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Abstract. We propose an ODE-based derivation for a generalized class of
opinion formation models either for single and multiple species (followers, lead-

ers, trolls). The approach is purely deterministic and the evolution of the single

opinion is determined by the competition between two mechanisms: the opin-
ion diffusion and the compromise process. Such deterministic approach allows

to recover in the limit an aggregation/(nonlinear)diffusion system of PDEs for

the macroscopic opinion densities.

1. Introduction. The study of phenomena in social sciences trough mathematical
modelling has gained an increasing attention in the scientific community, in partic-
ular in the last decades, see [8, 15, 26, 33, 34, 35, 41]. The huge increasing of private
and public communications on social networks like Facebook and Twitter speed up
the attention on social phenomena, mainly due to a huge amount of data coming
from empirical observations. The large information exchange push the study on
the analysis of how these interactions influence the process of opinion formation,
[4, 9, 11, 29, 31, 40, 42, 47].

Social networks are now particularly important for the political leaders commu-
nication, since they give the possibility of driving selected information to potential
electors. Actually, the phenomenon of opinion leaders and their possible control
strategy on the public opinion dates back to the work of Lazarsfeld, [32], in the study
of the USA presidential elactions in 1940, see also [10, 12]. The social networks,
however, show an innovative feature: the possibility of measuring the popularity
of a given leader through factors such as the number of followers or the number of
likes, see [16]. The drawback is that these measure can be easily falsified to guide
the behaviour of real users and persuading them to vote for a specific candidate,
see [17, 30]. In particular, in [13] it was estimated that the most followed political
US accounts on Twitter posses the 25% of fake followers.
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In the present work, we introduce a model general enough to catch such phe-
nomenon.

Among the possible mathematical models, the kinetic formulation of opinion
formation, introduced in the seminal paper [43], has gained a lot of attention mainly
because of its flexibility to describe the phenomenon at different levels: microscopic,
based on the pairwise interaction between agents, mesoscopic for the distribution of
the opinions, and last but not least, macroscopic, useful for describing the trend of
the opinion density. In this kinetic model, interactions among agents are supposed
to be governed by two relevant concepts: compromise describes the way in which
pairs of agents reach a compromise after exchanging opinions (its structure and
other important features had been intensively studied in [4, 9, 18, 28]), and self-
thinking, modelled by a random variable, describes how agents change their opinions
in an unpredictable way [9, 43]. As a result of the above considerations, one can
consider the following pairwise interactions law between two agents with opinion w
and v respectively

w′ = w − P (w)(w − v) + ηwD(w),

v′ = v − P (v)(v − w) + ηvD(v),
(1)

where (w′, v′) denotes the opinions after the interaction, the functions P and D
describe the local relevance of the compromise and the self-thinking (diffusion) for
a given opinion, and ηw and ηv are two random variables. After a suitable scaling
process, called quasi-invariant opinion limit, the author in [43] obtains a Fokker-
Planck type equation for the opinion density, precisely of the form

∂tu(t, w) =
λ2

2
∂ww

(
D2(w)u(t, w)

)
+ ∂w (P (w)(w −m)u(t, w)) , (2)

which results to be a good approximation for the stationary profiles of the kinetic
equation associated to (1). A similar approach was also used to model more general
opinion formation processes, such as the presence of opinion leaders, choice forma-
tion, control and networks (see [4, 1, 3, 2, 22, 23, 45]), as well as the different class
of trading models for goods and wealth distribution (see [36, 44]).

We propose an alternative derivation which is based on a deterministic many
particle limit and allows to consider a generalized version of the above kinetic model.

1.1. Formal derivation of the generalized opinion formation model. This
section is devoted to introduce and formally derive, via many particle limit, the set
of equations we want to investigate in the present paper.

1.1.1. Basic one-species model. Consider a population composed of N + 1 individ-
uals with given initial opinion W 0

i , for i = 0, . . . , N and assume that opinions can
only range in a bounded set of values, say I = [−1, 1] where W = ±1 represent the
extreme opinions. We further assume that each opinion has a certain strength σi,
for i = 0, . . . , N . According to the kinetic model described above, the i-individual
can modify its own opinion depending on two possible mechanisms: the compro-
mise process (interaction) with the others individuals and the diffusion of that given
opinion. Therefore, the time evolution of the opinion of the i-individual is described
by the following ODE

Ẇi = compromise + diffusion . (3)

It is standard to assume that the local or non-local relevance of the compromise
depends on the distance between two different opinions. Then, by calling P (·) the
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function describing the local relevance of the compromise, the interaction of the
i−individual with the other individuals can be modelled by

compromise = −
N∑
j=0

σjP (Wi,Wj)(Wi −Wj). (4)

For what concerns the diffusive part, instead, we assume that the opinions evolve
with a speed equal to the osmotic velocity associated to the diffusion process, as
firstly introduced in [38]. More precisely, if we denote by D(·) the diffusion capacity
of a given opinion, then the diffusive process is described by

diffusion =
λ2

2σi
D2(Wi)

(
σi−1

Wi −Wi−1
− σi
Wi+1 −Wi

)
, (5)

where λ is a fixed diffusion coefficient. Let us observe, that, accordingly to the
results in [24, 27], it is possible to generalize the diffusion law (5) to more general
emphnon linear expressions. Indeed, the quantity

ui =
σi

Wi+1 −Wi
, (6)

represents the local density between two consecutive opinions, then one can consider
a generic nonlinear non-decreasing real valued function φ to rephrase (5) as

diffusion =
λ2

2σi
D2(Wi) (φ(ui−1)− φ(ui)) . (7)

A further, hopefully realistic, assumption of our model concerns the boundary con-
ditions. More precisely, we impose that the extreme opinions cannot alter during
the evolution. As a consequence, we set

Ẇ0 = 0,

Ẇi =
λ2

2σi
D2(Wi) (φ(ui−1)− φ(ui))−

N∑
j=0

σjP (Wi,Wj)(Wi −Wj), i 6= 0, N, (8)

ẆN = 0.

By formally sending N →∞ and calling W(z, t) the piecewise linear interpolation
of the values Wi, we get

∂tW(t, z) =
λ2

2σi
D2(W)∂z

(
φ

(
1

∂zW

))
−
∫ σ

0

P (W(z),W(ζ)) (W(z)−W(ζ)) dζ.

Once here, if U(t, w) were the inverse of the W(t, z) and u(t, w) were ∂wU(t, w)
then, inspired by the results in [19, 24], u would be a weak solutions of the following
aggregation-diffusion PDE

∂tu(t, w) = ∂w

(
λ2

2
D2(w)∂wφ(u(t, w))− Puu [u] (t, w)u(t, w)

)
, (9)

for (t, w) ∈ [0, T ]×I, endowed with zero flux boundary condition, where the nonlocal
operator Puu [u] (t, w) is defined by

Puu [u] (t, w) =

∫
I

P (w, v)(v − w)u(t, v)dv.
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Note that, even in the linear diffusion case φ(u) = u, this derivation leads to a
diffusion of Fick type, differently from the one in (2), that is of Laplacian type.
However, expanding the inner derivative in (2), we get

∂ww(D2(w)u(t, w)) = ∂w(D2(w)∂wu(t, w)) + ∂w(∂wD
2(w)u(t, w)),

where the first term on the r.h.s. corresponds to the diffusion in (9), while the
second term plays the role of a local nonlinear transport term. A similar particle
derivation can be performed in order to reconstruct the this transport, see [21].
Another difference between the two models is the fact that the mean opinion

m1(t) =

∫
I

wu(t, w)dw, (10)

is not preserved in time. From a modelling point of view, this fact can be interpreted
as a more realistic compromise process, see the discussion in section 4.

