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1. Introduction

We are interested in the anisotropic mean curvature flow of sets with positive anisotropic mean curva-

ture. More precisely, following [12, 10] we consider a family of sets t 7→ E(t) governed by the geometric

evolution law

V (x, t) = −ψ(νE(t))κ
φ
E(t)(x), (1)

where V (x, t) denotes the normal velocity of the boundary ∂E(t) at x, φ is a given norm or, more

generally, a possibly non-symmetric convex, one-homogeneous function on Rd, κφE(t) is the anisotropic

mean curvature of ∂E(t) associated with the anisotropy φ, and ψ is another convex, one-homogeneous

function, usually called mobility, evaluated at the outer unit normal νE(t) to ∂E(t). Both φ and ψ are

real-valued and positive away from 0. We recall that when φ is differentiable in Rd \ {0}, then κφE is

given by the tangential divergence of the so-called Cahn-Hoffman vector field [15]

κφE = div τ (∇φ(νE)) , (2)

while in general (2) should be replaced with the differential inclusion

κφE = div τ

(
nφE

)
, nφE ∈ ∂φ(νE).

It is well-known that (1) can be interpreted as a gradient flow of the anisotropic perimeter

Pφ(E) =

∫
∂E

φ(νE)dHd−1 ,

and one can construct global-in-time weak solutions by means of the variational scheme introduced by

Almgren, Taylor and Wang [2] and, independently, by Luckhaus and Sturzenhecker [16]. Such scheme

consists in building a family of tme-discrete evolutions by an iterative minimization procedure and in

considering any limit of these discrete evolutions, as the time step h > 0 vanishes, as an admissible

solution to the geometric motion, usually referred to as a flat flow. The problem which is solved at

each step takes the form [2, §2.6] Enh := ThE
n−1
h , where ThE is a solution of

min
F

Pφ(F ) +
1

h

∫
F

dψ
◦

E (x)dx, (3)

where dψ
◦

E is the signed distance function of E, with respect to the anisotropy ψ◦, which is defined as

dψ
◦

E (x) := inf
y∈E

ψ◦(x− y)− inf
y 6∈E

ψ◦(y − x). (4)

Here ψ◦(x) := supψ(ξ)≤1 ξ·x is the polar of ψ. In [2] it is proved that the discrete solution Eh(t) := E
[ t
h ]

h ,

with ψ = | · | and φ smooth, converges to a limit flat flow which is contained in the zero-level set of the

(unique) viscosity solution of (1). Such a result has been extended in [12, 10] to general anisotropies

ψ, φ. In the isotropic case φ = ψ = | · | it is shown in [16] that Eh(t) converges to a distributional

solution E(t) of (1), under the assumption that the perimeter is continuous in the limit, that is,

lim
h→0

∫ T

0

P (Eh(t)) dt =

∫ T

0

P (E(t)) for T > 0. (5)

Recently, it has been shown by De Philippis and Laux in [13] that the continuity of the perimeter

holds if the initial set is outward minimizing for the perimeter (see Section 2.1), a condition which

implies the mean convexity and which is preserved by the variational scheme (3).
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In this paper we generalize the result in [13] to the general anisotropic case, where the continuity

(in the limit) of the perimeter was previously known only in the convex case [6], as a consequence of

the convexity preserving property of the scheme. Such result is obtained under a stronger condition

of strong outward minimality of the initial set, which is also preserved by the scheme and implies the

strict positivity of the anisotropic mean curvature. As a corollary, we obtain the continuity of the

volume of the limit flat flow and, the convergence of the perimeters. Using the regularity theory for

anisotropic minimal surfaces [21, 22], we can then extend, in low dimension and under smoothness

assumptions, the results of [16] to the anisotropic setting (Theorem 3.2).

The plan of the paper is as follows: In Section 2 we introduce the notion of outward minimizing set,

and we recall the variational scheme proposed by Almgren, Taylor and Wang in [2]. We also show that

the scheme preserves the strict outward minimality. In section 3 we show the strict BV -convergence of

the discrete arrival time functions, we prove the uniqueness of the limit flow, and we show continuity in

time of the volume. We prove also there our extension of the results of [16] (existence of a distributional

anisotropic mean curvature flow). In Section 4 we give some examples. Eventually, in Appendix A we

recall some results on 1-superharmonic functions, adapted to the anisotropic and crystalline setting.
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2. Preliminary definitions

2.1. Outward minimizing sets

Definition 2.1. Let Ω be an open subset of Rd and let E ⊂⊂ Ω be a finite perimeter set. We say

that E is outward minimizing in Ω if

Pφ(E) ≤ Pφ(F ) ∀F ⊃ E,F ⊂⊂ Ω. (MC)

Note that, if E, φ are regular, (MC) implies that the φ-mean curvature of ∂E is non-negative.

We observe that such a set satisfies the following density bound: A classical proof shows that there

exists γ > 0 such that, for all points x ∈ E satisfying |B(x, ρ) \ E| > 0 for all ρ > 0, it holds:

|B(x, ρ) \ E|
|B(x, ρ)|

≥ γ, (6)

whenever B(x, ρ) ⊂ Ω. As a consequence, whenever x ∈ E is a point of Lebesgue density 1, there

exists ρ > 0 small enough such that |B(x, ρ) \E| = 0. Therefore, identifying the set E with its points

of density 1, we always assume (unless otherwise explicitly stated) that E is an open subset of Rd.
Conversely if E ⊂ Rd is bounded and C2, φ is C2(Rd \{0}), and its mean curvature is positive, then

one can find Ω ⊃⊃ E such that E is outward minimizing in Ω. More precisely, if E is of class C2 then,

in a neighborhood of ∂E, dφ
◦

E is C2, while in a smaller neighborhood we even have div∇φ(∇dφ
◦

E ) ≥ δ,
for some δ > 0. Let Ω be the union of E and this neighborhood, and set nφE := ∇φ(∇dφ

◦

E ): then if

E ⊂ F ⊂⊂ Ω,

Pφ(F ) ≥
∫
∂∗F

nφE · νF dH
d−1 = −

∫
Ω

nφE ·DχF

3



while by construction Pφ(E) = −
∫

Ω
nφE ·DχE . Hence,

Pφ(F ) ≥ Pφ(E)−
∫

Ω

nφE ·D(χF − χE) = Pφ(E) +

∫
F\E

divnφE ≥ Pφ(E) + δ|F \ E|.

Observe (see [13, Lemma 2.5]) that equivalently, one can express this as:

Pφ(E ∩ F ) ≤ Pφ(F )− δ|F \ E| ∀F ⊂⊂ Ω. (MCδ)

Clearly, condition (MCδ) is stronger and reduces to (MC) whenever δ = 0.

