)

wn
L2(0,T ;Hds )−−−−−−−⇀
n→∞

w, ẇn
L2(0,T ;Hds )−−−−−−−⇀
n→∞

ẇ, w+
n

L2(0,T ;Hds )−−−−−−−⇀
n→∞

v2. (5.34)

Since there exists a positive constant C such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−−→

n→∞
0, ‖wn − w+

n ‖L∞(0,T ;Hds ) ≤ Cτn −−−−→
n→∞

0, (5.35)

by using (5.33), (5.34) and triangle inequality, we can conclude that u = v1 and w = v2.
Moreover, given that

u−n (t) = u+
n (t− τn), w−n (t) = w+

n (t− τn) for t ∈ (τn, T ),

ũ−n (t) = ũ+
n (t− τn), for t ∈ (τn, T ),

ũ+
n (t) = u̇n(t), for a.e. t ∈ (0, T ),

with (5.35) and the continuity of the translations in L2 we deduce that

u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−−⇀
n→∞

u̇, w−n
L2(0,T ;Hds )−−−−−−−⇀
n→∞

w.

Now let us check that u ∈ V. To this aim, we define the following sets

Ṽ := {u ∈ L2(0, T ;V ) : u(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ),

ṼD := {u ∈ Ṽ : u(t) ∈ V Dt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ).

Notice that Ṽ is a (strong) closed convex subset of L2(0, T ;V ), and so by Hahn-Banach Theorem the set Ṽ
is weakly closed. In the same way we can prove that ṼD is also a weakly closed set. Notice that {u−n }n ⊂ Ṽ,
indeed

u−n (t) = uk−1
n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, we conclude that u ∈ Ṽ. Moreover ũ+
n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇ and so u̇ ∈ L2(0, T ;H), from

which we have u ∈ V. Finally, to show that u− z ∈ VD we observe that

u−n (t)− z−n (t) = uk−1
n − zk−1

n ∈ V k−1
n ⊂ V Dt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

therefore {u−n − z−n }n ⊂ ṼD. Since

u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, z−n
L2(0,T ;V )−−−−−−→
n→∞

z,

we get u− z ∈ VD. This concludes the proof. �

With the next lemma we show that the limit identified by Lemma 5.5 is actually a weak solution to the
coupled system (5.1)–(5.5) according to Definition 5.1.

Lemma 5.6. The limit pair (u,w) ∈ V ×H1(0, T ;Hd
s ) of Lemma 5.5 satisfies (5.6) and (5.7).

Proof. We fix n ∈ N and the functions ϕ ∈ DD and ψ ∈ C∞c (0, T ;Hd
s ). We consider the following piecewise-

constant approximating sequences

ϕkn := ϕ(kτn) ψkn := ψ(kτn) for k = 0, . . . , n,

δϕkn :=
ϕkn − ϕk−1

n

τn
δψkn :=

ψkn − ψk−1
n

τn
for k = 1, . . . , n,
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and the approximating sequences

ϕ+
n (t) := ϕkn, ϕ̃+

n (t) := δϕkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

ψ+
n (t) := ψkn, ψ̃+

n (t) := δψkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

If we use τn(ϕkn, 0) ∈ V kn ×Hd
s as a test function in (5.13), after summing over k = 1, ..., n, we get

n∑
k=1

τn(δ2ukn, ϕ
k
n) +

n∑
k=1

τn((A + B)eukn − Bwkn, eϕkn)

=

n∑
k=1

τn(fkn , ϕ
k
n) +

n∑
k=1

τn(F kn , eϕ
k
n)−

n∑
k=1

τn(hkn, eϕ
k
n). (5.36)

Since ϕ0
n = ϕnn = 0 we obtain

n∑
k=1

τn(δ2ukn, ϕ
k
n) =

n∑
k=1

(δukn, ϕ
k
n)−

n∑
k=1

(δuk−1
n , ϕkn) =

n−1∑
k=0

(δukn, ϕ
k
n)−

n−1∑
k=0

(δukn, ϕ
k+1
n )

