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Abstract

We gather the main known results concerning the nondegenerate Ornstein-
Uhlenbeck semigroup in finite dimension.
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Introduction

We consider the Ornstein-Uhlenbeck operator

A =

n∑
i,j=1

qijDij +

n∑
i,j=1

bijxjDi = Tr(QD2) + 〈Bx,D〉, x ∈ RN . (1)

Here Q = (qij) is a real symmetric and positive definite matrix and B = (bij) is a nonzero
real matrix. We also introduce the symmetric matrices

Qt =

∫ t

0

eτBQeτB
T

dτ, (2)

which share the same properties as Q. We discuss the main properties of the semigroup
and the generator in the space Cb(RN ) of bounded continuous functions on RN (domain,
interpolation properties, Schauder estimates) and in the Lp spaces both endowed with the
Lebesgue measure and the invariant measure γ, when it exists. In Lp(RN ) with the Lebesgue
measure we describe the domain and the spectrum of the generator. In Lpγ we describe the
domain, the spectrum (which turns out to be completely different from the former) and
some further regularity properties.

Finally, we present the hyper- (ultra-, super-) contractivity properties and the related
log-Sobolev inequalities. Ornstein-Uhlenbeck operators and semigroups are of interest in
several fields, from quantum mechanics, where they have been introduced by the scholars
they bear the names, to stochastic analysis, control theory, partial differential equations.
Evolution equations driven by Ornstein-Uhlenbeck operators are the Kolmogorov equations
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of linear stochastic ODEs, and they are one of the few examples of multidimensional linear
parabolic equations for which a resolvent kernel is explicitly known. In spite of these features,
as we are going to show they have generated challenging problems. An interesting discussion
of the physical models and the main applications in a historical perspective can be found in
[5].

We point out that we do not deal with degenerate Ornstein-Uhlenbeck operators, that
can be hypoelliptic and in this case share many properties with the nondegenerate ones,
and that there are several further issues connected with Ornstein-Uhlenbeck operators and
semigroups, which we do not discuss, such as e.g. functional calculus, properties of maximal
operators, Riesz transforms, and other questions of harmonic analysis. Our presentation is
limited to the topics closer to the interests of the semigroup community.

Many of the estimates that we are going to show are dimension free, and in fact a
rich extension of the theory to infinite dimensional settings (separable Hilbert and even
Banach spaces) is available. We refer to the paper Ornstein-Uhlenbeck semigroups in infinite
dimension in this volume for a survey.
Acknowledgements The authors are members of G.N.A.M.P.A. of the Italian Istituto
Nazionale di Alta Matematica (INdAM) and they have been partially supported by the
PRIN 2015 MIUR project 2015233N54.

1 The integral formula for the semigroup

In this section we sketch the derivation of the explicit representation of the semigroup
generated by A in the form (1), which is due to Kolmogorov. Formula (1.4) below can be
derived also using the Fourier transform as sketched in [26].

Let us consider the following parabolic initial value problem{
ut = Tr(QD2u) + 〈Bx,Du〉
u(0, x) = f(x)

(1.1)

with f ∈ Cb(RN ). Problem (1.1) is simplified getting rid of the drift term 〈Bx,Du〉 using
the flow generated by B {

ξ̇ = Bξ
ξ(0) = x

(1.2)

whose solution is given by ξ(t, x) = etBx. Thus, setting u(t, x) = v(t, etBx), we see that
u(t, x) is solution of (1.1) if and only if v(t, x) is solution of the following nonautonomous
parabolic problem {

vt = tr(C(t)D2v) = A(t)v
v(0) = f

(1.3)

where C(t) = etBQetB
T

and A(t) = Tr(C(t)D2). If we compute formally the solution of
problem (1.3) and come back we find

T (t)f(x) := u(t, x) =
1

(4π)N/2(detQt)1/2

∫
RN

e−
〈Q−1
t y,y〉

4 f(etBx− y)dy, (1.4)

where the matrix Qt is defined in (2). See e.g. [4] for more details. If we set

gt(y) =
1

(4π)N/2(detQt)1/2
e−
〈Q−1
t y,y〉

4 , (1.5)
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it is easily seen that ‖gt‖1 = 1, and therefore T (t) is conservative, namely it maps the
constant function 1 into itself, and moreover for every f ∈ Cb(RN ) we have

T (t)f(x) = (gt ∗ f)(etBx), t > 0, x ∈ RN . (1.6)

Let us check the semigroup law for f in the Schwartz space S(RN ), so that T (t)f ∈ S(RN )
by (1.4). Writing everything in terms of the Fourier transform F [f ], we have F [gt](η) =

exp{−〈Qtη, η〉} = exp{−|Q1/2
t η|2}, F [f(etBx)](ξ) = 1

|det etB |F [f ](e−tB
T

ξ) det etB = et trB

and Qt+s = Qs + esBQte
sBT hence

F [T (s)f ](ξ) = e−s trB exp{−|Q1/2
s e−sB

T

ξ|2}F [f ](e−sB
T

ξ)

and

F [T (t)T (s)f ](ξ) = e−t trB exp{−|Q1/2
t e−tB

T

ξ|2}F [T (s)f ](e−tB
T

ξ)

=e−t trB exp{−|Q1/2
t e−tB

T

ξ|2}e−s trB exp{−|Q1/2
s e−sB

T

e−tB
T

ξ|2}F [f ](e−tB
T

e−sB
T

ξ)

=e−(t+s) trB exp{−(|(esBQtesB
T

)1/2e−(t+s)B
T

ξ|2 + |Q1/2
s e−(t+s)B

T

ξ|2)}F [f ](e−(t+s)B
T

ξ)

=F [T (t+ s)f ](ξ).