Remark 2.2 (Non-symmetric distances). As in the standard case (that is when ψ◦ is smooth and even),

the signed “distance” function defined in (4) is easily seen to satisfy the usual properties of a signed

distance function. First, it is Lipschitz continuous, hence differentiable almost everywhere. Then, if x

is a point of differentiability, dψ
◦

E (x) > 0 and y ∈ ∂E is such that ψ◦(x− y) = dψ
◦

E (x), then for s > 0

small and h ∈ Rd dψ
◦

E (x+sh) ≥ ψ◦(x+sh−y) ≥ ψ◦(x−y)+sz·h for any z ∈ ∂ψ◦(x−y) and one deduces

that ∂ψ◦(x− y) = {∇dψ
◦

E (x)}. If dψ
◦

E (x) < 0, one writes that ψ◦(y − x) = −dψ
◦

E (x) for some y ∈ ∂E
and uses ψ◦(y−x−sh) ≥ ψ◦(y−x)−sz ·h for some z ∈ ∂ψ◦(y−x), hence dψ

◦

E (x+sh)−dpE(x) ≤ sz ·h
to deduce now that ∂ψ◦(y − x) = {∇dψ

◦

E (x)}. In all cases, one has ψ(∇dψ
◦

E (x)) = 1 a.e. in {dψ
◦

E 6= 0}
(while of course ∇dψ

◦

E (x) = 0 a.e. in {dψ
◦

E = 0}), and ∇dψ
◦

E (x) · (x − y) = dψ
◦

E (x), which shows that

y ∈ x− dψ
◦

E (x)∂φ(∇dψ
◦

E (x))).

2.2. The discrete scheme

We now consider here the discrete scheme introduced in [16, 2] and its generalization in [8, 6, 12, 11].

It is based on the following process: given h > 0, and E a (bounded) finite perimeter set, we define

ThE as a minimizer of

min
F

Pφ(F ) +
1

h

∫
F

dψ
◦

E (x)dx (ATW )

where dψ
◦

E is defined in (4). If E ⊂⊂ Ω satisfies (MC) in Ω, it is clear that for h > 0 small enough,

one has ThE ⊂ E. Indeed, for h small enough one has ThE ⊂ Ω, and it follows from (MC) (more

precisely, in the form (MCδ) for δ = 0) that

Pφ(ThE ∩ E) +
1

h

∫
ThE∩E

dψ
◦

E (x)dx ≤ Pφ(ThE) +
1

h

∫
ThE

dψ
◦

E (x)dx− 1

h

∫
ThE\E

dψ
◦

E (x)dx, (7)

which implies that |ThE \ E| = 0. We recall in addition that in this case, ThE is also φ-mean convex

in Ω, see the proof of [13, Lemma 2.7]. If E satisfies (MCδ) in Ω for some δ > 0, we can improve the

inclusion ThE ⊂ E.

Lemma 2.3. Assume that E ⊂⊂ Ω satisfies (MCδ) in Ω, for some δ > 0. Then for h > 0 small

enough, it holds

ThE + {ψ◦ ≤ δh} ⊂ E.

In particular, dψ
◦

ThE
≥ dψ

◦

E + δh and ThE ⊂ {dψ
◦

E ≤ −δh}.

Proof. Let h > 0 small enough so that ThE ⊂ E and E + {ψ◦ ≤ δh} ⊂ Ω. Choose τ with ψ◦(τ) < δh

and consider F := ThE + τ . We show that also F ⊂ E. The set F ⊂⊂ Ω is a minimizer of

Pφ(F ) +
1

h

∫
F

dψ
◦

E (x− τ)dx
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among all finite-perimeter subsets of Rd. In particular, we have

Pφ(F ) +
1

h

∫
F

dψ
◦

E (x− τ)dx ≤ Pφ(F ∩ E) +
1

h

∫
F∩E

dψ
◦

E (x− τ)dx

≤ Pφ(F ) +
1

h

∫
F

dψ
◦

E (x− τ)dx−
∫
F\E

1

h
dψ
◦

E (x− τ) + δ dx.

By definition of the signed distance function, for x 6∈ E, dψ
◦

E (x−τ) ≥ −ψ◦(x−(x−τ)) = −ψ◦(τ) > −δh
so that if |F \ E| > 0 we have a contradiction. We deduce that ThE + {ψ◦ ≤ δh} ⊂ E.

In particular, if x ∈ ThE and y 6∈ E is such that dψ
◦

E (x) = −ψ◦(y − x), then y′ = y − δh(y −
x)/ψ◦(y − x) 6∈ ThE hence dψ

◦

ThE
≥ −ψ◦(y′ − x) = dψ

◦

E (x)− δh. If x ∈ E \ ThE, dψ
◦

E (x) = −ψ(y − x)

for some y ∈ Ω \ E, and dψ
◦

ThE
(x) = ψ(x − y′) for some y′ ∈ ThE. Since ψ(x − y′) + ψ(y − x) ≥

ψ(y − y′) ≥ δh we conclude. Eventually if x 6∈ E, for y ∈ ThE with dψ
◦

ThE
(x) = φ◦(x − y) we have

y + δh(x − y)/φ◦(x − y) ∈ E, so that dψ
◦

E (x) ≤ φ◦(x − y) − δh = dψ
◦

ThE
(x) − δh. This shows that

dψ
◦

ThE
≥ dψ

◦

E + δh.

Corollary 2.4. Under the assumptions of Lemma 2.3, for any n ≥ 1, we have Tn+1
h E+ {ψ◦ ≤ δh} ⊂

TnhE and dψ
◦

Tn
h E
≥ dψ

◦

E + δnh.

Proof. The first statement is obvious by induction: Assuming that for τ with ψ◦(τ) ≤ δh one has

TnhE + τ ⊂ Tn−1
h E which is true for n = 1, applying Th again and using the translational invariance

we get that Tn+1
h E+ τ ⊂ TnhE. The second statement is obviously deduced. Indeed we can reproduce

the end of the previous proof to find that dψ
◦

Tn
h E
≥ dψ

◦

Tn−1
h E

+δh, the conclusion follows by induction.

Remark 2.5 (Density estimates). There exists γ > 0, depending only on φ and the dimension, and

r0 > 0, depending also on ψ, such that the following holds: for x such that |B(x, r) ∩ ThE| > 0 for all

r > 0 one has |B(x, r) ∩ ThE| ≥ γrd if r < r0h. For the complement, as ThE is φ-mean convex in Ω,

we have as before that for x such that |B(x, r) \ ThE| > 0 for all r > 0, one has |B(x, r) \ ThE| ≥ γrd

for all r with B(x, r) ⊂ Ω, cf (6).