= −
n−1∑
k=0

τn(δukn, δϕ
k+1
n ) = −

n∑
k=1

τn(δuk−1
n , δϕkn) = −

∫ T

0

(ũ−n (t), ϕ̃+
n (t))dt,

and from (5.36) we deduce

−
∫ T

0

(ũ−n (t), ϕ̃+
n (t))dt+

∫ T

0

((A + B)eu+
n (t)− Bw+

n (t), eϕ+
n (t))dt

=

∫ T

0

(f+
n (t), ϕ+

n (t))dt+

∫ T

0

(F+
n (t), eϕ+

n (t))dt−
∫ T

0

(h+
n (t), eϕ+

n (t))dt. (5.37)

Thanks to (5.31), (5.32), and the convergences

ϕ+
n

L2(0,T ;V )−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−−→
n→∞

ϕ̇

we can pass to the limit in (5.37), and we get that u ∈ V satisfies (5.6) for every function ϕ ∈ DD.
If we use τn(0, ψkn) ∈ V kn ×Hd

s as a test function in (5.13), we have

(βδwkn + wkn − eukn, ψkn) = 0,

which corresponds to

(βẇn(t) + w+
n (t)− eu+

n (t), ψ+
n (t)) = 0 t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

Therefore, for every (a, b) ⊂ (0, T ), from (5.31) and (5.32), we can write

0 = lim
n→∞

−
∫ b

a

(βẇn(t) + w+
n (t)− eu+

n (t), ψ+
n (t))dt = −

∫ b

a

(βẇ(t) + w(t)− eu(t), ψ(t))dt. (5.38)

Now we pass to the limit in (5.38) as a→ b and we obtain

(βẇ(b) + w(b)− eu(b), ψ(b)) = 0 for every b ∈ [0, T ].

Given that, fixed b ∈ (0, T ) for every p ∈ Hd
s there exists ψp(t) := (t + 1 − b)p ∈ H1(0, T ;Hd

s ) such that
ψp(b) = p, we can say that for a.e. t ∈ (0, T ) we have βẇ(t) + w(t) − eu(t) = 0 in Hd

s . Finally, since
wn(0) = w0, taking into account (5.32) we can conclude that w(0) = w0. �

It remains to show that the limit previously found assumes the initial data in the sense of (3.22). Before
doing this, let us recall the following result, whose proof can be found for example in [10].

Lemma 5.7. Let X,Y be reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Proposition 5.8. The limit pair (u,w) ∈ V ×H1(0, T ;Hd
s ) of Lemma 5.5 is a weak solution to the coupled

system (5.1)–(5.5). Moreover, u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H) and it admits a distributional derivative
in the space L2(0, T ; (V D0 )′).
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Proof. From the discrete equation (5.13) we deduce

|(δ2ukn, ϕ)| ≤ ‖A‖∞‖eukn‖+ ‖B‖∞‖eukn − wkn‖+ β‖B‖∞‖δwkn‖+ ‖fkn‖+ ‖F kn‖+ ‖hkn‖,

for every (ϕ,ψ) ∈ V D0 ×Hd
s ⊂ V kn ×Hd

s such that ‖(ϕ,ψ)‖V×Hds ≤ 1. Therefore, taking the supremum over

(ϕ,ψ) ∈ V D0 ×Hd
s with ‖(ϕ,ψ)‖V×Hds ≤ 1, we obtain the existence of a positive constant C ′ such that

‖δ2ukn‖2(V D0 )′ ≤ C
′(‖eukn‖2 + ‖eukn − wkn‖2 + ‖δwkn‖2 + ‖fkn‖2 + ‖F kn‖2 + ‖hkn‖2).

By multiplying this inequality by τn and then by summing over k = 1, . . . , n, we get
n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C
′
( n∑
k=1

τn‖eukn‖2 +

n∑
k=1

τn‖eukn − wkn‖2 +

n∑
k=1

τn‖δwkn‖2 + C ′′
)
, (5.39)

where

C ′′ := ‖f‖2L2(0,T ;H) + ‖F‖2L2(0,T ;Hds ) + T‖Bw0‖2.