Therefore T (t + s)f = T (t)T (s)f if f ∈ S(RN ). A comparison between (1.6) and the
semigroup law in S(RN ) gives the relation

gt+s(y) =

∫
Rn
gt(y + esBz)gs(z)dz,

whence we deduce that the semigroup law holds also in all the spaces where T (t) is given
by (1.6), e.g., Lp spaces with respect to the Lebesgue or the Gaussian measures, see the
following Subsections, and Cb(RN ) as well.

Another way to deduce (1.4) is through stochastic analysis. Indeed, let us consider the
ordinary SDE in RN {

dXt = BXtdt+ TdWt,
X0 = x,

where Wt is a standard Brownian motion in RN and T is any N ×N matrix, x ∈ RN . The
solution is Xt = etBx +

∫ t
0
e(t−s)BTdWs, and since

∫ t
0
e(t−s)BTdWs is a centered Gaussian

random variable with covariance
∫ t
0
esBTT ∗esB

∗
ds, the transition semigroup Pt defined by

Ptϕ(x) := E(ϕ(Xt)) is our T (t), with Q = (TT ∗)/2, and ut = Au is the Kolmogorov
equation of the above SDE, see [2, Example 6.7.6] for a simple proof in the 1-dimensional
case and [3, §8.2] for a more general result.

2 Main properties of the semigroup

In this section we collect some classical results for (T (t))t≥0 in spaces of continuous functions
and in Lp spaces, first with respect to the Lebesgue measure and then with respect to a
suitable Gaussian measure, which is invariant for the semigroup, in the case that all the
eigenvalues of B have negative real part. All the functions considered here are real valued.
Complex valued functions are needed only in a part of the next subsection.
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2.1 The semigroup in Cb(RN)

As usual, Cb(RN ) and all its subspaces are endowed with the sup norm ‖ · ‖∞.
Since gt is continuous, by (1.6) we see that T (t) maps L∞(RN ) into Cb(RN ), and therefore

it is a strong Feller semigroup. However, it is not strongly continuous even in BUC(RN )
unless B = 0. Indeed, given any f ∈ BUC(RN ), using the fact that limt→0

∫
{|y|>δ} gt(y)dy =

0 for every δ > 0, it is easily seen that

lim
t→0+

‖T (t)f − f(etB ·)‖∞ = 0 (2.1)

and therefore we have
lim
t→0+

‖T (t)f − f‖∞ = 0

if and only if
lim
t→0+

|f(etBx)− f(x)| = 0 uniformly for x ∈ RN , (2.2)

see [12, Lemma 3.2]. For N = 1 and B = 1 a counterexample to strong continuity is thus
provided by f(x) = sinx ∈ BUC(R). In fact, f(et·) does not converge uniformly to f as
t → 0. As T (t) maps C0(RN ) into itself and (2.2) is satisfied in C0(RN ), it is strongly
continuous on C0(RN ).

Smoothing properties of (T (t))t≥0 in Cb(RN ) are established as well in [12]: if f ∈
C1
b (RN ), from (1.6) we get

DT (t)f(x) = etB
T

(gt ∗Df)(etBx) = etB
T

T (t)Df(x), (2.3)

whereas for any f ∈ Cb(RN )

DT (t)f(x) = etB
T

(Dgt ∗ f)(etBx). (2.4)

Since Dgt(y) = gt(y)(− 1
2Q
−1
t y),

DT (t)f(x) = −1

2

∫
RN

etB
T

Q−1t y gt(y)f(etBx− y)dy = (g
(1)
t ∗ f)(etBx)

where g
(1)
t (y) = − 1

2e
tBTQ−1t y gt(y). We estimate ‖g(1)t ‖1 as follows

‖g(1)t ‖1 ≤
1

2
‖etB

T

‖
∫
RN
|Q−1t y| 1

(4π)N/2(detQt)1/2
e−

1
4 〈Q

−1
t y,y〉dy

=
1

2(4π)N/2
‖etB‖

∫
RN

e−
|z|2
4 |Q−1/2t z|dz ≤ c‖etB‖‖Q−1/2t ‖, t > 0.

Using now the inequalities |Q−1/2t z| ≤ c√
t
|z| for 0 < t ≤ 1 (which easily follows from

Qt/t → I as t → 0), and ‖Qt‖ ≤ t‖Q‖ sup0<s<t ‖esB‖, we obtain that there exists c1 > 0
such that

‖DT (t)f‖∞ ≤
c1
t1/2
‖f‖∞ 0 < t ≤ 1.

If all the eigenvalues of B have negative real part there exist c1, ω > 0 such that

‖DT (t)f‖∞ ≤
c1e
−ωt

t1/2
‖f‖∞ t > 0.
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Using the semigroup law and (2.3) we obtain T (t)f ∈ C2
b (RN ), and

‖DDiT (t)f‖∞ = ‖DiDT (t/2)T (t/2)f‖∞ = ‖Di(e
t
2B

T

T (t/2)DT (t/2)f)‖∞ (2.5)

≤ c1‖e
t
2B

T ‖√
t
‖DT (t/2)f‖∞ ≤

c2
t
‖f‖∞, 0 < t ≤ 1,

and if all the eigenvalues of B have negative real part,

‖DDiT (t)f‖∞ ≤
c2e
−ωt

t
‖f‖∞ t > 0.

