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Abstract. In this note we study advection-diffusion equations associated to incompressible
W 1,p velocity fields with p > 2. We present new estimates on the energy dissipation rate and
we discuss applications to the study of upper bounds on the enhanced dissipation rate, lower
bounds on the L2 norm of the density, and quantitative vanishing viscosity estimates. The key
tools employed in our argument are a propagation of regularity result, coming from the study
of transport equations, and a new result connecting the energy dissipation rate to regularity
estimates for transport equations. Eventually we provide examples which underline the sharpness
of our estimates.
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Introduction and main result

Let Td be the torus of dimension d ≥ 2 and T ∈ (0,+∞]. Given a divergence-free velocity
field b ∈ L1([0, T ],W 1,p(Td,Rd)) with p > 1, and an initial datum u0 ∈ L∞(Td) we study the
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Cauchy problem associated to the advection-diffusion equation{
∂tu

ν + b · ∇uν − ν∆uν = 0 on Td × (0, T ]
uν(0, x) = u0(x),

(Eν)

and the linear transport equation{
∂tu

0 + b · ∇u0 = 0 on Td × (0, T ]
u0(0, x) = u0(x).

(E0)

Above, ν > 0 is a constant molecular diffusivity. In order to ease notation we often write uνt (x)
and bt(x) in place of, respectively, uν(t, x) and b(t, x).

Solutions to (Eν) and (E0) are understood in the distributional sense, are mean free, and
belong to the natural classes

uν ∈ L∞([0, T ]× Td) ∩ C([0, T ], L2(Td)) ∩ L2([0, T ],W 1,2(Td)), (0.1)

and u0 ∈ C([0, T ], (L∞(Td), w∗)), where (L∞(Td), w∗) denotes the space of bounded functions
endowed with the weak-star topology.

Existence and uniqueness of solutions to (E0) are guaranteed by the DiPerna-Lions theory
[DPL89, A04] (see also [AC14]). Regarding the advection-diffusion equation, standard energy
estimates ensure that (Eν) posses a unique solution in (0.1) which satisfies the energy balance

‖uνt ‖
2
L2 − ‖u0‖2L2 = −2ν

� t

0
‖∇uνs‖

2
L2 ds for every t ∈ [0, T ]. (0.2)

Motivated by recent developments in the mathematical understanding of the dissipation en-
hancement by mixing [CKRZ08, BCZ17, CZDE18, FI19, DEIJ2019, CZDO19], in this note we
study quantitative properties of solutions to (Eν) at low regularity, i.e. in the setting of Sobolev
divergence-free velocity fields. This framework is quite natural in view of possible applications
to problems coming from fluid dynamics and conservation laws, where very often the setting of
smooth vector fields is too restrictive.

For transport problems, a theory in weaker regularity settings has been developed in the last
decades and it is nowadays clear that nonuniqueness results [MSz18, MSz19, MS19, BCDL20]
and new loss of regularity phenomena [ACM14, ACM16, ACM18, J16, BN18c] may occur. These
phenomena affect also advection-diffusion problems leading to challenging open questions.

Enhanced dissipation and mixing. Enhanced dissipation is the notion that solutions to (Eν)
dissipate the energy ‖uνt ‖L2 faster than e−νt, the rate at which the heat equation dissipates
energy. More rigorously, we give the following definition (Cf. [CZDR19, Definition 1]).

Definition 0.1. Let r : (0, ν0)→ (0, 1) be an increasing function satisfying

lim
ν→0

ν

r(ν) = 0.

We say that a divergence-free vector field b is diffusion enhancing on a subspace H ⊂ L2(Td)
with rate r(ν), if for any ν ∈ (0, ν0) there exists tν > 0 such that

‖uνt ‖
2
L2 ≤ Ce−r(ν)t ‖u0‖2L2 for every t ≥ tν , and u0 ∈ H. (0.3)

The constant C > 0 above depends only on b.

It is nowadays well known that mixing by the flow of b is responsible for enhancing diffusion.
[CKRZ08, CZDE18, FI19].

