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Abstract. In this paper, we aim at a reduced 2d-model describing the observable states of
the magnetization in curved thin films. Under some technical assumptions on the geometry
of the thin-film, it is well-known that the demagnetizing field behaves like the projection of
the magnetization on the normal to the thin film. We remove these assumptions and show
that the result holds for a broader class of surfaces; in particular, for compact surfaces. We
treat both the stationary case, governed by the micromagnetic energy functional, and the
time-dependent case driven by the Landau-Lifshitz-Gilbert equation.
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1. Introduction and Physical Motivations

According to the Landau-Lifshitz theory of ferromagnetism (cf. [6, 35, 9, 8, 25, 29]),
the observable states of a rigid ferromagnetic body, occupying a region Ω ⊆ R3, are described
by its magnetization M : Ω → R3, a vector field verifying the fundamental constraint of
micromagnetism: there exists a material-dependent positive constant Ms ∈ R+ such that
|M | = Ms in Ω. In general, the spontaneous magnetization Ms := Ms(T ) depends on the
temperature T and vanishes above a critical value Tc, characteristic of each crystal type,
known as the Curie temperature. Assuming the specimen at a fixed temperature well below
Tc, the value of Ms can be considered constant in Ω. Therefore, the magnetization can be
expressed in the form M := Msm where m : Ω → S2 is a vector field taking values in the unit
sphere S2 of R3.

Although the modulus of m is constant in space, in general, it is not the case for its
direction. For single crystal ferromagnets (cf. [1, 3]), the observable magnetization states
correspond to the local minimizers of the micromagnetic energy functional which, after a
suitable normalization, reads as (cf. [35, p. 22] or [25, p. 138])

GΩ (m) := 1
2

∫
Ω

|∇m|2

=:E(m)

+
∫

Ω
φan (m)

=:A(m)

−1
2

∫
Ω

hd[mχΩ] ·m
=:W(m)

−µ0

∫
Ω

ha ·m.
=:Z(m)

(1)

with m ∈ H1(Ω,S2) and mχΩ the extension of m by zero outside Ω.
The variational problem (1) is non-convex, non-local, and contains multiple length

scales.
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The first term, E (m), is the exchange energy and penalizes nonuniformities in the ori-
entation of the magnetization. It summarizes the effects of short-range exchange interactions
among neighbor spins. The magnetocrystalline anisotropy energy, A (m), models the exis-
tence of preferred directions of the magnetization; the energy density φan : S2 → R+ is a
non-negative function that vanishes only on a finite set of directions, the so-called easy axes.
The quantity W (m) represents the magnetostatic self-energy and describes the energy due
to the demagnetizing field (stray field) hd[mχΩ] generated by mχΩ ∈ L2(R3,R3). The oper-
ator hd : m 7→ hd[m] is, for every m ∈ L2(R3,R3), the unique solution in L2(R3,R3) of the
Maxwell-Ampère equations of magnetostatics [9,27,16,34]:

div b[m] = 0,
curl hd[m] = 0,
b[m] = µ0 (hd[m] +m) ,

(2)

where b[m] denotes the magnetic flux density and µ0 is the magnetic permeability of the
vacuum. Finally, the term Z (m) is the Zeeman energy and models the tendency of the
specimen to have its magnetization aligned with the (externally) applied field ha. The applied
field is assumed to be unaffected by variations of m.

The dynamics of the magnetization is described by the Landau–Lifshitz–Gilbert (LLG)
equation [29,20]

∂ m

∂t
= −m× heff [m] + αm× ∂ m

∂t
in Ω × R+. (3)

The LLG equation is driven by the effective field heff [m] := −∂mGΩ (m) and includes both
conservative precessional and dissipative contributions; the constant α is the Gilbert damping
constant.

The four terms in the energy functional (1) take into account effects originating from
different spatial scales, such as short-range exchange forces and long-range magnetostatic
interactions. The competition among the four contributions in (1) explains most of the striking
pictures of the magnetization observable in ferromagnetic materials [25]; in particular, the
domain structure already suggested in 1906 by Weiss [43], i.e., regions of uniform or slowly
varying magnetization (magnetic domains) separated by thin transition layers (domain walls).
Depending on the relations among the material and geometric parameters of the ferromagnetic
particle, various asymptotic regimes arise, and their investigation can be efficiently carried
out by the dimension reduction techniques of calculus of variations (see, e.g., [4, 12, 14, 13,
22,28,26,37]).

1.1. State of the art. In the last decade, magnetic systems with the shape of a curved thin
film have been subject to extensive experimental and theoretical research (nanotubes [23,30],
3d helices [40,31], thin spherical shells [36,39,17,32]). The embedding of two-dimensional
structures in the three-dimensional space permits to alter the magnetic properties of the
system by tailoring its local curvature. Even in the case of an anisotropic crystal, curved
geometries can induce an effective antisymmetric interaction and, therefore, the formation
of magnetic skyrmions or other topological defects. In addition to fundamental reasons, the
wide range of magnetic properties emerging in this way makes these structures well-suited for
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technological applications, e.g., racetrack memory devices, spin-wave filters, and magneto-
encephalography (see the topical review [41]).

Under technical (and strong) assumptions on the geometry of the thin-film, it is well-
known that the demagnetizing field behaves like the projection of the magnetization on the
normal to the thin film. The first mathematical justification of this observation in micro-
magnetics emerged from the work of Gioia and James [22]; they showed that in planar
thin films the effect of the demagnetizing field operator is represented by an easy-surface
anisotropy term. A generalization of this result to the case of curved thin films is given
in [10], although under the technical assumption that the thin geometry is generated by a
surface diffeomorphic to the closed unit disk of R2. Also, in [38], a Γ-convergence analysis
is performed on pillow-like shells, i.e., on shells of small thickness ε > 0 having the form
Ωε := {(x, z) ∈ ω × R : εγ1(x) 6 z 6 εγ2(x)} with ω ⊆ R2 and γ1, γ2 functions vanishing on
the boundary of ω. All these investigations, having a local character, do not cover significant
scenarios like the one of a spherical thin film [36, 39, 17]. Lack of mathematical models in
this context motivated our work [15], which addressed the question but under a convexity
assumption on the surface generating the thin film.

Finally, in [16] we established three distinct variational principles for the magnetostatic
self-energy that, through the explicit construction of suitable families of scalar and vector
potential, permit to circumvent the technical difficulties in [10] and [15], at least in the
stationary case. Indeed, it is essential to remark that the approach in [16], dealing with energy
estimates rather than with the weak and strong convergence of the family of demagnetizing
field operators (as we do in Lemma 1), is not suitable for the analysis of the time-dependent
case.

