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Abstract. We study a free transmission problem in which solution minimizes a func-
tional with different definitions in positive and negative phases. We prove some asymp-
totic regularity results when the jumps of the diffusion coefficients get smaller along the
free boundary. At last, we prove a measure-theoretic result related to the free boundary.
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1. Introduction

In this article we intend to study the regularity issues related to the transmission
problems. In various applied sciences, many phenomenas are modelled by transmission
problem also known as phase transition problems. These kind of models naturally ap-
pear when we study the diffusion of a quantity through different media. For example,
modelling a composite material having different diffusion properties: like combination
of ice and water, or mixture of chemicals, a tumour in some tissue, or heat conduction
through different regions.

Very broadly speaking, variational formulation of a transmission problem is of the
following form ∫

Ω

a+(x, v,∇v)χ{v>0} + a−(x, v,∇v)χ{v≤0} dx → min

for an appropriate domain Ω ⊂ RN , a+ and a− determine diffusion in positive and neg-
ative phases. Candidates v are from appropriate function space. The ice-water example
is the most relatable because the (solid) ice part corresponds to the negative phase and
(liquid) water part corresponds to the positive phase.

The mathematical analysis of transmission problems involves discontinuous coeffi-
cients, due to the difference in the properties of different media. Let us focus on the
stationary state of the ice-water combination and study the diffuson of heat (related to
the temperature T ) T : Ω→ RN , Ω being the domain under study. We can say that in
ice the diffusion is determined by an operator corresponding to solid state of water that

1



2 HARISH SHRIVASTAVA

is

− div(a−(x)∇T ) = 0 in ice, {T < 0}
and in water, the diffusion is determined according to an operator corresponging to liquid
state

− div((a+(x)∇T ) = 0 in water, {T ≥ 0}.
As a comination of the above two PDEs we can write

− div(a(x)∇T ) = 0 in Ω

with a(x, T ) = a+(x)χ{T>0}+a−(x)χ{T≤0}. With a being a discontinuous function along
the free boundary of T . An important point to be noticed is that the diffusion tend to
compensate the transition of phases, which gets reflected in the free boundary condition.
It can be formally written as follows, supposing that the free boundary is sufficiently
regular

G(∂ν+T, ∂ν−T ) = 0 on ∂{T > 0}
for some function G. Above mentioned PDEs and the free boundary condition can be
posed in the following variational setup, which was studied in [4]∫

Ω

〈A(x, v)∇v,∇v〉 − f(x, v)v + γ(x, v) dx (1.1)

with

A(x, v) = A+(x)χ{v>0} + A−(x)χ{v≤0}

f(x, v) = f+(x)χ{v>0} + f−(x)χ{v≤0}

γ(x, v) = γ+(x)χ{v>0} + γ−(x)χ{v≤0}

and matrices A± satisfying the ellipticity condition for any ξ ∈ RN

λ|ξ|2 ≤ 〈A±ξ, ξ〉 ≤ Λ|ξ|2,

f± ∈ LN(Ω), γ± ∈ C(Ω).
One important point to note is that the functionals involved in the phase transition

problems are not convex, hence the existence result does not follow from classical meth-
ods. The approach involve some tools from measure theory and also variational calculus
(see [23], [10], [4]).

We remark that the addition of the last term γ(x, u) (commonly called the compen-
sation term) penalizes the change of phases, which in turn imposes some regularity on
the free boundary. The role of this term is very evident in the Section 5 where we prove
that the last term forces the free boundary to be a rectifiable set of finite HN−1 measure.
The technique to show rectifiability of the free boundary is adapted from [8], also see
[9] for an application of the same technique in shape optimization. We expect the free
boundary to be even more regular, and the compensation term should play an important
role in it.

In [4] authors have shown that as the discontinuity of the diffusion coefficients gets
smaller the solution u of (1.1) gets more regular, tending to Lipschitz regularity. We can
imagine it as studying the behaviour of diffusion when the material becomes more and
more homogenized with time.

In this article, we have considered a functional corresponding to a quasi-linear oper-
ator in respective phases (see (P)). The problem of phase transitions can be seen as
a generalization of the free boundary problems studied by Alt, Caffarelli and Friedman
(see [2] for one phase problem and [3] for two phase model). One can see results in [3]
as a particular case of the functional (1.1) with A+ = A− = Id and f+ = f− = 0.
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In fact, we can see the variational problem dealt in this article as a combination of
the problems which fall into into two broad categories, Bernoulli type free boundary
problems (with the source term f = 0, see [2], [3] for the linear case, and [11] for a
non-linear one phase problem) and obstacle type problem (with the compensation term
γ = 0 see [16], [17] ). Very roughly speaking, the minimizers of Bernoulli type functionals
are less regular (at most Lipschitz continuous) while solutions of an obstacle problem
can carry up to C1,1 regularity. Since we are studying a mixture of both of the above
mentioned problems, it is reasonable to think that one should not expect a minimizer
to be more than Lipschitz continuous. The observations made in [4], [23] indicate the
same. One can refer to [21] where Alt-Caffarelli-Friedman monotonicity formula with two
different operators is established and used to show the Lipschitz continuity for solution
of PDEs with jump discontinuity in the operator.