Definition 0.2. Let ρ : (0,∞)→ [0,∞) be a decreasing function satisfying limt→+∞ ρ(t) = 0.
We say that a time dependent divergence-free velocity field b on Td mixes with rate ρ if for any
t0 > 0, and ut0 ∈ W 1,2, with

�
ut0 dx = 0, denoting by u : [t0,∞) → R the solution to (Eν)

starting from ut0 at time t = t0, one has

‖ut‖H−1 ≤ ρ(t− t0) ‖ut0‖W 1,2 for any t ≥ t0.
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In [CZDE18, FI19] it has been estimated the diffusion enhancing rate r(ν) in terms of the
mixing rate ρ(t), when the drift is Lipschitz regular uniformly in time, i.e. b ∈ L∞t W 1,∞

x .
Let us recall that, for smooth velocity fields, a simple Gronwall argument gives

‖ut‖H−1 ≥ e−t‖∇b‖L∞
‖u0‖2L2

‖∇u0‖L2
for all t ≥ 0 and u0 ∈W 1,2(Td) (0.4)

ensuring that the mixing rate cannot be faster than exponential. In this meaningful case, i.e.
ρ(t) := Me−µt for some constants M > 0 and µ > 0, the diffusion enhancing rate obtained in
[CZDE18, Theorem 2.5] is

r(ν) = C log(1/ν)−2 with C = C(M,µ, ‖∇b‖L∞). (0.5)

As far as we know it is not known whether a velocity fields having a diffusion enhancing rate slower
than r(ν) = O(log(1/ν)−2) does exist. However, relying on an old result by Poon [Poon96, MD18]

‖uνt ‖
2
L2 ≥ ‖u0‖2L2 exp

{
−ν ‖∇u0‖2L2

‖u0‖2L2

� t

0
exp

{
2
� s

0
‖∇br‖L∞ dr

}
ds
}
∀ t > 0 ν ∈ (0, 1) (0.6)

it is straightforward to see that r(ν) ≤ O(log(1/ν)−1), regardless of the mixing rate. We remark
in passing that it is unknown whether there exists a smooth velocity field realizing a double
exponential dissipation of ‖uνt ‖L2 for some u0 ∈ L2(Td), a positive result in this direction has
been obtained in [IKX14], dealing with a discrete model for (Eν).

One of the most interesting problems in this field consists in closing the gap between the
universal upper bound r(ν) ≤ O(log(1/ν)−1) and the best known lower bound (0.5) in the case
of exponential mixing. Recently there has been a lot of interest in finding sharp upper and lower
bounds on the diffusion rate, under various assumptions on the drift. Let us mention the work of
Coti Zelati and Drivas [CZDR19] where a class of meaningful examples, such as shear flows and
circular flows have been studied.

Out of the smooth setting it is even unknown whether a double exponential lower bound
on the L2 norm, as in (0.6), holds. The main difficulty here is that energy methods are not
suitable to attack the problem due to a possible loss of regularity for transport equations
[ACM14, ACM16, ACM18, J16, BN18c, BN19]. We refer the reader to [DEIJ2019, Section 1.3]
for a discussion on this topic.

Bressan’s mixing conjecture. In the non smooth setting is still unknown whether the mixing rate
for passive scalars has a universal lower bound. This is related to the famous Bressan’s mixing
conjecture [B03] that can be formulated as follows.

Conjecture 0.3. Given a divergence-free velocity field b ∈ L∞([0,∞),W 1,1(Td,Rd)) there exist
c > 0 and C > 0 depending only on the initial datum u0 such that

ρ(t) ≥ C exp
{
−ct ‖∇b‖L∞t L1

x

}
for every t ≥ 0.

Where ρ is the mixing rate according to Definition 0.2.

We have already pointed out (see for instance (0.4)) that Bressan’s conjecture follows from a
standard Gronwall estimate when the velocity field is Lipschitz, uniformly in time. A positive
result has been obtained also for b ∈ L∞([0,∞),W 1,p(Td,Rd)) with p > 1 in [CDL08] (se also
[IKX14]), while the case p = 1 seems to require some new ideas. On the other hand, in the last
years beautiful examples of mixing velocity fields under various constraint have been provided,
see for instance [ACM16, EZ, YZ17].

In view of the enhanced dissipation estimates, the problems of finding lower bounds on the
energy ‖uνt ‖

2
L2 and on the diffusion enhancing rate r(ν) have natural connections with the

challenging Bressan’s mixing conjecture [B03]. We refer to [DEIJ2019, section 1,3] for a detailed
discussion.
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Energy dissipation rate in the Sobolev setting. Aiming at better understanding enhanced
dissipation and energy’s lower bounds, the key quantity to study is the energy dissipation rate

2ν
� t

0
‖∇uνs‖

2
L2 ds = ‖u0‖2L2 − ‖uνt ‖

2
L2 .

Notice that, when the divergence-free velocity field b has the property that (E0) admits a unique
solution that conserves the L2 norm, it must hold

lim
ν↓0

2ν
� t

0
‖∇uνs‖

2
L2 ds = 0. (0.7)

It can be easily checked by observing that, up to extracting a subsequence, uνt → u0
t weakly in L2

and by using the fact that the L2 norm is lower semicontinuous with respect to weak convergence.
In particular, if the drift is either Sobolev or BV the DiPerna-Lions-Ambrosio theory [DPL89,