Thanks to (5.39) and Lemma 5.4 we conclude that there exists a positive constant C̃, which does not depend
on n, such that

n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C̃. (5.40)

In particular {ũn}n ⊂ H1(0, T ; (V D0 )′) is uniformly bounded (notice that ˙̃un(t) = δ2ukn for t ∈ ((k−1)τn, kτn)
and k = 1, . . . , n). Hence, up to extracting a further (not relabeled) subsequence from the one of Lemma
5.5, we have

ũn
H1(0,T ;(V D0 )′)−−−−−−−−−⇀

n→∞
v, (5.41)

and by using the following estimate

‖ũn − ũ+
n ‖2L2(0,T ;(V D0 )′) ≤ C̃τ

2
n −−−−→

n→∞
0,

we conclude that v = u̇.
Since H1(0, T ; (V D0 )′) ↪→ C0([0, T ], (V D0 )′), by using Lemma 5.5 and Lemma 5.7 we deduce that the limit

pair (u,w) ∈ V ×H1(0, T ;Hd
s ) satisfies

u ∈ C0
w([0, T ];V ) and u̇ ∈ C0

w([0, T ];H).

By (5.31) and (5.41) we then obtain

un(t)
H−−−−⇀

n→∞
u(t) and ũn(t)

(V D0 )′−−−−⇀
n→∞

u̇(t) for every t ∈ [0, T ], (5.42)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1. By Lemma 5.6 we get the thesis. �

5.2. Energy Estimate. In this subsection, we prove an energy-dissipation inequality which holds for the
weak solution (u,w) ∈ V ×H1(0, T ;Hd

s ) to the coupled system (5.1)–(5.5), provided by Lemma 5.5. Thanks
to this, we are able to show the validity of the initial conditions in a stronger sense. The energy-dissipation
inequality give us a relation among the mechanical energy, defined by the sum of kinetic and elastic energy,
the dissipation and the total work exerted by external forces and by the boundary conditions. Therefore, let
us define the total energy as

Eu,w(t) :=
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t)). (5.43)

Notice that Eu,w(t) is well defined for every time t ∈ [0, T ] since u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H) and
w ∈ C0([0, T ];Hd

s ), and that

Eu,w(0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0).

The dissipation, on the interval [0, t], is defined by

Du,w(t) := β

∫ t

0

(Bẇ(τ), ẇ(τ))dτ, (5.44)
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and the total work is given by

Wtot(t) : =

∫ t

0

[(f(τ), u̇(τ)− ż(τ))− (Ḟ (τ), eu(τ)− ez(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))]dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))+(F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

+

∫ t

0

[
e−

τ
β (Bw0, eż(τ))− 1

β
e−

τ
β (Bw0, eu(τ))

]
dτ − e−

t
β (Bw0, eu(t)) + (Bw0, eu0). (5.45)

Remark 5.9. From the classical point of view, the total work on the solution (u,w) at time t ∈ [0, T ] is
given by

WC(t) := Wload(t) + Wbdry(t), (5.46)

where Wload(t) is the work on the solution at time t ∈ [0, T ] due to the loading term, which is defined as

Wload(t) :=

∫ t

0

(f(τ), u̇(τ))dτ +

∫ t

0

(div(e−
τ
βBw0 − F (τ)), u̇(τ))dτ, (5.47)

and Wbdry(t) is the work on the solution at time t ∈ [0, T ] due to the varying boundary conditions, which
one expects to be equal to

Wbdry(t) : =

∫ t

0

((F+(τ)− e−
τ
βBw0

+)ν, u̇(τ))L2(Γτ )dτ +

∫ t

0

((F−(τ)− e−
τ
βBw0

−)ν, u̇(τ))L2(Γτ )dτ

+

∫ t

0

((F (τ)− e−
τ
βBw0)ν, u̇(τ))HNdτ +

∫ t

0

(((A + B)eu(τ)− Bw(τ))ν, ż(τ))HDdτ,

where F+(t), w0
+ and F−(t), w0

− are the traces of F (t) and w0, respectively, from above and below on Γt.
Unfortunately, Wload(t) and Wbdry(t) are not well defined under our assumptions on u, F , and w0. However,

if we suppose more regularity, i.e.,

u ∈ H1(0, T ;H2(Ω\Γ;Rd))∩H2(0, T ;H), w ∈ H1(0, T ;H1(Ω\Γ;Rd×dsym))), F ∈ H1(0, T ;H1(Ω\Γ;Rd×dsym)),

w0 ∈ V0, and that Γ is a smooth manifold, then we can deduce from (5.6), (5.7), and (3.22) that the pair
(u,w) satisfies®