Another prominent work related to free transmission problems can be found in [10],
dealing with the functionals of the form (1.2) such that a solution satisfy PDEs with
different non-linearities in different phases.∫

Ω∩{u>0}
|∇u|p − f+(x)u+ γ+(x) dx+

∫
Ω∩{u≤0}

|∇u|q − f−(x)u+ γ−(x) dx. (1.2)

Also refer to [23] where the above functional with p = q is studied, proving that the
solutions are locally log-Lipschitz in the domain. The functional (1.2) is also studied in
[1], assuming the free boundary is a fixed surface with Lipschitz regularity.

We present the mathematical setup which we will be working on in this article. Ω ⊂ RN

is open, smooth and bounded. N ≥ 3, A+,A− ∈ L∞(Ω) and satisfy the following
boundedness condition

λ ≤ A±(x) ≤ Λ (1.3)

for almost every x ∈ Ω, 0 < λ ≤ Λ < ∞ are fixed constants. γ± are continuous and
integrable real valued functions on Ω, p ∈ [2, N) is fixed. f± ∈ Lq(Ω) for q > N

p
.

We consider a functional of the form

FA,f,γ(v; Ω) =

∫
Ω

A(x, v)|∇v|p − f(x, v)v + γ(x, v) dx (P)

where the integrand is defined as

A(x, s) = A+(x)χ{s>0} +A−(x)χ{s≤0}

f(x, s) = f+(x)χ{s>0} + f−(x)χ{s≤0}

γ(x, s) = γ+(x)χ{s>0} + γ−(x)χ{s≤0}.

For candidate functions in the search of a minimizer, we consider the following Sobolev
space with fixed boundary data φ ∈ W 1,p(Ω)

W 1,p
φ (Ω) =

{
v ∈ W 1,p(Ω)|v − φ ∈ W 1,p

0 (Ω)
}
.

In the absence of any ambiguity, we will denote FA,f,γ solely as F , and we will mention
only the subscripts which carry a risk of being ambiguous. Note that any quantity
depending solely on A, f, γ, φ,Ω will be referred to as quantity depending on data of the
problem.

As mentioned earlier, the functional F in (P) is not convex in W 1,p(Ω), we will prove
that F is lower semi-continuous with respect to v in W 1,p(Ω) topology via techniques
from measure theory (see Theorem 2.1). In the Theorem 2.3, we use the results from the
theory developed by Giaquinta-Giusti (see [19], [20]) which is related to quasi minima
of a functional and conclude local boundedness and existence of a universal modulus
of continuity for all the minimizers of F . Method used in the Theorem 2.3 differ from
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the one used in [4], we believe Giaquinta-Giusti’s arguments used in this article can be
applied to more general classes of transmission problems.

The universal modulus of continuity plays a decisive role in giving compactness argu-
ments while studying the asymptotic regularity of solutions in the Section 3 and 4.

In the Section 3 we will show that if A+ = A− = A ∈ C(Ω) and f± ∈ LN(Ω), then

u ∈ C0,1−

loc (Ω), using tangential analysis method. Main idea is to study regularity of
solution of F with the coefficients A± such that F is close to a given tangential free
boundary problem. The arguments in the Section 3 and 4 can also be posed in terms of
Γ-convergence (see [12], [6], [20] for a comprehensive introduction to the subject), but
we have refrained from using this term in the proofs. In the Section 4, we use analogous
arguments as in the Section 3 to show that as the jumps betweenA± ∈ C(Ω) gets smaller,
solutions tend to be more regular, asymptotically tending to Lipschitz regularity.

In the last section, Section 5, we prove that the free boundary ∂∗{u > 0} of a minimizer
u of F in (P) is always a set of finite perimeter under the assumption of Dirichlet
boundary condition i.e. φ = 0 and (γ+ − γ−) > c > 0. We can also prove similar
result for a general boundary condition, but in order to avoid tedious calculations which
will digress the reader from the main idea of the proof, we have chosen to provide the
proof for only Dirichlet boundary, and key steps for the general case is mentioned in the
Remark 5.3.

We also remark that the assumption on the ordering on γ± i.e. γ+ > γ− can be
dropped and replaced with γ(x, s) > 0 for s 6= 0, γ(x, 0) = 0. In this case we can prove
rectifiability (finite perimeter) of a larger set ∂∗{|u| > 0}

The proof in the last section involves techniques from geometric measure theory, we
refer the reader to [24], [15], [5], [22], [14] for definitions and preliminary results used to
prove the Theorem 5.1.