A04, AC14] guarantees (0.7) (see also the recent paper [QN18] for a quantitative analysis in BV
and the study of velocity fields which can be represented as singular integral of functions in BV ).
One of the main achievement of this work is the correct estimate of the rate of convergence
of (0.7). Before stating the result and its consequences let us recall that, in view of (0.6) it is
easily seen that in the Lipschitz setting (i.e. b ∈ L∞t W 1,∞

x ) any solution to (Eν) with u0 ∈W 1,2

satisfies
ν

� 1

0
‖∇uνs‖

2
L2 ds ≤ Cν for ν ∈ (0, 1). (0.8)

Hence the energy dissipation rate is O(ν) for ν → 0. On the other hand, if one relaxes the
regularity assumption on the velocity field the situation may change dramatically. For instance,
in [DEIJ2019] a divergence-free vector field was constructed

b ∈ C∞([0, 1)× Td) ∩ L1([0, 1], Cα(Td)) ∩ L∞([0, 1]× Td)
such that

lim sup
ν↓0

ν

� 1

0
‖∇uνs‖

2
L2 ds ≥ c > 0,

for a broad family of initial data u0 ∈W 2,2(Td). Notice that this implies the existence of passive
scalars advected by b with non constant L2 norm.

Let us also mention a recent result [JY20, Theorem 1.1] which provides solutions to the 3D
Navier-Stokes equation with energy dissipation slower than (0.8).

In the Sobolev setting we have the following logarithmic rate.

Theorem 0.4. Let b ∈ L∞([0, T ],W 1,p(Td,Rd)) be a divergence-free vector field for some p > 2.
Any solution uν to (Eν) with u0 ∈W 1,2(Td) ∩ L∞ satisfies

ν

� t

0
‖∇uνs‖

2
L2 ds ≤ C(‖u0‖2W 1,2 + ‖u0‖2L∞)

νt+
tp ‖∇b‖p

L∞t L
p
x

+ 1

log
(

1
νt + 2

)p−1

 ∀ t ≥ 0, (0.9)

where C = C(p, d). In particular, for any t > 0, we have

ν

� t

0
‖∇uνs‖

2
L2 ds ≤ C log(1/ν)−p+1 for every ν ∈ (0, 1/5). (0.10)

Here C = C(p, d, t, ‖u0‖2W 1,2 + ‖u0‖2L∞ , ‖∇b‖L∞t Lpx) > 0.

The next result shows that the logarithmic rate is “almost” sharp.

Theorem 0.5. Let d ≥ 2 and p > 2 be fixed. There exist a divergence-free velocity field
b ∈ L∞([0, 1],W 1,p(Td,Rd)) and u0 ∈W 1,2(Td) ∩ L∞ such that

lim sup
ν→0

log(1/ν)r ν
� 1

0
‖∇uνs‖

2
L2 ds = +∞ (0.11)

for any r > p (p−1)
p−2 . Here uν denotes the solution to (Eν).
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We strongly believe that both results Theorem 0.4 and Theorem 0.5 can be sharped as follows.
Conjecture 0.6. The rate in (0.10) can be sharped to

ν

� t

0
‖∇uνs‖

2
L2 ds ≤ C log(1/ν)−p for every ν ∈ (0, 1/5),

and (0.11) holds for any r > p.
Idea of the proof of Theorem 0.4. A crucial ingredient of proof is a new propagation of
regularity result (Theorem 1.1) for solutions to (Eν). The main novelty is that the constants
appearing in the regularity estimate do not depend on the diffusivity parameter ν > 0. It extends
known result for transport equations [BBJ19, LF16, BN18c, BN19] to the advection-diffusion
problem. To prove Theorem 1.1 we took advantage of the Lagrangian representation for solutions
to (Eν), via Feynman-Kac’s formula [K97]:

uν(t, x) = E [u0 ◦Xt,0(x)] .
Here Xt,0 denotes the solution to the backward stochastic differential equation

dXt,s = b(s,Xt,s) ds+
√

2ν dWs with Xt,t(x) = x, (SDE)
where Ws is an Td valued Brownian motion adapted to the backwards filtration (i.e. satisfying
Wt = 0) in the probability space (Ω,F ,P).

The core of the proof of Theorem 1.1 consists in estimating the rate of change of log-Sobolev
norms of Xt,s, by exploiting the Sobolev regularity of the drift b. We refer the reader to section 1
for a detailed outline of the argument.