1.2. Contributions of present work. The main aim of this paper is to overcome the tech-
nical assumptions on the geometry of the thin-film required in [10] and [15]. We extend the
validity of the reduced 2d models in [10] to the general framework of smooth (C2 is sufficient)
and bounded orientable surfaces in R3. (In particular, our results cover the class of compact
surfaces.) We consider both the stationary case, which is governed by the micromagnetic en-
ergy functional, and the time-dependent case driven by the Landau-Lifshitz-Gilbert equation
(the methods in [16] can not treat this case).

Note that, the extension to surfaces that do not admit (like in [10]) a single chart
atlas, is not achieved by a local-to-global gluing argument. In fact, the presence of the non-
local demagnetizing field operator hd (cf. (2)) makes this approach problematic. To have a
rigorously justified micromagnetic model of curved thin films, the asymptotic analysis must
take into account the global geometry of the surface from the very beginning; this requires
some work. In that respect, our primary tool is Lemma 1 which concerns the weak limit of
a family of demagnetizing field operators defined on curved thin films; we put some effort to
make the proof of Lemma 1 short and direct, so that the central geometric scaling involved
should appear evident (cf. Figure 1).

We want to emphasize that, although the results in themselves are not surprising, they
give a definitive answer to the long-standing question of whether the Gioia–James regime
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still hold for surfaces that, like the sphere, cannot be covered by a single chart. Our results
give an affirmative answer to this question and, therefore, put on solid ground the 2d models
currently used for the analysis and simulation of magnetism in curved geometries. Indeed, it
is important to stress that although several geometric regimes can be investigated (see, e.g.,
the survey article [26]), the Gioia–James regime is the most interesting one for the study
of magnetic skyrmions in curved geometries [41]. In this regard, the primary motivation
for our paper comes from the physics community; as remarked in [19]: being aware that
these (dimension reduction) results were obtained for plane films, we assume that the same
arguments are valid for smoothly curved shells.

1.3. Outline. The paper is organized as follows. In Section 2, we state the main results:
Lemma 1 which concerns the limiting behavior of the demagnetizing field in curved thin films;
Theorem 1, which deals with the curved thin-film limit in the stationary case; and Theorem
2 that accounts for the time-dependent setting. The proof of Theorem 1 is given in Section 3;
the analysis of the limiting LLG equation is in Section 4.

2. Statement of main results

In the following, S will always denote a bounded, orientable, and smooth (C2) surface in R3.
The normal field associated with the choice of orientation for S will be denoted by n : S → S2.
We stress that although in the following we will always refer to surfaces without boundary, the
distinction between surfaces with or without boundary is here irrelevant; indeed, contributions
due to the presence of a boundary can appear only at higher-order terms in the expansion of
the demagnetizing field.

2.1. Notation and setup. For every ξ ∈ S and every δ ∈ R we denote by ℓδ(ξ) :=
{ξ + sn(ξ)}|s|<δ the normal segment to S having radius δ and centered at ξ. We say that
S admits a tubular neighborhood (of uniform thickness) if there exists a δ ∈ R+ such that the
following properties hold (cf. [18, p. 112]):

(1) For every ξ1, ξ2 ∈ S one has ℓδ(ξ1) ∩ ℓδ(ξ2) = ∅ whenever ξ1 6= ξ2, and the union
Ωδ := ∪ξ∈Sℓδ(ξ) is an open set of R3 containing S.

(2) Set M := S × I, I := (−1, 1). For every 0 < ε < δ, the map
ψε : (ξ, s) ∈ M 7→ ξ + εsn(ξ) ∈ Ωε (4)

is a C1-diffeomorphism of M onto Ωε. In particular, the nearest point projection
π : Ωε → S, (5)

which maps any x ∈ Ωε onto the unique ξ ∈ S such that x ∈ ℓε(ξ), is a smooth (C1)
map.

The open set Ωδ is then called a tubular neighborhood of S of thickness δ. Note that
Ωδ ≡ ψδ(M) ≡ ψε(Mδ/ε), Mδ/ε = S × (−δ/ε, δ/ε). (6)

In what follows, to shorten notation, for any δ > 0 we will set Iδ := (−δ, δ) and Iδ+ := (0, δ).
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Remark 2.1. The range of surfaces included by our analysis is broad. Indeed, any compact
and smooth surface is orientable and admits a tubular neighborhood (of uniform thickness)
[18, Prop. 1, p. 113]. In particular, our analysis holds for bounded convex surface (e.g., planar
surfaces, the sphere, the ellipsoid) as well as non-convex ones (e.g., the torus). Also, it covers
the class of bounded surfaces that are diffeomorphic to an open subset of a compact surface
(e.g., the finite cylinder or the graph of a C2 function).

For every ξ ∈ S the symbols τ1(ξ), τ2(ξ) are used to denote an orthonormal basis of TξS
made by its principal directions, i.e., an orthonormal basis consisting of eigenvectors of the
shape operator of S (cf. [18, p. 146]). We then write κ1(ξ), κ2(ξ) for the principal curvatures
at ξ ∈ S. Note that, for any x ∈ Ωδ the trihedron

(τ1(ξ),τ2(ξ), n(ξ)) with ξ := π(x) , (7)

constitutes an orthonormal basis of Tπ(x)Ωδ that depends only on S. Also, we denote by√
gε the metric factor which relates the volume form on Ωε to the volume form on M, by

h1,ε, h2,ε the metric coefficients which link the gradient on Ωε to the gradient on M. A direct
computation shows that (cf., e.g., [33, p. 69])√

gε (ξ, s) := |1 + 2 (εs)H(ξ) + (εs)2 G(ξ)|, hi,ε (ξ, s) := 1
1 + εsκi(ξ)

(i = 1, 2), (8)

where H(ξ) and G(ξ) are, respectively, the mean and Gaussian curvature at ξ ∈ S. In what
follows, we shall always assume that the thickness δ is sufficiently small so that

inf
(ξ,s)∈Mδ/ε

√
gε (ξ, s) > cM, inf

(ξ,s)∈Mδ/ε

hi,ε (ξ, s) > cM, (9)

for some positive constant cM, and every ε ∈ Iδ+ .
Also, we shall denote byH1 (M,R3) the Sobolev space of vector-valued functions defined

on M (see [2]) endowed with the norm

‖u‖2
H1(M) :=

∫
M

|u (ξ, s)|2 dξds+
∫

M
|∇ξ u (ξ, s)|2 + |∂su (ξ, s)|2 dξds. (10)

Here, ∇ξ u is the tangential gradient of u on S. Finally, we write H1(M,S2) for the subset of
H1(M,R3) made by vector-valued functions with values in S2.