Iterating this argument, we conclude that if f ∈ Cb(RN ), for every t > 0 the function T (t)f
belongs to C∞b (RN ) and for every multi-index α there exists c = c(α) > 0 such that

‖DαT (t)f‖∞ ≤
c

t|α|/2
‖f‖∞ 0 < t ≤ 1, (2.6)

while the sup norm of all the derivatives of T (t)f decay exponentially as t → ∞ if all the
eigenvalues of B have negative real part.

The semigroup T (t) is neither compact, see [39, Example 5.4], nor analytic if B 6= 0, see
[12, Lemma 3.3], in Cb(RN ). Theorem 4.2 of [39] and the counterexample in [12] show that
it is neither compact nor analytic even in C0(RN ). In fact, the counterexample in [12] shows
that, in general, T (t) does not map C0(RN ) into the domain of the infinitesimal generator
A0 of T (t) in C0(RN ), and therefore T (t) is not differentiable in C0(RN ). Moreover, if B 6= 0
then ‖T (t)− T (s)‖ ≥ 2 for s 6= t and the semigroup is not norm-continuous.

Still, the representation formula for T (t) easily yields that for every f ∈ Cb(RN ,C)
the function (t, x) 7→ T (t)f(x) is continuous in [0,+∞) × RN , and therefore for all λ with
positive real part the operators Rλ defined by

Rλf(x) :=

∫ +∞

0

e−λtT (t)f(x) dt, f ∈ Cb(RN ;C), x ∈ RN ,

are one to one. Moreover, since T (t) is a semigroup, the resolvent identity Rλ − Rµ =
(µ− λ)RλRµ is satisfied for Reλ, Reµ > 0. It follows that Rλ is the resolvent (λI −AC)−1

of a closed operator AC : D(AC) ⊂ Cb(RN ;C) → Cb(RN ;C), which is called generator of
T (t) in Cb(RN ;C), although it is not the infinitesimal generator in the classical sense. Here
we are interested only in real valued functions; since T (t) preserves real valued functions,
for λ > 0 also Rλ does and we call generator of T (t) in Cb(RN ) the part A of AC in Cb(RN ).

By the general theory of strongly continuous semigroups, the restriction of Rλ to C0(RN )
coincides with the resolvent of the infinitesimal generator A0 of T (t) in C0(RN ).

Proposition 2.1 We have

D(A) = {u ∈ Cb(RN )
⋂
p>1

W 2,p
loc (RN ) : Au ∈ Cb(RN )},

D(A0) = {u ∈ C0(RN )
⋂
p>1

W 2,p
loc (RN ) : Au ∈ C0(RN )}.

Both statements are consequences of results from [38] about a more general class of Feller
semigroups. The first one follows from Thm. 5.2(i) and Prop. 5.7, the second one from

5



Prop. 5.5. Hölder continuity of T (·)f and Schauder type theorems have been investigated
in [12]. Given f ∈ Cb(RN ) and α ∈ (0, 1), we have

sup
0<t≤1

‖T (t)f − f‖∞
tα

< +∞⇐⇒ f ∈ (Cb(RN ), D(A))α,∞ (2.7)

⇐⇒
{
f ∈ C2α

b (RN ) ∩ Yα α 6= 1/2,
f ∈ Z1(RN ) ∩ Y1/2 α = 1/2,

where the spaces Yα are defined by

Yα =
{
f ∈ Cb(RN ) : sup

x∈RN , t>0

|f(etBx)− f(x)|
tα

< +∞
}
,

and Z1(RN ) is the Zygmund space

Z1(RN ) =
{
f ∈ Cb(RN ) : sup

x∈RN , h 6=0

|f(x+ h)− 2f(x) + f(x− h)|
|h|

< +∞
}
.

Schauder theorems are the following. The first part was proved in [12], the second part in
[30]. We denote by Ck+θb (RN ), for k ∈ N and 0 < θ ≤ 1, the space of Ckb (RN ) functions
with θ-Hölder continuous k-th order derivatives.

Theorem 2.1 Let λ > 0 and u ∈ D(A) be such that λu−Au = f ∈ Cθb (RN ), with θ ∈ (0, 1).
Then u ∈ Cθ+2

b (RN ) and all the second order derivatives of u belong to Yθ/2. There exists
C = C(λ) > 0 independent of u such that

‖u‖Cθ+2
b (RN ) ≤ C‖f‖Cθb (RN ).

Let now T > 0, f ∈ Cθ+2
b (RN ) and g ∈ Cb([0, T ] × RN ) be such that

sup0≤t≤T ‖g(t, ·)‖Cθb (RN ) <∞. Then the function u(t, x) := T (t)f(x)+
∫ t
0
T (t−s)g(s, ·)(x)ds

satisfies {
ut(t, x) = Au(t, ·)(x) + g(t, x), t ∈ [0, T ], x ∈ RN ,
u(0, x) = f(x), x ∈ RN , (2.8)

and it is the unique solution of (2.8) belonging to Cb([0, T ] × RN ), such that u(t, ·) ∈
Cθ+2
b (RN ) and sup0≤t≤T ‖u(t, ·)‖Cθ+2

b (RN ) <∞, and such that the derivatives ut, Diu, Diju

are continuous in ([0, T ]× RN ). Moreover, there is C = C(T ) > 0 such that

sup
0≤t≤T

‖u(t, ·)‖Cθ+2
b (RN ) ≤ C(‖f‖Cθ+2

b (RN ) + sup
0≤t≤T

‖g(t, ·)‖Cθb (RN )).

