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Abstract. Finite-plasticity theories often feature nonlocal energetic contributions in the
plastic variables. By introducing a length-scale for plastic effects in the picture, these nonlocal

terms open the way to existence results [25]. We focus here on a reference example in this

direction, where a specific energetic contribution in terms of dislocation-density tensor is
considered [30]. When external forces are small and dissipative terms are suitably rescaled,

the finite-strain elastoplastic problem converges toward its linearized counterpart. We prove

a Γ-convergence result making this asymptotics rigorous, both at the incremental level and
at the level of quasistatic evolution.

1. Introduction

Elastoplastic materials accumulate permanent deformations during mechanical treatment.
This is the macroscopic manifestation of a complex microscopic phenomenology, depending
indeed on the actual material system, and possibly including slip and twinning along crystal-
lographic planes, dislocation dynamics, microcracks, grain boundary motion, or microstructure
evolution [21, 23]. At large strains, the modelization of the macroscopic elastoplastic response of
a solid has originated a number of competing options as of kinematic and dynamic assumptions
[38]. A mainstay of all finite-strain elastoplastic models is however that they should recover the
classical, linearized, infinitesimal theory when strains are small and activation thresholds are
suitably rescaled. In the engineering community, this fact is usually ascertained at the material
point level, namely by checking by Taylor expansion that the rescaled energy and dissipation-
potential densities of the finite-strain model reduce to that of the linearized case.

A more rigorous approach to linearization in elastoplasticity has been presented in [34] where
the convergence of solutions of a specific finite-strain model to solutions of linearized elasto-
plasticity is proved by evolutionary Γ-convergence techniques [29, 33]. The result in [34] is the
quasistatic, elastoplastic counterpart to the pioneering theory by Dal Maso, Negri, & Per-
civale [8], who obtained the convergence of finite to linearized elasticity. In the stationary
elastic setting the reader is also referred to [1, 39, 40, 42] for various refinements, to [16, 37] for
applications in homogenization, nematic elastomers [2], atomistic models [5], dislocation singu-
larities [41]. As for the elastoplastic setting, rigorous linearization results have been obtained
for elastoplastic plates by Davoli [9, 10], for one-dimensional perfect plasticity by Giacomini
& Musesti [15], for plasticity in terms of the symmetrized plastic-strain tensor in [18], and for
a model for shape-memory alloys in [17].

Existence theories for finite-plasticity in the multidimensional setting [18, 17, 25, 31] call for
including in the energy a nonlocal regularization term in the plastic strain. From the modeling
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viewpoint, this term describes nonlocal plastic effects and is inspired to the now classical strain-
gradient plasticity theory [11, 12, 36]. Its occurrence turns out to be crucial in order to introduce
a length scale in the model and control the formation of plastic microstructures. Ultimately,
such regularization ensures the necessary mathematical compactness for the analysis. To our
knowledge, the only existence results without plastic-strain regularization currently available
are one-dimensional [15, 28] or rely on specific structural restrictions [24, 28, 43].

We move here in the setting addressed by Mielke & Müller [30], providing the existence
of incremental solutions in multiple dimensions by assuming a specific energetic contribution
in terms of the dislocation-density tensor. Let ϕ : Ω → R3 denote the deformation of the
elastoplastic body with reference configuration Ω ⊂ R3. Assume the classical multiplicative
strain decomposition ∇ϕ = FeFp, where Fe Fp ∈ R3×3 with detFe > 0 and Fp ∈ SL(3) = {F ∈
R3×3 : detF = 1} stand for the elastic and plastic strains respectively [22]. In [30] the stored
energy of the body is assumed to have the form∫

Ω

Wel(∇ϕF−1
p )dx+

∫
Ω

Wh(Fp)dx+

∫
Ω

V ((curlFp)F
T
p )dx−

∫
Ω

f(t) · ϕdx. (1.1)

Here, Wel represents the frame-indifferent elastic energy density, Wh is the hardening energy
density, and f(t) is a time-dependent body force. The tensor curlFp ∈ R3×3 is computed
from the plastic strain Fp by taking the curl row by row and the tensor (curlFp)F

T
p represents

the density of geometrically necessary dislocations in the medium [6, 30]. Correspondingly, the
function V represents the stored defect energy density and is assumed to have polynomial growth.

The dissipation of the system is described by means of the dissipation distance

D(Fp, F̂p) = D(I, F̂pF
−1
p ) = inf

∫
Ω

∫ 1

0

R(ṖP−1)dtdx, (1.2)

where the infimum is computed on all the possible trajectories P : [0, 1] → R3×3 such that

P (0) = Fp and P (1) = F̂p and the positively 1-homogeneous function R : R3×3 → [0,∞] is
finite only on trace-free symmetric matrices. The main result in [30] states that, under specific
qualifications on the nonlinearities and boundary condition, the incremental problem driven by
the above introduced energy and dissipation admits a solution.

This paper extends the linearization analysis of [34] to the dislocation-density tensor regu-
larization setting of [30]. In the limit of infinitesimal strains, we show that incremental and
energetic solutions [32, 35] to the finite-strain model converge to the unique corresponding in-
cremental and energetic solutions of the linearized model, respectively. More precisely, for small
ε > 0 we rescale the deformation and the plastic strain as ϕε = Id + εuε and Fp,ε = I + εzε,
where uε and zε are interpreted as the displacement and the linearized plastic strain, respec-
tively. Given the small force f0(t) = εf(t), the corresponding energy functional related to small
deformations is the following rescaled version of (1.1)

Eε(t, uε, zε) =
1

ε2

∫
Ω

Wel((I + ε∇uε)(I + εzε)
−1)dx+

1

ε2

∫
Ω

Wh(I + εzε)dx

+
1

ε2

∫
Ω

V ((curl (I + εzε))(I + εzε)
T )dx−

∫
Ω

f0(t) · uεdx,

and the rescaled version of the dissipation in (1.2) is

Dε(zε, ẑε) =
1

ε

∫
Ω

D(I + εzε, I + εẑε)dx

where D stands for the dissipation distance between plastic states, to be discussed in Subsection
2.4 below. The specific scaling above corresponds to quadratic expansions around the identity.
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The corresponding functionals for linearized elastoplasticity read

E0(t, u, z) =
1

2

∫
Ω

(∇u− z) : C(∇u− z)dx+
1

2

∫
Ω

z : Hz dx

+ µ

∫
Ω

(curl z) : K(curl z)dx−
∫

Ω

f0(t) · u dx,

D0(z, ẑ) =

∫
Ω

R(ẑ − z)dx

where C, H, K, and µ are related to the second derivatives at the identity of Wel, Wh, and V ,
respectively.

Given a prior plastic strain z̄ and a fixed time t, for ε ≥ 0 an incremental solution is a pair
(uε, zε) solving

(uε, zε) ∈ Arg min
(
Eε(t, u, z) +Dε(z, z̄)

)
(1.3)

under prescribed boundary conditions. Our first convergence result asserts that, up to not
relabeled subsequences,

• Theorem 3.1: (uε, zε) ⇀ (u0, z0) weakly in Q as ε↘ 0,

where (u0, z0) is the unique incremental solution to the corresponding incremental problem for
linearized elastoplasticity and Q denotes the state space, see (2.9). This is obtained by proving
the Γ-convergence [7] of the functional in (1.3) to E0(t, u, z)+D0(z, z̄) and checking equicoercivity.

Energetic solutions [32, 35] are instead continuous-time trajectories t 7→ (uε(t), zε(t)) ∈ Q
such that (uε(0), zε(0)) = (u0, z0) (prescribed initial values) and for all t the two conditions hold

(Global stability) Eε(t, uε(t), zε(t)) ≤ Eε(t, ûε, ẑε) +Dε(zε(t), ẑε) ∀(ûε, ẑε) ∈ Q,

(Energy conservation) Eε(t, uε(t), zε(t)) + DissDε(zε; 0, t) = Eε(0, u0, z0)−
∫

Ω

f0(t) · uε,

where DissDε(zε; 0, t) is the total dissipation in [0, t], see Definition 3.2 below. By assuming
that energetic solutions (uε, zε) for ε > 0 exist, our second main result, states that, up to not
relabeled subsequences,

• Theorem 3.3: (uε(t), zε(t)) ⇀ (u0(t), z0(t)) weakly in Q as ε↘ 0 for all t ,

where t 7→ (u0(t), z0(t)) is the unique energetic solution to linearized elastoplasticity [20]. In
order to prove convergence we resort in applying the abstract theory from [33]. This convergence
relies on checking two separate Γ-liminf inequalities for energy and dissipation, as well as on
constructing a mutual recovery sequence. Apart from the dislocation-density tensor term, which
was not present in [34] and is now addressed in Lemma 5.2, Γ-liminf inequalities have been
proved in [34]. The construction of the mutual recovery sequence, see (7.5)-(7.6), differs from
that in [34]. On the one hand, one has to check that one can pass to the limit in the dislocation-
density term. Since this term involves derivatives, truncations are not allowed in the definition
of the recovery sequence, posing additional technical difficulties. On the other hand, we handle
a weaker coercivity setting with respect to [34] by allowing the hardening energy density to be
of polynomial growth. This requires some generalization of results in [8] and [34], based on
appropriate coercivity conditions. Note however that the existence of energetic solutions for
ε > 0 is still unknown, so that Theorem 3.3 is presently a mere convergence result.

The paper is organized as follows. We present the mechanical model and comment on its
mathematical setting in Section 2. The main results are then stated in Section 3. The coercivity
of the energy is discussed in Section 4 and all Γ-lim inf inequalities are presented in Section 5.
Eventually, Sections 6 and 7 focus on the proof of Theorems 3.1 and 3.3, respectively.
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2. Finite-plasticity model

We devote this section to introducing the model and detailing the corresponding assumptions.
Our main results are stated in Section 3.

2.1. Tensor notation. Let I denote the identity matrix in Rd×d (d = 2, 3). For all matrices
A ∈ Rd×d we use the symbols Asym and Aanti to denote the symmetric and antisymmetric parts,
namely

Asym :=
A+AT

2
, Aanti := A−Asym,

where the superscript T denotes transposition. The symbols Rd×dsym and Rd×danti stand for the space

of symmetric and antisymmetric d × d real matrices, respectively. Moreover Rd×ddev denotes the

space of deviatoric d×d symmetric real matrices, namely A ∈ Rd×dsym with null trace tr(A) = Aii =
0. Here and in the following the convention on summation over repeated indices is assumed.
The matrix sets

GL+(d) = {A ∈ Rd×d : detA > 0}, SL(d) = {A ∈ Rd×d : detA = 1},
SO(d) = {A ∈ SL(d) : AAT = ATA = I},

will also be used.

Given a 4-tensor T ∈ Rd×d×d×d which is major symmetric (Tijlk = Tlkij) and positive
semidefinite, we denote by | · |T the seminorm

|A|2T :=
1

2
(A : TA),

where we also used the standard notation for the contraction product A : B := tr(ABT ).

Let now a suitably regular map x 7→ A(x) ∈ Rd×d be given. We introduce the differential
operator curl as follows

• For d = 2, curlA ∈ R2 is defined as

(curlA)1 = ∂2A11 − ∂1A12, (curlA)2 = ∂2A21 − ∂1A22.

• For d = 3, curlA ∈ R3×3 is defined as

(curlA)ij = εjlk∂lAik

where εjlk is the classical Levi-Civita symbol.

Owing to these positions, one can compute the curl (AB) of a product. For d = 2 this reads

(curl (AB))i = Aik,2Bk1 −Aik,1Bk2 +Aik(curlB)k. (2.1)

whereas for d = 3 one has

(curl (AB))ij = εjlkAiq,lBqk +Aiq(curlB)qj = εjlkAiq,lBqk +Aiq(curlB)qj . (2.2)

One can rewrite these formulas via a differential operator D by distinguishing between the cases
d = 2 and d = 3. Namely, if d = 2 we let D : D(Ω;R2×2)→ D(Ω;R2×2×2), be defined as

(DA)ij1 = Aij,2 (DA)ij2 = −Aij,1.