2.3. Preservation of the outward minimality

In the sequel, we show some further properties of the discrete evolutions and their limit. An interesting

result in [13] is that the (MCδ)-condition is preserved during the evolution. We prove that it is also

the case in the anisotropic setting.

We first show the following result:

Lemma 2.6. Let δ > 0 be such that there exists a set E ⊂⊂ Ω satisfying (MCδ) in Ω. Then

δ|F | ≤ Pφ(F ) for any F ⊂⊂ Ω, that is, the empty set also satisfies (MCδ) in Ω.

Proof. By (MCδ) we have δ|F | = δ|F ∩E|+ δ|F \E| ≤ δ|F ∩E|+ (Pφ(F )−Pφ(F ∩E)), so that it is

enough to show the result for F ⊂ E. For s > 0, we let Es be the largest minimizer of

Pφ(Es) +
1

s

∫
Es

dψ
◦

E dx, (8)

which is obtained as the level set {ws ≤ 0} of the (Lipschitz continuous) solution ws of the equation

−sdiv zs + ws = dψ
◦

E , zs ∈ ∂φ(∇ws), (9)
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see for instance [8, 1] for details. A standard translation argument shows that the function ws satisfies

ψ(∇ws) ≤ ψ(∇dψ
◦

E ) = 1 a.e. in Rd. We also let E′s := {ws < 0} be the smallest minimizer of (8). By

construction, the set Es is closed while E′s is open.

By Lemma 2.3 it follows that there exists s0 > 0 such that Es ⊂⊂ E for all s < s0. Moreover,

being E an open set, we also have |Es∆E| → 0 as s → 0. Indeed, given x, ρ with B(x, ρ) ⊂ E, by

comparison we have that x ∈ Es for all s < cρ2, where c > 0 depends only on d, φ and ψ◦.

Since Pφ(Es) ≤ Pφ(E), by the lower semicontinuity of Pφ we get that lims→0 Pφ(Es) = Pφ(E). We

also claim that

lim
s→0

Pφ(F ∩ Es) = Pφ(F ). (10)

Indeed, it holds

Pφ(F ∪ Es) + Pφ(F ∩ Es) ≤ Pφ(Es) + Pφ(F ),

and |E \ (F ∪ Es)| → 0 as s→ 0, so that

Pφ(E) + lim sup
s→0

Pφ(F ∩ Es) ≤ lim sup
s→0

(Pφ(F ∪ Es) + Pφ(F ∩ Es)) ≤ Pφ(E) + Pφ(F ),

which shows the claim.

Again by Lemma 2.3 we know that dψ
◦

E ≤ −sδ on ∂Es = {ws ≤ 0}. If x ∈ Es and y ∈ ∂Es,

ws(x) ≥ ws(y)− ψ◦(y − x) = −ψ◦(y − x) (using ψ(∇ws) ≤ 1). If z 6∈ E and y ∈ [x, z] ∩ ∂Es, by one-

homogeneity of ψ◦ we get one has ψ◦(z−x) = ψ◦(z− y) +ψ◦(y−x), so that 0 ≤ ws(x) +ψ◦(y−x) =

ws(x) + ψ◦(z − x) − ψ◦(z − y) ≤ ws(x) + ψ◦(z − x) − sδ. Taking the infimum over z, we see that

sδ ≤ ws(x)− dψ
◦

E (x). Hence div zs ≥ δ a.e. in Es, so that

Pφ(F ∩ Es) ≥
∫

Ω

div zsχF∩Es ≥ δ|F ∩ Es|. (11)

The thesis now follows recalling (10) and letting s→ 0 in (11).

Remark 2.7. Notice that the constant δ in Lemma 2.6 is necessarily bounded above by the anisotropic

Cheeger constant of Ω (see [9]) defined as

hφ(Ω) := inf
F⊂⊂Ω,F 6=∅

Pφ(F )

|F |
.

We can now deduce the following:

Lemma 2.8. Let δ > 0, E ⊂⊂ Ω satisfy (MCδ) in Ω, h > 0 small enough, and let ThE ⊂ E be the

solution of (ATW ). Then ThE also satisfies (MCδ) in Ω.

Proof. We remark that the sets Es, E
′
s defined in the proof of Lemma 2.6 satisfy Es ⊂ E′s′ for s > s′.

This follows from the fact that the term s 7→ dψ
◦

E (x)/s < 0 is increasing for x ∈ E. As a consequence

Es \ E′s = ∂Es = ∂E′s and is Lebesgue negligible, for all s but a countable number. Also, if sn → s,

sn < s, then Esn → Es, while if sn > s, Ω \ E′sn converges to Ω \ E′s. Moreover, as the sets satisfy

uniform density estimates (for n large enough), these convergences are also in the Hausdorff sense. In

particular, we deduce that E \ E′s =
⋃

0<s′≤s(Es′ \ E′s′) (we recall Es′ \ E′s′ = {ws′ = 0}).
Let ε > 0. From the proof of Lemma 2.6, for h small enough so that Lemma 2.3 is valid, we

know that div zs ≥ δ a.e. in Es. In addition, since ws in (9) satisfies ψ(∇ws) ≤ ψ(∇dψ
◦

E ) = 1 a.e.,

then div zs is (C/s)-Lipschitz for a constant C depending only on ψ. We deduce that there exists

η > 0 (depending only on ε, ψ) such that for any s ∈ (0, h), in Ns = {x : dist(x,Es) < sη}, one has

div zs ≥ δ − ε.
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Let h > s̄ > s > 0, with s̄ and s chosen so that ∂E′s̄ = ∂Es̄ and ∂E′s = ∂Es . The set Es \ E′s̄ is

covered by the open sets Ñs = {x : 0 < dist(x,E′s) ≤ dist(x,Es) < sη/2} ⊂ Ns, s/2 < s < h. Indeed,

for x ∈ Es \E′s̄, either x ∈ Es \E′s ⊂ Ñs for some s ∈ [s, s̄], or x is approached by points in xn ∈ Esn ,

sn ↓ s, so that dist(x,Esn) < sη/2 for n large enough and x ∈ Ñsn .

Hence one can extract a finite covering indexed by s1 > s2 > · · · > sN−1. We observe that

necessarily, h > s1 > s̄ and we let sN := s. In addition, for 1 ≤ i ≤ N−1 one must have ∂E′si+1
⊂ Ñsi .

Indeed, ∂E′si+1
∩ Ñsj = ∅ for j ≥ i + 1, while if x ∈ ∂E′si+1

∩ Ñsj for some j < i, since ∂Esi is in

between ∂Esj and ∂E′si+1
one also has x ∈ Ñsi . In fact, we deduce E′si+1

\ E′si ⊂ Ñsi
Let F ⊂⊂ Ω and up to an infinitesimal translation, assume Hd−1(∂∗F ∩ ∂E′si) = 0 for i = 1, . . . , N .