1.1.2. Leaders-followers model. We consider now a situation where the population
is divided in subgroups: one group of followers and two (or more) groups of leaders,
see [22]. Hence, by denoting with Fi the opinion of the i−th follower and with Lh
and Rk the opinion of the h−th leader in the left group and k−th leader of the
right group respectively, we have that the i-follower opinion evolves according to

Ḟi =
λ2f

2σf,i
D2
f (Fi) (φf (fi−1)− φf (fi))−

Nf∑
j=1

σf,jPff (Fi, Fj)(Fi − Fj)

−
Nl∑
h=1

σl,jPfl(Fi, Lh)(Fi − Lh)

−
Nr∑
k=1

σr,jPfr(Fi, Rk)(Fi −Rk),

where the last two sums concern the interactions between the i-th follower and the
different leaders. Similarly, we can write

L̇i =
λ2l

2σl,i
D2
l (Li) (φl(li−1)− φl(li))−

Nl∑
h=1

σl,jPll(Li, Lh)(Li − Lh)

−
Nr∑
k=1

σr,jPlr(Li, Rk)(Li −Rk),

for the generic i-th left leader and

Ṙi =
λ2r

2σr,i
D2
r(Ri) (φr(ri−1)− φr(ri))−

Nr∑
k=1

σr,jPrr(Ri, Rk)(Ri −Rk)

−
Nl∑
h=1

σl,jPlr(Ri, Lh)(Ri − Lh),

for the i-th right leader. In the previous equations we are considering strong opinion
leaders, i.e. the interaction with the followers does not affect the leader’s opinion.
In other words, we assume that Plf = Prf = 0. From the above system of ODEs,
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we can formally derive the following system of PDEs

∂tf = ∂w

(λ2f
2
D2
f (w)∂wφf (f)− f

(
Pff [f ] + Pfl[l] + Pfr[r]

))
,

∂tl = ∂w

(λ2l
2
D2
l (w)∂wφl(l)− l

(
Pll[l] + Plr[r]

))
,

∂tr = ∂w

(λ2r
2
D2
r(w)∂wφr(r)− r

(
Prr[r] + Prl[l]

))
.

(11)

1.1.3. Leaders-followers-trolls model. As a last example, we consider a case that
is of interest for the understanding of opinion formation and opinion clustering in
social media. Accordingly to the consideration mentioned in the Introduction, we
assume that one of the group of leaders introduces a new group of fake agents,
commonly known as trolls. The trolls are indistinguishable from the followers, they
only interact with the reference leaders and they cannot diffuse their opinion. It
is reasonable to assume that, in this new setting, the leaders opinion evolution is
not affected by the presence of the trolls, while the followers have an additional
compromise term that models the followers-trolls interaction. Clearly, since the
followers cannot distinguish trolls, the compromise function of the follower-troll
interaction remains Pff . Therefore, the ODEs for the followers becomes

Ḟi =
λ2f

2σf,i
D2
f (Fi) (φf (fi−1)− φf (fi))−

Nf∑
j=1

σf,jPff (Fi, Fj)(Fi − Fj)

−
Nl∑
h=1

σl,jPfl(Fi, Lh)(Fi − Lh)−
Nr∑
k=1

σr,jPfr(Fi, Rk)(Fi −Rk)

−
Nf∑
j=1

σq,jPff (Fi, Qj)(Fi −Qj).

Besides, consistently with the two features that trolls only interact with the corre-
sponding group of leaders and that they cannot diffuse their opinion, we deduce the
trolls evolution law

Q̇i =−
Nr∑
k=1

σr,kPqr(Qi, Rk)(Qi −Rk).

In the macroscopic limit we then have

∂tf = ∂w

(λ2f
2
D2
f (w)∂wφf (f)− f

(
Pff [f ] + Pff [q] + Pfl[l] + Pfr[r]

))
,

∂tl = ∂w

(λ2l
2
D2
l (w)∂wφl(l)− l

(
Pll[l] + Plr[r]

))
,

∂tr = ∂w

(λ2r
2
D2
r(w)∂wφr(r)− r

(
Prr[r] + Prl[l]

))
,

∂tq = −∂w
(
qPqr[r]

)
.

(12)

In the present paper we provide a solid existence theory for the sample models
presented so far, nevertheless it can be easily adapted to many other combinations
of populations/interactions the readers may wish to consider.
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The paper is structured as follows. In section 2 we introduce the main assump-
tions, the rigorous statement of the discrete setting and we state our main result
Theorem 2.3. Section 3 is devoted to the proof of Theorem 2.3. There, we show
how a proper piecewise constant reconstruction of density, built from the micro-
scopic ODEs, converges to weak a solution of the corresponding PDEs system. In
section 4, instead, we study the large-time behaviour of the macroscopic model and
we conclude with some numerical simulations based on the particle scheme, which
validate the analytical results of the paper.

2. Preliminaries and main result.

2.1. Main assumptions. In this section we state the setting and the assumptions
of our main result. Let w the a generic opinion belonging to the interval I = [−1, 1],
and let u(t, w) the macroscopic opinion density at time t and opinion w of a fixed
population. Then the equation for u is given by

∂tu(t, w) = ∂w

λu
2
D2
u(w)∂wφu(u(t, w))− u(t, w)

∑
h∈{f,l,r,q}

Puh[h](t, w)

 . (13)

where λu > 0 is a diffusion coefficient. Equation (13) is endowed with zero-flux
boundary condition and the initial condition u(0, w) := ū, for some ū satisfying the
following assumptions:

(In1) ū ∈ BV (I;R+) with ‖ū‖L1(I) = σu, for some σu > 0,
(In2) there exist mu,Mu > 0 such that mu ≤ ū(w) ≤Mu for every w ∈ I.

We recall that the function Du models the diffusion of a given opinion and plays
the role of a mobility function. We assume that

(D1) Du ∈ C2(I), 0 ≤ Du ≤ ‖Du‖L∞ <∞ and Du(±1) = 0.
(D2) ∂wD

2
u is uniformly bounded in I.

The prototype example for this diffusivity function is

Du(w) =
(
1− w2

)α
2 , α > 0. (14)

Observe that, under this choice, condition (D2) corresponds to the values α ≥ 1,
see Figure 1.

We further assume that

(Dif) φu : [0,∞)→ R is a nondecreasing Lipshcitz function, with φu(0) = 0.

Remember that the nonlocal operator Puh[h](t, w) is modelling the local relevance
of compromise among the same population (case h = u) or between different pop-
ulations (case h 6= u), and is defined by

Puh[h](t, w) =

∫
I

Puh(w, v)(v − w)h(t, v)dv.

We will denote with ∂iPuh the derivative of Puh w.r.t. the i−th variable, for i = 1, 2,
and we assume that

(P) for every h ∈ {f, l, r, q}, Puh(·, ·) is a non negative and uniformly bounded
function. Moreover, Puh and ∂1Puh are Lipschitz w.r.t. to both components,
uniformly in the other:

|Puh(w1, w
∗)− Puh(w2, w

∗)|+ |Puh(w∗, w1)− Puh(w∗, w2)| ≤ Lip(Puh)|w1 − w2|,

for all w1, w2, w
∗ ∈ I.
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Figure 1. Behaviours of ∂wD
2
u for different values of α.

Typical choices for the function Puh are Puh(w, v) = 1, that correspond to the
Sznajd-Weron model [42], Puh(w, v) = 1− |w| or Puh(w, v) = 1− |w − v|.

2.2. Rigorous statement of the discrete setting. Let us denote with IT =
[0, T ] × [−1, 1] and with ΓT = [0, T ] × {±1}. We notice that we can rewrite both
systems (11) and (12) in a compact form as following: let u be either f, l, r or q,
then it follows

∂tu = ∂w

(
λu
2 D

2
u∂wφu(u)−

∑
h∈{f,l,r,q} uPuh[h]

)
, (t, w) ∈ IT ,(

λu
2 D

2
u∂wφu(u)−

∑
h∈{f,l,r,q} uPuh[h]

)
= 0, (t, w) ∈ ΓT ,

u(0, w) = ū(w), w ∈ I.