2. Existence and minimal Hölder regularity

We combine the methods in calculus of variations and measure theory to show the
existence of a minimizer, note that the functional is not convex (see the discussion in [4]
for a counter example). An approach similar to ours can be found in [23].

Theorem 2.1. Given a boundary data φ ∈ W 1,p(Ω), there exists a minimizer u ∈
W 1,p
φ (Ω) of F in the problem (P) .

Proof. Since f ∈ Lq(Ω), q > N
p

and A± satisfy the boundedness condition (1.3) we have

F(v) ≥
∫

Ω

λ|∇v|p − f(x, v)v + γ(x, v) dx (2.1)

and since p < N and f ∈ Lq(Ω) for q > N
p
> p∗′, therefore by Hölder inequality and

Poincaré inequality, we have∫
Ω

f(x, v)v dx ≤ C(N)‖f‖Lp∗′ (Ω)‖v‖Lp∗ (Ω) ≤ C(N, q)‖f‖Lq(Ω)(‖∇v‖Lp(Ω) + C(φ)) (2.2)

since γ±(x) are integrable in Ω, the last term
∫

Ω
γ(x, v) dx is bounded. Combining this

fact with (2.1) and (2.2), we have

F(v) ≥ λ‖∇v‖pLp(Ω) − C(N, q)‖f‖Lq
(
‖∇v‖Lp(Ω) + C(φ)

)
+ C(γ) > −∞ (2.3)

for all v ∈ W 1,p
φ (Ω). Thus, we establish existence of a lower bound for the functional

F . As there exists a minimum value, let {un} be a minimizing sequence in W 1,p
φ (Ω),
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by standard arguments (use Poincaré inequality on {(un − φ)}, un ∈ W 1,p
φ (Ω) ), we can

show that

sup
n∈N
F(un) <∞⇒ sup

n∈N
‖un‖W 1,p(Ω) <∞.

Hence un is a bounded sequence in W 1,p(Ω) norm, by reflexivity of W 1,p(Ω), the sequence
un has a weak limit upto a subsequence.

Since Ω is a bounded set therefore by Rellich theorem (see [13], [7]), W 1,p(Ω) embeds
compactly into Lp(Ω). Therefore, there exists a function u0 ∈ W 1,p

φ (Ω) such that ∇un ⇀
∇u0 in Lp(Ω) and un → u0 in Lp(Ω) upto a subsequence. Moreover, we know that
un → u0 pointwise almost everywhere in Ω upto another subsequence. By Egorov’s
theorem ([18], [25]), given an ε > 0 there exists a set Ωε ⊂ Ω such that |Ω \Ωε| < ε and
un → u0 uniformly in Ωε. Fix δ > 0 and we see that∫

Ωε∩{u0>δ}
A(x, u0)|∇u0|p dx =

∫
Ωε∩{u0>δ}

A+(x)|∇u0|p dx

≤ lim inf
n→∞

∫
Ωε∩{u0>δ}

A+(x)|∇un|p dx

≤ lim inf
n→∞

∫
Ωε∩{un> δ

2
}
A+(x)|∇un|p dx

≤ lim inf
n→∞

∫
Ω∩{un>0}

A+(x)|∇un|p dx

= lim inf
n→∞

∫
Ω∩{un>0}

A(x, un)|∇un|p dx

(2.4)

and from (1.3) we can write∫
Ω\Ωε

λ|∇u0|p dx ≤
∫

Ω\Ωε
A(x, u0)|∇u0|p ≤

∫
Ω\Ωε

Λ|∇u0|p dx→ 0 as ε→ 0. (2.5)

By letting δ → 0 and ε→ 0, combine (2.4) and (2.5) and we have∫
Ω∩{u0>0}

A(x, u0)|∇u0|p dx ≤ lim inf
n→∞

∫
Ω∩{un>0}

A(x, un)|∇un|p dx. (2.6)

By considering the set Ωε ∩ {u0 < −δ} in the equations (2.4), we can argue analogously
to say that∫

Ω∩{u0≤0}
A(x, u0)|∇u0|p dx ≤ lim inf

n→∞

∫
Ω∩{un≤0}

A(x, un)|∇un|p dx (2.7)

lower semi-continuity of the other terms in F is well known, that is∫
Ω

f(x, u0)u0 dx ≤ lim inf
n→∞

∫
Ω

f(x, un)un dx

and since un → u0 pointwise almost everywhere in Ω,∫
Ω

γ(x, u0) dx ≤ lim inf
n→∞

∫
Ω

γ(x, un) dx.