One has for i ∈ {1, . . . , N},

Pφ(E′si+1
∩ F )− Pφ(E′si ∩ F ) =

∫
∂∗(E′si+1

∩F )\E′si
φ(νE′si∩F

)dHd−1 −
∫
F∩∂E′si

φ(νE′si
)dHd−1

≥
∫
∂∗[F∩E′si+1

\E′si ]

zsi · ν[F∩E′si+1
\E′si ] dHd−1 =

∫
F∩E′si+1

\E′si

div zsidx ≥ (δ − ε)|F ∩ E′si+1
\ E′si |.

In the first inequality, we have used that zsi ∈ ∂φ(νE′si
) so that zsi · νE′si = φ(νEsi

) a.e. on ∂E′si (and

zsi · ν ≤ φ(ν) for all ν), while in the last inequality, we have used div zsi ≥ δ − ε in Ñsi . Hence,

summing from i = 1 to N , we find that (recalling that E′s = Es up to a negligible set)

Pφ(E′s1 ∩ F ) ≤ Pφ(Es ∩ F )− (δ − ε)|(Es \ E′s1) ∩ F |.

Since Es is outward minimizing, Pφ(Es ∩ F ) ≤ Pφ(E ∩ F ) ≤ Pφ(F )− (δ − ε)|F \ E|, so that:

Pφ(E′s1 ∩ F ) ≤ Pφ(F )− (δ − ε)(|F \ E|+ |(Es \ E′s1) ∩ F |).

Sending s̄ < s1 to h and s to 0, we deduce that Pφ(Eh ∩F ) ≤ Pφ(F )− (δ− ε)|F \Eh| hence the thesis

holds, since ε is arbitrary.

Remark 2.9. Let us observe that both in Lemma 2.3 and in Lemma 2.8, as well as in Corollary 2.4,

the conclusion holds as soon h is small enough to have ThE ⊂ Ω (since in this case (7) holds and

ThE ⊂ E), and E + {ψ◦ ≤ δh} ⊂ Ω. In particular, in all these results if E′ ⊂ E is another set

satisfying (MCδ) and h is small enough for E, then it is also small enough for E′.

3. The arrival time function

Consider an open set Ω ⊂ Rd and a set E0 ⊂⊂ Ω such that (MCδ) holds for some δ > 0. As

usual [16, 2] we let Eh(t) := T
[t/h]
h (E0), here [·] denotes the integer part. Being the sets Tnh (E0)

mean-convex, we can choose an open representative. We can define the discrete arrival time function

as

uh(x) := max{tχEh(t)(x), t ≥ 0},

which is a l.s.c. function1 which, thanks to the co-area formula, satisfies∫
Ω

φ(−Duh) ≤
∫

Ω

φ(−Dv) (12)

1We can say that uh is a function in BV (Ω) with compact support and such that its approximate lower

limit u−h is lower semicontinuous.
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for any v ∈ BV (Rd) with v ≥ uh and v = 0 in Rd \ Ω. In particular, uh is (φ-)1-superharmonic in

the sense of Definition A.1. One can easily see that (uh)h is uniformly bounded in BV (Ω) so that a

subsequence uhk
converges in L1(Ω) to some u, which again is (φ-)1-superharmonic.

In addition, since E0 satisfies (MCδ), thanks to Corollary 2.4 we have that uh satisfies a global

Lipschitz bound. More precisely, for x, y ∈ Ω there holds

uh(x)− uh(y) ≤ h+
φ◦(y − x)

δ
.

Indeed, one has uh(x) = t⇒ uh(x+ τ) ≥ t−h for any t ≥ 0 and τ with φ◦(τ) ≤ δh. The claim follows

by induction.

As a consequence we obtain that uh converges uniformly, up to a subsequence, to a limit function

u, which is also Lipschitz continuous, and satisfies

u(x)− u(y) ≤ φ◦(y − x)

δ
(13)

for any x, y ∈ Ω. Moreover, recalling Lemma 2.8, we have that the functions uh and u are (φ, δ)-1-

superharmonic, in the sense of Definition A.1 below.

We now show that the function u is unique, and is the arrival time function of the anisotropic

curvature flow starting form E0, in the sense of [10]. In particular, there is no need to pass to a

subsequence for the convergence of uh to u in the argument above.

Theorem 3.1. Under the previous assumption on E0, the arrival time function uh converge, as h→ 0,

to a unique limit u such that t 7→ {u ≤ t} is a solution of (1) starting from E0. Moreover it holds

lim
h→0

∫
Ω

φ(−Duh) =

∫
Ω

φ(−Du) .

Proof. For s > 0 we let Es := {u > s}. Notice that, since E0 is open, as in the proof of Lemma 2.6

we have
⋃
s>0E

s = E0.

As a consequence of the existence and uniqueness result in [12, 10], for a.e. s > 0 the arrival time

functions ush ≤ uh of the discrete flows T
[t/h]
h Es converge uniformly to a unique limit us. In particular,

considering the subsequence uhk
, one has us ≤ u. On the other hand, thanks to Corollary 2.4,

given s > 0 one can find τs > 0 such that T
[τs/h]
h E0 ⊂ Es, and such that τs → 0 as s → 0. Then,

T
[τs/h]+n
h E0 ⊂ TnhEs by induction so that uh−τs−h ≤ ush. If v is the limit of a converging subsequence

of (uh), we deduce v − τs ≤ us ≤ u. Sending s → 0 we deduce v ≤ u. Since this is true for any pair

(u, v) of limits of converging subsequences of (uh), this limit is unique and uh → u.

The last statement is already proved in [13] in a simple way: One just needs to show that

lim sup
h

∫
Ω

φ(−Duh) ≤
∫

Ω

φ(−Du) .

Since (uh)h converges uniformly to u, given ε > 0, one has uh ≤ u + ε for h small enough. On the

other hand, since all these functions vanish out of E0, it follows uh ≤ u + εχE0 . Hence, being uh
φ-1-superharmonic, ∫

Ω

φ(−Duh) ≤
∫

Ω

φ(−D(u+ εχE0)) =

∫
Ω

φ(−Du) + εPφ(E0)

for h small enough, and the thesis follows.
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Theorem 3.1 shows that the scheme starting from a strict φ-mean convex set always converges to a

unique flow, with no loss of anisotropic perimeter. In particular, in dimension d ≤ 3 and if φ is smooth

and elliptic (that is, φ2/2 is strongly convex), following [16] one can show that the limit satisfies a

distributional formulation of the anisotropic curvature flow.