(15)

where Puh and Du are eventually zero for some h ∈ {f, l, r, q} and ū : I → R
is the initial datum for the generic species f, l, r or q, satisfying (In1) and (In2).
Fix N ∈ N, and introduce σNu = σu/N as the infinitesimal mass associated to
each opinion. In this way, we will have the same number N of particles for each
population. This is just to simplify the computation when we prove the convergence
of the scheme. Indeed, our argument works the same even when we have different
amounts of particles Nh for different populations, provided that we perform the
particle limit at the same time for any all populations. Even if this choice would be
more suitable from the modelling point of view, for example in order to catch multi-
scale phenomena, taking the same number of particles N is not restrictive since we
are interested in recovering the macroscopic equations for all species. Thus, we
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atomize ū in N + 1 discrete opinions: set W 0
0 = −1 and define recursively

W 0
i = sup

{
x ∈ R :

∫ x

W 0
i−1

ū(z)dz < σNu

}
, ∀ i = 1, . . . , N − 1. (16)

By construction we have that W 0
N = 1 and W 0

i+1−W 0
i ≥

σNu
Mu

for every i = 0, . . . , N−
1, where Mu is defined in (In2). Given this initial set of particles, we let the positions
Wi evolve according to Ẇi(t) = Ẇ d

i (t) + Ẇ p
i (t), i = 1, . . . , N − 1

Ẇ0(t) = ẆN (t) = 0,
Wi(0) = W 0

i , i = 1, . . . , N − 1

(17)

where

Ẇ d
i (t) =

λu
2σNu

D2
u(Wi(t))

(
φu(ui−1(t))− φu(ui(t))

)
, (18)

and

Ẇ p
i (t) = −

∑
h∈{f,l,r,q}

σNh

N+1∑
j=0

Puh(Wi(t), Hj(t))(Wi(t)−Hj(t)). (19)

In (18) and (19), Hj indicates the opinions of the population h and ui(t) is a local
reconstructions for the density

ui(t) :=
σNu

(Wi+1(t)−Wi(t))
, i = 0, . . . , N. (20)

Note that

u̇i(t) = −u
2
i (t)

σNu
(Ẇi+1(t)− Ẇi(t)) = u̇di (t) + u̇pi (t) (21)

with

u̇di (t) = −ui(t)
Ẇ d
i+1(t)− Ẇ d

i (t)

Wi+1(t)−Wi(t)
, u̇pi (t) = −ui(t)

Ẇ p
i+1(t)− Ẇ p

i (t)

Wi+1(t)−Wi(t)
. (22)

In order to lighten the notation, we will normalize the diffusion constant λu
2 to 1

and denote by H = {f, l, r, q} the tag-set of the different populations. We further
introduce the constant

Θu :=
∑
h∈H

(
Lip[Puh] + ‖Puh‖L∞ + Lip[∂1Puh]

)
, (23)

that will be largely used in the following. The following Lemma shows that there is
an a priori control from above and below on the mutual distance between particles.
In particular, the order of the particles is maintained during the whole evolution.

Lemma 2.1 (Discrete Min-Max Principle). Let T > 0 be fixed and ū under the
assumptions (In1) and (In2). Let cu be a positive constant satisfying cu > Θu, with
Θu defined in (23). Then

σNu
Mu

e−cuT ≤Wi+1(t)−Wi(t) ≤
σNu
mu

ecuT , (24)

for every i = 0, . . . , N − 1 and t ∈ [0, T ]. Moreover

e−cuTmu ≤ ui(t) ≤ ecuTMu, (25)

for all i = 0, ..., N − 1 and t ∈ [0, T ].
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Proof. The proof of both inequalities is argued by contradiction. We only prove
the lower bound of (24), the proof of the upper bound can be easily obtained by
adapting the following steps. Thanks to (In2), we know that

Wi+1(0)−Wi(0) ≥ σNu
Mu

, i = 0, ..., N.

To simplify the notation, let us introduce the lower bound function

lbu(t) =
σNu e

−cut

Mu
.

Let now t1 be

t1 = inf
t∈[0,T ]

{Wi+1(t)−Wi(t) = lbu(t), Wj+1(t)−Wj(t) ≥ lbu(t), j 6= i} . (26)

Suppose, by contradiction, that there exists some 0 < t1 < t2 ≤ T such that

Wi+1(t)−Wi(t) < lbu(t), t ∈ (t1, t2] ,

then the contradiction follows as soon as we show that
d

dt

[
ecut(Wi+1(t)−Wi(t))

]
|t=t1

> 0.

We can compute the time derivative as follows

d

dt

[
ecut(Wi+1(t)−Wi(t))

]
|t=t1

= ecut1
[
(Ẇi+1(t1)− Ẇi(t1)) + cu(Wi+1(t1)−Wi(t1))

]
= ecut1

[
(Ẇ d

i+1(t1)− Ẇ d
i (t1)) + (Ẇ p

i+1(t1)− Ẇ p
i (t1))

]
+
cuσ

N
u

Mu
,

with Ẇ d
i , Ẇ p

i defined in (18) and (19) respectively. Thanks to assumption (26),

Wi+1(t1)−Wi(t1) ≤Wj+1(t1)−Wj(t1), for all j 6= i,

then Wi±1(t1) ≤ Wi(t1) and this directly implies that (Ẇ d
i+1(t1) − Ẇ d

i (t1)) ≥ 0,

using the assumption (Dif). Recalling the definition of Ẇ p
i and the assumptions

(P) on the generic Puh, it is immediate to get

Ẇ p
i+1(t1)− Ẇ p

i (t1)

= −
∑
h∈H

σNh

N∑
j=0

[Puh(Wi+1, Hj)(Wi+1 −Hj)− Puh(Wi, Hj)(Wi −Hj)]

=
∑
h∈H

σNh

N∑
j=0

[
(Puh(Wi+1, Hj)− Puh(Wi, Hj))(Wi+1 −Hj)

]
+
∑
h∈H

σNh

N∑
j=0

[
Puh(Wi, Hj))(Wi+1 −Wi)

]
≥ −Θu(Wi+1(t1)−Wi(t1)).

Finally, by using the above lower bound on the nonlocal part, the 0 lower bound of
the diffusive part and by recalling that cu > Θu, we deduce

d

dt

[
ecut(Wi+1(t)−Wi(t))

]
|t=t1

≥ σNu
Mu

[cu −Θu] > 0, (27)

which gives the desired contradiction.
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We are now in position to define the N -discrete density as

uN (t, w) :=

N−1∑
i=0

uNi (t)χ[WN
i (t),WN

i+1(t))
(w), (28)

because the intervals [WN
i (t), WN

i+1(t)) are well defined for every t ∈ [0, T ]. More-
over,

‖uN (t, ·)‖L1(I) =

N−1∑
i=0

uNi (t)

∫ WN
i+1(t)

WN
i (t)

1 dw =

N−1∑
i=0

σu
N

= σu,

for every t ∈ [0, T ] and independently on N . As a consequence of (25), we deduce
that (uN (t, w))N is also uniformly bounded in L∞(IT ).

In the following Definition we introduce the notion of weak solutions we are
dealing with.

Definition 2.2 (Weak Solution). Let u be either f, l, r or q. The function u is a
weak solution of (15) if u ∈ L∞ ∩BV (IT ), u(0, ·) = ū and satisfies∫

IT

[
u∂tζ + φu(ρ)∂w

(
D2
u∂wζ

)
− u

∑
h∈H

Puh [h] ∂wζ
]
dw dt = 0,

for all ζ ∈ C∞0 (IT ).

The main result of this manuscript is stated in the following Theorem.

Theorem 2.3. For every u, h among {f, l, r, q}, consider φu, Du, Puh under the
assumptions (Dif), (D1), (D2) and (P ) respectively. Let ū : I → R be as in
(In1) and (In2) and let T > 0 be fixed. Then, up to a subsequence, the discretized
densities uN defined in (28) strongly converge in L1(IT ) to a limit in L∞∩BV (IT )
which solves the Initial-boundary value Problem (15) in the sense of Definition 2.2.

Note that, the well-posedness for equations with a nonlinear space-dependent
mobility D degenerating at the boundary, as in (9), has not been subject yet of a
complete and satisfactory theory, see [5, 7, 25].