Next, we recall that (cf. [16]), if Ω is a bounded domain, m ∈ L2(Ω,R3), and hd[mχΩ] ∈
L2(R3,R3) is a solution of the Maxwell-Ampère equations (2) then, by Poincaré’s lemma,
hd[mχΩ] = ∇vm where vm is the unique solution in H1 (R3) of the Poisson’s equation

− ∆vm = div (mχΩ) . (11)

Therefore, the demagnetizing field can be described as the map which to every magnetization
m ∈ L2(R3,R3) associates the distributional gradient of the unique solution of (11) in H1(R3).
It is easily seen that the map −hd : m ∈ L2(Ω,R3) 7→ −∇vm ∈ L2(R3,R3) defines a self-
adjoint and positive-definite bounded linear operator from L2(R3,R3) into itself:

−
∫

Ω
hd[mχΩ] ·m =

∫
R3

|hd[mχΩ]|2 6
∫

Ω
|m|2 (12)
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for everym ∈ L2(Ω,R3). Moreover, for any ε ∈ Iδ+ , the demagnetizing field hd[mχΩε ] satisfies
the weak form of the Maxwell-Ampère equations (cf. [16])∫

R3
(hd[mχΩε ] +mχΩε) · ∇φ = 0, (13)∫

R3
hd[mχΩε ] · curlφ = 0, (14)

for every φ ∈ H1 (R3) and every φ ∈ H1 (R3,R3).
The anisotropy energy density φan : S2 → R+, which does not depend on ε ∈ Iδ+ , is

assumed to be a non-negative Lipschitz continuous function that vanishes only along the easy
directions. The hypotheses on φan are sufficiently general to embrace all classes of crystal
anisotropies arising in applications (e.g., uniaxial, triaxial, and cubic, where the anisotropy
density is a polynomial on S2). Finally, the applied field ha is assumed to be Lipschitz
continuous.

The crucial tool for our dimension reduction analysis, both in the stationary and time-
dependent case, is contained in the next result, whose proof will be given in Section 3.5.

Lemma 1. Let (uε)ε∈Iδ+ be a family in L2 (M,R3) such that uε (ξ, s) ⇀ u0(ξ)χI (s) weakly in
L2(M,R3), with u0 ∈ L2(S). Then, with Iδ/ε := (−δ/ε, δ/ε), there holds

hε[uε]χIδ/ε
⇀ − (u0(ξ) · n(ξ))n(ξ)χI (s) weakly in L2(S × R,R3). (15)

Here, the symbol hε[uε] ∈ L2(M,R3) stands for the demagnetizing field on M defined by (cf.
(21)):

hε[uε] := hd[uε ◦ ψ−1
ε ] ◦ ψε, (16)

and the family of diffeomorphisms (ψε)ε∈Iδ+ is the one given in (4).
Moreover, if uε (ξ, s) → u0(ξ)χI (s) strongly in L2(M,R3), then the convergence in (15)

is strong in L2(S × R,R3).

Remark 2.2. Note that, in particular, we have that hε[uε] ⇀ − (u0(ξ) · n(ξ))n(ξ) weakly in
L2(M,R3) if uε (ξ, s) ⇀ u0(ξ)χI (s) weakly in L2(M,R3). Also, hε[uε] → − (u0(ξ) · n(ξ))n(ξ)
strongly in L2(M,R3) if uε (ξ, s) → u0(ξ)χI (s) strongly in L2(M,R3).

2.2. The stationary case. The micromagnetic energy functional on curved thin
films. To avoid uninformative results (i.e., to avoid that the Γ-limit reduces to the null
functional), we consider a rescaled version of the energy functional (1). Precisely, let Ωδ be
a bounded open set generated as a tubular neighborhood of a smooth orientable surface S.
For any ε ∈ Iδ+ := (0, δ) we denote by Gε the micromagnetic energy functional defined on
H1(Ωε,S2) by

Gε (m) = 1
ε

(Eε (m) + Wε (m) + Aε (m) + Zε (m)) (17)

= 1
ε

(1
2

∫
Ωε

|∇m|2 − 1
2

∫
Ωε

hd[mχΩε ] ·m+
∫

Ωε

φan (m) −
∫

Ωε

ha ·m
)
, (18)
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where mχΩε is the extension by zero of m to the whole space outside Ωε. The existence for
any ε ∈ Iδ+ of at least a minimizer for Gε in H1(Ωε, S2) is a straightforward application of the
direct method of the calculus of variations (cf. [42]).

We are interested in the asymptotic behavior of the family of minimizers of (Gε)ε∈Iδ+ as
ε → 0.

Let us introduce the following functionals defined on H1(M,S2), which can be thought
as the pull-back of Eε,Wε,Aε and Zε on the product manifold M := S × I, I := (−1, 1):

• The exchange energy on M reads as

Eε
M(u) := 1

2

∫
M

2∑
i=1

|hi,ε (ξ, s) ∂τi(ξ)u (ξ, s)|2
√
gε (ξ, s)dξds

+ 1
2ε2

∫
M

|∂su (ξ, s)|2
√
gε (ξ, s)dξds. (19)

• The magnetostatic self-energy on M is defined by

Wε
M(u) := −1

2

∫
M

hε[u] (ξ, s) · u (ξ, s)
√
gε (ξ, s)dξds. (20)

Here, the symbol hε[u] ∈ L2(M,R3) stands for the demagnetizing filed on M:
hε[u] := hd[(uχI) ◦ ψ−1

ε ] ◦ ψε. (21)
The family of diffeomorphisms (ψε)ε∈Iδ+ is the one given in (4).

• The anisotropy and interaction energies on M, respectively given by

Aε
M(u) :=

∫
M
φan(u(ξ, s))

√
gε (ξ, s)dξds, (22)

Zε
M(u) := −

∫
M

hε
a (ξ, s) · u (ξ, s)

√
gε (ξ, s)dξds. (23)

For every ε ∈ Iδ+ , we have used the symbol hε
a for the expression of ha on M which,

for every (ξ, s) ∈ M, is defined by hε
a (ξ, s) := ha (ψε (ξ, s)). Note that, in the new

coordinate system, the applied field depends upon ε ∈ Iδ+ .

The main result for the stationary case is stated in the next result.

Theorem 1. For any ε ∈ Iδ+, the minimization problem for Gε in H1(Ωε,S2) is equivalent to
the minimization in H1(M, S2) of the functional Fε defined by

Fε(u) := Eε
M(u) + Wε

M(u) + Aε
M(u) + Zε

M(u). (24)
By this, we mean that a configuration mε ∈ H1(Ωε,S2) minimizes Gε if and only if uε :=
mε ◦ ψε ∈ H1(M,S2) minimizes Fε.