Along with (2.6) and (2.7), we get

F(u0) ≤ lim inf
n→∞

F(un) = min

and it follows that u0 is a minimizer of F in W 1,p
φ (Ω). This concludes the Theorem 2.1.

�
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Now that we have established the existence of a minimizer of F , we can proceed to
prove that any minimizer of F posses a mimimal local Hölder continuity in the domain
Ω. For the sake of convinience in notation, we define the following for x ∈ Ω, s ∈ R,
ξ ∈ RN ,

F (x, s, ξ) = A(x, s)|ξ|p − f(x, s)s+ γ(x, s)

and observe that there exists a C > 0 such that s ≤ sp + C for all s ≥ 0, using this and
(1.3) we can write that

λ|∇u|p − |f ||u|p − (C|f |+ |γ|) ≤ F (x, u,∇u) ≤ Λ|∇u|p + |f ||u|p + (C|f |+ |γ|). (2.8)

where, by slightly abusing the notation, we define |f | = |f+|+ |f−| and |γ| = |γ+|+ |γ−|.

Remark 2.2. Existence result holds true for more general values of p ∈ (1,∞). Since
further regularity results are known only for the range of p considered above, we choose
to stick to the limit p ∈ [2, N).

Theorem 2.3. Given a minimizer u ∈ W 1,p(Ω) of F , then u is locally bounded and
locally Hölder continuous in Ω. That is for all Ω′ b Ω there exists a M(Ω′) > 0 and
0 < α0 < 1 depending only on data of the problem such that

‖u‖Cα0 (Ω′) ≤M‖u‖L∞(Ω′).

Proof. Since, F satisfies the estimates (2.8), the minimization problem (P) falls into
the general setting of the variational problems studied in [20]. That is, it satisfies the
condition (7.2) in [20, Section 7.1].

Note that, F satisfies the hypothesis of [20, Theorem 7.3] which proves the local
boundedness of u in terms of its Lp norm. From local boundedness of u and [20, Theorem
7.6] we have local Hölder regularity of a minimizer of F . �

3. Small jumps and regularity in continuous medium

In this section we will be proving that when A+ = A− = A ∈ C(Ω) and f± ∈ LN(Ω),
a minimizer u of F satisfy local C0,1− regularity estimates. We interpret the functional
studied in [23] as a tangential free boundary problem, this strategy is adapted from [4].
One can see [30], [29], [28] for other applications of similar strategy as ours.

Also, we shall be proving the theorems in this section for a unit ball with centre at
the origin. Which, on rescaling will represent a small ball contained inside a general
domain Ω. As we have already established the local boundedness of a solution in any
general domain in the previous section, we will be assuming that for a minimizer u of F
in B1 = B1(0), ‖u‖L∞(B1) = 1.

We will first prove that as the oscillation of the diffusion coefficients A± gets smaller,
the graph of a minimizer u of F tends to the graph of a C0,1− function in B1/2. This will

lead us to asymptotic C0,1− estimates in B1/2 on the points located on the free boundary.
Then we will use the Moser-Harnack inequality and some geometric arguments to prove
that u is locally C0,1− regular when A+ = A− = A ∈ C(Ω).

Lemma 3.1. Under fixed boundary condition ϕ, let u ∈ W 1,p
ϕ (B1) be a minimizer of

functional F(·, B1) with f± ∈ LN(B1) then, for every ε > 0 there exists a δ > 0 such
that if

‖A −A0‖L1(B1) ≤ δ (3.1)

for some constant A0, λ ≤ A0 ≤ Λ, then there exists a function u0 ∈ C0,1−(B1/2) such
that

‖u− u0‖L∞(B1/2) ≤ ε. (3.2)
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u0 is such that for every 0 < β < 1 the constant of β-Hölder continuity, C0(β) depends
only on A0, β and data of the problem.

Proof. We argue by contradiction, i.e. let there is a sequence of functions Ak satisfying
(1.3) such that

lim
k→∞
‖Ak −A0‖L1(B1) = 0 (3.3)

and there exists ε0 > 0 such that for every w ∈ C0,1−(B1/2)

‖u− w‖L∞(B1/2) > ε0. (3.4)

Before moving into the main body of the proof, we stop to make some observations.
From the hypothesis (3.3), we write A±,k → A0 in L1(B1). Then, upto a subsequence,
A±,k → A0 pointwise almost everywhere in B1.