2.3. Tools from Optimal Transport. The purpose of this section is to collect
and present some tools from Optimal Transport that will be useful in the sequel.
We refer to [6, 39, 46] for an extensive treatment of the concepts mentioned in
this section. In our setting, for arbitrary t ∈ [0, T ], the functions uN (t, ·) are all
densities on I with same mass, independently on N . The Wasserstein distance is
the right notion of distance that allows us to evaluate how far from each other
the two measures uN (t, ·) and uN (s, ·) are at different times t, s ∈ [0, T ]. In this
section we introduce a well known characterization of the Wasserstein distance in
the one-dimensional setting, we refer to [14] for the detailed proof.

For a fixed mass σ > 0, we consider the space

Mσ =
{
µ Radon measure on R : µ ≥ 0 and µ(R) = σ

}
.

Given µ ∈Mσ, we introduce the pseudo-inverse function Xµ ∈ L1([0, σ];R) as

Xµ(z) = inf
{
x ∈ R : µ((−∞, x]) > z

}
. (29)

In particular, if σ = 1, then M1 is the set of non-negative probability densities on R
and it is possible to consider the one-dimensional 1-Wasserstein distance between
each pair of densities ρ1, ρ2 ∈M1. As shown in [14], in the one dimensional setting
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the 1-Wasserstein distance can be equivalently defined in terms of the L1-distance
between the respective pseudo-inverse mappings as

dW 1(ρ1, ρ2) = ‖Xρ1 −Xρ2‖L1([0,1];R).

For generic σ > 0, we recall the definition for the scaled 1-Wasserstein distance
between ρ1, ρ2 ∈Mσ as

dW 1,σ(ρ1, ρ2) = ‖Xρ1 −Xρ2‖L1([0,σ];R), (30)

see [14, 46].

3. Proof of the main result. This section is devoted to the proof of Theorem 2.3.
We will first focus on the L1 compactness for the piecewise constant interpolation
(uN (t, w))N for u = f, l, n, g, defined in (28). The main tool available in this
direction is a generalized version of the Aubin-Lions Lemma [37], that we report
here in a simplified version adapted to our setting.

Theorem 3.1. Let T > 0 be fixed and ρN (t, ·) : [a, b] → R be a sequence of non
negative probability densities for every t ∈ [0, T ] and for every N ∈ N. Moreover,
assume that ‖ρN (t, ·)‖L∞ ≤M for some constant M independent on t and N . If

I) supN
∫ T
0
TV [ρN (t, ·)]dt <∞,

II) dW 1(ρN (t, ·), ρN (s, ·)) < C|t − s| for all t, s ∈ [0, T ], where C is a positive
constant independent on N ,

then ρN is strongly relatively compact in L1([0, T ]× [a, b]).

As a consequence, the desired compactness of (uN )N relies on showing a uniform
bound of the total variation and the equi-continuity of the 1−Wasserstein distance
with respect to the time variable.

We first focus on the bounds on the Total Variation.

Proposition 1 (BV bound for Systems). Let T > 0 and ū be under assumptions
(In1) and (In2). Then the discrete densities uN defined in (28) satisfy

TV
[
uN (t, ·)

]
≤ TV [ū]C, ∀ t ∈ [0, T ], ∀ N ∈ N, (31)

where the constant C is such that C = C(Du, φu,Θu, T ).

Proof. The proof is based on a Gronwall type estimate for TV [uN ]. To shorten the
notation in the following computations we introduce the auxiliar functions

si(t) = sign(ui(t)− ui+1(t))− sign(ui−1(t)− ui(t)),
for i = 1, ..., N − 1. Standard computations lead to the following expression

d

dt
TV

[
uN (t, ·)

]
= u̇0(t) + u̇N−1(t) +

N−2∑
i=1

sign (ui+1(t)− ui(t)) (u̇i+1(t)− u̇i(t))

= u̇0(t) + u̇N−1(t) + sign(u0(t)− u1(t))u̇d0(t)− sign(uN−2(t)− uN−1(t))u̇dN−1(t)

+

N−2∑
i=1

sign (ui+1(t)− ui(t))
(
u̇pi+1(t)− u̇pi (t)

)
+

N−2∑
i=1

si(t)u̇
d
i (t),

where we used (21). We first show that the boundary terms involving u̇0 and u̇N−1
are uniformly bounded with respect to N . Consider, for example, the contribution
of the left boundary term

u̇0(t) + sign(u0(t)− u1(t))u̇d0.
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When u0(t) ≤ u1(t), the diffusive part cancels out and only the term u̇p0 survives.
If, instead, u1(t) ≤ u0(t), from the monotonicity of φu we deduce that

u̇0 + sign(u0 − u1)u̇d0 = u̇p0 + 2u̇d0 = u̇p0 − 2u0
D2(W1)(φu(u0)− φu(u1))

σNu (W1 −W0)
≤ u̇p0.

Then, in both the cases, it is enough to show that the non-local part of u̇0 is
uniformly bounded. From the positivity of Puh and the bounds (24), it is easy to
see that

u̇p0 =
u0

W1 −W0

∑
h∈H

σNh

N∑
j=0

Puh(W1, Hj)(W1 −Hj)

≤ u0
W1 −W0

∑
h∈H

σNh
∑

j:Hj<W1

Puh(W1, Hj)(W1 −Hj)

≤ u0
W1 −W0

∑
h∈H

σNh
∑

j:Hj<W1

Puh(W1, Hj)(W1 −W0)

≤ u0
∑
h∈H

[σh‖Puh‖L∞ ].

With a symmetric argument, one can see that the term also satisfies

u̇N−1 − sign(uN−2 − uN−1)u̇dN−1 ≤ uN−1
∑
h∈H

[σh‖Puh‖L∞ ].

Let us now prove that

N−2∑
i=1

si(t)u̇
d
i (t) ≤ 0. (32)

If at time t one has ui+1(t) ≤ ui(t) ≤ ui−1(t), or ui+1(t) ≥ ui(t) ≥ ui−1(t) then
si(t) = 0. When, instead, ui±1(t) are both bigger or both smaller than ui(t), the
monotonicity of φu implies the desired estimate. Indeed, if we assume for example
that ui±1(t) < ui(t), then si(t) = 2 and, recalling the definition of u̇di , we get

siu̇
d
i = 2

u2i

(σNu )
2

[
D2
u(Wi)(φu(ui−1)− φu(ui))−D2

u(Wi+1)(φu(ui)− φu(ui+1))
]
< 0.

The other case ui±1(t) > ui(t) follows analogously. To conclude, we are left to
estimate the term concerning the non-local contribution. Using the definition of u̇pi
in(22), we deduce that

N−2∑
i=1

sign(ui+1(t)− ui(t))(u̇pi+1(t)− u̇pi (t))

≤
N−2∑
i=1

|ui+1(t)− ui(t)|
|Ẇ p

i+2(t)− Ẇ p
i+1(t)|

Wi+2(t)−Wi+1(t)

+

N−2∑
i=1

ui(t)

∣∣∣∣∣Ẇ
p
i+2(t)− Ẇ p

i+1(t)

Wi+2(t)−Wi+1(t)
−
Ẇ p
i+1(t)− Ẇ p

i (t)

Wi+1(t)−Wi(t)

∣∣∣∣∣ . (33)
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Thanks to the assumption (P), we can easily bound the term in (33) with the total
variation of uN

N−2∑
i=1

|ui+1(t)− ui(t)|
|Ẇ p

i+2(t)− Ẇ p
i+1(t)|

Wi+2(t)−Wi+1(t)
≤ ΘuTV [uN (t, ·)]. (34)

On the other hand, since the functions Puh are Lipschitz, there exist some W̄ i+2
i+1 ∈

[Wi+1,Wi+2] and W̄ i+1
i ∈ [Wi,Wi+1] such that

Ẇ p
i+2 − Ẇ

p
i+1

Wi+2 −Wi+1
−
Ẇ p
i+1 − Ẇ

p
i

Wi+1 −Wi
=

=−
∑
h∈H

σNh

N∑
j=0

Puh(Wi+2, Hj)(Wi+2 −Hj)− Puh(Wi+1, Hj)(Wi+1 −Hj)

Wi+2 −Wi+1

+
∑
h∈H

σNh

N∑
j=0

Puh(Wi+1, Hj)(Wi+1 −Hj)− Puh(Wi, Hj)(Wi −Hj)

Wi+1 −Wi

≤
∑
h∈H

σNh

N∑
j=0

∣∣∂1Puh(W̄ i+2
i+1 , Hj)(W̄

i+2
i+1 −Hj)− ∂1Puh(W̄ i+1

i , Hj)(W̄
i+1
i −Hj)

∣∣
+
∑
h∈H

σNh

N∑
j=0

∣∣Puh(W̄ i+2
i+1 , Hj)− Puh(ūi+1

i , Hj)
∣∣

≤(Wi+2 −Wi)
∑
h∈H

(
2Lip[∂1Puh] + ‖∂1Puh‖L∞ + Lip[Puh]

)
.