The family (Fε)ε∈Iδ+ is equicoercive in the weak topology of H1 (M,S2) and the Γ-limit
F0 := Γ- limε→0 Fε is given by

F0(u) := E0(u) + W0(u) + A0(u) + Z0(u) (25)

=
∫

S
|∇ξ u|2 dξ +

∫
S

(u · n)2 dξ +
∫

M
φan(u)dξ −

∫
M

ha · udξ, (26)
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if ∂su = 0 and +∞ otherwise. Therefore,
min

H1(Ωε,S2)
Gε = min

H1(M,S2)
Fε = min

H1(M,S2)
F0 + O(1) (27)

and if (uε)ε∈Iδ+ is a minimizing family for (Fε)ε∈Iδ+ , there exists a subsequence of (uε)ε∈Iδ+

which weakly converges in H1(M,S2) to a minimum point of F0.

The proof of Theorem 1 is given in several steps. In Subsection 3.1 we show that for any
ε ∈ Iδ+ and any mε ∈ H1 (Ωε,S2) the equality Gε (mε) = Fε (m ◦ ψε) holds, where ψε stands
for the diffeomorphism of M onto Ωε given by ψε (ξ, s) := ξ + εsn(ξ). In Subsection 3.2 we
show that the family (Fε)ε∈Iδ+ is equicoercive for the weak topology of H1(M,S2). Finally,
the complete characterization of the Γ-limit F0 is the object of Sections 3.3-3.5.

Remark 2.3. Note that, the families (Aε
M)ε∈Iδ+ and (Zε

M)ε∈Iδ+ are a continuous perturbation
of (Eε

M + Wε
M)ε∈Iδ+ . This means that, with respect to the (topological) product space Iδ+ ×

H1(M,S2), the following relations hold

lim
(ε,u)→(0,u0)

Aε
M(u) =

∫
M
φan(u(ξ))dξdt, lim

(ε,u)→(0,u0)
Zε

M(u) = −
∫

M
ha(ξ) · u(ξ)dξdt.

Hence, the theorem on the sum of Γ-limits holds (cf. [11, Prop. 6.20, p. 62]), namely:
Γ- lim

ε→0
Fε = Γ- lim

ε→0
(Eε

M + Wε
M) + Γ- lim

ε→0
Aε

M + Γ- lim
ε→0

Zε
M (28)

= Γ- lim
ε→0

(Eε
M + Wε

M) + A0 + Z0. (29)

For this reason, in the sequel, we shall only focus on the family (Eε
M + Wε

M)ε∈Iδ+ .

2.3. The time-dependent case. The Landau-Lifshitz-Gilbert equation on curved
thin films. The observable states of magnetization correspond to the local minimizers of
the micromagnetic energy functional (1). Hence, they are among the solutions of the Euler-
Lagrange equation. If m ∈ H1(Ω,S2) is a critical point of GΩ, then

〈dGΩ (m) , v〉 = 0 (30)
for every v ∈ H1 (Ω,R3) such that v(x) ∈ Tm(x)S2 for a.e. x in Ω. Here, Tm(x)S2 denotes the
tangent space of S2 at the point m(x), while dGΩ : H1 (Ω,R3) → R is the (unconstrained)
Fréchet derivative of GΩ at m.

In micromagnetics, −dGΩ (m) is referred to as the effective field and usually denoted by
heff [m]. The stationary condition (30), which in the strong form reads as{

m× heff [m] = 0 in Ω,
∂nm = 0 on ∂Ω, (31)

represents the so-called Brown’s static equations. In what follows, to shorten the length of
the formulas, we will neglect both the magnetocrystalline anisotropy and the Zeeman energy.
As already pointed out in Remark 2.3, these terms do not alter the mathematical analysis of
the question. Then, a standard computation shows that for every φ ∈ H1(Ω,R3) one has

〈heff [m], φ〉 = −
∫

Ω
∇m : ∇φ+

∫
Ω

hd[m] · φ, (32)
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or, in strong form, heff [m] := ∆m+hd[m]. When the magnetization does not satisfy Brown’s
static equations, the ferromagnetic system evolves in time according to the Landau–Lifshitz–
Gilbert equation (LLG) [29, 21], which model the magnetization dynamics as a dissipative
precessional dynamics driven by the effective field. In dimensionless form, the LLG reads as

∂tm = −m× heff [m] + αm× ∂tm in Ω × R+,
∂nm = 0 on ∂Ω × R+,
m(0) = m∗ in Ω,

(33)

where α > 0 is the Gilbert damping constant, and m∗ is the magnetization state at time
t = 0.

Here, we work with the standard weak formulation, as described, e.g., in [5,10,24]. In
what follows, for every T ∈ R+ we set ΩT := (0, T ) × Ω.

Definition 1. Let Ω be an open set of R3 and m∗ ∈ H1(Ω,S2). We say that the vector field
m : R+ × Ω → S2 is a (global) weak solution to the LLG, if for every T > 0 the following
conditions are fulfilled:

i. m ∈ H1(ΩT ,S2) ∩ L∞(0, T ;H1(Ω,S2));
ii. m(0) = m∗ in the trace sense;

iii. For every φ ∈ H1 (ΩT ,R3) there holds∫ T

0
〈∂tm,φ〉Ω = −

∫ T

0
〈heff [m], φ×m〉Ω + α

∫ T

0
〈∂tm,φ×m〉Ω . (34)

iv. With GΩ the energy functional (1), the following energy inequality holds:

GΩ (m(T )) + α
∫ T

0
‖∂tm(t)‖2

L2(Ω,R3) dt 6 GΩ (m∗) . (35)

The existence of at least a global weak solution of (33) dates back to [5]. Therefore, in
our setting, for any ε > 0, and any initial datum m∗

ε ∈ H1(Ωε,S2), there exists at least a global
weak solution mε of the LLG equation on Ωε with initial datum m∗

ε. As in the statement of
the Γ-convergence result, it is convenient to rewrite the LLG as an equation on the product
manifold M = S × I. To this end, for any uε ∈ H1(M,S2), we introduce the effective field
on M, defined for every φ ∈ H1 (M,R3) by

− 〈hε
eff [uε], φ〉 =

∫
M

∇ε
Muε : ∇ε

Mφ
√
gε −

∫
M

hε[uε] · φ
√
gε, (36)

where, to shorten notation, we set
∇ε

M := (h1,ε∂τ1(ξ), h2,ε∂τ2(ξ), ε
−1∂s). (37)

This leads to the Definition 2 below, which gives an equivalent notion of (global) weak solution
for configurations evolving in time on M. In what follows, for every T ∈ R+ we set MT :=
(0, T ) × M. Also, with a slight abuse of notation we set

〈uε, φ〉M =
∫

M
uε (ξ, s) · φ (ξ, s)