The functionals Fk = FAk satisfy the hypothesis of the Theorem 2.3 in B1, thus we
can show that the functions in the sequence {uk} of minimizers of Fk are locally Hölder
continuous in B1. That is

‖uk‖Cα0 (B1/2) < K0

for some K0 > 0, not depending on k ∈ N. α0 is as in the Theorem 2.3.
Therefore, we can apply Arzela Ascoli theorem to {uk} and there exists a function

h ∈ C0,α0(B1/2) such that

uk → h uniformly in B1/2 up to a subsequence. (3.5)

Therefore by compact embedding (see [13], [7]), we have a function u0 ∈ W 1,p
ϕ (B1)

such that

{uk}⇀ u0 in W 1,p(B1) and

{uk} → u0 in Lp(B1)
(3.6)

up to a subsequence. From (3.5) and (3.6) we can say that u0 = h almost everywhere
in B1/2. Also note that ‖uk‖W 1,p(B1) is uniformly bounded in k, from the assumptions
mentioned in the beginning of the section, (1.3) and minimility of uk for the functional
Fk we have

λ

∫
B1

|∇uk|p dx ≤
∫
B1

Ak(x, uk)|∇uk|p dx ≤ Fk(φ) +

∫
B1

f(x, uk)uk − γ(x, uk) dx

≤ Λ

∫
B1

|∇φ|p dx+ C < C0 <∞.
(3.7)

We proceed to show that the function u0 ∈ W 1,p
ϕ (B1) is a minimizer of

F0(v) =

∫
B1

A0|∇v|p − f(x, v)v + γ(x, v) dx (3.8)

observe that

lim inf
k→∞

∫
B1

Ak(x, uk)|∇uk|p dx ≥
∫
B1

A0|∇u0|p dx. (3.9)

Indeed the inequation (3.9) can be shown via a set of arguments similar to those in
the proof of the Theorem 2.1. Only little difference is that we need to apply Egorov’s
theorem to the sequences {uk} as well as {Ak}. Fix ε′ > 0 and let Ωε′ ⊂ B1 be such that
Ak → A0 and uk → u0 uniformly in Ωε′ and |B1 \ Ωε′ | < ε′. From this information, one

can easily verify that the sequence {|Ak(·, uk)|
1
p∇uk} weakly converges to |A0|

1
p∇u0 in

Lp(Ωε′).
Then we can proceed exactly like (2.4) - (2.7) to prove (3.9).
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As k →∞ from (3.5) we have

lim inf
k→∞

∫
B1

γ(uk, x) dx ≥
∫
B1

γ(u0, x) dx. (3.10)

Adding (3.9) and (3.10), we get the following inequality:

lim inf
k→∞

Fk(uk) ≥ F0(u0) (3.11)

Moreover, for any v ∈ W 1,p
ϕ (B1)

F0(v) ≥ Fk(v) +

∫
B1

(A0 −Ak(x, v))|∇v|p dx (3.12)

the last term in (3.12) goes to Zero (following the same reasoning as (3.9)) as k → ∞.
Therefore from (3.11) and (3.12), we have

F0(v) ≥ lim
k→∞
Fk(v) ≥ lim inf

k→∞
Fk(uk) ≥ F0(u0)

this shows that u0 is the minimizer of F0.
From [23] we know that the function u0 is a locally log-Lipschitz (and therefore locally

C0,1−) function in B1, that is u0 ∈ C0,1−(B1/2). If we take w = u0 in (3.4), we get a
contradiction. Hence we prove the lemma.

�

Lemma 3.2. With 0 ∈ ∂{u > 0} and hypothesis of the previous lemma, for every
0 < α < 1 there exists a 0 < r0 < 1/2 and a δ = δ(α) > 0 such that if

‖A −A0‖L1(B1) < δ

then
sup
Br0

|u| ≤ rα0 .

Proof. For an ε > 0 to be chosen later (and accordingly δ > 0) we have from the Lemma
3.1 that

‖A −A0‖L1(B1) < δ ⇒ ‖u− u0‖L∞(B1/2) < ε (3.13)

for some u0 ∈ C0,1−(B1/2), that is, for every 0 < β < 1 there exists C(β) > 0 such that

sup
Br

|u0(x)− u0(0)| ≤ C(β)rβ Br ⊂ B1/2 (3.14)

using (3.13) and (3.14) we have

sup
Br

|u(x)− u(0)| ≤ sup
Br

(
|u(x)− u0(x)|+ |u0(x)− u0(0)|+ |u0(0)− u(0)|

)
≤ 2ε+ C(β)rβ

(3.15)

now select β such that, 1 > β > α and r = r0 > 0 such that

C(β)rβ0 =
rα0
3

that is

r0 =
( 1

3C(β)

)1/β−α

and select ε > 0 (and accordingly δ(ε) > 0) such that

ε <
rα0
3

now from (3.15) and using the assumption that u(0) = 0, we prove the lemma. �
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Lemma 3.3. Following the hypothesis of the previous lemma, for all 0 < α < 1 there
exists C0 > 0 depending only on α and data of the problem such that if

‖A −A0‖L1(B1) < δ

implies

sup
Br

|u(x)| ≤ C0r
α for r < r0.