For d = 3, we define D : D(Ω;R3×3)→ D(Ω;R3×3×3×3) as

(DA)ijkl = εjqlAik,q.
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Along with this notation, (2.1) and (2.2) can be respectively rewritten as

(curl (AB))i = (DA)iklBkl +Aik(curlB)k if d = 2, (2.3)

(curl (AB))ij = (DA)ijqkBqk +Aiq(curlB)qj if d = 3. (2.4)

Observe that in dimension d = 2 and d = 3, respectively, we have

(DA)ijkIjk = (curlA)i (DA)ijklIkl = (curlA)ij . (2.5)

To shortcut notation we denote by DA : B the first term in both relations (2.3)-(2.4) above.
Note that this is a slight abuse of notation for d = 2.

We now introduce the dislocation-density tensor G(P ) as

G(P ) :=
curlP

detP
for d = 2, G(P ) :=

(curlP )PT

detP
for d = 3. (2.6)

The tensor G(P ) measures the density of geometrically necessary dislocations in the intermediate
configuration, namely, dislocations arising solely from the underlying kinematics. Different
expressions for such a measure have been proposed in the literature, a critical review can be
found in [6]. We follow here the approach from [6, 19] in the specific setting given by [44,
Formula (154)]. In the reference configuration, the incompatibility of P is classically measured
by curlP . The surface element in the intermediate configuration is given by

ni dai = (detP )P−Tnr dar

where da is the infinitesimal area element, n is the corresponding normal, and the subscripts i
and r stand for intermediate and referential, respectively (notation refers to d = 3). Definition
(2.6) ensures that

(curlP )nr dar = G(P )ni dai.

Hence, in the intermediate configuration the tensor G(P ) corresponds to the referential incom-
patibility measure curlP .

Owing to [30, Lemma 2.1] one can find a constant cd > 0 such that

|G(P )| ≥ cd
|curlP |
|P |2

.

Moreover,

|G(P )| ≥ |curlP |
|detP |

for d = 2, |G(P )| ≥ |curlP |
|detP ||P−1|

for d = 3. (2.7)

In the following, we denote by c any positive constant, possibly depending from data and
changing from line to line. Occasionally, dependencies of such constants will be made explicit.

2.2. States. Let the open, bounded, connected, and Lipschitz set Ω ⊂ Rd represent the refer-
ence configuration of the elastoplastic body. We assume that the boundary ∂Ω is decomposed
into the union of the Dirichlet boundary ∂DΩ and the Neumann one ∂NΩ, which are relatively
open in ∂Ω with Hd−1(∂DΩ) > 0, with Hd−1 being the (d− 1)-dimensional Hausdorff measure.
Furthermore we assume that ∂DΩ fulfills the following geometric property: by letting aff(∂DΩ)
be the smallest affine space containing ∂DΩ we require that

aff(∂DΩ) = Rd. (2.8)

The state of the system is determined by its deformation u ∈ H1(Ω;Rd), which is required to
satisfy the Dirichlet condition u = 0 on ∂DΩ, and its plastic strain P ∈ L2(Ω;Rd×d). By letting

H1
D(Ω;Rd) := {u ∈ H1(Ω;Rd) : u = 0 on ∂DΩ}
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we denote by Q the space of states (u, P ), namely

Q := H1
D(Ω;Rd)× L2(Ω;Rd×d) (2.9)

endowed with the weak topology of H1(Ω;Rd)× L2(Ω;Rd×d).

2.3. Energy. Given the state (u, P ) ∈ Q, we define the stored elastic energy and the energy
related to hardening as

Wel(u, P ) :=

∫
Ω

Wel(∇uP−1)dx, Wh(P ) :=

∫
Ω

Wh(P )dx.

The total energy at a fixed time t ∈ [0, T ] reads then

E(t, u, P ) =

∫
Ω

Wel(∇uP−1)dx+

∫
Ω

Wh(P )dx+

∫
Ω

V (G(P ))dx− 〈`(t), u〉, (2.10)

with G(P ) defined in (2.6). The last term in (2.10) above features the time-dependent functional
` : [0, T ]→ (H1

D(Ω;Rd))′ and represents external actions, possibly of the form

〈`(t), u〉 =

∫
Ω

f(t) · u dx+

∫
∂NΩ

g(t) · u dS,

where f(t) ∈ L2(Ω;Rd) and g(t) ∈ L2(∂NΩ;Rd) are a given body force and a traction on ∂NΩ,
respectively.

We assume that the elastic energy density Wel : Rd×d → [0,∞] satisfies, for given positive
constants ci, i = 1, . . . , 4, and qe > 2, the following

Wel ∈ C1(GL+(d)), Wel =∞ on Rd×d \GL+(d), (2.11a)

∀F ∈ GL+(d), ∀Q ∈ SO(d) : Wel(QF ) = Wel(F ), (2.11b)

∀F ∈ GL+(d) : Wel(F ) ≥ c1dist (F, SO(d))2 + c2dist (F, SO(d))qe , (2.11c)

∀F ∈ GL+(d) : |FT∂FWel(F )| ≤ c3(Wel(F ) + c4), (2.11d)

∃C ∈ Rd×d×d×d, C > 0, ∀δ > 0, ∃cel(δ) > 0, ∀A ∈ Rd×d, |A| ≤ cel(δ) :

|Wel(I +A)− |A|C|2| ≤ δ|A|2C. (2.11e)

Relation (2.11b) corresponds to frame indifference whereas (2.11c) is a nondegenaracy condition
expressing that the energy grows more than quadratically far from the identity. Assumption
(2.11d) is classical and corresponds to the controllability of the Mandel tensor FT∂FWel(F )
in terms of the energy [3, 4]. This control was already used in the context of rate-independent
processes in [13, 25, 34], among others. Finally, condition (2.11e) encodes the quadratic behavior
of the energy for small deformations and is instrumental in order to quantify the small-strain
limit. Indeed, by following the discussion in [34], one can check that (2.11e) implies

Wel(I) = 0, ∂FWel(I) = 0, ∂2
FWel(I) = C.

Note that C is major symmetric, namely Cijlk = Clkij . By taking frame indifference (2.11b) into
account, the minor symmetries of C follow, namely Cijkl = Cjikl = Cijlk, so that CA = CAsym

holds for all A ∈ Rd×d. The nondegeneracy condition (2.11c) implies that the tensor C is positive
definite so that the seminorm | · |C is actually equivalent to the Frobenius norm |A| = (A : A)1/2.
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For the hardening density Wh : Rd×d → [0,∞] we assume that, for given positive constants
ci, i = 5, . . . 8, and qh > d large (see the qualification (2.19) below), the following holds

Wh(P ) =

{
W̃h(P ) if P ∈ SL(d),

∞ if P /∈ SL(d),
(2.12a)

W̃h : Rd×d → R is locally Lipschitz continuous, (2.12b)

∀P ∈ Rd×d : W̃h(P ) ≥ c5|P |qh − c6, (2.12c)

∃H ∈ Rd×d×d×d, H > 0, ∀δ > 0, ∃ch(δ) > 0, ∀A ∈ Rd×d, |A| ≤ ch(δ) :

|W̃h(I +A)− |A|H|2| ≤ δ|A|2H, (2.12d)

∀A ∈ Rd×d : W̃h(I +A) ≥ c7|A|2 + c8|A|qh . (2.12e)

As consequence of assumptions (2.12c) and (2.12e), there exists a constant cK > 0 such that

P ∈ SL(d) ⇒ ‖P‖qhLqh + ‖P−1‖qh/(d−1)

Lqh/(d−1) ≤ cK(Wh(P ) + 1), (2.13)

W̃h(I +A) ≥ cK |A|p for any p ∈ [2, qh]. (2.14)

Notice that conditions (2.12a) and (2.12c) are weaker than assumption (2.6a) in [34], where both
P and P−1 were constrained to a compact set containing the identity. Namely, bound (2.13) is
assumed there to hold in L∞.

Following the setting introduced in [30], we assume that there exists positive constants ci,
i = 9, . . . , 11, µ ≥ 0, and qc > 2 such that

V : R2 → [0,∞] if d = 2, V : R3×3 → [0,∞] if d = 3, (2.15a)

V is a function of class C1, (2.15b)

∀G : V (G) ≥ c9|G|qc + c10|G|2, (2.15c)

∀G : |∇V (G)| ≤ c11(|G|qc−1 + 1), (2.15d)

∃K ∈ Rd×d×d×d, K > 0, ∀δ > 0, ∃cv(δ) > 0, ∀G ∈ Rd×d, |G| ≤ cv(δ) :

|V (G)− µ|G|2K| ≤ δ|G|2K. (2.15e)

For ε > 0 given, it is convenient to introduce the function

Ṽε(y, z) :=
1

ε2
V (εy) for d = 2, Ṽε(y, z) :=

1

ε2
V (εy(I + εz)T ) for d = 3 (2.16)

where (y, z) ∈ R2×R2×2 or (y, z) ∈ R3×3×R3×3, respectively for d = 2 or d = 3. By using this
notation, assumption (2.15e) implies that

• in the case d = 2,

∃µ > 0, ∀δ > 0, ∃cv(δ) > 0, |εcurl z| ≤ cv(δ) :

|Ṽε(curl z, z)− µ|curl z|2K| ≤ δ|curl z|2K, (2.17)

• in the case d = 3,

∃µ > 0, ∀δ > 0, ∃cv(δ) > 0, |(εcurl z)(I + εz)| ≤ cv(δ) :

|Ṽε(curl z, z)− µ|curl z(I + εz)|2K| ≤ δ|curl z(I + εz)|2K. (2.18)
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Some qualification on the exponents qe, qh, and qc appearing in the growth conditions of the
energy functionals is in order. We will ask for

qh > max

{
12qe
qe − 2

, 2qc

}
, qc ≥ 3, qe > 2. (2.19)

This complies for instance with the choice qc = 3, qh > 6, qe ∈ (2, 2qh/(qh − 4)).

2.4. Dissipation. The distance between plastic states is measured by means of a dissipation-
density function R : Rd×d → [0,∞] satisfying

R(z) :=

{
Rdev(z) if z ∈ Rd×ddev ,

∞ otherwise.
(2.20)

Here, Rdev : Rd×ddev → R+ is a convex and positively 1-homogeneous function with

ρ0|z| ≤ Rdev(z) ≤ ρ1|z|, for all z ∈ Rd×ddev , (2.21)

for two positive constants 0 < ρ0 < ρ1. We define the dissipation distance D : Rd×d × Rd×d →
[0,∞] by imposing the plastic-invariance property D(P, P̂ ) = D(I, P̂P−1) for all P, P̂ ∈ Rd×d,
by prescribing

D(I, P ) := inf

{∫ 1

0

R(ṠS−1)dt : S ∈ C1(0, 1;Rd×d), S(0) = I, S(1) = P

}
,

and by letting D(P, P̂ ) = ∞ if P is not invertible. Let us stress that D(I, P ) < ∞ implies

detP = 1. In fact, by definition there exists a path S such that
∫ 1

0
R(ṠS−1)dt < ∞. This

implies that tr(ṠS−1) = 0 almost everywhere by (2.20). The Jacobi formula ensures that

∂t(detS) = tr(ṠS−1/detS) = tr(ṠS−1)/detS = 0 and detP = 1 follows.

We have that [26, Lemma 2.1]

D(P, P̂ ) ≤ c(1 + |P |+ |P̂ |), (2.22)

for some constant c > 0 depending only on the dimension d and on ρ1 in (2.21).

The dissipation distance between two plastic states P, P̂ ∈ L1(Ω;Rd×d) is then defined by

D(P, P̂ ) :=

∫
Ω

D(P (x), P̂ (x))dx.