Maximal regularity in the parabolic Hölder spaces Cθ/2,θ([0, T ] × RN ), that holds for
(2.8) if A is replaced by any uniformly elliptic operator with coefficients in Cθb (RN ), does
not hold in the present case.

2.2 The semigroup in Lp(RN)

We start recalling that the semigroup (T (t))t≥0 is strongly continuous on Lp(RN ), 1 ≤ p <
∞, see [35]. One can show that a suitable realization of A in Lp(RN ) is the infinitesimal
generator of (T (t))t≥0. For 1 < p <∞ denote by ‖ · ‖p the norm in Lp(RN ) and define

Dp(A) = {u ∈ Lp(RN ) ∩W 2,p
loc (RN ) : Au ∈ Lp(RN )}.
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From now on, we denote by Ap the realization of A in Lp(RN ) with domain Dp(A). It
is proved in [36] that if 1 < p < ∞, the generator of (T (t))t≥0 in Lp is the operator
Ap. Moreover, C∞c (RN ) is a core for Ap. For p = 1 the generator is the closure A1 of
A : C∞c (RN ) → L1(RN ), but in general a function u in the domain of A1 does not belong
to W 2,1

loc (RN ). The following more precise description of Dp(A) is given in [40] and [41], see
also [42].

Theorem 2.2 For 1 < p <∞

Dp(A) = {u ∈ Lp(RN ) ∩W 2,p(RN ) : 〈Bx,Du〉 ∈ Lp(RN )}. (2.1)

Moreover, there are positive constants c1, c2 such that

c1(‖u‖p + ‖Au‖p) ≤ ‖u‖W 2,p(RN ) + ‖〈Bx,Du〉‖p ≤ c2(‖u‖p + ‖Au‖p) (2.2)

for every u ∈ Dp(A).

The above results say that Dp(A) is the intersection of the domains of the diffusion term
Tr(QD2u) and of the drift term 〈Bx,Du〉. The estimate

‖u‖W 2,p(RN ) ≤ c2(‖u‖p + ‖Au‖p), u ∈ Dp(A),

which follows from (2.2), is the analogue of the classical Calderón-Zygmund estimate for the
Laplacian, see e.g. [23, §9.4]. From (1.5) and (1.6), using Young’s inequality for convolutions
and the identity det(e−tB) = e−t trB we get

‖T (t)f‖p ≤ e−
trB
p t‖gt‖1‖f‖p = e−

trB
p t‖f‖p, (2.3)

so that T (t) is quasi-contractive and contractive if trB is nonnegative. On the negative side,
the semigroup T (t) is never analytic in Lp(RN ), unless B = 0, as it follows from the results
of Section 4 (a). An explicit counterexample for N = 1 is in [31].

Smoothing properties of (T (t))t≥0 are established in [13] in Lp(RN ): if f ∈ Lp(RN ) then
T (t)f ∈W k,p(RN ). Indeed, arguing as in the Subsection 2.1, Young’s inequality yields

‖DT (t)f‖p ≤ e−
trB
p t‖g(1)t ‖1 ‖f‖p ≤

c√
t
‖f‖p 0 < t ≤ 1.

and, by iteration,

‖DαT (t)f‖p ≤
c

t|α|/2
‖f‖p 0 < t ≤ 1.

However, 〈Bx,DT (t)f〉 /∈ Lp(RN ), in general. Theorem 2.2 does not have a parabolic
counterpart like Theorem 2.1, since the semigroup is not analytic. However the following
result is proved in [31].

Proposition 2.2 Let T > 0 and g ∈ Lp(0, T ;W θ,p(RN )) with θ ∈ (0, 1) and p ∈ (1,+∞).

Then the mild solution to problem (2.8) withf ≡ 0, namely the function u(t, x) :=
∫ t
0
T (t−

s)g(s, ·)(x) ds, belongs to Lp(0, T ;W θ+2,p(RN )) and there is C = C(T ) > 0 such that

‖u‖Lp(0,T ;W θ+2,p(RN )) ≤ C‖g‖Lp(0,T ;W θ,p(RN )).
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2.3 The invariant measure γ and the semigroup in Lp(RN , γ)

In this section we assume that σ(B) ⊂ C−, i.e., the spectrum of B is contained in the
open left half plane. This assumption, as proved in [14, Section 11.2.3], is equivalent to the
existence of an invariant measure γ for (T (t))t≥0, i.e., a probability measure γ such that∫

RN
T (t)f dγ =

∫
RN

f dγ

for every t ≥ 0 and f ∈ Cb(RN ). The invariant measure, when it does exist, is usually
identified by letting t → ∞. As we have an explicit formula for the semigroup, we start
by observing that under our hypotheses the matrix Qt defined in (2) converges increasingly

(in the sense of quadratic forms) to Q∞ =

∫ ∞
0

esBQesB
∗
ds and that etB converges to 0 as

t→∞, so that

T (t)f(x)
t→∞→ 1√

(4π)NdetQ∞

∫
RN

e−
1
4 〈Q

−1
∞ y,y〉f(y) dy (2.1)

pointwise for every f ∈ Cb(RN ). The above computation suggests what should be the
invariant measure γ, i.e., the Gaussian measure with density g(x) given by

g(x) =
1√

(4π)NdetQ∞
e−

1
4 〈Q

−1
∞ x,x〉, i.e., dγ = g(x) dx. (2.2)