√
gεdξds (38)

and
〈u0, φ〉S =

∫
S
u0(ξ) · φ(ξ)dξ. (39)
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Definition 2. Suppose that u∗ (ξ, s) := u∗(ξ)χI (s) with u∗(ξ) ∈ H1(S, S2). We say that the
vector field uε : R+ × M → S2 is a (global) weak solution of the LLG equation if for every
T > 0 the following conditions are fulfilled:

i. uε ∈ H1(MT ,S2) ∩ L∞(0, T ;H1(M,S2));
ii. uε(0) = u∗ in the trace sense;

iii. For every φ ∈ H1 (MT ,R3) there holds∫ T

0
〈∂tuε, φ〉M = −

∫ T

0
〈hε

eff [uε], φ× uε〉M + α
∫ T

0
〈∂tuε, φ× uε〉M . (40)

iv. The following energy inequality holds, where Fε represents the energy functional (24):

Fε (uε(T )) +
∫

MT

|∂tuε|2
√
gε 6 Fε (u∗) . (41)

Remark 2.4. The equivalence between the two definitions has to be understood in the fol-
lowing sense. If mε is a global weak solution in the sense of Definition 1 (with initial datum
m∗

ε), then uε(t) := mε(t)◦ψε is a global weak solution in the sense of Definition 2 (with initial
datum u∗

ε := m∗ ◦ ψε) where, as before, ψε : (ξ, s) ∈ M 7→ ξ + εsn(ξ) ∈ Ωε.

For curved thin films, our main result reads as follows.

Theorem 2. Let u∗ (ξ, s) := u∗(ξ)χI (s) with u∗(ξ) ∈ H1 (S, S2) and, for every ε > 0, let uε

be a weak solution of the LLG (in the sense of Definition 2) with initial datum u∗. Then,
there exists a vector field u0 ∈ L∞(R+;H1(S, S2)) such that, u0 ∈ H1(ST ,S2) for every T > 0
and, possibly for a subsequence, uε

∗
⇀ u0χI weakly∗ in L∞(R+;H1(M,S2)) and strongly in

L2(0, T ;L2(M,S2)).
The limit vector field u0 satisfies the LLG equation on S:∫ T

0
〈∂tu0, φ〉S = −

∫ T

0

〈
h0

eff [u0], φ× u0
〉

S
+ α

∫ T

0
〈∂tu0, φ× u0〉S (42)

for all φ ∈ H1 (ST ,R3), with the effective field h0
eff on S given by

−
〈
h0

eff [u0], φ
〉

S
=

∫
S

∇ξ u0 : ∇ξφ+
∫

S
(u0 · n)n · φ. (43)

Moreover, u0(0) = u∗ and the following energy inequality holds for all T > 0

F0 (u0(T )) +
∫

ST

|∂tu0|2 6 F0 (u∗) (44)

with F0 given by (26).

The proof of Theorem 2 is given in Section 4, and it is based on the characterization of
the demagnetizing field operator on curved thin films (cf. Lemma 1).
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3. The stationary case: proof of Theorem 1

3.1. The equivalence of Gε and Fε. In this section, we prove the first part of Theorem 1,
namely that once introduced, for any ε ∈ Iδ, the diffeomorphism of M onto Ωε given by
ψε : (ξ, s) ∈ M 7→ ξ + εsn(ξ) ∈ Ωε, one has Gε (mε) = Fε (mε ◦ ψε), and therefore mε

minimizes Gε if and only if uε (ξ, s) := mε (ψε (ξ, s)) minimizes Fε.
We prove the equality Eε (mε) = Eε

M (mε ◦ ψε), the other ones being similar and easier.
For any m ∈ H1(Ωε,S2), by coarea formula we get

Eε (mε) := 1
2ε

∫
Ωε

|∇mε(x)|2 dx = 1
2

∫
M

|∇mε ◦ ψε (ξ, s)|2
√
gε (ξ, s)dξds. (45)

In writing the last equality, we have taken into account that for any (ε, s) ∈ Iδ+ × I the
volume form on ψε(M) is related to the volume form on M by the metric factor

√
gε (ξ, s) :=∣∣∣1 + 2εsH(ξ) + (εs)2 G(ξ)

∣∣∣. Next, we project the gradient onto the orthonormal (moving)
frame (τ1(ξ), τ2(ξ), n(ξ)) induced by S (cf. (7)). For any x ∈ Ωε we have |∇mε(x)|2 =∑2

i=1 |∂τi(ξ)mε(x)|2 + |∂n(ξ)mε(x)|2 with ξ = π(x). Moreover, the following relations hold

|∂τi(ξ)mε (ψε (ξ, s))|2 = 1
(1 + εsκi(ξ))2 |∂τi(ξ)uε (ξ, s)|2 (46)

= |hi,ε (ξ, s) ∂τi(ξ)uε (ξ, s)|2 ,

|∂n(ξ)mε (ψε (ξ, s))|2 = 1
ε2 |∂suε (ξ, s)|2 , (47)

from which the equality of Eε (mε) and Eε
M(uε) results. Note that the previous computa-

tion also shows that mε ∈ H1(Ωε,S2) if and only if mε ∈ H1(M,S2). Finally, since the
superposition operator mε ∈ H1(Ωε,S2) 7→ (mε ◦ ψε) ∈ H1(M,S2) is surjective, we get:

inf
mε∈H1(Ωε,S2)

Gε (mε) = inf
uε∈H1(M,S2)

[Eε
M(uε) + Wε

M(uε) + Aε
M(uε) + Zε(uε)] . (48)

This concludes the proof of the first part of Theorem 1.

3.2. Compactness. We now show that the family (Fε)ε∈Iδ+ is equicoercive in the weak
topology of H1 (M,S2). This means, by definition (see [7]), that there exists a nonempty and
weakly compact set K ⊆ H1(M,S2) such that

inf
H1(Ωε,S2)

Fε = inf
K

Fε ∀ε ∈ Iδ+ .

The equicoercivity of (Fε)ε∈Iδ+ will assure that we can rely on the fundamental theorem of
Γ-convergence concerning the variational convergence of minimum problems (cf. [7,11]).