Note that properties (2.11)-(2.12), (2.15), (2.19), and (2.21) will be tacitly assumed in the
following, without specific mentioning.

3. Main results

We aim at stating our main linearization results, describing the limit for deformations and
the plastic strains close to identity. The elastoplastic problem is hence reformulated in terms of
deviations from identity and rescaled. More precisely, for ε > 0 we define

u =
1

ε
(y − id), z =

1

ε
(P − I).

Correspondingly, one has that

∇y = I + ε∇u, F = (I + ε∇u)(I + εz)−1,



LINEARIZATION FOR FINITE PLASTICITY 9

as well as

G(P ) = G(I + εz) =

{
εcurl z if d = 2,

εcurl z(I + εz)T if d = 3.

Then, we define the rescaled energy densities as

W ε
el(u, z) :=

1

ε2
Wel(I + ε∇u, I + εz), W ε

h(z) :=
1

ε2
Wh(I + εz),

W̃ ε
h(z) :=

1

ε2
W̃h(I + εz), V ε(G) =

1

ε2
V (G),

and, accordingly, the stored energies

Wε
el(F ) =

∫
Ω

W ε
el(F )dx, Wε

h(z) =

∫
Ω

W ε
h(z)dx, Vε(G) =

∫
Ω

V ε(G)dx,

Wε(u, z) =Wε
el((I + ε∇u)(I + εz)−1) +Wε

h(z) + Vε(G).

The limiting stored energy then reads

W0(u, z) =

∫
Ω

|∇usym − zsym|2Cdx+

∫
Ω

|z|2Hdx+ µ

∫
Ω

|curl z|2Kdx.

As far as the dissipation is concerned, we introduce the dissipation functionals Dε,D0 :
L1(Ω;Rd×d)→ [0,∞] defined as

Dε(z, ẑ) :=

∫
Ω

Dε(z(x), ẑ(x))dx, D0(z, ẑ) :=

∫
Ω

D0(z(x), ẑ(x))dx

where

Dε(z, ẑ) :=
1

ε
D(I + εz, I + εẑ), D0(z, ẑ) := R(z − ẑ), ∀z, ẑ ∈ Rd×d.

Given the previous plastic state z̄ ∈ L2(Ω;Rd×d), these definitions allow the specification of
the incremental problems

min
(u,z)∈Q

Fε(u, z; z̄) := min
(u,z)∈Q

(Wε(u, z) +Dε(z, z̄)) ,

for ε ≥ 0. Note that, under assumptions (2.11)-(2.12), (2.15), (2.19), and (2.21), for all ε ≥ 0
the functionals (u, z) 7→Wε(u, z) +Dε(z, z̄) are coercive and lower semicontinuous with respect
to the weak topology of Q. Hence, the Direct Method of the calculus of variations ensures that
the incremental problems above admit a solution for all ε ≥ 0. As W0 is uniformly convex, the
solution for ε = 0 is unique.

Our first convergence result concerns the convergence of the incremental problems as ε→ 0.

Theorem 3.1 (Convergence of the incremental problems). Let z̄ ∈ L2(Ω;Rd×d) be given. Then
Fε(·; z̄) Γ-converge to F0(·; z̄) with respect to the weak topology of Q.

The proof of Theorem 3.1 is given in Section 6.

Our second convergence result concerns quasistatic evolution. Let us start by defining the
total dissipation associated to z : [0, T ]→ L1(Ω;Rd×d) on the subinterval [0, t] as

DissDε(z; 0, t) := sup

{
n∑
i=1

Dε(z(ti), z(ti−1) : 0 = t0 < t1 < · · · < tn = t

}
,

where the supremum is taken on all partitions of [0, t]. We assume the external load

` ∈W 1,1(0, T ; (H1
D(Ω;Rd)′) (3.1)
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to be given. For all ε ≥ 0, the total energy of the system at time t is specified as

Eε(t, u, z) :=Wε(u, z)− 〈`(t), u〉.

In the following, we will refer to the triple (Q, Eε,Dε) as a rate-independent system. Corre-
spondingly, we introduce the set Sε(t) of stable states at time t by letting

Sε(t) := {(u, z) ∈ Q : Eε(t, u, z) <∞, Eε(t, u, z) ≤ Eε(t, û, ẑ) +Dε(z, ẑ) ∀(û, ẑ) ∈ Q} ,
and analogously for the rate-independent system (Q, E0,D0).

Our assumptions on initial data read

(u0
ε , z

0
ε ) ⇀ (u0

0, z
0
0) weakly in Q, Eε(0, u0

ε , z
0
ε )→ E0(0, u0

0, z
0
0). (3.2)

Along with these provisions, we recall the following classical definition of quasistatic evolution
for the rate-independent system (Q, Eε,Dε) [32].

Definition 3.2 (Energetic solutions). Let ε ≥ 0 and T > 0. A trajectory t ∈ [0, T ] 7→
(uε(t), zε(t)) ∈ Q is called an energetic solution for the rate-independent system (Q, Eε,Dε) if

(uε(0), zε(0)) = (u0
ε , z

0
ε ), the map t 7→ 〈 ˙̀(t), uε(t)〉 is integrable, and the following two conditions

are fulfilled for all t ∈ [0, T ]

(S) (uε(t), zε(t)) ∈ Sε(t),
(E) Eε(t, uε(t), zε(t)) + DissDε(zε; 0, t) = Eε(0, u0

ε , z
0
ε )−

∫ t
0
〈 ˙̀, uε〉ds.

Our second main result concerns the evolutionary Γ-convergence [29] of the rate-independent
system (Q, Eε,Dε) to (Q, E0,D0) in terms of convergence of energetic solutions. More precisely,
we have the following.

Theorem 3.3 (Convergence of energetic solutions). Assume (3.1)-(3.2) and let (uε, zε) be an
energetic solution for the rate-independent system (Q, Eε,Dε). Then, for all t ∈ [0, T ] we have
that (uε(t), zε(t)) ⇀ (u0(t), z0(t)) weakly in Q where (u0, z0) is the energetic solution of the
rate-independent system (Q, E0,D0).

Theorem 3.3 is proved in Section 7. In the spirit of [34], let us emphasize that Theorem 3.3
is purely a convergence result, for the existence of energetic solutions for the rate-independent
system (Q, Eε,Dε) is assumed. In fact, in the present setting existence of energetic solutions
is still unknown, unless one resorts to including in the energy some compactifying terms, for
instance a full gradient term in ∇z instead of the control on curl z. Existence results under such
stronger compactness assumptions are in [18, 30]. Existence result in the absence of gradient
regularizations are in [27] in the one-dimensional setting and in [24, 43] in the dislocation-free
setting.

4. Coercivity and compactness

In preparation for the proofs of Theorems 3.1 and 3.3, let us collect some preliminary remarks
on the coercivity of the energy.

A caveat on notation: in the following we will use the same symbol c to indicate a posi-
tive universal constant, possibly depending on data and changing even within the same line.
Occasionally, dependencies of constants on specific parameters will be indicated.

Lemma 4.1 (Coercivity). For all ε ∈ (0, 1) and p ∈ (2, qh) one has

‖∇u‖2L2 + εqh−2‖z‖qhLqh + εp−2‖z‖pLp + ‖z‖2L2 + ‖(I + εz)−1‖qh/2
Lqh/2

≤ c(1 +Wε(u, z)). (4.1)
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Additionally, the following hold, d = 2,

‖curl z‖2L2 + εqc−2‖curl z‖qcLqc ≤ c(1 +Wε(u, z)), (4.2)

and in case d = 3,

‖(curl z)(I + εzT )‖2L2 + εqc−2‖(curl z)(I + εzT )‖qcLqc + ‖curl z‖qLq
≤ c(1 +Wε(u, z)), (4.3)

with q = 2qh/(qh + 4).

Proof. Assume that Wε(u, z) < c <∞. By assumption (2.12a) we deduce that I + εz ∈ SL(d)

so that Wh(I + εz) = W̃h(I + εz). From the coercivity assumption (2.12e) we then obtain

|z|2 + εqh−2|z|qh ≤ cW̃ ε
h(z). (4.4)

This directly implies the L2 and Lqh control of z in (4.1). Concerning the Lp control of z with
p ∈ (2, qh) we argue by interpolation. Let α := 2(qh − p)/(qh − 2), q := 2/α, q′ := q/(q − 1) =
2/(2− α). One has that

‖zε‖pLp =

∫
Ω

|zε|α|zε|p−αdx ≤ ‖zε‖αL2‖zε‖
qh(2−α)

2

Lqh = ‖zε‖αL2‖zε‖
qh(p−2)

qh−2

Lqh ≤ ε2−pcWε(u, z).

The boundedness of the Lqh norm of z from (4.4) also implies that ‖εz‖qhLqh ≤ cWε
h(z) and

thus we infer ‖I + εz‖qhLqh < c(1 +Wε(u, z)). By using the bound (2.13) we obtain the control of
all terms including z in (4.1).

For d = 2 we simply have G = εcurl z and (4.2) follows from property (2.15c). In case d = 3,
we similarly infer (4.3), from (2.7), (4.1), and the Hölder inequality.

We are left with estimating ∇u. Our argument here is similar to [34, Lemma 3.1] but requires
some modifications due to the different coerciveness properties of the energies. Define ϕ = id+εu
and let Q ∈ SO(d). We write

|∇ϕ−Q|2 ≤ |∇ϕ−Q(I + εz) + εQz|2 = |(Fel −Q)(I + εz) + εQz|2

≤ c|Fel −Q|2 + c|Fel −Q|2|εz|2 + c|εz|2,

where Fel = (I + ε∇u)(I + εz)−1. Taking the infimum with respect to Q ∈ SO(d) in the above
left-hand side we get

dist 2(∇ϕ, SO(d)) ≤ c(dist 2(Fel, SO(d)) + dist 2(Fel, SO(d))|εz|2 + |εz|2).

Integrating over Ω and using the Hölder inequality with exponents p and p′ such that p = qe/2
(thus p > 1, and 2p′ = 2qe/(qe − 2) < qh by (2.19)), we find∫

Ω

dist 2(∇ϕ, SO(d))dx

≤ c

(∫
Ω

dist2(Fel, SO(d))dx+

(∫
Ω

distqe(Fel, SO(d))dx

) 1
p

‖εz‖2
L2p′ + ‖εz‖2L2

)
≤ c
(
Wel(u, z) + (Wel(u, z))

1
p (Wh(I + εz))

1
p′ +Wh(I + εz)

)
=: Bε,

where we have used (2.11c), (2.12e), and (2.14) with exponent 2p′ ≤ qh. The Rigidity Lemma

[14, Theorem 3.1] implies that there exists Q̂ ∈ SO(d) such that

‖∇ϕ− Q̂‖2L2 ≤ Bε.
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Moreover, following the argument in [8] one can prove that ‖I − Q̂‖2L2 ≤ Bε, which entails

‖ε∇u‖2L2 ≤ ‖I −∇ϕ‖2L2 ≤ 2‖I − Q̂‖2L2 + 2‖Q̂−∇ϕ‖2L2 ≤ 4Bε.

By dividing by ε2 we finally obtain

‖∇u‖2L2 ≤ c
(
Wε
el(u, z) + (Wε

el(u, z))
1
p (Wε

h(z))
1
p′ +Wε

h(z)
)

and the bound on ∇u in (4.1) follows. �

We can refine the estimate on ∇u by using an Lp version of the Rigidity Lemma and a slight
modification of the previous proof. To this aim we first need to check that [8, Lemma 3.3] also
works with an exponent p > 1 instead of 2.

Lemma 4.2 (Boundary control). Let d = 2, 3 and p > 1. The quantity

|F |∂DΩ :=

(
min
ζ∈Rd

∫
∂DΩ

|Fx− ζ|pdHd−1(x)

)1/p

∀F ∈ Rd×d (4.5)

satisfies

|F | ≤ cD|F |∂DΩ (4.6)

for some constant cD > 0 independent of F ∈ Rd×d.