Indeed, by a direct computation one can verify that A∗g = 0 where A∗ = Tr(QD2) −
〈Bx,D〉 − divB is the formal adjoint operator of A. Then, if f ∈ C∞c (RN ),

d

dt

∫
RN

T (t)f(x) dγ =

∫
RN

AT (t)f(x) dγ =

∫
RN

T (t)f(x)A∗g(x) dx = 0,

therefore ∫
RN

T (t)f(x) dγ(x) =

∫
RN

f(x) dγ(x) (2.3)

and g(x)dx is an invariant measure (since C∞c (RN ) is a core for the generator, see for
example [4, Section 7], we can exploit the above computation). We define the Lebesgue and
Sobolev spaces with respect to γ as follows:

Lpγ :=
{
u : RN → C measurable :

∫
RN
|u|p dγ <∞

}
, 1 ≤ p <∞,

W k,p
γ :=

{
u : RN → C : u ∈W k,1

loc (RN ),

∫
RN

∑
|α|≤k

|Dαu|p dγ <∞
}
, 1 ≤ p <∞, k ∈ N,

which are Banach spaces under the obvious norms

‖u‖Lpγ =
(∫

RN
|u|pdγ

)1/p
, ‖u‖Wk,p

γ
=
( ∑
|α|≤k

‖Dαu‖p
Lpγ

)1/p
.

It is proved in [14] that the embedding W 1,p
γ ↪→ Lpγ is compact. Moreover, we observe that

C∞c (RN ) is dense in W k,p
γ , 1 ≤ p < ∞. Indeed, a simple truncation argument shows that

8



the set of W k,p
γ -functions with compact support is dense and, given u ∈W k,p

γ with compact

support, the usual approximating functions φε ∗ u converge to u, as ε → 0, in W k,p(RN )
and hence in W k,p

γ (here φε(x) = ε−Nφ(x/ε) where φ ∈ C∞c (RN ) has integral 1).
Since |T (t)f |p ≤ T (t)(|f |p) pointwise, by (2.3) T (t) extends to a strongly continuous

semigroup of positive contractions in Lpγ(RN ) for every 1 ≤ p < ∞. Moreover, it is proved

in [8] that T (t) is symmetric in L2
γ if and only if QBT = BQ. We denote by Aγp its generator,

that turns out to be a realization of A, and we denote by D(Aγp) its domain. Remark that,
since Qt < Q∞ in the sense of quadratic forms, the integral in (1.4) converges for every
f ∈ Lpγ and x ∈ RN , so that the extension of T (t) to Lpγ is still given by (1.4). Observe also
that D(Aγp) ⊂ D(Aγq ) if p ≥ q and Aγpu = Aγqu for u ∈ D(Aγp). A characterisation of D(Aγp)
has been given in [40] as follows:

D(Aγp) = W 2,p
γ . (2.4)

This generalizes previous partial results obtained in [33] for p = 2 and in [11], [8] for the
symmetric (even infinite dimensional) case.

All the results that follow in this subsection can be found in [37], unless otherwise
specified. For 1 < p ≤ ∞ and for every t > 0, T (t) maps Lpγ into C∞(RN ) ∩W k,p

γ for every
k ∈ N, see [37, Lemma 2.2]. Moreover, there exists C = C(k, p) > 0 such that for every
f ∈ Lpγ the inequality

‖DαT (t)f‖Lpγ ≤
C

t|α|/2
‖f‖Lpγ , t ∈ (0, 1) (2.5)

holds for every multiindex α with |α| = k. Observe that using (2.4) and the embedding
Cb(RN ) ⊂ Lpγ , from Proposition 2.1 we deduce the embedding D(A) ⊂W 2,p

γ .
Concerning the drift term, it is interesting to point out that if 1 < p <∞ the map u 7→

|x|u is continuous from W 1,p
γ to Lpγ . It follows, in particular, that the map Lu = 〈Bx,Du〉

is bounded from W 2,p
γ into Lpγ for 1 < p <∞: in fact

‖ |x|Du‖Lpγ ≤ c‖u‖W 2,p
γ
, u ∈W 2,p

γ (RN ).

By the compactness of the embedding W 1,p
γ (RN ) ↪→ Lpγ(RN ), 1 < p < ∞, and the fact

that T (t) maps Lpγ into W 1,p
γ it follows that the semigroup T (t) is compact in Lpγ(RN ),

1 < p <∞.
For 1 < p < ∞ the semigroup T (t) is also analytic in Lpγ(RN ). The standard theory of

analytic semigroups and the above result imply that the angle of sectoriality θp of (T (t))t≥0
satisfies the inequality θp ≤ π/2 − θ, where θ is the spectral angle of Aγp , that in turn
coincides with the spectral angle of B (the spectral angle of the generator of a contraction
semigroup is the smallest angle centred at 0 and symmetric with respect to the negative
real axis, which contains the spectrum). Surprisingly enough, there are situations where
θ2 < π/2−θ. In these cases, the angle of sectoriality is not determined by the spectral angle
of Aγp or, equivalently, by the spectral angle of B, see [6, Example 1].

For every θ ∈ (0, π] we define the open sector Σθ by

Σθ := {z ∈ C : |arg z| < θ}.

The following results are proved in [6, Theorem 2]. Let 1 < p < ∞ and let θp ∈ (0, π2 ] be
defined by

cot θp =

√
(p− 2)2 + p2κ2

2
√
p− 1

,

9



where κ := 2‖ 12I +Q−
1
2Q∞B

TQ−
1
2 ‖. Then

(i) (T (t))t≥0 extends to an analytic contraction semigroup on the sector Σθp .