ü(t)− div(Aeu(t))− div(B(eu(t)− w(t))) = f(t) + div(e−
t
βBw0 − F (t)) in Ω \ Γt, t ∈ (0, T ),

βẇ(t) + w(t)− eu(t) = 0
(5.48)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

[(A + B)eu(t)− Bw(t)]ν = [F (t)− e−
t
βBw0]ν on ∂NΩ, t ∈ (0, T ),

[(A + B)eu+(t)− Bw+(t)]ν = [F+(t)− e−
t
βBw0

+]ν on Γt, t ∈ (0, T ),

[(A + B)eu−(t)− Bw−(t)]ν = [F−(t)− e−
t
βBw0

−]ν on Γt, t ∈ (0, T ),

u(0) = u0, w(0) = w0, u̇(0) = u1,

In this case, ((A+B)eu−w)ν ∈ L2(0, T ;HD) and by using (5.48), together with the divergence theorem
and the integration by parts formula, we deduce∫ t

0

(((A + B)eu(τ)− Bw(τ))ν, ż(τ))HDdτ =

∫ t

0

((A + B)eu(τ)− Bw(τ), eż(τ))dτ

+

∫ t

0

î
(div((A + B)eu(τ)− Bw(τ)), ż(τ)) + ((e−

τ
βBw0 − F (τ))ν, ż(τ))HN

ó
dτ

+

∫ t

0

î
((e−

τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e−
τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

ó
dτ

=

∫ t

0

î
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((e−

τ
βBw0 − F (τ))ν, ż(τ))HN

ó
dτ
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+

∫ t

0

î
(ü(τ), ż(τ))− (f(τ), ż(τ)) + (divF (τ), ż(τ))− e−

τ
β (div(Bw0), ż(τ))

ó
dτ

+

∫ t

0

î
((e−

τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e−
τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

ó
dτ

=

∫ t

0

î
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((e−

τ
βBw0 − F (τ))ν, ż(τ))HN

ó
dτ + (u̇(t), ż(t))− (u1, ż(0))

−
∫ t

0

î
(u̇(τ), z̈(τ)) + (f(τ), ż(τ))− (divF (τ), ż(τ)) + e−

τ
β (div(Bw0), ż(τ))

ó
dτ

+

∫ t

0

î
((e−

τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e−
τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

ó
dτ. (5.49)

From (5.49) and the definition of Wbdry, we have

Wbdry(t) =

∫ t

0

î
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((F (τ)− e−

τ
βBw0)ν, u̇(τ)− ż(τ))HN

ó
dτ

−
∫ t

0

î
(u̇(τ), z̈(τ)) + (f(τ), ż(τ))− (div(F (τ)− e−

τ
βBw0), ż(τ))

ó
dτ − (u1, ż(0)) + (u̇(t), ż(t))

+

∫ t

0

î
((F+(τ)− e−

τ
βBw0

+)ν, u̇(τ)− ż(τ))L2(Γτ ) + ((F−(τ)− e−
τ
βBw0

−)ν, u̇(τ)− ż(τ))L2(Γτ )

ó
dτ.