Proof. We firstly check that, for all F ∈ Rd×d, there exists ζF achieving the minimum in
(4.5). Indeed, for F fixed let ζn be a minimizing sequence for (4.5). One readily checks that
|ζn|(Hd−1(∂DΩ))1/p ≤ ‖Fx − ζn‖Lp(∂DΩ) + c so that such minimizing sequence is bounded in

Rd. Then, we can conclude by lower-semicontinuity of the Lp norm.

We now prove (4.6) by contradiction, following the lines of [8, Lemma 3.3]. Assume (4.6) to
be false. Then, we can find a sequence Fk with |Fk| = 1, converging to some F , with |F | = 1,
such that

1

k
=

1

k
|Fk|p >

∫
∂DΩ

|Fkx− ζFk |pdHd−1(x) ≥ 0,

where ζFk is the minimum of (4.5) associated to Fk. Arguing as before we find that the sequence
ζFk is bounded, and we can assume with no loss of generality that it admits a limit ζ. By
continuity we thus infer that ∫

∂DΩ

|Fx− ζ|pdHd−1(x) = 0,

from which it follows that Fx = ζ for Hd−1-a.e. in ∂DΩ. By continuity and linearity we
deduce that Fx = ζ on aff(∂DΩ) = Rd (by hypothesis (2.8)) which entails ζ = 0 and F = 0,
contradicting the fact that |F | = 1. �

By using relation (4.6) we can now establish the following refined estimate.

Lemma 4.3 (Coercivity 2). For all ε ∈ (0, 1) and p ∈ [2, qeqh/(qe+qh)] one has

εp−2‖∇u‖pLp ≤ cWε(u, z). (4.7)

Proof. Let again ϕ = Id+ εu and Q ∈ SO(d). We write

|∇ϕ−Q|p ≤ |∇ϕ−Q(I + εz) + εQz|p = |(Fel −Q)(I + εz) + εQz|p

≤ c|Fel −Q|p + c|Fel −Q|p|εz|p + c|εz|p.
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Arguing as in the proof of Lemma 4.1 we get that

dist p(∇ϕ, SO(d)) ≤ c
(
dist p(Fel, SO(d)) + dist p(Fel, SO(d))|εz|p + |εz|p

)
.

By integrating over Ω and using the Hölder inequality with exponents q = qe/p and q′ =
qe/(qe − p) (since p ≤ qeqh/(qe + qh), it follows by (2.19) that r := pq′ ≤ qh), we find∫

Ω

dist p(∇ϕ, SO(d))dx

≤ c

(∫
Ω

distp(Fel, SO(d))dx+

(∫
Ω

distqe(Fel, SO(d))dx

)1/q

‖εz‖pLr + ‖εz‖pLp

)
≤ c
(
Wel(u, z) + [Wel(u, z)]

1
q [Wh(I + εz)]

1
q′ +Wh(I + εz)

)
:= Bε,

where we have used (2.11c), (2.12e), and (2.14) with exponent r. The Rigidity Lemma implies

that there exists Q̂ ∈ SO(d) such that

‖∇ϕ− Q̂‖pLp ≤ Bε. (4.8)

Following the argument of [8] we obtain that, by letting ζ := -
∫

Ω
(ϕ − Q̂)dx, the continuity of

the trace and the Poincaré inequality imply that

‖ϕ− Q̂x− ζ‖pLp(∂Ω) ≤ c‖ϕ− Q̂x− ζ‖
p
W 1,p(Ω) ≤ cBε.

As ϕ = x on ∂Ω we eventually obtain

‖x− Q̂x− ζ‖pLp(∂Ω) ≤ cBε.

Now, by virtue of Lemma 4.2 we get that |I − Q̂|p ≤ c|I − Q̂|p∂DΩ ≤ c|I − Q̂ − ζ|p, so that

‖I − Q̂‖pLp(∂DΩ) ≤ cBε. Thanks to (4.8), this yields

‖ε∇u‖pLp ≤ cBε
whence (4.7) follows. �

A consequence of coercivity is the relative compactness of sequences with equibounded energy.

Lemma 4.4 (Compactness). Let (uε, zε) ∈ Q be a sequence such that supεWε(uε, zε) < ∞.
Then, there exists (u, z) ∈ Q such that, up to not relabeled subsequences,

uε ⇀ u weakly in H1(Ω;Rd), (4.9)

zε ⇀ z weakly in L2(Ω;Rd×d). (4.10)

Moreover, if d = 2,

curl zε ⇀ curl z weakly in L2(Ω;R2), (4.11)

while, if d = 3,

(curl zε)(I + εzTε ) ⇀ curl z weakly in L2(Ω;R3×3), (4.12)

curl zε ⇀ curl z weakly in Lq(Ω;R3×3), (4.13)

with q satisfying 1/q = 1/2 + 2/qh.

Proof. The first two convergences are easily obtained from the coercivity of Lemma 4.1. Assume
d = 2. By the boundedness ‖curl zε‖L2 ≤ c we find ζ ∈ L2 such that

curl zε ⇀ ζ weakly in L2(Ω;R2),
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so that ζ = curl z from condition (4.10). In the case d = 3, using bound (4.3) we infer convergence
(4.13). To check for (4.12) we firstly establish convergence in Ls with

1

s
=

1

2
+

3

qh
=

1

q
+

1

qh
,

(note that s > 1 as qh > 6 from (2.19)). To this aim it suffices to observe that ε(curl zε)z
T
ε

converges to 0 strongly in Ls, since by the Hölder inequality

ε‖(curl zε)z
T
ε ‖Ls ≤ ε‖curl zε‖Lq‖zε‖Lqh ≤ cε2/qh ,

where in the last inequality we have used (4.1). Now convergence (4.12) follows from the fact
that (curl zε)(I + εzTε ) is bounded in L2 and from the uniqueness of the limit. �

5. Γ-lim inf inequalities

As last preparatory step, we prove in this section some inequalities, to be used in the proof
of Theorems 3.1 and 3.3.

Under assumptions (2.11e) and (2.12e), the convergence of energy densities holds, as proved
in [34, Lemma 3.2].

Lemma 5.1 (Convergence of densities). We have

W ε
el → | · |2C and W̃ ε

h → | · |2H locally uniformly on Rd×d, (5.1)

|z|2H ≤ inf{lim inf
ε→0

W̃ ε
h(zε) : zε → z}. (5.2)

We now use assumption (2.15e) in order to prove a convergence lemma for the dislocation-

tensor density function Ṽε.

Lemma 5.2 (Convergence of Ṽε). The function Ṽε in (2.16) converges locally uniformly on
R2 × R2×2 (if d = 2) and on R3×3 × R3×3 (if d = 3) to the function f(ξ, z) := µ|ξ|2K as ε→ 0.

Proof. We prove the result in the case d = 3, the case d = 2 being similar. Let the compact
K ⊂ R3×3 ×R3×3 be given and assume that (ξ, z) ∈ K. Let δ > 0 be fixed and let cv(δ) be the
corresponding value in (2.18). We estimate∣∣Ṽε(ξ, z)− µ|ξ|2K∣∣ ≤ ∣∣Ṽε(ξ, z)− µ|ξ(I + εz)T |2K

∣∣+ µ
∣∣|ξ(I + εz)T |2K − |ξ|2K

∣∣.
From (2.18), for ε small enough so that εK ⊂ Bcv(δ)(0), we have∣∣Ṽε(ξ, z)− µ|ξ(I + εz)T |2K

∣∣ ≤ δ|ξ(I + εz)T |2K.
On the other hand ∣∣|ξ(I + εz)T |2K − |ξ|2K

∣∣ ≤ εc|ξ|2(|z|+ ε|z|2).

In particular, the local uniform convergence as ε→ 0 follows by arbitrariness of δ. �

Assume now (uε, zε) ∈ Q be a sequence satisfying the hypotheses of the compactness Lemma
4.4 and let (u, z) ∈ Q be a limit for the convergences (4.9) and (4.10). Let us set

wε :=
1

ε
((I + εzε)

−1 − I + εzε) = ε(I + εzε)
−1z2

ε , (5.3)

in such a way that (I + εzε)
−1 = I − εzε + εwε. Thanks to the coercivity (4.1) it follows that

‖εwε‖Lqh/2 ≤ c. (5.4)
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As qh/2 ≥ 3 we obtain
‖εwε‖L3 ≤ c.

From the second equality in (5.3) we estimate by the Hölder inequality

‖wε‖L1 ≤ ε‖zε‖L2‖zε‖Lp‖(I + εzε)
−1‖Lqh/2 ≤ cε

2/p ≤ cε1/3,
where 1/p + 2/qh = 1/2, i.e. p = 2qh/(qh − 4) ≤ qh (since qh ≥ 6 by (2.19)), hence wε → 0 in
L1. We can now interpolate ‖wε‖L2 ≤ ‖wε‖αL1‖wε‖1−αL3 with α = 1/4 in order to obtain

‖wε‖L2 ≤ cεα/3ε−3(1−α)/4 = cε−2/3. (5.5)

Finally, since εwε converges to zero strongly in L1 and boundedness (5.4) holds, we easily see
that

εwε → 0 strongly in Lq, for all q <
qh
2
. (5.6)

We introduce the tensors

Aε :=
1

ε
(Fel,ε − I) =

1

ε

(
(I + ε∇uε)(I + εzε)

−1 − I
)
,

and, writing (I + εzε)
−1 = I − εzε + εwε, we obtain

Aε =
1

ε

(
(I + ε∇uε)(I − εzε + εwε)− I

)
= ∇uε − zε + wε − ε(∇uεzε −∇uεwε). (5.7)

Let us consider vε := ε(∇uεzε −∇uεwε) in order to check that

‖vε‖L1 ≤ ε‖∇uε‖L2(‖zε‖L2 + ‖wε‖L2) ≤ cε1/3,
where we have used (4.1) and (5.5). Owing to the fact that wε → 0 strongly in L1 and to the
convergences (4.9) and (4.10) we finally infer

Aε ⇀ ∇u− z weakly in L1(Ω;Rd×d). (5.8)

Thanks to Lemmas 5.1 and 5.2 we are now in position to prove the following Γ-lim inf in-
equalities for the energy and for the dissipation.

Lemma 5.3 (Γ-lim inf for the energy). For all (u, z) ∈ Q we have

W0(u, z) ≤ inf{lim inf
ε→0

Wε(uε, zε) : (uε, zε) ⇀ (u, z) weakly in Q}.

Proof. To prove the lemma we follow the argument in [34, Lemma 3.3]. This relies in the lower-
semicontinuity result [34, Lemma 4.2]. Using (4.10) and (5.8) and the convergences (5.1)-(5.2)
the Γ-liminf inequalities∫

Ω

|∇u− z|2Cdx ≤ lim inf
ε→0

∫
Ω

W ε
el(Aε)dx = lim inf

ε→0

1

ε2

∫
Ω

Wel((I + ε∇uε)(I + εzε)
−1)dx,∫

Ω

|z|2Hdx ≤ lim inf
ε→0

∫
Ω

W ε
h(zε)dx = lim inf

ε→0

1

ε2

∫
Ω

Wh(I + εzε)dx,

are readily checked. Arguing similarly, owing to Lemma 5.2 and using (4.11) and (4.12), we also
find ∫

Ω

|curl z|2Kdx ≤ lim inf
ε→0

∫
Ω

V ε(Gε)dx = lim inf
ε→0

1

ε2

∫
Ω

V (ε(curl zε)(I + εzε)
T )dx,

and the result follows. �

The convergence of the dissipation term is proved in [34, Lemma 3.5] which we report here
for completeness.
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Lemma 5.4 (Γ-lim inf for the dissipation). We have

D0(z, ẑ) ≤ inf{lim inf
ε→0

Dε(zε, ẑε) : (zε, ẑε) ⇀ (z, ẑ) weakly in L2}.