Using now the upper bound of (24) in the above estimate, we can handle also the
second term of (33) and get

N−2∑
i=1

ui(t)

∣∣∣∣∣Ẇ
p
i+2(t)− Ẇ p

i+1(t)

Wi+2(t)−Wi+1(t)
−
Ẇ p
i+1(t)− Ẇ p

i (t)

Wi+1(t)−Wi(t)

∣∣∣∣∣ ≤ 4
ecuT

mu
Θu. (35)

Summarizing, (34) and (35), together with (32) and the estimates on the bound-
ary terms, imply that

d

dt
TV [uN (t, ·)] ≤ Θu

(
4
ecuT

mu
+ +TV [uN (t, ·)]

)
and the conclusion follows via a Gronwall type argument.

We then show that the sequence uN (t, w) satisfies and equi-continuity in time
with respect to the 1-Wasserstein distance, the proof realise on a, right now, quite
standard argument introduced in [20], that we report here for completeness.

Proposition 2. Let uN be any of fN , lN , rN , qN , defined in (28). Let T > 0 and
ū under assumptions (In1) and (In2). If Du, φu, Puh are under the assumptions
(D1), (D2), (Dif) and (P ) respectively, then there exists a constant C > 0 such
that

dW 1(uN (t, ·), uN (s, ·)) ≤ C|t− s| for all s, t ∈ [0, T ] and N ∈ N. (36)

Proof. The proof of this result is very standard in the one dimensional setting, and
we will use the tools introduced in Section 2.3. The pseudo-inverse map associated
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to the piecewise constant probability density uN can be very easily computed and
it is given by

XuN (t,·)(x) =

N−1∑
i=0

(
Wi(t) +

(
w − σNu i

) 1

ui(t)

)
χJNu (i)(w),

where JNu (i) =
[
σNu i, σ

N
u (i+ 1)

)
. For any t > s we have

dW 1(uN (t, ·),uN (s, ·)) = ‖XuN (t,·) −XuN (s,·)‖L1([0,1])

≤
N−1∑
i=0

∫
JNu (i)

∣∣∣∣Wi(t)−Wi(s) +
(
w − σNu i

) ( 1

ui(t)
− 1

ui(s)

)∣∣∣∣ dw
≤ σNu

N−1∑
i=0

|Wi(t)−Wi(s)|+
(σNu )2

2

N−1∑
i=0

∫ t

s

∣∣∣∣ ddτ 1

ui(τ)

∣∣∣∣ dτ
≤ 3σNu

N−1∑
i=0

∫ t

s

|Ẇi(τ)|dτ

≤ 3‖D2
u‖L∞Lip[φu](t− s)

N−1∑
i=0

|Wi+1 −Wi|+ 3(t− s)Θu

≤ C(Du, φu, ū, Puh)(t− s).
where we have used the assumption on the uniform bound of both on the interaction
potentials Puh and the diffusivity Du, and the estimate (31).

Gathering together Theorem 3.1 with Propositions 1 and 2, we conclude the
following.

Corollary 1. Let uN be any of fN , lN , rN , qN , defined in (28). Then there exists
some u ∈ L1 ∩ L∞(IT ) such that ‖uN − u‖L1 → 0 as N →∞.

We now focus on the identification of the limit given by Corollary 1 as weak
solution of the system (15). This will be, indeed, a straightforward consequence of
Propositions 3 and 4.

Proposition 3. Let T > 0 and ū under assumptions (In1) and (In2). Let Du, φu,
Puh be under the assumptions (D1), (D2), (Dif) and (P ) respectively. Consider
uN and hN be any two sequences among {fN , lN , rN , qN} and the respective L1-
strong limits u, h provided by Corollary 1. Then for every ζ ∈ C∞0 ((0, T )× (−1, 1))
we get

lim
N→∞

∫ T

0

∫
I

uN∂tζ =

∫ T

0

∫
I

u∂tζ,

lim
N→∞

∫ T

0

∫
I

φu(uN )∂w(D2
u(w)∂wζ) =

∫ T

0

∫
I

φu(u)∂w(D2
u(w)∂wζ),

lim
N→∞

∫ T

0

∫
I

uN
∑
h∈H

Puh[ĥN ]∂wζ =

∫ T

0

∫
I

u
∑
h∈H

Puh[h]∂wζ,

(37)

where ĥN (t, w) := 1
N

∑N
j=0 δHj(t)(w) indicates the sequence of empirical measures.

Proof. The first two of (37) are follow as direct consequence of the strong L1-
compactness obtained in Corollary 1, together with the Lipschitz regularity of the
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nonlinear diffusion φu and the uniform bound of ∂wD
2 on I. Concerning the third

part, we need to first show that the empirical measures ĥN and the piecewise con-
stant densities hN share the same limit h with respect to a suitable topology. Indeed,
it is possible to prove that

dW 1

(
h(t, ·), ĥN (t, ·)

)
−→ 0 as N →∞ for all t ∈ [0, T ]. (38)

This is follows by the identity dW 1(µ, ν) = ‖Xµ −Xν‖L1 between probability mea-
sures. Observing that the pseudo-inverse mapping of an empirical measure is piece-
wise constant, it is easy to see that

‖XhN (t,·) −XĥN (t,·)‖L1([−1,1]) ≤
N−1∑
i=0

∫ σNh (i+1)

σNh i

∣∣∣∣(w − σNh ) 1

hi(t)

∣∣∣∣ dw
=
σNh
2

N−1∑
i=0

(Hi+1(t)−Hi(t)) ≤ σNh .

Recalling that the sequence hN also converges to h with respect to the 1-Wasserstein
distance, we deduce

dW1
(h(t, ·), ĥN (t, ·)) ≤ dW1

(h(t, ·), hN (t, ·)) + dW1
(hN (t, ·), ĥN (t, ·)) ≤ CσNh ,

for some positive geometric constant C, and then (38) follows. We are now in
position to prove the third limit in (37), which is equivalent to show the following∫ T

0

∫
I

(uN − u)
∑
h∈H

Puh[ĥN ]∂wζ → 0,

and ∫ T

0

∫
I

u
∑
h∈H

(Puh[ĥN ]− Puh[h])∂wζ → 0.

The first limit is immediate because of the boundedness assumption on any of the
Puh. On the other hand, for the second limit, we can always consider an optimal

plan γNh (t) between the probability measures ĥN (t, ·) and hN (·) with respect to the
cost | · |. Then for every t ≥ 0 fixed, calling C1 = ‖∂wζ‖L∞Mue

cuT we get∫
I

∣∣∣∣∣u∑
h∈H

(Puh[ĥN ]− Puh[h])∂wζ

∣∣∣∣∣ dw
≤C1

∑
h∈H

∫
I

∣∣∣∣∫
I

Puh(w, v)(v − w)dhN (t, v)−
∫
I

Puh(w, v′)(v′ − w)dĥN (t, v′)

∣∣∣∣ dw
=C1

∑
h∈H

∫
I

∣∣∣∣∫
I×I

(
Puh(w, v)(v − w)− Puh(w, v′)(v′ − w)

)
dγNh (t)(v, v′)

∣∣∣∣ dw
≤C1

∑
h∈H

(Lip[Puh] + ‖Puh‖L∞)

∫
I

∫
I×I
|v − v′|dγNh (t)(v, v′)dw

≤C1ΘudW1(hN (t, ·), ĥN (t, ·)) ≤ C1Θuσ
N
h .