(5.50)

Taking into account (5.47) and (5.50), the classical work (5.46) can be written as

WC(t) =

∫ t

0

[(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))] dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

+

∫ t

0

î
((F+(τ)− e−

τ
βBw0

+)ν, u̇(τ)− ż(τ))L2(Γτ ) + ((F−(τ)− e−
τ
βBw0

−)ν, u̇(τ)− ż(τ))L2(Γτ )

ó
dτ

−
∫ t

0

î
(div(F (τ)− e−

τ
βBw0), u̇(τ)− ż(τ))− ((F (τ)− e−

τ
βBw0)ν, u̇(τ)− ż(τ))HN

ó
dτ

=

∫ t

0

[(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))] dτ

+

∫ t

0

î
(F (τ)− e−

τ
βBw0, eu̇(τ)− eż(τ))− (u̇(τ), z̈(τ))

ó
dτ + (u̇(t), ż(t))− (u1, ż(0))

=

∫ t

0

î
(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ)) + e−

τ
β (Bw0, eż(τ))

ó
dτ

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

−
∫ t

0

(Ḟ (τ), eu(τ)− ez(τ))dτ + (F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0

1

β
e−

τ
β (Bw0, eu(τ))dτ + (Bw0, eu0)− e−

t
β (Bw0, eu(t)).

Therefore, the definition of total work given in (5.45) is coherent with the classical one (5.46).

Now we are in position to prove the energy-dissipation inequality before mentioned. For convenience of

notation we set h(t) := e−
t
βBw0.

Theorem 5.10. The weak solution (u,w) ∈ V × H1(0, T ;Hd
s ) to the coupled system (5.1)–(5.5), given by

Lemma 5.5, satisfies for every t ∈ [0, T ] the following energy-dissipation inequality

Eu,w(t) + Du,w(t) ≤ Eu,w(0) + Wtot(t), (5.51)
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where Eu,w, Du,w, and Wtot are defined in (5.43), (5.44), and (5.45), respectively.

Proof. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n} such that t ∈ ((j− 1)τn, jτn]. In
particular, denoting by dxe the superior integer part of the number x, it reads as

j(n) =

°
t

τn

§
.

After setting tn := jτn, we can rewrite (5.17) as follows

1

2
‖ũ+

n (t)‖2 +
1

2
(Aeu+

n (t), eu+
n (t)) +

1

2
(B(eu+

n (t)− w+
n (t)), eu+

n (t)− w+
n (t))

+ β

∫ tn

0

(Bẇn(τ), ẇn(τ))dτ ≤ Eu,w(0) + W +
n (t), (5.52)

where

W +
n (t) :=

∫ tn

0

[(f+
n (τ), ũ+

n (τ)− z̃+
n (τ)) + (F+

n (τ), eũ+
n (τ)− ez̃+

n (τ)) + ( ˙̃un(τ), z̃+
n (τ))]dτ

+

∫ tn

0

[
((A + B)eu+

n (τ)− Bw+
n (τ), ez̃+

n (τ))− (h+
n (τ), eũ+

n (τ)− ez̃+
n (τ))

]
dτ.

Thanks to (5.14) and (5.40), we have

‖wn(t)− w+
n (t)‖2 = ‖wjn + (t− jτn)δwjn − wjn‖2 ≤ τ2

n‖δwjn‖2 ≤ Cτn −−−−→
n→∞

0,

‖un(t)− u+
n (t)‖ = ‖ujn + (t− jτn)δujn − ujn‖ ≤ τn‖δujn‖ ≤ Cτn −−−−→

n→∞
0,

‖ũn(t)− ũ+
n (t)‖2(V D0 )′ = ‖δujn + (t− jτn)δ2ujn − δujn‖2(V D0 )′ ≤ τ

2
n‖δ2ujn‖2(V D0 )′ ≤ C̃τn −−−−→n→∞

0.