More precisely, we say that a couple of functions (X, v), with

X : Ω× [0,+∞)→ {0, 1} ∈ L∞(0,+∞;BV (Ω)), v : Ω× [0,+∞)→ R ∈ L1(0,+∞;L1(Ω, |DX(t)|)),

is a BV -solution to (1) with initial datum E0 if the following holds: For all T > 0, ζ ∈ C∞(Ω ×
[0, T ];Rd) with ζ|∂Ω×[0,T ]=0, and ξ ∈ C∞(Ω× [0, T ]) with ξ|∂Ω×[0,T ]=0 and ξ(T ) = 0, we have∫ T

0

[∫
Ω

(
divζ +∇φ

(
− DX(t)

|DX(t)|

)
∇ζ DX(t)

|DX(t)|

)
φ(−DX(t)) + vζ ·DX(t)

]
dt = 0, (14)∫ T

0

∫
Ω

X ∂tξ dxdt+

∫
E0

ξ(x, 0) dx = −
∫ T

0

∫
Ω

v ξ ψ(−DX(t))dt. (15)

Reasoning as in [16, Theorem 2.3] one can prove the following:

Theorem 3.2. Let d ≤ 3 and assume that φ is C2,α and elliptic. Let u be the limit function in

Theorem 3.1, and let X(x, t) := χ{u>t}(x). Then there exists v ∈ L1(0,+∞;L1(Ω, |DX(t)|)) such that

the couple (X, v) is a BV -solution to (1).

Proof. We only explain the adaptions to [16] required to prove this result. Most of the proof remains

unchanged, as it relies on estimates (such as basic density estimates) which remain valid in the new

setting. However some difficulties arise in Section 2 of [16] and in particular in the proof of Proposi-

tion 2.2, which uses the regularity theory for minimal surfaces. Indeed, one first should assume that

the dimension d ≤ 3, φ is elliptic and C2,α for some α > 0, in order to benefit from the regularity

theory for anisotropic integrands (see[21, 22]) and be able to use the Bernstein argument at the end

of page 265 of [16]. This allows to show (15), which is a small variant of [16, Eq. (0.5)] (here f = 0)

whith the signed distance function replaced with the ψ◦-signed distance function.

In order to show (14), the Euler-Lagrange equation [16, Eq. (0.7)] has to be modified, with the

curvature term on the left hand side replaced by the first variation of Pφ, which can be found in [18,

Ex. 20.7].

Remark 3.3 (Continuity of volume and perimeter). As is well-known for general flat flows (see [16, 7]),

the limit motion t 7→ {u > t} is 1/2-Hölder in L1(Ω), in the sense that, for s > t > 0,

|{s > u ≥ t} ∩ Ω| ≤ C|t− s|1/2, (16)

where C depends on the dimension and on the perimeter of the initial set. In particular, |{u = t}| = 0

for all t > 0, so that up to a negligible set, {u > t} = {u ≥ t}. In other words, no “fattening” occurs

at positive time t > 0. For t = 0 it may happen that |∂{u > 0}| > 0, as shown in the second example

below (see Section 4.2).

In addition, since the sets {u > t} satisfy (MCδ) for t > 0, for s > t ≥ 0 we have that

Pφ({u > s}) + δ|{s ≥ u > t}| = Pφ({u > t}),

so that t 7→ Pφ({u > t}) is strictly decreasing until extinction. Since
⋃
s>t{u > s} = {u > t} we

also get that t 7→ Pφ({u > t}) is right-continuous. Whether this function could jump or not remains

an open question in this generality, however the continuity has been proven in [19] in the classical

isotropic case φ(·) = ψ(·) = | · |.
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We close this note with two examples: the first one (Section 4.1) shows that if the initial set is not

strictly mean-convex, then, in the crystalline case, the arrival time function might have discontinuities.

The second example (Section 4.2) is the construction of a stricly mean-convex set in the plane with

a dense reduced boundary, in which case our construction builds an evolution which remains in the

interior of the initial set and converges in the Hausdorff sense to a “fat” set at t = 0.

4. Examples

4.1. The case δ = 0

If the initial datum E0 satisfies only (MC) we shall consider two cases: If φ and ψ are smooth and

elliptic and ∂E0 is smooth, then there exists a smooth solution to (1) on a time interval [0, τ), for some

τ > 0 (see [17, Chapter 8]). Then, by the parabolic maximum principle, the solution E(t) becomes

strictly mean-convex for t ∈ (0, τ). In particular, for any ε ∈ (0, τ) there exist δε > 0 and an open

set Ωε such that E(tε) ⊂⊂ Ωε, δε → 0 as ε → 0, and E(t) satisfies (MCδε) in Ωε for t ∈ (ε, τ). As a

consequence, the previous results hold in all the time intervals [ε,+∞), so that the limit function u is

unique and continuous, and it is locally Lipschitz continuous in the interior of E0.

On the other hand, for an arbitrary anisotropy φ, the function u could be discontinuous on the

boundary of E0. As an example in two dimensions, we take ψ(ξ, η) = φ(ξ, η) = |ξ| + |η| and the

cross-shaped initial datum

E0 := ([−1, 1]× [−2, 2]) ∪ ([−2, 2]× [−1, 1]) ⊂ R2 .

It is easy to check that E0 is outward minimizing, so that E(t) ⊂ E0 is also outward minimizing for

all t > 0. Moreover, the solution E(t) = {(x, y) : u(x, y) ≥ t} is unique (see for instance [14]) and can

be explicitly described as follows (see Figure 1):

E(t) =


([−1, 1]× [−2 + t, 2− t]) ∪ ([−2 + t, 2− t]× [−1, 1]) for t ∈ [0, 1],[
−
√

1− 2(t− 1),
√

1− 2(t− 1)
]
×
[
−
√

1− 2(t− 1),
√

1− 2(t− 1)
]

for t ∈ [1, 3/2] ,

∅ for t > 3/2.

(17)

In particular, the function u ∈ BV (R2) is discontinuous on ∂E0 \ ∂([−2, 2]× [−2, 2]).

We observe that Formula (17) for E(t) can be easily obtained by finding explicit solutions to (ATW ),

starting from EL = ([−1, 1] × [−L,L]) ∪ ([−L,L] × [−1, 1]), L > 1. A “calibration” is given by the

following vector field z, defined in EL:

z(x, y) =


(x, y) if |x| ≤ 1, |y| ≤ 1,

(x,±1) if |x| ≤ 1, 1 ≤ ±y ≤ L,
(±1, y) if 1 ≤ ±x ≤ L, |y| ≤ 1.

One has div z = 1 +χ[−1,1]2 in EL, z(x, y) ∈ {ψ◦ ≤ 1}, and Pφ(E`) =
∫
∂E`

z · ν dH1 for any 1 ≤ ` ≤ L.