6. Proof of Theorem 3.1

This section is devoted to checking that Fε(·; z̄) Γ-converge to F0(·; z̄) with respect to the
weak topology of Q. This amounts to proving the two classical conditions

(Γ-lim inf inequality)

∀(uε, zε) ⇀ (u, z) weakly in Q : F0(u, z; z̄) ≤ lim inf
ε→0

Fε(uε, zε; z̄), (6.1)

(Recovery sequence)

∀(û, ẑ) ∈ Q, ∃(ûε, ẑε) ⇀ (û, ẑ) weakly in Q : Fε(ûε, ẑε; z̄)→ F0(û, ẑ; z̄). (6.2)

In fact, the Γ-lim inf inequality follows from the lower semicontinuity results obtained in Lem-
mas 5.3-5.4, so that we just need to check the existence of a recovery sequence, i.e. (6.2). We
proceed in steps.

Step 1: Reduction to smooth competitors. Let us first note that, in order to prove condition
(6.2) it suffices to consider the case of smooth competitors (û, ẑ) ∈ C∞c (Ω;Rd)× C∞c (Ω;Rd×d).
In fact, the general case can be then covered by the following argument: let (û, ẑ) be generic in
Q and take a sequence (ûk, ẑk) ∈ C∞c (Ω;Rd)× C∞c (Ω;Rd×d) approaching (û, ẑ) in Q and such
that

F0(û, ẑ; z̄) = lim
k→∞

F0(ûk, ẑk; z̄). (6.3)

Consider now, for all k, a sequence (ûεk, ẑ
ε
k) which converges to (ûk, ẑk) in Q and such that

F0(ûk, ẑk; z̄) ≥ lim sup
ε→0

Fε(ûεk, ẑεk; z̄). (6.4)

By a diagonal extraction argument one can find a subsequence (ûεkε , ẑ
ε
kε

) converging to (û, ẑ) in
Q and condition (6.2) is easily checked thanks to conditions (6.3) and (6.4).

Step 2: Case z̄ smooth. Let us first assume z̄ ∈ C∞c (Ω;Rd×d) and (û, ẑ) ∈ C∞c (Ω;Rd) ×
C∞c (Ω;Rd×d) be such that F0(û, ẑ; z̄) <∞. We define the recovery sequence as follows:

ẑε :=
1

ε

(
exp (ε(ẑ − z̄))(I + εz̄)− I

)
,

ûε := û,

Ĝε := G(ẑε).

Let us first check that (ûε, ẑε) ⇀ (û, ẑ) in Q. By writing the exponential as aseries we find that

ẑε = ẑ + ε(ẑ − z̄)z̄ +
1

ε

( ∞∑
k=2

(ε(ẑ − z̄))k

k!

)
(I + εz̄) =: ẑ + ε(ẑ − z̄)z̄ + R̂ε.
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We have that ε‖(ẑ − z̄)z̄‖L∞ ≤ ε‖ẑ − z̄‖L∞‖z̄‖L∞ → 0, whereas

|R̂ε| =

∣∣∣∣∣1ε
( ∞∑
k=2

(ε(ẑ − z̄))k

k!

)
(I + εz̄)

∣∣∣∣∣ =
1

ε

∣∣∣∣∣ε2
∞∑
k=2

εk−2(ẑ − z̄)k

k!
+ ε3

( ∞∑
k=2

εk−2(ẑ − z̄)k

k!

)
z̄

∣∣∣∣∣
≤ ε

(
|ẑ − z̄|2

∞∑
k=2

εk−2|ẑ − z̄|k−2

k!
+ ε|z̄||ẑ − z̄|2

∞∑
k=2

εk−2|ẑ − z̄|k−2

k!

)

≤ ε
(
|ẑ − z̄|2 1

2
exp (ε|ẑ − z̄|)(1 + ε|z̄|)

)
.

This ensures that ẑε → ẑ strongly in L∞.

Now, for all ζ ∈ Rd×d we know that D(I, exp (ζ)) ≤ R(ζ), so that, from the relation (I +
εẑε)(I + εz̄)−1 = exp (ε(ẑ − z̄)) we infer

lim sup
ε→0

Dε(z̄, ẑε) = lim sup
ε→0

1

ε

∫
Ω

D(I, exp (ε(ẑ − z̄)))dx ≤
∫

Ω

R(ẑ − z̄)dx = D0(z̄, ẑ).

Let us check that

lim sup
ε→0

Vε(Ĝε) = lim sup
ε→0

∫
Ω

V ε(Ĝε)dx ≤ µ
∫

Ω

|curl ẑ|2Kdx, (6.5)

where we recall that

Vε(Ĝε) =

∫
Ω

V ε(Ĝε)dx =
1

ε2

∫
Ω

V (curl ẑε, ẑε)dx.

The case d = 2 being much simpler, we only analyze the more involved case d = 3. In such a
case we have

Ĝε := εcurl ẑε(I + εẑε) = curl
(
exp (ε(ẑ − z̄)− I)(I + εz̄)

)
(I + εz̄)T exp (ε(ẑ − z̄)T ).

We now aim at obtaining a decomposition of Ĝε. In the following, we use the notation

z̃ = ẑ − z̄

for short. Let us start by noting that

curl
(
exp (εz̃)(I + εz̄)

)
= Dexp (εz̃) : (I + εz̄) + εexp (εz̃)curl z̄, (6.6)

and setting

lε := Dexp (εz̃) : z̄,

we can also write, by using (2.5),

Dexp (εz̃) : (I + εz̄) = curl
(
exp (εz̃)

)
+ εlε. (6.7)

Let us now estimate the term lε. By remembering that

(Dexp (εz̃) : z̄)ij = εj`kexp (εz̃)iq,`(z̄)qk

we can control lε as

|lε| ≤
∑
`

|∂`exp (εz̃)||z̄| ≤
∑
`

∣∣∣∣∣
∞∑
k=0

εk∂`z̃
k

k!

∣∣∣∣∣ |z̄|
≤ ε

∣∣∣∣∣
∞∑
k=1

εk−1z̃k−1

(k − 1)!

∣∣∣∣∣ |∇z̃||z̄| = εe|εz̃||∇z̃||z̄|.
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Hence ‖lε‖L∞ ≤ cε. As for the term curl (exp (εz̃)) in (6.7) we expand the exponential in order
to obtain that

curl (exp (εz̃)) = εcurl z̃ +

∞∑
k=2

εk

k!
curl (z̃k)

= εcurl z̃ +

∞∑
k=2

εk

k!

(
D(z̃k−1) : z̃ + z̃k−1curl z̃

)
= εcurl z̃ + εhε + (exp (εz̃)− I − εz̃)z̃−1curl z̃ = εcurl z̃ + εhε + εmε, (6.8)

where we have used (2.2) and set

hε :=

∞∑
k=2

εk−1

k!
D(z̃k−1) : z̃, mε =

1

ε
(exp (εz̃)− I − εz̃)z̃−1curl z̃.

We now estimate hε as

(hε)ij =

∞∑
k=2

εk−1

k!
εjlk(z̃k−1)iq,lz̃qh,

and we can write

|hε| ≤
∞∑
k=2

εk−1

(k − 1)!

k − 1

k
|∇z̃||z̃|k−1 ≤

∞∑
k=2

εk−1|z̃|k−1

(k − 1)!
|∇z̃| ≤ (e|εz̃| − 1)|∇z̃| ≤ cε.

In particular, hε → 0 strongly in L∞. On the other hand,

|mε| ≤
1

ε

∣∣∣∣∣
∞∑
k=2

εkz̃k−1

k!

∣∣∣∣∣ |curl z̃| ≤ ε|z̃|e|εz̃||curl z̃| ≤ cε,

so that mε → 0 strongly in L∞ as well. All in all, we have obtained

lε, hε, mε → 0 strongly in L∞,

and, going back to (6.6) and using (6.7) and (6.8), we can rewrite

Ĝε = ε(hε + lε +mε + curl z̃ + exp (εz̃)curl z̄)(I + εz̄)T exp (εz̃)T

= ε(rε + curl z̃ + exp (εz̃)curl z̄)(I + εz̄)T exp (εz̃)T ,

where

rε = hε + lε +mε.

In particular, ε−1Ĝε → curl ẑ holds strongly in L∞ and

‖Ĝε‖L∞ ≤ cε. (6.10)

We now turn to the proof of the limsup relation (6.5). By (6.10) and (2.15e) we find that,
for any δ > 0, ∫

Ω

V ε(Ĝε)dx ≤
µ+ δ

ε2

∫
Ω

|Ĝε|2Kdx.

Passing to the limsup and using the strong convergence of ε−1Ĝε to curl ẑ we infer

lim sup
ε→0

Vε(Ĝε) ≤ (µ+ δ)

∫
Ω

|curl ẑ|2Kdx
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and condition (6.5) follows as δ > 0 is arbitrary. An analogous argument using the strong
convergence ẑε → ẑ in L∞ entails that

lim sup
ε→0

1

ε2

∫
Ω

Wh(I + εẑε)dx ≤
1

2

∫
Ω

|ẑ|2Hdx.

Let us now address the convergence of the elastic part of the energy, namely

lim sup
ε→0

1

ε2

∫
Ω

Wel((I + ε∇û)(I + εẑε)
−1)dx ≤ 1

2

∫
Ω

|∇û− ẑ|2Cdx.

To this aim, following the same strategy used for proving (6.5), it suffices to show that

Âε :=
1

ε

(
(I + ε∇û)(I + εẑε)

−1 − I
)
→ (∇û− ẑ) strongly in L∞. (6.11)

Using the notation from (5.7), we find

Âε = ∇û− ẑε + ŵε − ε(∇ûẑε −∇ûŵε),

with ŵε = ε(I + εẑε)
−1ẑ2

ε . The convergence (6.11) follows as soon as we prove that ŵε → 0
strongly in L∞, so that it is sufficient to show that (I+ εẑε)

−1 is uniformly bounded in L∞ for ε
small enough. This however follows from the fact that the map Rd×d 3 A 7→ A−1 is continuous
in a neighborhood of the identity I and ẑε is uniformly bounded in L∞.

Step 3: Case z̄ nonsmooth. Let us drop the smoothness assumption on z̄ by arguing by
density. Assume z̄ ∈ L2(Ω;Rd×d) and let (û, ẑ) ∈ Q be such that F0(û, ẑ; z̄) < ∞ and assume
(û, ẑ) ∈ C∞c (Ω;Rd)× C∞c (Ω;Rd×d). Choose a sequence z̄k ∈ C∞c (Ω;Rd×d) such that

D0(z̄, z̄k) ≤ 1

k
.

Hence, by Step 1, for all fixed k > 0 we can find a sequence (ûε,k, ẑε,k) such that

E0(û, ẑ) +D0(ẑ, z̄k) = F0(û, ẑ; z̄k) ≥ lim sup
ε→0

Fε(ûε,k, ẑε,k; z̄k)

= lim sup
ε→0

(
Eε(ûε,k, ẑε,k) +Dε(ẑε,k, z̄k)

)
.

We hence write

E0(û, ẑ) +D0(ẑ, z̄) ≥ lim sup
ε→0

(
Eε(ûε,k, ẑε,k) +Dε(ẑε,k, z̄)

)
+ lim sup

ε→0

(
Dε(ẑε,k, z̄k)−Dε(ẑε,k, z̄)

)
+D0(ẑ, z̄)−D0(ẑ, z̄k), (6.12)

and by triangle inequalities for Dε and D0 we infer

|Dε(ẑε,k, z̄k)−Dε(ẑε,k, z̄)| ≤ Dε(z̄k, z̄),

|D0(ẑ, z̄k)−D0(ẑ, z̄)| ≤ D0(z̄ε, z̄) ≤
1

k
.