The last convergences and (5.42) imply

u+
n (t)

H−−−−⇀
n→∞

u(t), w+
n (t)

Hds−−−−⇀
n→∞

w(t), ũ+
n (t)

(V D0 )′−−−−⇀
n→∞

u̇(t),

and since ‖u+
n (t)‖V + ‖ũ+

n (t)‖ ≤ C for every n ∈ N, we get

u+
n (t)

V−−−−⇀
n→∞

u(t), w+
n (t)

Hds−−−−⇀
n→∞

w(t), ũ+
n (t)

H−−−−⇀
n→∞

u̇(t). (5.53)

By (5.53) and the lower semicontinuity property of the maps v 7→ ‖v‖2, v 7→ (Av, v), and v 7→ (Bv, v), we
conclude

‖u̇(t)‖2 ≤ lim inf
n→∞

‖ũ+
n (t)‖2, (5.54)

(Aeu(t), eu(t)) ≤ lim inf
n→∞

(Aeu+
n (t), eu+

n (t)), (5.55)

(B(eu(t)− w(t)), eu(t)− w(t)) ≤ lim inf
n→∞

(B(eu+
n (t)− w+

n (t)), eu+
n (t)− w+

n (t)). (5.56)

Moreover, from Lemma 5.5, and in particular by (5.32) we get∫ t

0

(Bẇ(τ), ẇ(τ))dτ ≤ lim inf
n→∞

∫ t

0

(Bẇn(τ), ẇn(τ))dτ ≤ lim inf
n→∞

∫ tn

0

(Bẇn(τ), ẇn(τ))dτ, (5.57)

since t ≤ tn and v 7→
∫ t

0
(Bv(τ), v(τ))dτ is a non negative quadratic form on L2(0, T ;Hd

s ).
Now, we study the right-hand side of (5.52). Since we have

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]f and ũ+
n − z̃+

n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇− ż,

we deduce that ∫ tn

0

(f+
n (τ), ũ+

n (τ)− z̃+
n (τ))dτ −−−−→

n→∞

∫ t

0

(f(τ), u̇(τ)− ż(τ))dτ. (5.58)

In a similar way, since the following convergences hold

χ[0,tn]ez̃
+
n

L2(0,T ;Hds )−−−−−−−→
n→∞

χ[0,t]eż, h+
n

L2(0,T ;Hds )−−−−−−−→
n→∞

h, (A + B)eu+
n − Bw+

n

L2(0,T ;Hds )−−−−−−−⇀
n→∞

(A + B)eu− Bw,
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we obtain ∫ tn

0

(h+
n (τ), ez̃+

n (τ))dτ −−−−→
n→∞

∫ t

0

(h(τ), eż(τ))dτ (5.59)∫ tn

0

((A + B)eu+
n (τ)− Bw+

n (τ), ez̃+
n (τ))dτ −−−−→

n→∞

∫ t

0

((A + B)eu(τ)− Bw(τ), eż(τ))dτ. (5.60)

By means of the discrete integration by parts formulas (5.22)–(5.24) we can write∫ tn

0

( ˙̃un(τ), z̃+
n (τ))dτ = (ũ+

n (t), z̃+
n (t))− (u1, ż(0))−

∫ tn

0

(ũ−n (τ), ˙̃zn(τ))dτ, (5.61)∫ tn

0

(h+
n (τ), eũ+

n (τ))dτ = (eu+
n (t), h+

n (t))− (eu0, h(0))−
∫ tn

0

(h̃+
n (τ), eu−n (τ))dτ, (5.62)∫ tn

0

(F+
n (τ), eũ+

n (τ)− ez̃+
n (τ))dτ = (F+

n (t), eu+
n (t)− ez+

n (t))− (F (0), eu0 − ez(0))

−
∫ tn

0

(F̃+
n (τ), eu−n (τ)− ez−n (τ))dτ. (5.63)

Notice that the following convergences hold

‖z̃+
n (t)− ż(t)‖ =

∥∥∥z(jτn)− z((j − 1)τn)

τn
− ż(t)

∥∥∥ ≤ ∫ jτn

(j−1)τn

‖ż(τ)− ż(t)‖dτ −−−−→
n→∞

0,

‖h+
n (t)− h(t)‖ = ‖Bw0‖|e−

jτn
β − e−

t
β | ≤ 1

β2
‖Bw0‖|t− jτn| ≤

1

β2
‖Bw0‖τn −−−−→

n→∞
0,

‖z+
n (t)− z(t)‖V = ‖z(jτn)− z(t)‖V ≤ (jτn − t)