(r0 and δ are as in the Lemma 3.2.)

Proof. Let us first show that for all k ∈ N

sup
B
rk0

|u(x)| ≤ rkα0 .

We already know from the Lemma 3.2 that the above claim is true for k = 1. Suppose
it is true up to a value k0 ∈ N. We claim that it is also true for k0 + 1.

Define v(y) = 1

r
k0α
0

u(rk00 y) for y ∈ B1 = B1(0). We have

∇v(y) =
1

r
k0(α−1)
0

∇u(rk0y)

by change of variables we have

FA(u;B
r
k0
0

) =rNk00

∫
B1

r
pk0(α−1)
0 A(rk00 y, v)|∇v(y)|p dy−

rNk00

∫
B1

rk0α0 vf(rk00 y, v) + γ(rk00 y, v) dy.

(3.16)

�

See that, v is a minimizer of F̃ = FÃ,f̃,γ̃(v;B1) with

Ã(y, s) = A(rk00 y, s)

f̃(y, s) = r
(pk0(1−α)+k0α)
0 f(rk00 y, s)

γ̃(y, s) = r
pk0(1−α)
0 γ(rk00 y, s)

moreover,

‖f̃‖LN (B1) = r
k0(1−α)(p−1)
0 ‖f‖LN (B

rk
) ≤ ‖f‖LN (B1).

Since supB1
|v| = r−k0α0 supB

r
k0
0

|u| ≤ 1, F̃ satisfies the hypothesis of the Lemma 3.2 and

since 0 ∈ ∂{v > 0} we have

sup
Br0

|v| ≤ rα0

substituting u from the definition of v

sup
B
r
k0+1
0

|u| ≤ r
(k0+1)α
0 .

This proves the claim. Now we prove the lemma using a classical iteration argument.
Let 0 < r < r0 and select k such that rk+1

0 < r < rk0 , and we see that

sup
Br

|u| ≤ sup
B
rk0

|u| ≤ rkα0 = r
(k+1)α
0

1

rα0
≤ 1

rα0
rα.

This concludes the proof.
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Remark 3.4. We have obtained a local asymptotic C0,1− regularity estimates on u at
points on the free boundary. If A±(x) are separately continuous and f± ∈ LN , minimizer
u satisfy the following Euler Lagrangian equation in positive and negative phases{

− div(A+(x)|∇u|p−2∇u) = f+ in {u > 0}
− div(A−(x)|∇u|p−2∇u) = f− in {u < 0}.

Since p < N , from [27, Theorem 4.2] we have local C0,1− regularity estimates on u away
from the free boundary. However, these regularity estimates deteriorate as we move
closer to the free boundary and therefore we cannot yet conclude that local asymptotic
C0,1− regularity estimates holds in the entire domain under consideration. In order to
prove it, we will proceed using our information on how those estimates obtained in [27]
deteriorate near the free boundary and make use of the non-homogenous Moser-Harnack
inequality with some geometric arguments.

Lemma 3.5. Let A± ∈ C(B1) and with the same hypothesis as in the previous theorem,
for all 0 < α < 1 there exists δ > 0 depending on α and data of the problem such that if

‖A −A0‖L1(B1) < δ

we have

u ∈ Cα(B1/2).

Proof. As mentioned in the previous remark, we only need to show that the constant
of α Hölder continuity does not blow up as we move closer to the free boundary. This
information along with the local estimate in [27, Theorem 4.2], will prove our claim.

Let x0 ∈ {u > 0} ∩ B1/2 be very close to the free boundary. From [26, Theorem
1], we know that u satisfy the non-homogenous Moser-Harnack inequality for r < d/4
(d = dist(x0, ∂{u > 0}))

sup
Br(x0)

u ≤ C

(
inf
Br/2

u+ r‖f‖LN (Br(x0))

)
. (3.17)

Also, we know from [[27], Theorem 4.2] and Campanato’s theorem that u satisfy interior
C0,1− estimates in {u > 0} which, for a given 0 < α < 1, can be written as follows

‖u‖Cα(Br(x0)) ≤ ‖u‖Cα(Bd/2(x0)) ≤
C

dα
‖u‖L∞(B2d/3) (3.18)

using (3.17) in (3.18) by putting appropriate value of r > 0, we can get

‖u‖Cα(Br(x0)) ≤
C1

dα
(
u(x0) + d‖f‖LN (B1)

)
. (3.19)

And now we make use of the Lemma 3.3. Let y0 ∈ {u > 0} be a point such that
d = dist(x0, y0) = dist(x0, ∂{u > 0}). From the Lemma 3.3 we have

sup
B2d(y0)

|u| ≤ C2d
α. (3.20)

Observe that x0 ∈ B2d(y0) and then we combine (3.19) and (3.20) to get

‖u‖Cα(Br(x0)) ≤ C1C2 + C1d
1−α‖f‖LN (B1)

that is

‖u‖Cα(Br(x0)) ≤ C3 + C121−α‖f‖LN (B1).