If we prove that

lim sup
ε→0

Dε(z̄k, z̄) ≤
2

k
, (6.13)

from (6.12) we conclude

E0(û, ẑ) +D0(ẑ, z̄) ≥ lim sup
ε→0

(
Eε(ûε,k, ẑε,k) +Dε(ẑε,k, z̄)

)
− 3

k
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and, as k > 0 is arbitrary, we would hence infer

F0(û, ẑ; z̄) ≥ lim sup
ε→0

Fε(ûε, ẑε; z̄),

along some diagonally extracted subsequence (ûε, ẑε) = (ûkε,ε, ẑkε,ε).

We are hence left to prove (6.13). Let k > 0 be fixed and write

Dε(z̄k, z̄) =
1

ε

∫
Ω

D(I + εz̄k, I + εz̄)dx =
1

ε

∫
Ω

D(I, (I + εz̄)(I + εz̄k)−1)dx,

and (I+εz̄)(I+εz̄k)−1 = I+ε(z̄−z̄k)+εw̄k−ε2z̄(z̄k−w̄k) =: I+εζεk with w̄k = ε(I+εz̄k)−1z̄2
k → 0

strongly in L∞ as ε→ 0, so that

ζεk → (z̄ − z̄k) strongly in L2 as ε→ 0.

By letting ΩM := {x ∈ Ω : |ζεk| > M > 0}, the Markov inequality and the L2 integrability of ζεk
entail |ΩM |

1
2 ≤ c/M . Hence

1

ε

∫
Ω

D(I, I + εζεk)dx =
1

ε

∫
ΩM

D(I, I + εζεk)dx+
1

ε

∫
Ω\ΩM

D(I, I + εζεk)dx

≤ c

εM

(∫
ΩM

(1 + |I + εζεk)|)2dx

)1/2

+
1

ε

∫
Ω\ΩM

D(I, I + εζεk)dx. (6.14)

where we have used the Schwartz inequality and estimate (2.22). Setting M = Mε := δ/ε for δ
small enough we see that, on Ω \ ΩM , I + εζεk almost everywhere belongs to a neighborhood of
the identity I, since |εζεk| ≤ δ. In particular we can write (I + εζεk)χΩ\ΩM = exp (εT εk) for some
T εk . We now claim that there is a constant c(δ) > 0 with c(δ)→ 0 as δ → 0 and such that

T kε = ζεk(I +Qεk)χΩ\ΩM , for some Qεk ∈ L∞(Ω \ ΩM ;Rd×d), |Qεk| < c(δ). (6.15)

In order to proceed, let us prove here an auxiliary lemma.

Lemma 6.1 (Representation of the logarithm). Let δ0 > 0 be small enough so that for all
A ∈ Rd×d with |A| ≤ δ0 there is B ∈ Rd×d such that

I +A = exp (B). (6.16)

Then, there exists a function ω = ω(δ) : (0, δ0) → R+ tending to 0 as δ ↘ 0 with the following
property: for all δ ∈ (0, δ0), for any A ∈ Rd×d with |A| ≤ δ, then B ∈ Rd×d satisfying (6.16)
can be written as B = A(I +Q), for some Q ∈ Rd×d satisfying |Q| ≤ ω(δ).

Proof. Formula (6.16) corresponds to B = log(I + A). By the continuity of the logarithm at
I one can find a modulus of continuity C1(δ) (namely, C1(δ) ↘ 0 for δ ↘ 0) and such that
|B| ≤ C1(δ) if |A| ≤ δ. Writing exp (B) as a series one obtains

A = B +

∞∑
h=2

Bh

h!
,

so that

B = A

(
I +

∞∑
h=2

Bh−1

h!

)−1

.

We have that ∣∣∣∣∣
∞∑
h=2

Bh−1

h!

∣∣∣∣∣ ≤
∞∑
h=2

|B|h−1

h!
≤
∞∑
h=1

|B|h

h!
≤ eC1(δ) − 1 =: C2(δ),
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and C2(δ)↘ as δ ↘ 0. We now exploit the continuity at 0 of the function P 7→ (I + P )−1 − I
which entails the existence of a modulus of continuity C3(s) such that if |P | ≤ s then Q =

(I+P )−1−I satisfies |Q| ≤ C3(s). Therefore, since P :=
∑∞
h=2

Bh−1

h! is such that |P | ≤ C2(δ) we

infer that Q := (I +
∑∞
h=2

Bh−1

h! )−1− I satisfies |Q| ≤ C3(C2(δ)). By defining ω(δ) = C3(C2(δ))
the assertion follows since B = A(I +Q). �

By applying Lemma 6.1 with choices A = εζεk, B = εT kε , and c(δ) = ω(δ), and observing that
|A| ≤ δ holds uniformly on Ω \ ΩM , claim (6.15) follows. From it, we infer

1

ε

∫
Ω\ΩMε

D(I, I + εζεk)dx ≤
∫

Ω\ΩMε
R(T εk) ≤

∫
Ω

R(ζεk)χΩ\ΩMdx+

∫
Ω

c(δ)R(ζεk)χΩ\ΩMdx,

and the right-hand side converges to (1+c(δ))
∫

Ω
R(z̄− z̄k)dx as ε→ 0 thanks to the Dominated

Convergence theorem since R(ζεk)χΩcMε
≤ ρ|ζεk| → ρ|z̄ − z̄k| in L1. Putting this into (6.14) and

remembering that M = Mε = δ/ε we get

1

ε

∫
Ω

D(I, I + εζεk)dx ≤ c

δ

(∫
ΩM

(1 + |I + εζεk)|
)2

dx
)1/2

+ (1 + c(δ))

∫
Ω

R(z̄ − z̄k)dx+ o(1),

with o(1) vanishing as ε→ 0, so that, thanks to the fact that (
∫

ΩM
(1 + |I + εζεk)|)2dx

) 1
2 = o(1)

since |ΩM | → 0 as ε→ 0, we conclude

lim sup
ε→0

1

ε

∫
Ω

D(I, I + εζεk)dx = (1 + c(δ))D0(z̄, z̄k) ≤ (1 + c(δ))

k
≤ 2

k
,

where the last inequality holds true for δ small enough. This concludes the proof of (6.13),
whence the assertion of Theorem 3.1 follows.

7. Proof of Theorem 3.3

In order to prove Theorem 3.3 we follow the general theory of evolutionary Γ-convergence
for rate-independent systems from [33]. Given the above proved coercivity of the energy and
compactness of infimizing sequences, this actually reduces in checking the two conditions:

• (Γ-liminf inequalities) For all (u, z) ∈ Q and all sequences (uε, zε) ∈ Q such that
(uε, zε) ⇀ (u, z) weakly in Q, it holds

W0(u, z) ≤ lim inf
ε→0

Wε(uε, zε). (7.1)

Moreover, whenever (zε, ẑε) ∈ (L2(Ω;Rd×d))2 converge to (z, ẑ) weakly in (L2(Ω;Rd×d))2

we have

D0(z, ẑ) ≤ lim inf
ε→0

Dε(zε, ẑε). (7.2)

• (Mutual recovery sequence) Let (û0, ẑ0) := (u0, z0) + (ũ, z̃) with (ũ, z̃) ∈ C∞c (Ω;Rd) ×
C∞c (Ω;Rd×ddev ), t ∈ [0, T ], and (uε, zε) ⇀ (u, z) weakly in Q such that

Eε(uε, zε) < c <∞. (7.3)

Then, there exists (ûε, ẑε) ∈ Q such that

lim sup
ε→0

(
Eε(t, ûε, ẑε)− Eε(t, uε, zε)) +Dε(zε, ẑε)

)
≤
(
E0(t, û0, ẑ0)− E0(t, u0, z0)) +D0(z0, ẑ0)

)
. (7.4)
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The same approach was followed in [34], where nevertheless no gradient term was considered.
This calls here for an extension of those techniques.

Since the Γ-lim inf inequalities (7.1)-(7.2) have been already established in Lemmas 5.3-5.4,
respectively, we are left with the proof of the existence of a mutual recovery sequence, as in
(7.4). As already remarked in Step 1 of Section 6, it is sufficient to check the existence of such

mutual recovery sequence in the smooth case (ũ, z̃) ∈ C∞c (Ω;Rd)×C∞c (Ω;Rd×ddev ), for the general
case can be readily deduced by density.

Assume hence to be given (uε, zε) ∈ Q converging to (u0, z0) weakly in Q and such that the

bound (7.3) is satisfied for some constant c > 0. Let ũ ∈ C∞c (Ω;Rd) and z̃ ∈ C∞c (Ω;Rd×ddev ). We
will provide a recovery sequence ûε, ẑε for the limit state

û0 = u0 + ũ,

ẑ0 = z0 + z̃.

Let ϕε := id+ εuε and ψε := id+ εũ. By letting the symbol ◦ denote composition, we define the
mutual recovery sequence by

ûε =
1

ε
(ψε ◦ ϕε − id) = uε + ũ ◦ ϕε, (7.5)

ẑε =
1

ε

(
exp (εz̃)(I + εzε)− I

)
. (7.6)

Notice that

I + εẑε = exp (εz̃)(I + εzε).

Let us define also

Ĝε := G(I + εẑε), Gε := G(I + εzε),

where G is defined in (2.6). Namely, it turns out

Ĝε = εcurl ẑε, Gε = εcurl zε, if d = 2,

Ĝε = εcurl ẑε(I + εẑε)
T , Gε = εcurl zε(I + εzε)

T , if d = 3.

We are going to prove that the pair (ûε, ẑε) satisfies condition (7.4). This will follow by
separately proving the following inequalities:

lim sup
ε→0

(∫
Ω

W ε
el(Âε)−W ε

el(Aε)dx
)
≤
∫

Ω

|∇ûsym0 − ẑsym0 |2Cdx−
∫

Ω

|∇usym0 − zsym0 |2Cdx, (7.7a)

lim sup
ε→0

(∫
Ω

W ε
h(ẑε)−W ε

h(zε)dx
)
≤
∫

Ω

|ẑ0|2Hdx−
∫

Ω

|z0|2Hdx, (7.7b)

lim sup
ε→0

(∫
Ω

V ε(Ĝε)− V ε(Gε)dx
)
≤
∫

Ω

|curl ẑ0|2Kdx−
∫

Ω

|curl z0|2Kdx, (7.7c)

lim sup
ε→0

Dε(zε, ẑε) ≤ D0(z0, ẑ0). (7.7d)

Before proceeding to the proof of the limsup inequalities (7.7), let us prepare a lemma.

Lemma 7.1 (Admissibility and convergence). Given (7.5)-(7.6) there exists ε0 > 0 such that,
for all ε < ε0 it holds

det (I + ε∇ûε) > 0, I + εẑε ∈ SL(d) a.e. on Ω. (7.8)
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Moreover as ε→ 0, we have

ûε ⇀ û0 = u0 + ũ weakly in H1(Ω;Rd), (7.9a)

(∇ûε −∇uε)→ ∇ũ strongly in Lp(Ω;Rd×d) for p =
qeqh
qe + qh

, (7.9b)

ẑε ⇀ ẑ0 := z̃ + z0, weakly in L2(Ω;Rd×d). (7.9c)

Proof. We have I + ε∇ûε = ∇ψε(ϕε) · ∇ϕε = (I + ε∇ũ(ϕε))(I + ε∇uε), so that, using the fact
that det (I + ε∇uε) > 0, we infer that for ε small enough det (I + ε∇ûε) > 0 as well.

As for I + εẑε, its determinant is equal to det (I + εẑε) = det (exp (εz̃))det (I + εzε). Since
det (exp (εz̃)) = exp ( tr(εz̃)) = exp (0) = 1 and I+εzε ∈ SL(d) we conclude that det (I+εẑε) = 1,
namely I + εẑε ∈ SL(d), so that (7.8) holds.