(ii) If (T (t))t≥0 extends to an analytic semigroup on the sector Σθ′ for some θ′ ∈ (0, π2 ],
then θ′ ≤ θp, i.e., the angle θp is optimal.

In the selfadjoint case we obtain κ = 0, hence cot θ2 = 0 and cot θp =
|p− 2|

2
√
p− 1

. It is worth

noticing that the angle is independent of the dimension and in fact the same result holds in
the infinite dimensional case as well.

The asymptotic behavior of (T (t))t≥0 in Lpγ follows from the previous considerations
and the spectral results of Section 4 (b). It is clear, in fact, that T (t)f → Pf pointwise
for f ∈ Cb(RN ), where Pf is the projection defined by the right hand side of (2.1). By
Lebesgue theorem we obtain limt→∞ ‖T (t)f − Pf‖Lpγ = 0 for every f ∈ Cb(RN ) and then
by density for all functions f ∈ Lpγ . On the other hand, 0 is an eigenvalue of Ap for
p > 1, the other eigenvalues have negative real parts and the semigroup is analytic (and
also comapct), see Subsection 3.2. All together, this implies that T (t) converges to the
projection P exponentially as t→∞ in the operator norm.

Let us show how Lq estimates for the associated parabolic problems follow from the
above properties, by general theorems. We recall that an analytic semigroup S(·) on a
Banach space X with generator L has maximal regularity of type Lq (1 < q <∞) if for each

f ∈ Lq([0, T ], X) the function t 7→ u(t) =
∫ t
0
S(t − s)f(s) ds belongs to W 1,q([0, T ], X) ∩

Lq([0, T ], D(L)). This means that the mild solution of the evolution equation

u′(t) = Lu(t) + f(t), t > 0, u(0) = 0,

is in fact a strong solution and has the best regularity one can expect. It is known that this
property does not depend on 1 < q <∞ and T > 0.

Let X = Lpγ , 1 < p <∞, and denote by ‖ · ‖p the operator norm in Lpγ and L = A− I.
Then L has maximal regularity of type Lq if its imaginary powers are bounded operators
and satisfy ‖(−L)is‖p ≤ Mea|s| for some a ∈ [0, π/2) and all s ∈ R thanks to the Dore–
Venni theorem, see e.g. [1, Theorem II.4.10.7]. If p = 2, since L is maximal dissipative and
invertible, then ‖(−L)is‖2 ≤ Meπ|s|/2 by a result due to Kato, [27, Theorem 5]. However
we know that eiφL is maximal dissipative and invertible for some φ ∈ (0, π/2], by point (i)
above. Kato’s result applied to eiφL then yields ‖(−L)is‖2 ≤Mea

′|s| for a′ = π/2− φ.
When p 6= 2 we first note that, since L generates a positive contraction semigroup on

Lrγ , for every 1 < r < ∞, then ‖(−L)is‖r ≤ Mε exp((ε + π/2)|s|) for each ε > 0 and
s ∈ R because of the transference principle [10, §4], see also [9, Theorem 5.8]. Interpolating
between the L2 and the Lr estimates we obtain ‖(−L)is‖p ≤ Mea|s| for some a ∈ [0, π/2).
We have therefore proved the following result.

Proposition 2.3 Aγp has maximal regularity of type Lq on Lpγ , for all 1 < p, q <∞.

3 The spectrum of the operator

In this section we describe the spectrum of the operator in the spaces Lp(RN ) with respect
to the Lebesgue measure and in the spaces Lpγ with respect to the invariant measure. The
spectra are very different, as the operators Ap and Aγp have very different properties.
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3.1 The spectrum in Lp(RN)

The spectrum of the Ornstein-Uhlenbeck operator Ap in Lp(RN ) has been computed in [36]
under some restrictions on the spectrum of the matrix B and in [21] in full generality.

Let us consider the drift operator

L =

N∑
i,j=1

bijxjDi = 〈Bx,D〉,

where B is the drift matrix in (1), and its realization Lp in Lp(RN ) (1 ≤ p ≤ ∞) with
domain

Dp(L) = {u ∈ Lp(RN ) : Lu ∈ Lp(RN )} 1 ≤ p <∞,
and

D∞(L) = {u ∈ C0(RN ) : Lu ∈ C0(RN )}
where Lu is understood in the sense of distributions. The operator Lp is closed in Lp(RN )
and it is the generator of the C0-group

S(t)f(x) = f(etBx)

for f ∈ Lp(RN ), t ∈ R, see (1.2). Moreover C∞c (RN ) is a core of Lp and

‖S(t)f‖p = e−
tr(B)
p t‖f‖p (3.1)

for every f ∈ Lp(RN ).
In the following theorem, proved in [36], we characterize the spectrum of Lp for 1 ≤

p ≤ ∞, with the agreement that L∞(RN ) stands for C0(RN ). The cases of BUC(RN ) and
Cb(RN ) are partially treated in [36, Cor. 6.3] and in [28, Thm. 10.2.7] under the assumption
σ(B) ∩ iR = ∅.

Theorem 3.1 1. If tr(B) 6= 0 then σ(Lp) = −tr(B)/p+ iR.

2. If tr(B) = 0 and B is not similar to a diagonal matrix with purely imaginary eigen-
values, then σ(Lp) = iR.

3. If B is similar to a diagonal matrix with purely imaginary nonzero eigenvalues
±iσ1,±iσ2, . . . ,±iσk and possibly 0, and there are eigenvalues σr, σs such that
σrσ

−1
s /∈ Q, then σ(Lp) = iR.