10



E(t)

E

Figure 1: The evolving set E(t).

Hence, if L− h ≥ 1 and F ⊂ EL, we have

Pφ(F ) +

∫
F

dψ
◦

EL

h
dx ≥

∫
∂F

ν · zdH1 +

∫
F

dψ
◦

EL

h
dx

=

∫
∂F

ν · zdH1 −
∫
∂EL−h

ν · zdH1 + Pφ(EL−h) +

∫
F

dψ
◦

EL

h
dx

=

∫
z · (DχEL−h

−DχF ) + Pφ(EL−h) +

∫
EL−h

dψ
◦

EL

h
dx+

∫
EL

(χF − χEL−h
)
dψ
◦

EL

h
dx

= Pφ(EL−h) +

∫
EL−h

dψ
◦

EL

h
dx+

∫
EL

(χF − χEL−h
)

(
dψ
◦

EL

h
+ 1 + χ[−1,1]2

)
dx.

Now, the last integral is nonnegative, since dψ
◦

EL
/h + 1 ≤ 0 in EL−h, and is positive outside. As a

consequence, EL−h solves (ATW ) for E = EL, and one deduces the first line in (17). The proof of

the second line in (17) is a standard computation (see for instance [6]).

4.2. Continuity of the volume up to t = 0

We provide, in dimension d = 2, an example of an open set E satisfying (MCδ) for some δ > 0, and

such that |∂{u > 0}| > 0. The set is built as a countable union of disjoint disks.

Let (xn)n≥1 be a dense sequence of rational points in Ω := B(0, 1) ⊂ R2. We shall construct

inductively a sequence (rn)n≥1 of positive numbers with
∑
n rn < +∞ such that the following property

holds: Letting E0 = ∅ and En = En−1 ∪ B(xn, rn) for n ≥ 1, the sets En all satisfy (MCδ) in Ω for

some δ > 0.

Notice first that there exists δ > 0 such that each ball B(x, r) ⊂ Ω satisfies (MC2δ) in Ω. Choose

now r1 > 0 in such a way that E1 = B(x1, r1) ⊂ Ω, then E1 satisfies (MC2δ). Assume now by

induction that En satisfies (MC(1+1/n)δ). Then, if dn := dist(xn+1, En) = 0 we let rn+1 = 0, so that

En+1 = En. Otherwise, if dn > 0 we choose rn+1 ∈ (0, 2−n) in such a way that

rn+1 ≤ min

(
1

2

(
1

n
− 1

n+ 1

)
δd2
n

2πC
,
dn
6

)
, (18)
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where the constant C > 0 will be chosen later in Case 3. Let also N ⊂ N be the (infinite) set of

indices such that rn > 0.

Assuming that En satisfies (MCδ+δ/n), which is true for n = 1, Let us check that En+1 satisfies

(MCδ(1+δ/(n+1))). We consider a set F of finite perimeter such that En+1 ⊂ F ⊂ Ω, and we distinguish

three cases:

Case 1. |F ∩B(xn+1, dn)| ≥ d2
n/C. In this case we have

P (F ) ≥ P (En) +

(
1 +

1

n

)
δ|F \ En|

≥ P (En+1)− 2πrn+1 +

(
1 +

1

n+ 1

)
δ|F \ En|+

(
1

n
− 1

n+ 1

)
δ|F ∩B(xn+1, dn)|

≥ P (En+1) +

(
1 +

1

n+ 1

)
δ|F \ En+1|+

(
1

n
− 1

n+ 1

)
δd2
n

C
− 2πrn+1

≥ P (En+1) +

(
1 +

1

n+ 1

)
δ|F \ En+1|,

where in the last inequality we used (18).

Case 2. |F ∩B(xn+1, dn)| ≤ d2
n/C and H1(F ∩ ∂B(xn+1, r)) = 0 for some r ∈ (rn+1, dn). In this case,

we write F = F1 ∪F2, with F1 = F ∩B(xn+1, r) ⊃ B(xn+1, rn+1) and F2 = F \B(xn+1, r) ⊃ En, and

we have

P (F1) ≥ P (B(xn+1, rn+1)) + 2δ|F1 \B(xn+1, rn+1)|

P (F2) ≥ P (En) +

(
1 +

1

n

)
δ|F2 \ En|.

Summing up the two inequalities above, we get

P (F ) = P (F1) + P (F2) ≥ P (En+1) +

(
1 +

1

n

)
δ (|F1 \B(xn+1, rn+1)|+ |F2 \ En|)

= P (En+1) +

(
1 +

1

n

)
δ|F \ En+1|.

Case 3. |F ∩B(xn+1, dn)| ≤ d2
n/C and H1(F ∩ ∂B(xn+1, r)) > 0 for a.e. r ∈ (rn+1, dn). In this case,

by co-area formula we have∫ dn
3

dn
6

H1(F ∩ ∂B(xn+1, r)) dr =

∣∣∣∣F ∩ (B(xn+1,
dn
3

)
\B

(
xn+1,

dn
6

))∣∣∣∣ ≤ d2
n

C
.

It follows that there exists ρ1 ∈ (dn/6, dn/3) such that

H1(F ∩ ∂B(xn+1, ρ1)) ≤ 6dn
C
.

Similarly we have∫ dn

2dn
3

H1(F ∩ ∂B(xn+1, r)) dr =

∣∣∣∣F ∩ (B(xn+1, dn) \B
(
xn+1,

2dn
3

))∣∣∣∣ ≤ d2
n

C
,

and there exists ρ2 ∈ (2dn/3, dn) such that

H1(F ∩ ∂B(xn+1, ρ2)) ≤ 3dn
C
.

Using that H1(F ∩ ∂B(xn+1, r)) > 0 for all r ∈ (rn+1, dn) we deduce that

12



• either for a.e. r ∈ (ρ1, ρ2), it holdsH0(∂∗F∩∂B(xn+1, r)) ≥ 2, and it follows that P (F,B(xn+1, ρ2)\
B(xn+1, ρ1)) ≥ 2(ρ2 − ρ1) ≥ 2dn/3,

• or for a set of positive measure of radii r ∈ (ρ1, ρ2) one has H1(F ∩ ∂B(xn+1, r)) = 2πr. In this

case, observe that for a.e. y ∈ ∂B(xn+1, ρ1) \ F , the ray from xn+1 to ∂B(xn+1, r) through y

crosses ∂∗F at least once outside of B(xn+1, ρ1) so that the projection of ∂∗F ∩ B(xn+1, ρ2) \
B(xn+1, ρ1) onto ∂B(xn+1, ρ1) has measure at least 2πρ1 − 6dn/C. Hence,

P (F,B(xn+1, ρ2) \B(xn+1, ρ1)) ≥ 2πρ1 − 6dn/C ≥ dn(π/3− 6/C) ≥ 2dn/3

provided we have chosen C ≥ 18/(π − 2).