From the Remark 3.4, we already know that u ∈ C0,α
loc ({u > 0}∩B1/2) and u ∈ C0,α

loc ({u <
0} ∩B1/2). Hence, the asymptotic C0,1− regularity estimates on u in B1/2 is proved. �
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Theorem 3.6 (Regularity in a continuous medium). If u ∈ W 1,p
φ (Ω) is minimizer of

F(·,Ω), A+ = A− = A ∈ C(Ω) and f± ∈ LN(Ω). Then u ∈ C0,1−

loc (Ω).

Proof. The proof of this theorem follows simply by rescaling argument. Let Ω′ b Ω, set
d = dist(Ωc,Ω′) and Ω

′′
= {x ∈ Ω | dist(x,Ω′) < d/2}. From previous lemmas, we know

that u is uniformly bounded in Ω′′ and moreover A is uniformly continuous in Ω′′ .
Given 0 < α < 1, choose corresponding ε > 0 from the above lemmas and δ < d/2 such

that |A(x) −A(y)| < ε when |x − y| < δ, (x, y ∈ Ω′). Let x0 ∈ Ω′ and fix A0 = A(x0),
rescale uδ(y) = u(x0 + δy) for y ∈ B1. We can apply the Lemma 3.5 to uδ and obtain
uδ ∈ C0,α(B1/2). Thus we can conclude that u ∈ C0,α(Bδ/2(x0)). Covering Ω′ with balls
of radius δ, we can prove the theorem. �

4. Asymptotic regularity estimates

Now, we will use the same strategy as in the previous section and show that the
regularity of a minimizer of F with A± ∈ C(Ω) and f± ∈ LN(Ω) tends asymptitically to
locally Lipschitz regularity as the Lp(Ω) distance of A+ and A− becomes smaller. That
is, given any 0 < α < 1 there is a distance δ > 0 such that if ‖A+ −A−‖L1(Ω) is smaller

than δ, then u ∈ C0,α
loc (Ω).

The result of the Theorem 3.6 is the limit case when distance between A+ and A−
is zero. In fact, instead of considering F0 (defined in the (3.8), Lemma 3.1), we will
consider the functional in the hypothesis of the Theorem 3.6 as a tangential free boundary
problem and recover regularity in converging solutions. Note that Lipschitz regularity
for minimizer does not hold true even when A+ = A− = constant (see [23]).

We will be assuming that A+ and A− are separately continuous in Ω with a modulus
of continuity ω

|A±(x)−A±(y)| ≤ ω(|x− y|). (4.1)

Theorem 4.1. Let u ∈ W 1,p
φ (Ω) be a minimizer of F with A± satisfying (4.1) and

f± ∈ LN(Ω). Then given Ω′ b Ω, for all 0 < α < 1 there exists a δ > 0 depending on
α,Ω′ and data of the problem such that if

‖A+ −A−‖L1(Ω) ≤ δ (4.2)

then
u ∈ C0,α(Ω′).

Proof. The proof of the theorem is in the same lines as we proceeded in the previous
section. We outline a very brief sketch of the proof for the reader.

For the reasons same as that discussed in the beginning of the Section 3, we prove
results for the unit ball B1 centred at 0 and assume ‖u‖L∞(B1) = 1.

Assume for a sequence {Ak±} ∈ C(Ω) satisfying (4.1) such that ‖Ak+−Ak−‖L1(B1) → 0.
Where uk is minimizer of functional Fk = FAk(·;B1). We have defined Ak(x, s) as

Akk(x, s) = Ak+(x)χ{s>0} +Ak−(x)χ{s≤0}.

To show that the sequence {uk} uniformly converges to a C0,1− function in B1/2, we
argue by contradiction. Let us assume that there exists ε0 > 0 such that for every
w ∈ C0,1−(B1/2) we have ‖uk − w‖L∞(B1/2) > ε0.

Then we can argue in the same way as in the proof of the Lemma 3.1 contradict the
claim.

Since Ak± satisfy (4.2) and (4.1), we can apply Egorov’s theorem and then Arzela
Ascoli theorem to {Ak} in B1/2. Thus the sequence {Ak} converges (upto a subsequence)
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uniformly to a continuous function A∗ satisfying (4.1). Then proceeding as in (3.9) and
(3.12), we know that the sequence {uk} converge uniformly in B1/2 to minimizer u∗ of
F∗ defined as

F∗(v) =

∫
B1

A∗(x)|∇v|p − f(x, v)v + λ(x, v) dx.