Since Aε
M and Zε

M are uniformly bounded terms (with respect to ε ∈ Iδ+), it is sufficient
to show the equicoercivity of the family Vε := (Eε

M + Wε
M)ε∈Iδ+ . To this end, we observe that

for any constant in space v ∈ H1(M, S2) we have

min
u∈H1(M,S2)

Vε(u) 6 Eε
M(v) + Wε

M(v) = Wε
M(v). (49)
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Taking into account (12) and that √
gε is bounded on M, uniformly with respect to ε ∈ Iδ+ ,

we end up with

min
u∈H1(M,S2)

Vε(u) 6 1
2

∫
M

√
gε (ξ, s)dξds 6 κM|M|, (50)

for a suitable positive constant κM depending only on M. Therefore, for every ε ∈ Iδ+ ,
the minimizers of (Vε)ε∈Iδ+ are in K(M,S2) := ∪ε∈Iδ+ {u ∈ H1(M,S2) : Vε(u) 6 κM|M|}.
Also, since the principal curvatures κ1, κ2 are bounded in S, whenever the radius δ ∈ R+ of
the tubular neighborhood Ωδ is sufficiently small, we have inf(ξ,s)∈M hi,ε (ξ, s) > cM for every
ε ∈ Iδ+ (cf. (9)). Therefore, since Wε

M is always nonnegative because of (12), we get

‖u‖2
H1(M,S2) = |M| +

2∑
i=1

∫
M

|∂τi(ξ)u (ξ, s)|2 dξds+
∫

M
|∂su (ξ, s)|2 dξds

6 |M| + 1
cM

Vε(u), (51)

and therefore if u ∈ K(M,S2) then
‖u‖2

H1(M,S2) 6 (1 + κM/cM)|M|. (52)

In other words, the setK(M, S2) is contained in the bounded subsetH1
b (M,S2) ofH1 (M,R3)

given by the intersection of H1(M,S2) with the ball of H1 (M,R3) centered at the origin and
of radius 1 + κM/cM. Thus, for any ε ∈ Iδ+

min
u∈H1(M,S2)

Vε(u) = min
u∈H1

b
(M,S2)

Vε(u). (53)

To prove that H1
b (M,S2) is weakly compact it is sufficient to show that the set H1

b (M,S2)
is weakly closed. To this end, we note that if (un)n∈N is a sequence in H1

b (M,S2) such that
un ⇀ u0 weakly in H1 (M,R3), due to the Rellich-Kondrachov theorem, un → u0 strongly in
L2 (M,R3), and therefore, up to the extraction of a subsequence, 1 ≡ |un| → |u0| a.e. in M.
Thus u0 (ξ, s) ∈ S2 for a.e. (ξ, s) ∈ M and this concludes the proof.

3.3. The identification of the Γ-limit. In this section, we compute F0 := Γ- limε→0 Fε.
As pointed out in Remark 2.3, it is sufficient to focus on the Γ-convergence of the family

Vε : u ∈ H1(M,S2) 7→ Eε
M(u) + Wε

M(u). (54)
We set V0 := E0 + W0 with E0 and W0 given by (25). Note that, as a consequence of (12),
Vε(u) > 0 for any u ∈ H1(M,S2).

Let us prove the Γ-lim inf inequality for (Vε)ε∈Iδ+ , i.e., that for any family (uε)ε∈Iδ+

weakly convergent to some u0 ∈ H1(M,S2) we have V0(u0) 6 lim infε→0 Vε(uε). With no loss
of generality, we can assume that lim infε→0 Vε(uε) < +∞. We then have (see (19))

+∞ > lim inf
ε→0

Fε(uε) > lim inf
ε→0

1
2ε2

∫
M

|∂suε (ξ, s)|2
√
gε (ξ, s)dξds, (55)

and taking into account (9), we find that limε→0 ‖∂tu0‖L2(M) = 0. Since ∂tuε ⇀ ∂tu0 in
D′(M) we infer that

∂suε → ∂su0 (ξ, s) strongly in L2(M), ∂su0 (ξ, s) = 0 a.e. in M. (56)
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Therefore, for the identification of the Γ-limit of (Vε)ε∈Iδ
it is sufficient to restrict the analysis

to the families of H1 (M,S2) functions which weakly converge to an element u0 ∈ H1(M,S2)
which is 0-homogeneous, i.e., of the form

u0 (ξ, s) = χI (s) ũ0(ξ), (57)

for some ũ0 ∈ H1(S, S2), i.e., not depending on the s variable. In the following, with a slight
abuse of notation, we shall write u0(ξ) instead of ũ0(ξ).

In computing V0, we first show that the Γ-limit of the families (Eε
M)ε∈Iδ+ and (Wε

M)ε∈Iδ+ ,
is respectively equal to E0 and W0 (cf. (25)), then we prove that V0 := Γ- limε→0 Vε = E0+W0.

3.4. The Γ-limit of the family (Eε
M)ε∈Iδ+. This section provides the identification of the

Γ-limit of the family of exchange energies on M.

Proposition 1. The family (Eε
M)ε∈Iδ+ of exchange energy on M, Γ-converges, with respect to

the weak topology of H1(M,S2), to the functional

E0 : u ∈ H1(M,S2) 7→


∫

S
|∇ξ u|2 dξ if ∂su = 0,

+∞ otherwise.
(58)

Proof. We start by addressing the Γ-lim inf inequality for (Eε
M)ε∈Iδ+ . Taking into account the

lower semicontinuity of the norm, for any uε ⇀ u0 in H1(M,S2), with u0 of the type (57),
we get

1
2

‖u0‖2
H1(M,S2) = 1

2

∫
M

|u0 (ξ, s)|2 dξds+
2∑

i=1

1
2

∫
M

|∂τi(ξ)u0(ξ)|2dξds (59)

6 |S| + 1
2

lim inf
ε→0

∫
M

2∑
i=1

|∂τi(ξ)uε (ξ, s)|2 + |∂suε (ξ, s)|2 dξds (60)

= |S| + 1
2

lim inf
ε→0

∫
M

|∇ξ uε (ξ, s)|2 dξds. (61)

In deriving the last equality, we used (56) and denoted by ∇ξ uε (ξ, s) the tangential gradient
of uε on S whose norm, with respect to an orthonormal basis (τ1(ξ), τ2(ξ)) of TξS, can be
expressed as |∇ξ uε (ξ, s)|2 := ∑2

i=1 |∂τi(ξ)uε (ξ, s) |2. Overall

‖∇ξ u0‖2
L2(S) =

2∑
i=1

∫
S

|∂τi(ξ)u0(ξ)|2dξdt 6 1
2

lim inf
ε→0

∫
M

|∇ξ uε|2 . (62)

Next, from (9), there exists a strictly positive real-valued function γ : Iδ+ → R+ such that,
at least in a neighborhood of 0 ∈ R, the following estimate holds:

inf
(ξ,s)∈M

h2
i,ε (ξ, s)

√
gε (ξ, s) > γ(ε) with γ(ε) = 1 + O(1), (63)
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and, therefore,

lim inf
ε→0

∫
M

|∇ξ uε|2 =
(

lim inf
ε→0

γ(ε)
)(

lim inf
ε→0

∫
M

|∇ξ uε (ξ, s)|2 dξds
)

(64)

6 lim inf
ε→0

(
γ(ε)

∫
M

|∇ξ uε (ξ, s)|2 dξds
)

(65)

= lim inf
ε→0

( 2∑
i=1

γ(ε)
∫

M
|∂τi(ξ)uε (ξ, s)|2 dξds

)
(66)