4. If B is similar to a diagonal matrix with purely imaginary nonzero eigenvalues
±iσ1,±iσ2, . . . ,±iσk and possibly 0 and σrσ

−1
s ∈ Q for every r, s, then (S(t))t∈R is

periodic and σ(Lp) is the discrete subgroup G = {i(n1σ1 + · · ·+nkσk) : (n1, . . . , nk) ∈
Zk}.

The following complete description of the spectrum of A in Lp(RN ) has been recently
proved in [21].

Theorem 3.2 The spectrum of Ap is given by

σ(Ap) = (−∞, 0] + σ(Lp).

In particular, either σ(Ap) = (−∞, 0]+G or σ(Ap) = {γ ∈ C | Re γ ≤ −tr(B)/p}, according
to σ(Lp) being a discrete subgroup G of iR or the whole line −tr(B)/p+ iR.
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Notice that if B = BT and QB = BQ the result is easily proved, as by a linear change of
variables in RN the operator can be written in the form ∆− 〈B̃,D〉 with a diagonal matrix
B̃ and therefore it can be studied reducing to the 1-dimensional case.

The proof of the general case consists in a scaling procedure leading to a new operator C
in the limit which is the sum of an Ornstein-Uhlenbeck operator in one or two variables and
a drift operator acting in the remaining ones. Then, the scaling and the limit allow us to get
rid of the upper off-diagonal blocks of the drift matrix of A and to separate the variables.
We can recover the spectrum of Ap from that of the limit operator C. The main part of the
proof is thus devoted to the investigation of the spectrum of C. Here we can assume that B
has an eigenvalue with nonnegative real part, since the other case is already covered by the
main result in [36]. The above splitting then reduces the problem to Ornstein-Uhlenbeck
operators in R or in R2 where B has one nonnegative eigenvalue or two complex conjugate
eigenvalues with nonnegative real parts. We further have to treat eigenvalues in iR and
with positive real part separately. The detailed study of these four cases is mainly based on
the construction of approximate eigenfuctions.

3.2 The spectrum in Lpγ

In this section, following [37], we describe the spectum of the realization of A in Lpγ , 1 ≤
p < ∞. The following estimate is the main step to show that the eigenfunctions of Aγp are
polynomials. We define s(B) = sup{Re λ : λ ∈ σ(B)} < 0, see Subsection 3 2.3.

Let k ∈ N and ε > 0 be such that s(B) + ε < 0. Then there exists C = C(k, ε) such that
for every u ∈W k,p

γ ∑
|α|=k

‖DαT (t)u‖p ≤ Cetk(s(B)+ε)
∑
|α|=k

‖Dαu‖p, t ≥ 0. (3.1)

Let us first assume 1 < p < ∞. It follows from (3.1) that all the eigenfunctions of Aγp
in Lpγ are polynomials. Indeed, if u ∈ D(Aγp) is an eigenfunction with eigenvalue λ, as

T (t)u = eλtu, from the results recalled in Subsection 2 2.3, we know that u ∈W k,p
γ ∩C∞(RN )

for every k and DαT (t)u = eλtDαu for every multiindex α. Given ε ∈ (0, |s(B)|), from (3.1)
we get

etReλ
∑
|α|=k

‖Dαu‖p ≤ C(k, ε)etk(s(B)+ε)
∑
|α|=k

‖Dαu‖p

and hence Dαu = 0 if k|s(B)| ≥ |Reλ|. Hence, u is a polynomial of degree less than or
equal to |Re γ

s(B) |. The case r > 1 is relevant for generalized eigenfunctions and follows by an

induction argument.
The next step is the reduction to the drift term, which as before we denote by Lu =

〈Bx,Du〉.

Lemma 3.1 The following statements are equivalent.

(i) λ ∈ σ(Aγp).

(ii) There exists a homogeneous polynomial u 6= 0 such that Lu = λu.

(iii) There exists a homogeneous polynomial v 6= 0 such that v(etBx) = eλtv(x).
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The proof is completely algebraic and is based on the observation that if u is a homogeneous
polynomial then Lu is a homogeneous polynomial of the same degree. After Lemma 3.1,
the computation of the spectrum of L is based on the equality u(etBx) = eλtu(x), valid if
Lu = λu, and the reduction of B to its Jordan canonical form. Putting all together, the
following result follows.

Theorem 3.3 Let λ1, . . . , λr be the (distinct) eigenvalues of B . Then

σ(Aγp) =
{
λ =

r∑
j=1

njλj : nj ∈ N ∪ {0}
}
, 1 < p <∞.

Moreover, the linear span of the generalized eigenfunctions of Aγp is dense in Lpγ .

As a byproduct, we get that the spectrum of Aγp is independent of p ∈ (1,∞), but this
follows directly from the compactness of the resolvent. In [37, Section 4] it is also proved
that all the eigenvalues of Aγp have index 1 if and only if the matrix B is diagonalizable; 0 is
a simple eigenvalue and every eigenfunction is constant: in fact, if u ∈ D(Aγp) and Aγpu = 0
then T (t)u = u. On the other hand

lim
t→∞

T (t)u =

∫
RN

udγ

and therefore u is constant.
Let us come to the case p = 1. In this case, the spectrum of A

γ
1 is the halfplane

{Reλ ≤ 0} and all complex numbers λ with Reλ < 0 are eigenvalues. Moreover, all the
eigenvalues associated with polynomial eigenfunctions are the same for all p ≥ 1. In all
other cases, the eigenfunctions in L1

γ are not polynomials. As a consequence, for p = 1
the semigroup is neither compact or differentiable, analytic, norm-continuous, see e.g. [17,
Chapter II, Section 4] for a discussion on the relations between the properties of a semigroup
and the spectrum of its generator. Moreover, T (t) does not map L1

γ into W 1,1
γ : indeed, if

this were the case, by the same argument used for p > 1 (notice that property (3.1) holds
true for p = 1 as well), one would get that T (t) maps L1

γ into W k,1
γ for every k ∈ N and

proceeding as in the p > 1 case it would follow that all the eigenfunctions are polynomials,
which is false. This and more general semigroups are deeply studied in L1 spaces in [16].