Then, ∫ T

0

∫
I

∣∣∣∣∣u∑
h∈H

(Puh[ĥN ]− Puh[h])∂wζ

∣∣∣∣∣ dwdt ≤ C1TΘu
1

N

∑
h∈H

σh
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and this concludes the proof.

The remaining part of this section is devoted to prove that the sequence uN

satisfies the the weak formulation of (15) in the limit as N →∞.

Proposition 4. Under the same assumptions of Proposition 3, for every ζ ∈
C∞c ((0, T )× (−1, 1)), one has

lim
N→∞

∫ T

0

∫
I

uN∂tζ+φu(uN )∂w
(
D2
u(w)∂wζ

)
−uN

∑
h∈H

Puh
[
ĥN
]
∂wζdwdt = 0. (39)

Proof. For simplicity we will denote the three contributions on the r.h.s. of (39) as
follows

I :=

∫ T

0

∫
I

uN∂tζdwdt, II :=

∫ T

0

∫
I

φ(uN )∂w(D2(w)∂wζ)dwdt,

III := −
∫ T

0

∫
I

uN
∑
h∈H

Puh[ĥN ]∂wζdwdt.

(40)

Recalling the definition of uN and performing some standard computations, as
discrete integration by parts and reconstruction of the derivative, it is easy to rewrite

I =

N−1∑
i=0

∫ T

0

∫ Wi+1(t)

Wi(t)

uNi (t)∂tζ(t, w)dw dt

=

N−1∑
i=0

∫ T

0

uNi (t)Ẇi+1(t)

∫ Wi+1(t)

Wi(t)

( ∫ Wi+1(t)

Wi(t)

ζ(t, w)− ζ(t,Wi+1(t))

)
dwdt

−
N−1∑
i=0

∫ T

0

uNi (t)Ẇi(t)

∫ Wi+1(t)

Wi(t)

( ∫ Wi+1(t)

Wi(t)

ζ(t, w)− ζ(t,Wi(t))

)
dwdt,

thus, expanding ζ(t, w) at first order with respect to Wi+1(t) and Wi(t) respectively,
we obtain that for some αiw ∈ [w,Wi+1(t)] and βiw ∈ [Wi(t), w] for which

I =
σNu
2

N−1∑
i=0

∫ T

0

[−∂wζ(t,Wi+1(t))Ẇi+1(t)− ∂wζ(t,Wi(t))Ẇi(t)]dt

+
1

2

N−1∑
i=0

∫ T

0

uNi (t)Ẇi+1(t)

∫ Wi+1(t)

Wi(t)

∂wwζ(t, αiw)(w −Wi+1(t))2dwdt

− 1

2

N−1∑
i=0

∫ T

0

uNi (t)Ẇi(t)

∫ Wi+1(t)

Wi(t)

∂wwζ(t, βiw)(w −Wi(t))
2dwdt.

Recalling that Ẇi(t) = Ẇ d
i (t) + Ẇ p

i (t), we can split the contribution of the first
term of the r.h.s. in a diffusive part and a non local part. Then we can rewrite I
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as the sum of the following three terms

I1 := −σ
N
u

2

N−1∑
i=0

∫ T

0

[∂wζ(t,Wi+1(t))Ẇ d
i+1(t) + ∂wζ(t,Wi(t))Ẇ

d
i (t)]dt

I2 := −σ
N
u

2

N−1∑
i=0

∫ T

0

[∂wζ(t,Wi+1)Ẇ p
i+1(t) + ∂wζ(t,Wi(t))Ẇ

p
i (t)]dt

I3 :=
1

2

N−1∑
i=0

∫ T

0

uNi (t)Ẇi+1(t)

∫ Wi+1(t)

Wi(t)

∂wwζ(t, αiw)(w −Wi+1(t))2

− 1

2

N−1∑
i=0

∫ T

0

uNi (t)Ẇi(t)

∫ Wi+1(t)

Wi(t)

∂wwζ(t, βiw)(w −Wi(t))
2.

In the sequel we do not explicit the dependence on N or on the variable t whenever
this is clear from the context. For sake of clarity, we divide the rest of the proof in
three steps.

Step 1. We first prove that I1 + II = 0. Standard algebraic computations and
discrete integration by parts lead to

I1 + II =

N−2∑
i=2

∫ T

0

∂wζ(t,Wi)D
2
u(Wi)[φu(ui)− φu(ui−1)]dt

+

N−1∑
i=1

∂wζ(t,Wi)D
2
u(Wi)(φu(ui−1)− φu(ui))

+
1

2

∫ T

0

[∂wζ(t,WN )D2
u(WN )φu(uN−1)− ∂wζ(t,W0)D2

u(W0)φu(u0)]dt

−
∫ T

0

∂wζ(t,WN−1)D2
u(WN−1)(φu(uN−2)− φu(uN−1))dt

−
∫ T

0

∂wζ(t,W1)D2
u(W1)(φu(u0)− φu(u1))dt

=
1

2

∫ T

0

∂wζ(t, ZN )D2(ZN )φu(WN−1)− ∂wζ(t,W0)D2
u(W0)φu(u0)dt = 0,

where the last equality holds because ∂wζ(t,W0) = ∂wζ(t,WN ) = ∂wζ(t,±1) = 0
for all t ∈ [0, T ].

Step 2. In this step we show that I2 + III vanishes as N → ∞. A discrete
integration by parts, together with the fact that ∂wζ(t,W0) = ∂wζ(t,WN ) = 0,
imply

I2 + III =

N−1∑
i=1

∑
h∈H

N∑
j=0

σNu σ
N
h

∫ T

0

∂wζ(t,Wi)Puh(Wi, Hj)(Wi −Hj)dt

−
N−1∑
i=0

∑
h∈H

N∑
j=0

σNh

∫ T

0

ui

∫ Wi+1

Wi

∂wζ(t, w)Puh(w,Hj)(w −Hj)dt.
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Then, expanding ∂wζ at first order with respect to Wi and still using that ζ has
compact support in (−1, 1), there is γiw ∈ [Wi, w] such that

I2 + III =

=

N−1∑
i=1

∑
h∈H

N∑
j=0

σNh

∫ T

0

ui∂wζ(t,Wi)

∫ Wi+1

Wi

Puh(Wi, Hj)(Wi −Hj)dwdt

−
N−1∑
i=1

∑
h∈H

N∑
j=0

σNh

∫ T

0

ui∂wζ(t,Wi)

∫ Wi+1

Wi

Puh(w,Hj)(w −Hj)dwdt

−
N−1∑
i=1

∑
h∈H

N∑
j=0

σNh

∫ T

0

ui

∫ Wi+1

Wi

Puh(w,Hj)(w −Hj)(w −Wi)∂wwζ(t, γiw)dwdt.

Since Puh is Lipschitz in the first component, we obtain

|I2 + III| ≤ C
∑
h∈H

Lip[Puh]

N−1∑
i=1

∫ T

0

[
ui(Wi+1 −Wi)

2 + ui(Wi+1 −Wi)
2
]
dt

≤ 2CT σNu
∑
h∈H

Lip[Puh]

where C =
(
3‖ζw‖∞ + ‖ζww‖∞

)
, thus the term I2 + III → 0 as N →∞.