6 lim inf
ε→0

( 2∑
i=1

∫
M

|hi,ε (ξ, s) ∂τi(ξ)uε (ξ, s)|2
√
gε (ξ, s)dξds

)
(67)

6 2lim inf
ε→0

Eε
M(uε). (68)

Substituting (68) into (62) we get that if uε ⇀ u0 weakly inH1(M,S2) and lim infε→0 Vε(uε) <
+∞, then the following estimate holds

‖∇ξ u0‖2
L2(S) 6 lim inf

ε→0
Eε

M(uε). (69)

We now address the existence of a recovery sequence. To this end, it is sufficient to note that
for every uε ∈ H1(M, S2) having the product form uε (ξ, s) = χI (s)u0(ξ) we have (cf. (63))

lim sup
ε→0

Eε
M(uε) = 1

2
lim sup

ε→0

2∑
i=1

∫
M

|hi,ε (ξ, s) ∂τi(ξ)u0(ξ)|2
√
gε (ξ, s)dξds (70)

= 1
2

2∑
i=1

∫
M

|∂τi(ξ)u0(ξ)|2dξds (71)

= ‖∇ξ u0‖2
L2(S) . (72)

This concludes the proof. �

3.5. Proof of Lemma 1 and the Γ-limit of the family (Wε
M)ε∈Iδ+. This section is devoted

to the identification of the Γ-limit of the family (Wε
M)ε∈Iδ+ of magnetostatic self-energies on

M. We will first prove Lemma 1.

Proof of Lemma 1. We set mεχΩε := (uε ◦ ψ−1
ε )χΩε , with ψε given by (4); cf. Figure 1. Recall

that mεχΩε denotes the extension by zero of mε to the whole space outside Ωε. Note that
mεχΩε is in L2 (R3,R3) and, therefore, it is possible to evaluate the demagnetizing field hd
on mεχΩε . Also, mεχΩε is in L2(Ωδ,S2) and this implies that the family (hε[uε]χIδ/ε

)ε∈Iδ+ is
bounded in L2 (S × R,R3). Indeed, we have∫

Mδ/ε

|hε[uε]|2
√
gεdξds 6

1
ε

∫
R3

|hd[mεχΩε ]|
2 dx = −1

ε

∫
R3

hd[mεχΩε ] ·mεχΩεdx

6 1
ε

∫
Ωε

|mε|2 =
∫

M

√
gεdξds,

(73)

and the last integral is bounded by a constant that does not depend on ε. Therefore, since
gε is uniformly bounded from below in Mδ/ε by a positive constant (cf. (9)), there exists
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Figure 1. A cross-section representation of the scaling procedure involved in
the proof of Lemma 1.

hM ∈ L2 (S × R,R3) such that

hε[uε]χIδ/ε
⇀ hM weakly in L2(S × R,R3). (74)

Next, we consider the restriction of (13) and (14) to Ωδ = ψε(Mδ/ε) = ψε(S × Iδ/ε) where, as
usual, ψε : (ξ, s) ∈ Mδ/ε 7→ ξ + εsn(ξ) ∈ Ωε. We obtain:

ε
∫

Mδ/ε

(hε[uε] + uεχI) · (∇φ ◦ ψε)gεdξds = 0, ∀φ ∈ D(Ωδ) (75)

ε
∫

Mδ/ε

hε[uε] · (curlφ ◦ ψε) gεdξds = 0, ∀φ ∈ D(Ωδ,R3). (76)

Here, hε[uε] is the demagnetizing field on M defined by (16). Decomposing (75) into its
normal and tangential part, we get that for any φε ∈ D(Mδ/ε)∫

Mδ/ε

[(hε[uε] + uεχI) · n]∂sφε

√
gε = −ε

2∑
i=1

∫
Mδ/ε

[(hε[uε] + uεχI) · τi] hi,ε∂τi
φε

√
gε. (77)

We test against functions of the type φε(ξ, s) := φS(ξ) · φ(s) withφS ∈ D(S), φ ∈ D(R),
and we note that for every φ ∈ D(R) there exists 0 < ε < δ sufficiently small such that
suppφ ⊆ Iδ/ε. Therefore, for every φ ∈ D (R), taking into account (63) and passing to the
limit for ε → 0 in (77), there holds∫

S×R
[(hM (ξ, s) + u0(ξ)χI (s)) · n(ξ)]φS(ξ)∂sφ (s) dsdξ = 0 ∀φ ∈ D(R). (78)

Thus, the function

s ∈ R 7→
∫

S
(hM (ξ, s) + u0(ξ)χI (s)) · n(ξ)φS(ξ)dξ (79)
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is constant and, due to (74), in L1 (R); this implies that (79) is necessarily the zero function.
By the arbitrariness of φS ∈ D(S) we conclude that

hM (ξ, s) · n(ξ) ≡ −u0(ξ)χI (s) · n(ξ). (80)

In particular, hM · n = 0 in S × (R\I).
Next, we consider the curl-free condition (76). For any φ ∈ D(Ωδ,R3) we set φε := φ◦ψε.

We have

curlφ ◦ ψε = n× (∂nφ ◦ ψε) +
2∑

i=1
τi × (∂τi

φ ◦ ψε) (81)

= 1
ε

(n× ∂sφε) +
2∑

i=1
τi × ∂τi

φε

1 + εsκi

. (82)

Therefore, equation (76) reads as∫
Mδ/ε

hε[uε] · (n× ∂sφε)
√
gεdξds = −ε

2∑
i=1

∫
Mδ/ε

hε[uε] · (τi × hi,ε∂τi
φε)

√
gεdξds. (83)

As before, testing against functions of the type φε(ξ, s) := φS(ξ) · φ(s) withφS ∈ D(S),
φ ∈ D (R,R3) and passing to the limit for ε → 0 we infer that∫

R×S
(n(ξ) × hM (ξ, s)) · φS(ξ)∂sφ (s) dξds = 0 ∀φ ∈ D(R,R3), (84)

and by the arbitrariness of φS ∈ D(S) we conclude that

n× hM = 0 in S × R. (85)

Summarizing, from the previous equation and (80) we end up with

hM (ξ, s) ≡ −[u0(ξ)χI (s) · n(ξ)]n(ξ). (86)

Next, suppose uε (ξ, s) → u0(ξ)χI (s) strongly in L2(M,R3). We have∫
Mδ/ε

|hε[uε]|2
√
gε = −1

ε

∫
Ωδ

hd[mεχΩε ] ·mεχΩε = −
∫

Mδ/ε

hε[uε] · uεχIgε, (87)

and by the strong convergence of uε → u0, passing to the limit for ε → 0 in the previous
relation, we obtain∫

R×S
|hε[uε]χIδ/ε

|2
√
gε

ε→0−−→ −
∫
R×S

hM · u0χI
(86)=

∫
S
(u0(ξ) · n(ξ))2dξ. (88)

The last integral coincides with the norm of hM in L2(S). This completes the proof. �

Coming back to the family of energy functionals (Wε
M)ε∈Iδ+ , it is now simple to prove

the following convergence result.