1
2 ‖ż‖L2(0,T ;V ) ≤ τ

1
2
n ‖ż‖L2(0,T ;V ) −−−−→

n→∞
0,

‖F+
n (t)− F (t)‖ = ‖F (jτn)− F (t)‖ ≤ (jτn − t)

1
2 ‖Ḟ‖L2(0,T ;Hds ) ≤ τ

1
2
n ‖Ḟ‖L2(0,T ;Hds ) −−−−→

n→∞
0,

χ[0,tn]
˙̃zn

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]z̈, χ[0,tn]h̃
+
n

L2(0,T ;Hds )−−−−−−−→
n→∞

χ[0,t]ḣ,

z−n
L2(0,T ;V )−−−−−−→
n→∞

z, χ[0,tn]F̃
+
n

L2(0,T ;Hds )−−−−−−−→
n→∞

χ[0,t]Ḟ .

By means of these convergences, (5.53), and Lemma 5.5, we can argue as before to deduce from (5.61)–(5.63)∫ tn

0

( ˙̃un(τ), z̃+
n (τ))dτ −−−−→

n→∞
(u̇(t), ż(t))− (u1, ż(0))−

∫ t

0

(u̇(τ), z̈(τ))dτ, (5.64)∫ tn

0

(h+
n (τ), eũ+

n (τ))dτ −−−−→
n→∞

(h(t), eu(t))− (h(0), eu0)−
∫ t

0

(ḣ(τ), eu(τ))dτ, (5.65)∫ tn

0

(F+
n (τ), eũ+

n (τ)− ez̃+
n (τ))dτ −−−−→

n→∞
(F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0

(Ḟ (τ), eu(τ)− ez(τ))dτ. (5.66)

By combining (5.52) and (5.54)–(5.66) we obtain the energy-dissipation inequality (5.51) for t ∈ (0, T ].
Finally, for t = 0 the inequality trivially holds since u(0) = u0 and u̇(0) = u1. �

Remark 5.11. Thanks to the last theorem and to the equivalence between the viscoelastic dynamic system
(3.16)–(3.20) and the coupled system (5.1)–(5.5), we can derive an energy-dissipation inequality for a weak
solution to our viscoelastic dynamic system (3.16)–(3.20). As can be seen from (5.6) and the proof of
Theorem 5.2 it is not restrictive to assume w0 = 0.

Let (u,w) be the weak solution to the coupled system (5.1)–(5.5) provided by Lemma 5.5. Then, it
satisfies the energy-dissipation inequality (5.51). Moreover, from Theorem 5.2 the function u is a solution to
the viscoelastic dynamic system (3.16)–(3.20) in the sense of Definition 3.3. Therefore, by substituting (5.8)
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in (5.51) we get for the conservative part

Eu,w(t) =
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t))

=
1

2
‖u̇(t)‖2 +

1

2
((A + B)eu(t), eu(t))−

∫ t

0

1

β
e−

t−τ
β (Beu(τ), eu(t))dτ

+
1

2β2

∫ t

0

∫ t

0

e−
2t−r−τ

β (Beu(r), eu(τ))drdτ (5.67)

and for the dissipation

Du,w(t) =

∫ t

0

(Bẇ(τ), eu(τ)− w(τ))dτ =

∫ t

0

(Bẇ(τ), eu(τ))dτ −
∫ t

0

(Bẇ(τ), w(τ))dτ

=
1

β

∫ t

0

(
Beu(τ)−

∫ τ

0

1

β
e−

τ−r
β Beu(r)dr, eu(τ)

)
dτ − 1

2
(Bw(t), w(t))

=
1

β

∫ t

0

(Beu(τ), eu(τ))dτ − 1

β2

∫ t

0

∫ τ

0

e−
τ−r
β (Beu(r), eu(τ))drdτ

− 1

2β2

∫ t

0

∫ t

0

e−
2t−r−τ

β (Beu(r), eu(τ))drdτ. (5.68)