Let us now prove the convergences (7.9). It is easily seen that

∇ûε = ∇uε +∇ũ(ϕε) + ε∇ũ(ϕε)∇uε,
from which, taking 1 < p < qe,

‖(∇ûε −∇uε)−∇ũ‖Lp ≤ ‖∇ũ(ϕε)−∇ũ‖Lp + ‖ε∇ũ(ϕε)∇uε‖Lp . (7.10)

By the Poincaré inequality and the bound (4.7), we infer that εuε converges to zero in Lp. In
particular, by the Lipschitz continuity of ũ we deduce

‖∇ũ(ϕε)−∇ũ‖Lp ≤ c‖ϕε − id‖Lp = c‖εuε‖Lp → 0.

Finally the boundedness in L∞ of ∇ũ and again (4.7) imply ‖ε∇ũ(ϕε)∇uε‖Lp → 0, so that from
(7.10) we conclude

(∇ûε −∇uε)→ ∇ũ strongly in Lp(Ω;Rd×d), (7.11)

for p = qeqh/(qe + qh). In particular,

ûε − uε → ũ strongly in W 1,p(Ω;Rd).

Now, using the fact that ∇uε is bounded in L2, from convergence (7.11) we deduce that

ûε ⇀ û0 = u0 + ũ weakly in H1(Ω;Rd).

It remains to show (7.9c). Let us check that

ẑε − zε → z̃ strongly in Lqh(Ω;Rd×ddev ). (7.12)

Indeed, we have

ẑε − zε =
1

ε
(exp (εz̃)− I)(I + εzε),

and (1/ε)(exp (εz̃)− I)→ z̃ in L∞(Ω;Rd×ddev ) whereas, by (4.1), εzε → 0 in Lqh(Ω;Rd×ddev ). Since

zε converges to z0 weakly in L2(Ω;Rd×ddev ), convergence (7.12) implies the assertion. �

By inspecting the last proof one realizes that, since qh > 2, we have proved that

(ẑε − zε)→ z̃ strongly in L2(Ω;Rd×ddev ), (7.13)

while it follows

(ẑε + zε) ⇀ ẑ0 + z0 weakly in L2(Ω;Rd×ddev ). (7.14)

We have already introduced the tensor Aε in (5.7). Analogously, we set

Âε :=
1

ε
(F̂el,ε − I) =

1

ε

(
(I + ε∇ûε)(I + εẑε)

−1 − I
)
,
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where we have denoted by F̂el,ε the tensor F̂el,ε = (I + ε∇ûε)(I + εẑε)
−1. By using notation

(5.3), we can also write

Âε : =
1

ε

(
(I + ε∇ûε)(I − εzε + εwε)exp (−εz̃)− I

)
= (∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε)exp (−εz̃) +

1

ε
(exp (−εz̃)− I). (7.15)

Lemma 7.2 (Convergence of the elastic strains). We have

Âε −Aε → ∇ũ− z̃ strongly in Lp for all p <
qeqh

3qe + qh
. (7.16)

Moreover, letting s := 2qh/(6 + qh), then

Âε +Aε ⇀ (∇û0 − ẑ0) + (∇u0 − z0) weakly in Ls. (7.17)

As a consequence, thanks to (2.19), by the Hölder inequality

(Âε −Aε) : C(Âε +Aε) ⇀ (∇ũ− z̃) : C(∇(û0 + u0) + (ẑ0 − z0)) weakly L1. (7.18)

Proof. We have

Âε −Aε =(∇ûε −∇uε)(I − εzε + εwε) +
1

ε
(exp (−εz̃)− I)

+ (∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε)(exp (−εz̃)− I). (7.19)

Let us first estimate the norm of (exp (−εz̃)− I). By expanding the exponential we have

exp (−εz̃)− I =

∞∑
k=1

(−ε)k

k!
z̃k = −εz̃

∞∑
k=0

(−ε)k

(k + 1)!
z̃k,

so that, taking the L∞ norm and using that ‖z̃‖L∞ ≤ c we find

‖exp (−εz̃)− I‖L∞ ≤ ε‖z̃‖L∞
∞∑
k=0

εk

(k + 1)!
‖z̃‖kL∞ ≤ εc

∞∑
k=0

εk

k!
ck ≤ cε.

This allows us to prove that the last term in (7.19) converges to 0 strongly in Lq for any
q ∈ [1, qh/2). Indeed, we have ‖∇ûε‖L∞ ≤ c and

‖zε‖Lq ≤ cε(2−q)/q,

by (4.1), so that εzε → 0 in Lq. Moreover, εwε → 0 by (5.6) and

‖ε∇ûεzε + ε∇ûεwε‖Lq ≤ ‖∇ûε‖L∞‖εwε + εzε‖Lq → 0,

Notice that
qh
2
≥ qeqh

2qe + qh
>

qeqh
3qe + qh

,

so that the convergence of the last term in (7.19) occurs in Lp for any p < qeqh/(2qe + qh). In
particular, since we easily check that (1/ε)(exp (−εz̃)− I)→ −z̃ in Lp, in order to prove (7.16)
it remains to show that (∇ûε −∇uε)(I − εzε + εwε)→ ∇ũ in Lp. Let us rewrite

(∇ûε −∇uε)(I − εzε + εwε) = (∇ûε −∇uε) + (∇ûε −∇uε)(εwε − εzε).

By (7.9b), we have that the first addend in the right-hand side converges to ∇ũ in Lp (since
qeqh/(qe + qh) > qeqh(3qe + qh)). Let us prove that (∇ûε − ∇uε)(εwε − εzε) converges to 0 in
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Lp. In fact, we can estimate ∇ûε −∇uε in Lqeqh/(qe+qh), as

‖∇ûε −∇uε‖
L
qeqh
qe+qh

= ‖∇ũ(ϕε) + ε∇ũ(ϕε)∇uε‖
L
qeqh
qe+qh

≤ ‖∇ũ(ϕε)‖L∞ + ε‖∇ũ(ϕε)‖L∞‖∇uε‖
L
qeqh
qe+qh

≤ c,

where we have used (4.7). On the other hand, we have already checked that εwε− εzε converges
to 0 strongly in Lr for all r < qh/2. Then, by the Hölder inequality, it follows that (∇ûε −
∇uε)(εwε − εzε) converges to 0 in Lq for all q such that 1/q > (qe + qh)/qeqh + 2/qh, and (7.16)
follows.

Let us now prove convergence (7.17). From (5.7) and (7.15) we have

Aε + Âε =∇uε − zε + wε − ε(∇uεzε −∇uεwε)

+ (∇ûε − zε + wε − ε∇ûεzε + ε∇ûεwε)exp (−εz̃) +
1

ε
(exp (−εz̃)− I). (7.20)

Since ∇uε ⇀ ∇u0 and zε ⇀ z0 weakly in L2, and 2 > s we have that the same convergences
hold weakly in Ls. Moreover by (7.9a) and (7.9c) we also have ∇ûεexp (−εz̃) ⇀ ∇û0 and
ẑεexp (−εz̃) ⇀ ẑ0 weakly in Ls. We have to prove that all the other terms in (7.20) converge to
zero weakly in Ls. First we claim that

wε ⇀ 0 strongly in Ls.

Indeed, by (5.3) and (4.1) via the Hölder inequality we get

‖wε‖Ls ≤ ‖(I + εzε)
−1‖Lqh/2‖εz

ε‖Lqh ‖zε‖L2 ≤ cε2/qh .

Furthermore, again by (4.1) and (5.4), ‖ε∇uεwε‖L2qh/(4+qh) ≤ ‖∇uε‖L2‖εwε‖Lqh/2 ≤ c, and (5.6)
implies that

ε∇uεwε ⇀ 0 weakly in L
2qh

4+qh .

Since 2qh/(4 + qh) > s, the latter convergence holds in Ls as well. Estimating the remaining
terms is now easy. They all converge to 0 in Ls, as well. This implies that convergence (7.17)
holds.

It remains to prove convergence (7.18). This is a consequence of the Hölder inequality, which
holds provided that 1 ≥ 1/p+ 1/s for some p < qeqh/(3qe + qh). This is equivalent to requiring

qh >
12qe
qe − 2

,

which is guaranteed by condition (2.19). Note that in the above argument we have used the fact
that qeqh/(3qe + qh) > 1. This is equivalent to qh > 3qe/(qe − 1) and follows from qe > 2 and
qh > 6, which follow from condition (2.19). �

Let us now go back to the proof of the limsup inequalities (7.7). Following [34], for δ > 0 we
introduce the sets

Uδε := {x ∈ Ω : |εAε(x)|+ |εÂε(x)| ≤ cel(δ)},

Zδε := {x ∈ Ω : |εzε(x)|+ |εẑε(x)| ≤ ch(δ)},

V δε := {x ∈ Ω : |Gε(x)|+ |Ĝε(x)| ≤ cv(δ)},

where the constants cel(δ), ch(δ), cv(δ), come from (2.11e), (2.12e), and (2.15e), respectively.

The measure of Ω \Uδε can be controlled by recalling that Aε and Âε are uniformly bounded in



26 RICCARDO SCALA AND ULISSE STEFANELLI

Ls with s = 2qh/(6 + qh) in the following way

|Ω \ Uδε | =
∫

Ω\Uδε
1dx ≤ εs

cel(δ)s

∫
Ω

(|Aε|+ |Âε|)sdx ≤
cεs

cel(δ)s
.

Similarly, using the L2 boundedness of zε and ẑε, and of Gε and Ĝε (given by (4.1), (4.3)) one
infers

|Ω \ Zδε | ≤
cε2

ch(δ)2
, (7.21)

|Ω \ V δε | ≤
cε2

cv(δ)2
. (7.22)

We are now in position to address the limsup inequality for the elastic part, the hardening part
of the energy, and the total dissipation.

Proposition 7.3 (Convergence). The sequence (ûε, ẑε) converges to (û0, ẑ0) and satisfies (7.7a),
(7.7b), and (7.7d).

The proof is very similar to the corresponding argument in [34]. We only sketch it and
emphasize the points where (minor) differences arise.

Sketch of the proof. We first fix δ > 0 and write

W ε
el(Âε)−W ε

el(Aε) ≤ |Âε|2C − |Aε|2C + δ(|Âε|2C + |Aε|2C)

=
1

2
(Âε −Aε) : C(Âε +Aε) + δ(|Âε|2C + |Aε|2C).

After defining

H1,ε := (I + ε∇ûε)(I + ε∇uε)−1, H2,ε := (I + εzε)(I + εẑε)
−1,

we follow the lines of [34, Lemma 3.6] and check that ‖H1,ε − I‖L∞(Ω\Uδε ;Rd×d) + ‖H2,ε −
I‖L∞(Ω\Uδε ;Rd×d) ≤ εc. Therefore, arguing as in [34] we obtain∫

Ω\Uδε
W ε
el(Âε)−W ε

el(Aε)dx ≤
c

ε2

∫
Ω\Uδε

(Wel(Fel,ε) + C)(|H1,ε − I|+ |H1,ε − I|)dx

≤ c
(

1

ε2

∫
Ω

Wel(Fel,ε)dx+
C

ε2
|Ω \ U δε |

)(
‖H1,ε − I‖L∞ + ‖H2,ε − I‖L∞

)
≤ c(ε+ εs−1).

This allows us to focus on the limiting behavior of the elastic energy on the set Uδε , for the
remainder is negligible as ε ↘ 0. In particular, by using [34, formula (3.25)] inequality (7.7a)
follows from convergences (7.18) and the fact that s > 1.

Inequality (7.7b) on the hardening energy can be proved as in [34], thanks to convergences
(7.13) and (7.14). Eventually, inequality (7.7d) concerning the dissipation term follows again
from the analysis in [34], by adapting the argument to our case using the fact that z̃ has compact
support. �

Given Proposition 7.3, we are just left with the proof of the limsup inequality (7.7c) concerning
the dislocation-density term. We do this in the remainder of this section by distinguishing the
cases d = 2 and d = 3.

We first deal with the more involved three-dimensional case.
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Step 1. We have

Ĝε = εcurl ẑε(I + εẑε)
T = curl

(
exp (εz̃)(I + εzε)

)
(I + εzε)

T exp (εz̃)T .