Step 3. In this last step we prove that I3 also vanishes as N →∞. For simplicity
we introduce the rest functions

Ri,α(t) =

∫ Wi+1

Wi

∂wwζ(t, αiw)(w −Wi+1)2dw,

Ri,β(t) =

∫ Wi+1

Wi

∂wwζ(t, βiw)(w −Wi+1)2dw,

in particular, thanks to upper bound of (24), we observe

|Ri,α|, |Ri,β | < ‖∂wwζ‖L∞(Wi+1 −Wi)
3 < ‖∂wwζ‖L∞

(
ecuT

mu

)3

(σNu )3. (41)

Using Ri,α/β(t) we can rewrite I3 as

I3 =
1

2

N−1∑
i=0

∫ T

0

ui[(Ẇ
d
i+1 − Ẇ d

i ) + (Ẇ p
i+1 − Ẇ

p
i )]Ri,α + uiẆi[Ri,α −Ri,β ]dt

+
1

2

N−1∑
i=0

∫ T

0

uiẆi

∫ Wi+1

Wi

∂wwζ(t, βiw)[(w −Wi+1)2 − (w −Wi)
2]dwdt
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and by replacing the expression of Ẇ d
i and Ẇ p

i , we obtain

I3 =
1

2σNu

N−2∑
i=1

∫ T

0

ui(D
2
u(Wi+1)−D2

u(Wi))(φu(ui)− φu(ui+1))Ri,αdt

+
1

2σNu

N−2∑
i=1

∫ T

0

uiD
2
u(Wi)[(φu(ui)− φu(ui+1))− (φu(ui−1)− φu(ui))]Ri,αdt

+
1

2

N−2∑
i=1

∑
h∈H

N∑
j=0

σNh

∫ T

0

ui[Puh(Wi+1, Hj)− Puh(Wi, Hj))(Hj −Wi+1]Ri,αdt

+
1

2

N−2∑
i=1

∑
h∈H

N∑
j=0

σNh

∫ T

0

uiPuh(Wi, Hj)(Wi −Hj)Ri,α(t)dt

+
1

2

∫ T

0

[
u0Ẇ1R0,α − uN−1ẆN−1RN−1,α +

N−1∑
i=0

uiẆi(Ri,α −Ri,β)

]
dt

+
1

2

N−1∑
i=0

∫ T

0

uiẆi

∫ Wi+1

Wi

∂wwζ(t, βiw)[(w −Wi+1)2 − (w −Wi)
2]dwdt.

Thanks to estimates (41) and (31), and the fact that

|Ẇi| < 2
Lip[Du]

σNu
+
∑
h∈H

‖Puh‖L∞ for all i in{0, . . . , N},

we deduce that all the terms of I3 except the last one can be estimated from above
by CσNu , where C is some positive constant depending on ζ, T and on the proper
bounds on Du, φu, Puh provided by the assumptions (D1), (D2), (Dif) and (P).

Concerning the last term of I3, standard computations, the above estimate on |Ẇi|
and (24) and (25) bring to

1

2

N−1∑
i=0

∫ T

0

uiẆi

∫ Wi+1

Wi

∂wwζ(t, βiw)[(w −Wi+1)2 − (w −Wi)
2]dwdt

≤2

N−1∑
i=0

∫ T

0

uiẆi

∫ Wi+1

Wi

∂wwζ
[
(w −Wi+1)(Wi+1 −Wi) + (Wi+1 −Wi)

2
]
dwdt

≤2‖∂wwζ‖∞
N−1∑
i=0

∫ T

0

ui|Ẇi|(Wi+1 −Wi)
3dt

≤‖∂wwζ‖∞
2Mue

4cuT

m3
u

(σNu )3
N−1∑
i=0

∫ T

0

|Ẇi|dt

≤‖∂wwζ‖∞
2TσuMue

4cuT

m3
u

(
2Lip[Du] +

∑
h∈H

‖Puh‖L∞
)
σNu .

Finally, there exists some constant C depending on the data of the problem and
on the function ζ so that

|I3| ≤ CσNu ,

and this concludes the proof of the Step 3 and of Proposition 4.
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4. Large-time behaviour. This last section is devoted to the study of the large-
time behaviour for the model (13). The main difficulty of such study concerns the
evolution of the mean opinion which is, unfortunately, not close in general. The
mean opinion corresponds to the first moment function

m1(t) =

∫
I

vu(t, v)dv.

Consider, for example, the easiest case of one species, with P (w, v) = 1 in (13).
Then the compromise part corresponds to

Puu [u] (t, w) =

∫
I

(v − w)u(t, v)dv = m1(t)− σw, (42)

and m1(t) evolves according to

d

dt
m1(t) =

∫
I

w∂w

(
λ2

2
D2(w)∂wφ(u(t, w))− (m1(t)− σw)u(t, w)

)
dw

= −
∫
I

(
λ2

2
D2(w)∂wφ(u(t, w))− (m1(t)− σw)u(t, w)

)
dw

= −
∫
I

λ2

2
D2(w)∂wφ(u(t, w))dw.

It is then evident that the evolution of m1 is independent on higher order moments
of u and it strongly depend on the choice of the mobility D. As a consequence, the
exact evaluation of the limit

m∞1 = lim
t→∞

m1(t), (43)

is quite difficult to investigate, we refer to [5] for a more detailed discussion on this
topic.

4.1. Stationary states for the single species model. We start investigating
the stationary states for equation (13) under the choice P = 1, as in (42). We
assume that the limit value m∞1 exist, than the equation for the stationary states
writes as

∂w

(
λ2

2
D2(w)∂wφ(u(w))− (m∞1 − σw)u(w)

)
= 0. (44)

Moreover, to simplify the following study, we introduce the quantity

Dα(w,m∞1 ) =

∫
(m∞1 − σw)

D2(w)
d (45)

and we distinguish between the two sub-cases of linear and nonlinear diffusion.

4.1.1. Stationary states in the case of linear diffusion. We consider here the case of
linear diffusion φ(u) = u, thus (44) reduces to

λ2

2
D2(w)∂wu(w) = (m∞1 − σw)u(w).

By standard separation of variable, we obtain

λ2

2
log (u) = Dα(w,m∞1 ),

which, in turn, gives

u∞(w) = C∞ exp

(
2

λ2
Dα(w,m∞1 )

)
, (46)
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Figure 2. Convergence for different initial data to the stationary
state (47). The left column shows the evolution in time for the
reconstructed density, where the initial data are (48), (49) and (50)
respectively, while the right column shows the opinions evolution in
time. The (magenta) stars-line represent the mean opinion m1(t) in
each case. Note that, in the second simulation, m1 is not conserved
in time but still converges to zero.
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Figure 3. Convergence for different initial data to the station-
ary state (51), where the initial data are (48), (49) and (50) re-
spectively. Note that also in this case the mean opinion m1 (star
magenta line in the right column) converges to zero asymptotically.
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Figure 4. Comparison of different stationary states (46) for dif-
ferent values of α. On the left the diffusion coefficient λ2 = 0.5, on
the right λ2 = 0.03.

where C∞ is the normalisation constant such that ‖u∞‖L1 = σ. In order to get a
better understanding of the solutions, we consider below some explicit cases for the
function D.

• Let us start by taking D as in (14) for α = 1

D(w) = (1− w2)
1
2 .

In this case, the integral in (45) becomes

Dα(w,m∞1 ) =
m∞1

2
log

(
1 + w

1− w

)
+
σ

2
log(1− w2),

and

u∞(w) = C∞(1 + w)
m∞1 +σ

λ2 (1− w)
σ−m∞1
λ2 . (47)

The well-posedness of the stationary state (47) in I, is guaranteed provided
that

m∞1 + σ > 0, and σ −m∞1 > 0,

but, according to the consideration at the beginning of this section, we have
that

d

dt
m1(t) = −

∫ 1

−1

(
1− w2

)
∂wudw = −2m1(t).

In particular, m1(t)→ m∞1 = 0 as t→ +∞, and (47) reduces to

u∞(w) = C∞(1 + w)
σ
λ2 (1− w)

σ
λ2 .