4 Hypercontractivity and Log-Sobolev inequalities

Given a semigroup S(t)t≥0 defined on the scale of Lp spaces with respect to some probability
measure µ, contractive in every Lp, 1 < p <∞, we recall the following definitions:

1. S(t) is hypercontractive if for every p > 1 and t > 0 there is q(t) > p such that
‖S(t)f‖q(t) ≤ ‖f‖p;

2. S(t) is supercontractive if for every p > 1 and t > 0 the inequality ‖S(t)f‖q ≤ ‖f‖p
holds for every q ≥ p;

3. S(t) is ultracontractive if for every p ≥ 1 and t > 0 there is cp(t) > 0 such that
‖S(t)f‖∞ ≤ cp(t)‖f‖p;
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The infinitesimal counterpart of ultracontractivity are Sobolev inequalities, while the in-
finitesimal counterpart of hypercontractivity are the Log-Sobolev inequalities∫

|f |2 log |f | dµ ≤ c〈Hf, f〉L2
µ

+ ‖f‖2L2
µ

log ‖f‖L2
µ

∀ f ∈ D(Hµ
2 ), (4.1)

where H : D(Hµ
2 ) ⊂ L2

µ → L2
µ is the generator of S(t) in L2

µ. These inequalities, already
considered in [20], have been proved in [24] to be equivalent to hypercontractivity in the sym-
metric case, see [25] for more information and [15] for a historical account. More generally,
replacing f with |g|p/2 in (4.1) yields∫

RN
|g|p log |g| dγ ≤ c p

2(p− 1)

∫
RN

Hg sgng|g|p−1dγ + ‖g‖p
Lpγ

log ‖g‖Lpγ g ∈ D(Hµ
p ).

(4.2)
In this section we discuss these properties for the Ornstein-Uhlenbeck semigroup T (t). The
first hypercontractivity result on the Ornstein-Uhlenbeck semigroup has been proved in [43].

Theorem 4.1 Consider the operator A = ∆− 〈x,D〉 and the related semigroup T (t), and
let 1 < p < q <∞. Then

(i) if q ≤ 1 + e2t(p− 1) then T (t) is a contraction from Lpγ in Lqγ ;

(ii) if q > 1 + e2t(p− 1) then T (t) is not bounded from Lpγ in Lqγ .

In [24], L. Gross proved the equivalence with (4.2) with c = 1 in the symmetric case. For
general (even nonsymmetric) Ornstein-Uhlenbeck semigroups, hypercontractivity has been
proved in [7] and [22] in infinite dimensional Hilbert spaces, under suitable conditions that
in RN are always fulfilled in the nondegenerate case. The following result hodls.

Theorem 4.2 Consider the general operator A in (1) and the related semigroup T (t), and
let 1 ≤ p < q <∞. Then

(i) if q ≤ 1 + (p− 1)‖Q−1/2∞ etBQ
1/2
∞ ‖−2 then T (t) is a contraction from Lpγ in Lqγ ;

(ii) if q > 1 + (p− 1)‖Q−1/2∞ etBQ
1/2
∞ ‖−2 then T (t) is not bounded from Lpγ in Lqγ .

But, in the nonsymmetric case the equivalence with logarithmic Sobolev inequality does not
hold anymore, see again [22] and also [18].

Notice that by Hölder’s inequality the Ornstein-Uhlenbeck semigroup is ultracontractive
in Lp spaces with respect to the Lebesgue measure, with cp(t) = ‖gt‖p′ , with gt in (1.5).
On the negative side, Nelson’s theorem 4.1 shows that T (t) is neither supercontractive
or ultracontractive in Lp spaces endowed with the invariant measure. This can be easily
shown also by an elementary argument, which we present in the simplest case N = 1,
A = D2 − xD. Notice that if a semigroup S(t) is given by an integral kernel k(t, x, y) then
condition (iii) above for ultracontractivity is equivalent to the bound |k(t, x, y)| ≤ c1(t) for
the integral kernel, see e.g. [25, Remark 5.5]. In the present case, Qt = 1

2 (1 − e−2t) and

setting y =
√

1− e−2tz formula (1.6) reads

T (t)f(x) =
1√
2π

∫
R
f(e−tx+

√
1− e−2tz)e−z

2/2 dz
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whence by the further change of variables y = e−tx+
√

1− e−2tz we get

T (t)f(x) =

∫
R
f(y)p(t, x, y) dγ(y),

where dγ(y) = 1√
2π
e−y

2/2dy is the standard Gaussian measure and

p(t, x, y) =
1√

1− e−2t
exp
{
− 1

2e2t(1− e−2t)
(y2 − 2etxy + x2)

}
.

Therefore, supy p(t, x, y) = ex
2/2/
√

1− e−2t and

sup
{
‖T (t)f‖∞ : ‖f‖L1

γ
≤ 1
}

= sup
x,y∈R

p(t, x, y) = +∞.
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