By substituting the same information in the total work, we obtain

Wtot(t) =

∫ t

0

ï
(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ), eż(τ))−

∫ τ

0

1

β
e−

τ−r
β (Beu(r), eż(τ))dr

ò
dτ

−
∫ t

0

(Ḟ (τ), eu(τ)− ez(τ))dτ + (F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0

(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0)). (5.69)

After defining the elastic energy as

E (t) :=
1

2
‖u̇(t)‖2 +

1

2
((A + B)eu(t), eu(t))

−
∫ t

0

1

β
e−

t−τ
β (Beu(τ), eu(t))dτ +

1

2β2

∫ t

0

∫ t

0

e−
2t−r−τ

β (Beu(r), eu(τ))drdτ,

and the dissipative term

D(t) :=
1

β

∫ t

0

(Beu(τ), eu(τ))dτ − 1

β2

∫ t

0

∫ τ

0

e−
τ−r
β (Beu(r), eu(τ))drdτ

− 1

2β2

∫ t

0

∫ t

0

e−
2t−r−τ

β (Beu(r), eu(τ))drdτ,

taking into account (5.67), (5.68), and (5.69) we can rephrase the energy-dissipation inequality (5.51) as

E (t) + D(t) ≤ E (0) + Wtot(t),

where the total work Wtot now depends just on the function u.

Finally, in view of Theorem 5.10 we are ready to show that our weak solution satisfies the initial conditions
in a stronger sense than the one stated in (3.22), that is the content of the following lemma.

Lemma 5.12. The weak solution (u,w) ∈ V ×H1(0, T ;Hd
s ) to the coupled system (5.1)–(5.5), provided by

Lemma 5.5, satisfies the initial conditions in the following sense:

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H, lim
t→0+

w(t) = w0 in Hd
s . (5.70)

Proof. Since u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H), w ∈ C0([0, T ];Hd
s ), from the lower semicontinuity of the

real valued functions

t 7→ ‖u̇(t)‖2, t 7→ (Aeu(t), eu(t)), t 7→ (B(eu(t)− w(t)), eu(t)− w(t)),
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we can let t→ 0+ into the energy-dissipation inequality (5.51) to deduce that

Eu,w(0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0)

≤ 1

2

[
lim inf
t→0+

‖u̇(t)‖2 + lim inf
t→0+

(Aeu(t), eu(t)) + lim inf
t→0+

(B(eu(t)− w(t)), eu(t)− w(t))
]

≤ lim inf
t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t))

]
= lim inf

t→0+
Eu,w(t) ≤ lim sup

t→0+

Eu,w(t) ≤ Eu,w(0). (5.71)

Notice that the last inequality in (5.71) holds because the right-hand side of (5.51) is continuous in t, and
u(0) = u0, u̇(0) = u1, and w(0) = w0. Therefore, there exists limt→0+ Eu,w(t) = Eu,w(0). Moreover, we have

Eu,w(0) ≤ 1

2
lim inf
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

[
(Aeu(t), eu(t)) + (B(eu(t)− w(t)), eu(t)− w(t))

]
≤ 1

2
lim sup
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

[
(Aeu(t), eu(t)) + (B(eu(t)− w(t)), eu(t)− w(t))

]
≤ lim sup

t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t))

]
= Eu,w(0),

which gives
lim
t→0+

‖u̇(t)‖2 = ‖u1‖2.

In a similar way, we can also show that

lim
t→0+

(Aeu(t), eu(t)) = (Aeu0, eu0).

Finally, since we have

u̇(t)
H−−−−⇀

t→0+
u1, eu(t)

Hds−−−−⇀
t→0+

eu0

and u ∈ C0([0, T ];H), we deduce (5.70). In particular the functions u : [0, T ] → V and u̇ : [0, T ] → H are
continuous at t = 0. �

We can finally prove the main theorem of Section 5.

Proof of Theorem 5.3. It is enough to combine Proposition 5.8 and Lemma 5.12. �

Remark 5.13. We have proved Theorem 5.3 for the d-dimensional linear viscoelastic case, namely when
the displacement u is a vector-valued function. The same result is true with identical proof in the antiplane
case, that is when the displacement u is a scalar function and satisfies (1.3).
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