In Figure 2, we provide some numerical evidence of the converge to the above
stationary state from different initial data. We set the mass of opinion σ = 0.6
and we choose

1. a single spike centred in the origin, miming a population with opinions
symmetrically distributed around the average opinion w = 0

ū(w) =
σ√

2π(0.05)2
e
−w2

2(0.05)2 , (48)
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2. two spikes with different weights σ1 = 0.4 σ2 = 0.2, non symmetric around
the origin,

ū(w) =
σ1√

2π(0.05)2
e
−(w+0.75)2

2(0.05)2 +
σ2√

2π(0.05)2
e
−(w−0.5)2

2(0.05)2 , (49)

3. a combination of four spikes symmetrically distributed around the origin,
with weight σ1 = 0.2 σ2 = 0.1

ū(w) =
σ1√

2π(0.05)2
e
−(w+0.75)2

2(0.05)2 +
σ2√

2π(0.05)2
e
−(w+0.2)2

2(0.05)2

+
σ2√

2π(0.05)2
e
−(w−0.2)2

2(0.05)2 +
σ1√

2π(0.05)2
e
−(w−0.75)2

2(0.05)2 .

(50)

All the simulations are performed using the deterministic particle approxima-
tion introduced in the previous sections as a numerical scheme for (13). More
precisely, given one of the above initial data, we construct an initial distribu-
tion of opinions according to (16), then we solve the ODEs system (17) and
we reconstruct the density as in (28).

• We now consider the mobility function as in (14) for α = 2

D(w) = (1− w2).

In this case, the stationary solution reduces to

u∞(w) = C∞(1 + w)
m∞1
2λ2 (1− w)

−m∞1
2λ2 e

m∞1 w−σ
λ2(1−w2) , (51)

where C∞ is the usual normalisation constant. The well-posedness of the
steady state (51) is not guaranteed a priori and it seem to be strongly depen-
dent on the relation between m∞1 and σ. As mentioned above, the evolution
equation for the second moment is not closed, here it is corresponds to

d

dt
m1(t) = −2λ2m1(t) + 2λ2m3(t),

where m3 denotes the third order moment of u. Let us observe, that for any
k ≥ 2, the k−th moment evolves according to

d

dt
mk(t) =

λ2

2
(k − 1)mk−2(t) +m1(t)mk−1(t)

− k
[
λ2(k + 1) + σ

]
mk(t) +

λ2

2
(k + 3)mk+2(t),

that is a dynamical system with infinite dimension, whose study requires
deeper investigations which exceed the scope of this paper. However, by in-
troducing the variance function

Var [u] (t) = m2(t)− (m1(t))2,

it is easy to see that (m1(t))
2 ≤ 1− Var [u] (t), with Var [u] (t) ∈ [0, 1]. Since

also |m3| ≤ 1, this suggests the decay in time of the mean opinion. This is
supported by the numerical results in Figure 3.

• The argument for generic values of α is more involved, but does not present
further complications. For this reason, we decided to omit the proof in the
present paper. Nonetheless, we highlight that the parameter α plays an im-
portant modelling role: as shown in Figure 4 (left), the support of the sta-
tionary state shrinks when alpha increases, thus providing an higher consensus
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around the limiting mean opinion (in the previous examples the mean opin-
ion is w = 0). A similar effect can be reached while decreasing the diffusion
coefficient λ. Indeed, for smaller values of λ, the contribution of the reaction
part is stronger and the stationary states are more concentrated, see Figure 4
(right).

4.1.2. Nonlinear diffusion. Here we discuss the case of nonlinear diffusion of a
porous medium type, namely

φ(u) =
uγ

γ
, γ > 1.

The stationary states, then, correspond to the solutions of

∂w

(
λ2

2
D2(w)u∂w

u(w)γ−1

γ − 1
− (m∞1 − σw)u(w)

)
= 0, (52)

which can be rewritten as

∂w

(
λ2

2

u(w)γ−1

γ − 1
−Dα(w,m∞1 )

)
= 0.

Since the physical solutions are non negative, we deduce

u∞(w) =

[
2(γ − 1)

λ2
(C + Dα(w,m∞1 ))+

] 1
γ−1

, (53)

where C is a suitable normalization constant. In Figure 5 we show the convergence
towards the stationary state in the case D(w) = (1− w2)(1/2) and γ = 2, with the
same initial data and diffusion coefficient of the previous examples. Observe, that
the nonlinear diffusion induces a stronger consensus around the compromise value
w = 0. In Figure 6 we plot the stationary states corresponding to α = 1 and α = 2.

4.2. Simulations with many species. We now explore the large-time behaviour
for the many species case. The analytical study in this case became more compli-
cated, since it requires to check the solvability of a system of coupled equations in
the form (44). We here focus our attention on the numerical comparison among the
large time behaviours of systems (11) and (12).

In Figure 7, we show the opinions dynamics in the Follower-Leader system (11),
that we rewrite below for the reader convenience,

∂tf = ∂w

(λ2f
2
D2
f (w)∂wφf (f)− f

(
Pff [f ] + Pfl[l] + Pfr[r]

))
∂tl = ∂w

(λ2l
2
D2
l (w)∂wφl(l)− l

(
Pll[l] + Plr[r]

))
,

∂tr = ∂w

(λ2r
2
D2
r(w)∂wφr(r)− r

(
Prr[r] + Prl[l]

))
.

In particular, we assume that there are two groups of Leaders with equal mass and
symmetric centres of mass. Moreover, we assume that the initial followers’ opinions
are symmetrically distributed, see Figure 7 top-left. In this simulation, we fix the

diffusion coefficients
λ2
u

2 = 0.03 and the mobility functions D2
u(w) = (1 − w2) for

u ∈ {f, l, r}, taking σf = 1 and σl = σr = 0.6. The compromise functions are the
following: for the interactions among the same species we set

Pff (w, v) = Pll(w, v) = Prr(w, v) = 1,
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Figure 5. Convergence for the initial data (48), (49) and (50) to
the stationary state (53), with α = 1. Note that the nonlinearity
in the diffusion produces stationary solutions with supports that
are smaller than the one we have seen in the linear diffusion case.
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Figure 6. Stationary states in (53) for different values of α.

while the follower-leaders interactions are given by

Pfr(w, v) = Pfl(w, v) = 1− w2.

In this way, we are modelling the situation where a follower agent with an extreme
opinion is less likely to revise its own opinion. According to this, we set

Plr(w, v) = Prl(w, v) = 0.001(1− w2).

As expected, the opinions evolution is symmetric and solution converges to a com-
promise (the opinion w = 0).

In Figure 8 we consider the same setting as before, but this time one leader group
is stronger than the other, namely σl = 0.6 and σr = 0.2. This difference strongly
effects the evolution of the followers in the short period, see Figure 8 top-right,
while for long time we still observe convergence to the compromise value.

We finally consider system (12), where a small species of fake agents is present.
The agents of this species are called trolls, they are indistinguishable from the
followers and they interact with only one group of leaders. In this case, we assume
that the fake species has mass σq = 0.3 and that it interacts only with leaders
sharing the right opinion (w = +1). The fact that trolls are not perceived by the
followers is modelled by

Pft(w, v) = Pff (w, v).

On the other hand, trolls cannot diffuse their opinion, so, according to (12), the
evolution of their opinion is only driven by the compromise part. In this example
we set

Pft(w, v) = 1, Ptr(w, v) =

(
1− 1

4
(w − v)2

)
.
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Figure 7. Opinion dynamics in presence of equally-strong leaders.
Top-left initial data for followers(black), left leaders (red) and right
leaders (blue). Top-right and bottom-left opinions evolutions for
all the groups in short and long term-respectively. Bottom-right
opinions evolutions for the followers.

In Figure 9 we show how the presence of trolls affects the behaviour of the population
both in the short and the long term.
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Figure 9. Evolution of system (12). The left column concerns
the case of two equally strong groups of leaders, the right column
instead describes the situation where the right leader is weaker.
Trolls are plotted in green and are associated to the right lead-
ers. Top: initial data. Centre: opinions dynamic for all species.
Bottom: comparison between the followers paths with or without
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