Then, proceeding as in the previous case we let F1 = F ∩ B(xn+1, ρ1) and F2 = F \ B(xn+1, ρ2),

and we have

P (F ) = P (F1) + P (F2)−H1(F ∩ ∂B(xn+1, ρ1))−H1(F ∩ ∂B(xn+1, ρ2))

+ P (F,B(xn+1, ρ2) \B(xn+1, ρ1))

≥ P (En+1) +

(
1 +

1

n

)
δ (|F1 \B(xn+1, rn+1)|+ |F2 \ En|)−

9dn
C

+
2dn
3

≥ P (En+1) +

(
1 +

1

n

)
δ|F \ En+1| −

(
1 +

1

n

)
δ
d2
n

C
− 9dn

C
+

2dn
3

≥ P (En+1) +

(
1 +

1

n

)
δ|F \ En+1| −

2δ + 9

C
dn +

2dn
3

≥ P (En+1) +

(
1 +

1

n

)
δ|F \ En+1|,

as long as we choose C ≥ 3(2δ + 9)/2.

We proved that En satisfies (MCδ) for all n ∈ N , therefore also the limit set

E :=
⋃
n∈N

En =
⋃
n∈N

B(xn, rn)

satisfies (MCδ) in Ω. In this case, the solution u in Theorem 3.1 is explicit and it is given by

u(x) =
∑
n∈N

(r2
n − |x− xn|2)+

2
.

Notice that we have

∂{u > 0} = ∂E = B(0, 1) \ E,

so that |∂{u > 0}| = π − |E| > 0.

A. 1-superharmonic functions

The goal of this appendix is to recall some results proved in [20] on 1-superharmonic functions, to give

precise statements in the anisotropic case, and to propose some simple proofs, when possible.

Definition A.1. We say that u is (φ-)1-superharmonic in Ω if {u 6= 0} ⊂⊂ Ω and for any v with

v ≥ u, {v 6= 0} ⊂⊂ Ω, one has ∫
Ω

φ(−Du) ≤
∫

Ω

φ(−Dv),
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or, equivalently, for any v with compact support in Ω,∫
Ω

φ(−D(u ∧ v)) ≤
∫

Ω

φ(−Dv). (SH)

Given δ > 0, we say that u is ((φ, δ)-)1-superharmonic in Ω if {u 6= 0} ⊂⊂ Ω and one has:∫
Ω

φ(−D(u ∧ v)) ≤
∫

Ω

φ(−Dv)− δ
∫

Ω

(v − u)+dx ∀ v, {v 6= 0} ⊂⊂ Ω. (SHδ)

Equivalently, u is a minimizer of ∫
Ω

φ(−Du)− δ
∫

Ω

udx,

with respect to larger competitors with the same boundary condition.

Obviously then, u ≥ 0 (using v = u+ in (SH)). Notice that χE is 1-superharmonic if and only if

the set E is outward minimizing.

Observe that, in this case, the set E0 = {u > 0} has finite perimeter and satisfies (MCδ). Indeed,

for E ⊂ F ⊂⊂ Ω, letting v = εχF for ε > 0, we have∫
Ω

φ(−D(u ∧ εχF )) =

∫ ε

0

Pφ({u > s} ∩ F )ds

≤ εPφ(F )− δ
∫

Ω

(εχF − u)+dx = ε

(
Pφ(F )− δ

∫
Ω

(χF − u/ε)+dx

)
.

Hence: ∫ 1

0

Pφ({u > tε} ∩ F )dt ≤ Pφ(F )− δ
∫

Ω

(χF − u/ε)+dx.

Sending ε→ 0, we deduce (MCδ).

In particular, it follows from Lemma 2.6 that for any v ∈ BV (Ω) compactly supported, δ
∫

Ω
|v|dx ≤∫

Ω
φ(−Dv). We then deduce that if u satisfies (SHδ), also u ∧ T does for any T > 0. Indeed,∫

Ω

φ(−D((u ∧ T ) ∧ v)) ≤
∫

Ω

φ(−D(v ∧ T ))− δ
∫

Ω

((v ∧ T )− u)+dx

On the other hand,∫
Ω

φ(−D(v ∧ T )) =

∫
Ω

φ(−Dv)−
∫

Ω

φ(−D(v − T )+) ≤
∫

Ω

φ(−Dv)− δ
∫

Ω

(v − T )+ dx,

and it follows ∫
Ω

φ(−D((u ∧ T ) ∧ v)) ≤
∫

Ω

φ(−Dv)− δ
∫

Ω

(v − (u ∧ T ))+dx.

Then, the following characterization holds:

Proposition A.2. Let u satisfy (SHδ). Then there exists z ∈ L∞(Ω; {φ◦ ≤ 1}) with div z ≥ δ,

[z,Du+] = |Du| in the sense of measures (equivalently,
∫

Ω
u+div z dx =

∫
φ(−Du)), and div z = δ on

{u = 0}.

Corollary A.3. Let u satisfy (SHδ). Then for any s > 0, {u+ ≥ s} and {u+ > s} satisfy (MCδ).

Here, u+ is as usual the superior approximate limit of u (defined Hd−1-a.e.) and [z,Du+] the pairing

in the sense of Anzellotti [4].
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Proof. For n ≥ 1, let vn be the unique minimizer of

min
v=0 ∂Ω

∫
Ω

φ(−Dv) +

∫
Ω

n

2
(v − u ∧ n)2 − δv dx. (19)

(the boundary condition is to be intended in a relaxed sense, adding a term
∫
∂Ω
|Trv|φ(νΩ)dHd−1 in

the energy if the trace of v on the boundary does not vanish). The Euler-Lagrange equation for this

problem asserts the existence of a field zn ∈ L∞(Ω; {φ◦ ≤ 1}) with bounded divergence such that

div zn + nvn = n(u ∧ n) + δ

a.e. in Ω, and
∫

Ω
div znvn dx =

∫
Ω
φ(−Dvn). On the other hand

∫
Ω
φ(−Dvn) ≤

∫
Ω
φ(−D(u ∧ n)) ≤∫

Ω
φ(−Du) and we have vn → u,

∫
Ω
φ(−Dvn)→

∫
Ω
φ(−Du) as n→∞.