In order to show the regularity estimates on u, we will be considering F∗ as the tangential
free boundary problem insteal of F0 as in previous section.

From the Theorem 3.6 we know u∗ ∈ C0,1−(B1/2). Hence we get a contradiction and

we show that uk → u∗ ∈ C0,1−(B1/2) uniformly in B1/2.
Analogous rescaling arguments as in the proof of the Lemma 3.3 can be used to show

the asymptotic C0,1− estimates on u in B1/2 at points on the free boundary. Then
we can prove the theorem using the Schauder type estimates (see (3.18)) and the non-
homogenous Moser-Harnack (see (3.17)) inequality with same geometric arguments as in
the Theorem 3.5. �

5. Finite perimeter of the free boundary

In this section, we will prove that the free boundary of a minimizer of F is a set of
finite perimeter. This result marks the impact of the last term γ±(x) on the nature of
the problem. Heuristically speaking, this term compensates the transition of phases and
thus imposes some flux balance along the free boundary. This in turn forces the free
boundary to gain some regularity.

The technique we will be adapting is from geometric measure theory. One can refer to
[8]. Also refer to [9] to see an application of the same technique in a shape optimization
problem. The main idea is very simple, the information related to the perimeter of the
free boundary is present in the integral

∫
|u|>0
|∇u| dx, and the link between this integral

and the perimeter is expressed through the co-area formulae.
We will be assuming the Dirichlet boundary condition and that the terms γ± are

strictly ordered. That is

0 < c < γ+(x)− γ−(x). (5.1)

Theorem 5.1. Given a minimizer u of F with γ satisfying (5.1) and φ = 0 on ∂Ω, the
reduced boundary ∂∗{u > 0} is a set of finite perimeter.

Proof. For ε > 0 define the following

uε = (u− ε)+ − (u+ ε)− and Aε = {0 < u ≤ ε} ∩ Ω.

Note that

uε =


u− ε if u > ε

u+ ε if u < −ε
0 if |u| ≤ ε

and ∇uε =

{
∇u a.e. on {|u| > ε}
0 a.e. on {|u| ≤ ε}.

From the minimility of u for the functional F we have

F(u) ≤ F(uε)

therefore∫
Ω

A(x, u)|∇u|p −A(x, uε)|∇uε|p dx+

∫
Ω

γ(x, u)− γ(x, uε) dx ≤ C(f,Ω, N)ε

⇒
∫
{−ε<|u|≤ε}

A(x, u)|∇u|p dx+

∫
{0<u≤ε}

(γ+(x)− γ−(x)) dx ≤ C(f,Ω, N)ε.
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Using the hypothesis (1.3) and (5.1) in above inequation, we obtain the following∫
Aε

λ|∇u|p dx+ c|Aε| dx ≤ C(f,Ω, N)ε

this implies that
∫
Aε
|∇u|p dx ≤ Cε and |Aε| ≤ Cε, from the Hölder inequality, we

have ∫
{0<u<ε}

|∇u| dx ≤
∫
Aε

|∇u| dx ≤
(∫

Aε

|∇u|p dx
)1/p

|Aε|1/p
′ ≤ Cε

where C = C(f, λ, c,Ω, N). Now, we use the coarea formula and we deduce∫ ε

0

HN−1
(
∂∗{u > t}

)
dt ≤ Cε.

Thus there exists a sequence δn → 0 such that

HN−1
(
∂∗{u > δn}

)
≤ C for every n.

Since {u > δn} → {u > 0} in L1(Ω) and perimeter is lower semicontinuous with respect
to L1−convergence of sets (see [5]), we finally imply that

HN−1
(
∂∗{u > 0}

)
≤ C

as required. �

Remark 5.2. After adding an assumption that γ(x, 0) = 0, γ(x, s) > c > 0 (s 6= 0)
and following the lines of the proof of the Theorem 5.1, one can show that the reduced
boundary ∂∗{u < 0} is also a set of finite perimeter. In this case, the ordering condition
(5.1) in the hypothesis of the Theorem 5.1 can be dropped.

Remark 5.3. We can prove a local version of the Theorem 5.1 for a general boundary
condition, using the same ideas. For this, we consider a ball Br, such that B2r is contained
inside the domain Ω and we define the test function ũε as

ũε = ηu+ (1− η)uε

where uε is defined same as in the proof of Theorem 5.1 and η is a smooth function such
that

η(x) =

{
0 if x ∈ Br

1 if x ∈ Ω \B2r.

If we make use of ũε instead of uε as a test function in the proof of the Theorem 5.1,
we can show that the reduced free boundary is a set of finite perimeter inside the ball
Br. More elaborate discussion can be found in the Section 5.2 of [31], for the case of one
phase free boundary problem.
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