Using (2.2) we infer

curl
(
exp (εz̃)(I + εzε)

)
= Dexp (εz̃) : (I + εzε) + εexp (εz̃)curl zε, (7.23)

and, setting

lε := Dexp (εz̃) : zε,

we can also write, by (2.5),

Dexp (εz̃) : (I + εzε) = curl
(
exp (εz̃)

)
+ εlε. (7.24)

Let us estimate lε by using (Dexp (εz̃) : zε)ij = εjlkexp (εz̃)iq,l(zε)qk as

|lε| ≤
∑
l

|∂lexp (εz̃)||zε| ≤
∑
l

∣∣∣∣∣
∞∑
k=1

εk∂lz̃
k

k!

∣∣∣∣∣ |zε|
≤ ε

∣∣∣∣∣
∞∑
k=1

εk−1z̃k−1

(k − 1)!

∣∣∣∣∣ |∇z̃||zε| = εe|εz̃||∇z̃||zε|.

Integrating in space and using (4.1) we conclude that

‖lε‖Lqh ≤ cε2/qh . (7.25)

As for the term curl (exp (εz̃)) in (7.24) we expand the exponential to obtain

curl (exp (εz̃)) = εcurl z̃ +

∞∑
k=2

εk

k!
curl (z̃k) = εcurl z̃ +

∞∑
k=2

εk

k!

(
D(z̃k−1) : z̃ + z̃k−1curl z̃

)
= εcurl z̃ + εhε + (exp (εz̃)− I − εz̃)z̃−1curl z̃ = εcurl z̃ + εhε + εmε, (7.26)

where we have used (2.2) and set

hε :=

∞∑
k=2

εk−1

k!
D(z̃k−1) : z̃, mε =

1

ε
(exp (εz̃)− I − εz̃)z̃−1curl z̃.

Let us now estimate hε. Since

(hε)ij =
∞∑
k=2

εk−1

k!
εjlk(z̃k−1)iq,lz̃qh,

we can obtain the bound

|hε| ≤
∞∑
k=2

εk−1

(k − 1)!

k − 1

k
|∇z̃||z̃|k−1 ≤

∞∑
k=2

εk−1|z̃|k−1

(k − 1)!
|∇z̃| = (e|εz̃| − 1)|∇z̃| ≤ cε. (7.27)

In particular the L∞ norm of hε converges to 0. Eventually, we easily check that mε → 0
uniformly on Ω, namely,

|mε| < cε. (7.28)

Summarizing, by (7.25), (7.27), and (7.28), setting rε = hε + lε +mε we obtain

‖rε‖Lqh ≤ cε2/qh , (7.29)

and

rε → 0 strongly in Lqh .
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Going back to (7.23) and using (7.24) and (7.26) we find

Ĝε = ε(hε + lε +mε + curl z̃ + exp (εz̃)curl zε)(I + εzε)
T exp (εz̃)T

= ε(rε + curl z̃ + exp (εz̃)curl zε)(I + εzε)
T exp (εz̃)T .

Step 2. We define for t ∈ [0, 1]

Rε(t) := εt(rε + curl z̃)(I + εzε)
T (exp (εz̃))T + εexp (εtz̃)curl zε(I + εzε)

T (exp (εtz̃))T ,

in such a way that

Rε(0) = Gε, Rε(1) = Ĝε,

and compute

∂tRε(t) = ε(rε + curl z̃)(I + εzε)
T (exp (εz̃))T + ε2exp (εtz̃)z̃(curl zε)(I + εzε)

T (exp (εtz̃))T

+ ε2exp (εtz̃)(curl zε)(I + εzε)
T (exp (εtz̃))T z̃T

= ε(rε + curl z̃)(I + εzε)
T (exp (εtz̃))T + ε2Lε,

where we have set

Lε = exp (εtz̃)z̃(curl zε)(I + εzε)
T (exp (εtz̃))T + exp (εtz̃)(curl zε)(I + εzε)

T (exp (εtz̃))T z̃T

Using the Lqc-boundedness of εcurl zε(I + εzε)
T provided by (4.3), we can easily estimate

ε2‖Lε‖Lqc ≤ cε1+2/qc .

To estimate the remaining term in ∂tRε we observe that, by (4.1), (7.22), and the Hölder
inequality,

‖(I + εzε)
T ‖Lqc (Ω\V δε ) ≤ |Ω \ V δε |1/qh‖I + εzε‖Lqh ≤

ε2/qh

cv(δ)2/qh
.

In particular, it turns out

‖∂tRε(t)‖Lqc (Ω\V δε ) ≤ εc
(
‖I + εzε‖Lqc (Ω\V δε ) + ‖rε‖Lqh ‖I + εzε‖Lqh + ε‖Lε‖Lqc

)
≤ c(δ)ε1+2/qh ,

for all t ∈ [0, 1], where we have again used that qh ≥ 2qc, and where c(δ) > 0 is a constant
independent of ε but which might depend on δ. As for Rε(t), we similarly find that

‖Rε(t)‖Lqc ≤ cε2/qc , for all t ∈ [0, 1].

Taking into account the control (2.15d), we finally estimate∫
Ω\V δε

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx =

1

ε2

∫ 1

0

∫
Ω\V δε

∇V (Rε(t))∂tRε(t) dxdt

≤ c

ε2

∫ 1

0

∫
Ω\V δε

(|Rε(t)|qc−1 + c11)|∂tRε(t)| dxdt

≤
∫ 1

0

c

ε2
‖Rε(t)‖qc−1

Lqc ‖∂tRε(t)‖Lqc (Ω\V δε ) +
c

ε2
|Ω \ V δε |

qc−1
qc ‖∂tRε(t)‖Lqc (Ω\V δε ) dt

≤ c(δ)

ε2
ε(2qc−2)/qcε1+2/qh = c(δ)ε(qc−2)/qcε2/qh ≤ c(δ)ε2/qh , (7.30)

where we have used (7.22) and the fact that qc ≥ 2.
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Let us now focus on the treatment of the left-hand side of (7.30). By using (2.15e) on the set
V δε we have

V (Ĝε)− V (Gε) ≤ µ|Ĝε|2K − µ|Ĝε|2K + δ(|Ĝε|2K + |Gε|2K).

We thus infer∫
Ω

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx =

∫
V δε

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx+

∫
Ω\V δε

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx

≤ µ

ε2

∫
V δε

(|Ĝε|2K − |Gε|2K) dx+ δc+

∫
Ω\V δε

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx

≤ µ

ε2

∫
V δε

(|Ĝε|2K − |Gε|2K) dx+ cδ + cε2/qh .

The limsup inequality (7.7c) will follow, as soon as we check that

1

ε2
(|Ĝε|2K − |Gε|2K) ⇀ |curl ẑ0|2K − |curl z0|2K weakly in L1(V δε ). (7.31)

Indeed, from (7.31) one readily proves that

lim sup
ε→0

∫
Ω

1

ε2
V (Ĝε)−

1

ε2
V (Gε) dx ≤ µ

∫
Ω

|curl ẑ0|2K − |curl z0|2K dx+ cδ,

and (7.7c) follows as δ is arbitrary.

It hence remains to prove the claim (7.31). We write

1

ε2
|Ĝε|2K −

1

ε2
|Gε|2K =

1

ε2
(Ĝε −Gε)K : (Ĝε +Gε),

and recall that
1

ε
Ĝε = ((rε + curl z̃) + exp (εz̃)curl zε)(I + εzε)

T exp (εz̃)T .

Since exp (εz̃) and exp (εz̃)T converge uniformly to I we can write exp (εz̃) = I + r(ε) and
exp (εz̃)T = I + s(ε) with r(ε) and s(ε) converging to 0 uniformly. Therefore, we have

1

ε
(Ĝε −Gε) =

= (rε + curl z̃)(I + εzε)
T (I + s(ε)) + (I + r(ε))curl zε(I + εzTε )(I + s(ε))− curl zε(I + εzTε )

= (rε + curl z̃)(I + εzε)
T (I + s(ε)) + curl zε(I + εzTε )t(ε),

where t(ε) converges to 0 strongly in L∞ as ε→ 0. Since εzε converges to 0 strongly in Lqh and
curl zε(I + εzTε ) is bounded in L2, thanks to the fact that qh > 4 we find out that

1

ε
(Ĝε −Gε)→ curl z̃ strongly in L2(Ω;R3×3). (7.32)

On the other hand
1

ε
(Ĝε +Gε) = (rε + curl z̃)(I + εzε)

T (I + s(ε)) + (I + r(ε))curl zε(I + εzTε )(I + s(ε))

+ curl zε(I + εzTε )

so that (4.12) implies

1

ε
(Ĝε +Gε) ⇀ curl (z̃ + z0) + curl z0 = curl (ẑ0 + z0) weakly in L2(Ω;R3×3). (7.33)

This, together with (7.32), concludes the proof of (7.31). In particular, the limsup inequality
(7.7c) holds for d = 3.
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Step 3. Let us now turn to prove (7.7c) for d = 2. This is easier than the three-dimensional
case, so that most details can be omitted. We have

Ĝε = εcurl ẑε = curl
(
exp (εz̃)(I + εzε)

)
.

Using (2.1) and (2.5) we infer

curl
(
exp (εz̃)(I + εzε)

)
= Dexp (εz̃) : (I + εzε) + εexp (εz̃)curl zε

= Dexp (εz̃) : I + εlε + εexp (εz̃)curl zε

= curl (exp (εz̃)) + εlε + εexp (εz̃)curl zε,

where as before lε := Dexp (εz̃) : zε. The estimate for lε is similar to the one for the three-
dimensional case, and leads us to (7.25). Using a similar computation as in (7.26), we infer

curl (exp (εz̃)) = εhε + εmε + εcurl z̃,

where hε and mε fulfill (7.27) and (7.28). Thus, setting rε := hε +mε + lε we obtain

Ĝε = εcurl z̃ + εrε + εexp (εz̃)curl zε,

where rε satisfies (7.29). We define for t ∈ [0, 1]

Rε(t) := εt(rε + curl z̃) + εexp (εtz̃)curl zε,

so that

∂tRε(t) = ε(rε + curl z̃) + ε2exp (εtz̃)z̃(curl zε) = ε(rε + curl z̃) + ε2Lε,

where, this time,

Lε = exp (εtz̃)z̃(curl zε).

Hence, by (4.2) it follows that

ε‖Lε‖Lqc ≤ cε2/qc .
We are then again led to the estimates

‖Rε(t)‖Lqc ≤ cε2/qc , ‖∂tRε(t)‖Lqc (Ω\V δε ) ≤ c(δ)ε1+2/qc ,

and we obtain the analogon of (7.30). To conclude the proof, it remains to verify that also in
this case convergences (7.32) and (7.33) hold. This is now an easy check since

1

ε
(Ĝε −Gε) = curl z̃ − curl zε + rε + exp (εz̃)curl zε,

1

ε
(Ĝε +Gε) = curl z̃ + curl zε + rε + exp (εz̃)curl zε,

convergence (4.11) holds, and I − exp (εz̃) converges to 0 strongly in L∞.

Conclusions

We have proved that finite-plasticity incremental and quasistatic solutions converge to in-
cremental and quasistatic solution of classical linearized elastoplasticity as forces are infinites-
imally small. The limiting procedure is based on evolutionary Γ-convergence arguments for
rate-independent systems [29, 33].

With respect to previous contributions on linearization in finite plasticity [9, 15, 34], the
novelty is here that of considering the occurrence of an energetic contribution related to the
dislocation-density tensor. This corresponds to the setting of [30], which is the most general
multidimensional framework under which incremental existence is known.
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A future line of research could target the case of compatible plastic strains P , by constraining
the evolution to curlP = 0 instead. In this case, the total deformation ϕ can be decomposed as
ϕ = ϕel ◦ ϕp and an existence theory is already available [24, 43].
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