We show that vn ≤ u ∧ n. Indeed,
∫

Ω
φ(−D(vn ∧ u ∧ n)) ≤

∫
Ω
φ(−Dvn) − δ

∫
Ω

(vn − (u ∧ n))+dx,

while
∫

Ω
(vn − (u ∧ n))2dx ≥

∫
Ω

((vn ∧ u ∧ n)− (u ∧ n))2. Hence,∫
Ω

φ(−D(vn ∧ u ∧ n)) +
n

2

∫
Ω

((vn ∧ u ∧ n)− (u ∧ n))2 − δ
∫

Ω

(vn ∧ u ∧ n)dx

≤
∫

Ω

φ(−Dvn) +
n

2

∫
Ω

(vn − (u ∧ n))2dx− δ
∫

Ω

vndx

+ δ

∫
Ω

(vn − (vn ∧ u ∧ n))− (vn − (u ∧ n))+dx

=

∫
Ω

φ(−Dvn) +
n

2

∫
Ω

(vn − (u ∧ n))2dx− δ
∫

Ω

vndx

and as the minimizer vn of (19) is unique, we deduce vn = vn∧u∧n. In particular, it follows div zn ≥ δ.
(Observe that since vn ≥ 0, one also has div zn ≤ δ+n(u∧n), in particular div zn = δ a.e. in {u = 0}.
Also,

∫
{u>0} div zn ≤ Pφ(E0), hence (div zn)n≥1 are uniformly bounded Radon measures. Hence, up

to a subsequence, we may assume that zn
∗
⇀ z weakly-∗ in L∞(Ω; {φ◦ ≤ 1}) while div zn

∗
⇀ div z

weakly-∗ in M1(Ω;R+), that is, as positive measures.

We now write∫
Ω

φ(−Dvn) =

∫
Ω

vndiv zn dx ≤
∫

Ω

(u ∧ n)div zn dx =

∫ n

0

∫
{u≥s}

div zn dxds,

hence, since vn → u,∫
Ω

φ(−Du) ≤ lim sup
n→∞

∫ n

0

∫
{u≥s}

div zn dxds ≤
∫ ∞

0

(
lim sup
n→∞

∫
{u≥s}

div zn dx

)
ds

thanks to Fatou’s lemma (and the fact
∫
{u≥s} div zn dx ≤ Pφ(E0) are uniformly bounded).

We now study the limit of
∫
{u≥s} div zn dx, for s > 0 given, assuming {u > s} has finite perimeter

(this is true for a.e. s, and in fact one could independently check that s 7→ Pφ({u ≥ s}) is nonincreas-

ing).

We consider a set F = {u ≥ s} with finite perimeter, and we recall DχF is supported on the

reduced boundary ∂∗F . By inner regularity, given ε > 0, we find a compact set K ⊂ ∂∗F with

|DχF |(Ω \K) < ε. We observe that Hd−1-a.e. on K (which is countably rectifiable), χF has an upper

an lower trace, respectively χ+
F = 1 and χ−F = 0. By the Meyers-Serrin Theorem (or its BV version,

cf [5] or [3, Theorem 3.9]), there exists ϕk a sequence of functions in C∞(Ω \K; [0, 1]) with ϕk → χF
and ∫ 1

0

Hd−1({x ∈ Ω \K : ϕk(x) = s})ds =

∫
Ω\K
|∇ϕk|dx→ |DχF |(Ω \K) < ε.
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Moreover, by construction the traces of ϕk in K coincide with the traces of χF (see [3, Section 3.8]).

We choose for each k sk ∈ [1/4, 3/4] such that Hd−1(∂{ϕk ≥ sk} \ K) ≤ 2ε. We then define the

closed (compact) sets Fk := {ϕk ≥ sk} ∪K. One has
∫

Ω
|DχF −DχFk

| =
∫

Ω\K |DχF −DχFk
| ≤ 3ε.

(This shows that F can be approximated strongly in BV norm by closed sets.)

Then, one has lim supn
∫
Fk

div zndx ≤
∫
Fk

div z as the measures are nonnegative and χFk
is scs. On

the other hand, |
∫

Ω
div zn(χF − χFk

)dx| ≤ 3ε, so that

lim sup
n→∞

∫
F

div zndx ≤ 3ε+

∫
F

div z +

∫
(χFk

− χF )div z ≤ 3ε+

∫
F

div z +

∫
(χFk

− χF )+div z.

Notice that it is important to specify precisely the set F that we consider in the last inequality: We

pick for F the complement F+ of its points of density zero, equivalently F+ = {u+ ≥ s}. In that case,

up to a set of zero Hd−1-measure, χG := (χFk
− χF+)+ = χFk\F+ vanishes on K pointwise, moreover

at Hd−1-a.e. x ∈ K, G has Lebesgue density 0. Hence G coincides Hd−1-a.e. with a Caccioppoli set

strictly inside Ω and with
∫

Ω
|DχG| ≤ 3ε. Thanks to [23, Thm 5.12.4] it follows div z(G) ≤ Cε for C

depending only on φ and the dimension (see also [20, Prop. 3.5]). As a consequence, since ε > 0 is

arbitrary,

lim sup
n→∞

∫
{u≥s}

div zndx ≤
∫
{u+≥s}

div z.

We obtain that ∫
Ω

φ(−Du) ≤
∫

Ω

u+div z.

The reverse inequality also holds thanks to [20, Prop. 3.5, (3.9)], and can be proved by localizing

and smoothing with kernels depending on the local orientation of the jump. We also deduce that, for

a.e. s > 0, ∫
{u+≥s}

div z = Pφ({u ≥ s}) .

Note that s 7→ div z({u+ ≥ s}) is left-continuous, and s 7→ div z({u+ > s}) is right-continuous, whereas

s 7→ Pφ({u+ ≥ s}) is left-semicontinuous, which implies the thesis.
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Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1995, [2013 reprint of the 1995 original]

[MR1329547].

[18] Francesco Maggi, “Sets of finite perimeter and geometric variational problems”, Cambridge Stud-

ies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012, An intro-

duction to geometric measure theory.

[19] Jan Metzger and Felix Schulze, No mass drop for mean curvature flow of mean convex hypersur-

faces, Duke Math. J. 142 (2008), no. 2, 283–312.

[20] Christoph Scheven and Thomas Schmidt, BV supersolutions to equations of 1-Laplace and mini-

mal surface type, J. Differential Equations 261 (2016), no. 3, 1904–1932.

[21] Richard Schoen, Leon Simon, and Frederick J. Almgren, Jr., Regularity and singularity estimates

on hypersurfaces minimizing parametric elliptic variational integrals. I, II, Acta Math. 139 (1977),

no. 3-4, 217–265.

[22] Leon Simon, On some extensions of Bernstein’s theorem, Math. Z. 154 (1977), no. 3, 265–273.

[23] William P. Ziemer, “Weakly differentiable functions”, Graduate Texts in Mathematics, vol. 120,

Springer-Verlag, New York, 1989.

17