Proposition 2. If uε (ξ, s) → u0(ξ)χI (s) weakly in H1(M,S2) for some u0 ∈ L2(S), then

W0 := lim
ε→0

Wε
M(uε) =

∫
S

(u0(ξ) · n(ξ))2 dξ. (89)
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Proof. Let (uε)ε∈Iδ+ be a family of H1(M,S2) functions weakly converging to some u0 ∈
H1(M,S2) and such that lim infε→0 Fε(uε) < +∞. By Rellich–Kondrachov theorem, we have
uε → u0 strongly in L2(M,R3). By taking the limit for ε → 0 of Wε

M we get

−1
2

∫
M

hε[uε] · uε

√
gεdξds = −1

2

∫
S×R

hε[uε]χIδ/ε
· uεχI

√
gεdξds (90)

ε→0−−→
∫

S×I
hM (ξ, s) · u0(ξ)dξds. (91)

The assertion follows from Lemma 1. �

3.6. The Γ-limit of the family (Fε)ε∈Iδ
. We complete the proof of Theorem 1 by showing

that F0 is given by (26). As pointed out in Remark 2.3, it is sufficient to show that Γ- lim Vε =
E0 + W0. We note that if uε ⇀ u in H1(M,S2) and ∂su 6= 0 then lim infε→0 Vε(uε) = +∞.
Therefore, the Γ-lim inf inequality is trivially satisfied. On the other hand, if ∂su = 0, then
from Proposition 1 and Proposition 2 we get

lim inf
ε→0

Vε(uε) = lim inf
ε→0

Eε
M(uε) + lim

ε→0
Wε

M(uε) (92)

> E0(u0) + W0(u0) (93)
= V0(u0).

Finally, for any u0 ∈ H1(M,S2) such that ∂su0 = 0, the constant (with respect to the index
ε) family (uε)ε∈Iδ+ = (u0)ε∈Iδ+ is a recovery sequence. This completes the proof of Theorem 1.

4. The time-dependent case: proof of Theorem 2

Let now (uε)ε∈Iδ+
be a sequence of weak solutions of the LLG, in the sense of Definition

2, and suppose that uε(0) = u∗ for some u∗(ξ) ∈ H1(S, S2). Since u∗ does not depend on the
s-variable, from (12), we get the existence of a positive constant κM (u∗), depending only on
the volume of M and on ‖∇ξ u

∗‖2
L2(S), such that, for every ε > 0

Fε (u∗) 6 κM (u∗) . (94)
Thus, due to the energy inequality (41), taking into account (9), we have that for every ε ∈ Iδ+

sup
t∈R+

|Fε (uε(t))| 6 κ2
M (u∗) , ‖∂tuε‖2

L2(R+;L2(M,R3)) 6 κ2
M (u∗) . (95)

In particular, recalling the expression of Fε (cf. (24)), we get that for every ε > 0 there holds:
‖∇ε

Muε‖L∞(R+;L2(M,R3×3)) 6 κM (u∗) , ‖hε[uε]χIδ/ε
‖L∞(R+,L2(S×R)) 6 κM (u∗) . (96)

By the previous uniform bounds, we infer the existence of a map u0 ∈ L∞(R+;H1(S, S2)),
independent of the variable s, with u0 ∈ H1 (ST , S2) for every T > 0, such that, possibly for
a subsequence, the following convergence properties hold true:

uε
∗
⇀ u0χI weakly∗ in L∞(R+;H1(M,R3)), (97)

∇ξ uε ⇀ ∇ξ u0 weakly in L2(0, T ;L2(M,R3×2)), (98)
∂tuε ⇀ ∂tu0 weakly in L2(R+;L2(M,R3)). (99)
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From Lemma 1 and (96), it follows that for every T ∈ R+

hε[uε]χIδ/ε

∗
⇀ − (u0χI · n)n weakly∗ in L∞(R+;L2(M,R3)). (100)

Also, by Aubin–Lions–Simon lemma, since the family

‖uε‖L∞(R+;H1(M,S2)) + ‖∂tuε‖L2(R+;L2(M,R3)) (101)

is uniformly bounded, we get that for every T ∈ R+,

uε → u0 strongly in C0(0, T ;L2(M,S2)). (102)

Taking the limit for ε → 0 of the expression of the effective field (36) we get that for every
φ ∈ H1 (MT ,R3) which does not depend on the s-variable,

−
∫ T

0
〈hε

eff [uε], φ× uε〉M =
∫

MT

∇ξ uε : ∇ξ (φ× uε)
√
gε −

∫
MT

hε[uε] · (φ× uε)
√
gε

=
∫

MT

∇ξ uε : ((∇ξφ) × uε)
√
gε −

∫
MT

hε[uε] · (φ× uε)
√
gε

ε→0−−→
∫

MT

∇ξ u0 : ((∇ξφ) × u0) +
∫

MT

(u0 · n)n · (φ× u0)

=
∫ T

0
〈∇ξ u0,∇ξ (φ× u0)〉M +

∫ T

0
〈(n⊗ n)u0, φ× u0〉M .

Therefore, passing to the limit for ε → 0 in the family of LLG equation (40), we end up with
the weak formulation of the limit LLG equation which reads, for every φ ∈ H1 (ST ,R3), as∫ T

0
〈∂tu0, φ〉S = −

∫ T

0

〈
h0

eff [u0], φ× u0
〉

S
+ α

∫ T

0
〈∂tu0, φ× u0〉S . (103)

In particular, in the smooth setting, integrating by parts in (103), we get the strong form of
the limiting LLG equations that read as{

∂tu0 = −u0 × h0
eff [u0] + αu0 × ∂tu0 in S × R+,

u0(0) = u∗ in S, (104)

where −h0
eff [u0] := −∆ξu0 + (n⊗ n)u0.

Finally, the energy inequality (44) is a direct consequence of the energy inequalities
satisfied by the family of solutions (uε)ε∈Iδ+

:

Fε (uε(T )) +
∫

MT

|∂tuε|2
√
gε 6 Fε (u∗) . (105)

Indeed, by the lower semicontinuity of the norms we have

F0 (u0(T )) +
∫

ST

|∂tu0|2 6 lim inf
ε→0

Fε (u∗) , (106)

and the right-hand side coincides with F0 (u∗) because, as shown in Section 3.6, u∗ is a
recovery sequence for the Γ-limit F0. This completes the proof.
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