In order to explain the connection between propagation of regularity results and estimates on
the energy dissipation rate we recall that, in the simple case ∇b ∈ L∞, solutions to (E0) and
(Eν) propagate the Sobolev regularity of the initial data for any 1 ≤ p ≤ ∞ according to

‖∇uνt ‖Lp ≤ ‖∇u0‖Lp e
ct‖∇b‖L∞ , (0.12)

where c > 0 does not depend on ν. This can be checked either by means of energy estimates or
by studying the regularity of the stochastic flow map Xt,s. Having such a strong regularity result
at hand, the upper bound on the energy dissipation rate (0.8) immediately follows:

ν

� 1

0
‖∇uνs‖

2
L2 ds ≤ ν

� 1

0
‖∇u0‖2L2 e

2ct‖∇b‖L∞ ds ≤ C(t, ‖∇b‖L∞) ‖∇u0‖2L2 ν.

The main issue of working with Sobolev vector fields is that regularity estimates like (0.12) are
known to be false for the inviscid problem [ACM14, ACM16, ACM18]. On the other hand, the
regularity theory for (E0) in the framework of Sobolev velocity fields [LF16, BN18c] provides
us with propagation of regularity results on Sobolev spaces of logarithmic order, see section 1.
Unfortunately the latter are too weak to be suitable to bound directly the energy dissipation
rate.

To get around this problem we use an interpolation argument which combines the log-Sobolev
estimate of Theorem 1.1 with a new a priori estimate on ν2 � t

0 ‖∆u
ν
s‖

2
L2 ds, given in terms of the

energy dissipation rate (cf. Proposition 2.3).

Idea of the proof of Theorem 0.5. To prove the existence of solutions with “slow dissipation
rate” we exploit the existence of rough solutions to the transport equation (see Proposition 1.3).

The main idea is that quantitative bounds on the energy dissipation rate imply regularity
results for transport equations. This has been made quantitative in Proposition 2.1 by showing
the implication

ν

� t

0
‖∇uνs‖

2
L2 ds ≤ C log(1/ν)q =⇒ u0

t ∈ H log,r for any 0 < r < q
p− 2
p− 1 ,

when b ∈ L∞t W
1,p
x . Here H log,r denotes a Sobolev space of functions with “derivative of

logarithmic order” introduced in section 1. Although the logarithmic regularity is very mild in
[BN18c] we have built solutions to (E0), associated to W 1,p velocity fields, that do not propagate
the H log,r regularity for r > p. This clearly leads to the sought conclusion.
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Applications. An immediate consequence of Theorem 0.5 is that the double exponential lower
bound as in Poon’s estimate (0.6) does not hold in the Sobolev setting since it forces

ν

� t

0
‖∇uνs‖

2
L2 ds ≤ Cν for all ν ∈ (0, 1).

In view of Theorem 0.4 and Conjecture 0.6, it is natural to conjecture the following variant of
Poon’s estimate:

Conjecture 0.7. Fix p ∈ [1,+∞). Let b ∈ C∞([0, T ]×Td) be divergence-free and u0 ∈W 1,2(Td).
Then, any solution uνt to (Eν) satisfies

‖ut‖2L2 ≥ ‖u0‖2L2 exp
{
− log(1/ν)−pC1

� t

0
exp

{
C2

� s

0
‖∇br‖Lp dr

}
ds
}
, (0.13)

for any ν ∈ (0, 1) and t > 0. Here C1 = C1(u0, p, d) > 0, and C2 = C2(p, d) > 0.

In the case p = 1 Conjecture 0.7 has been already presented and thoroughly discussed
in [DEIJ2019, Conjecture 1.7]. We refer the reader to subsection 3.2 for the discussion of
Proposition 3.2, a positive result towards Conjecture 0.7.

An other interesting consequence of Theorem 0.4 is the following upper bound on the enhanced
dissipation rate in the setting of W 1,p divergence-free vector fields.

Proposition 0.8. Let b ∈ L∞([0,+∞),W 1,p(Td,Rd)) be a divergence-free vector field for some
p > 2. Given u0 ∈ W 1,2(Td) ∩ L∞, if there exists r : (0, ν0) → (0,+∞) for some 0 < ν0 < 1,
which satisfies

‖uνt ‖
2
L2 ≤ e−r(ν)t ‖u0‖2L2 for any t > 1/ν0 and ν ∈ (0, ν0), (0.14)

then

lim sup
ν↓0

r(ν)

log(1/ν)−
p−1
p

<∞. (0.15)

In other words the upper bound r(ν) ≤ O(log(1/ν)−
p−1
p ) holds in the Sobolev setting. Notice

that it is little worse than O(log(1/ν)−1), the one available for smooth vector fields.
After finishing this note we got to know that a better upper bound on the enhanced dissipation

rate has been proven in [S20, Theorem 2] by Seis. The approach of Seis is different from our, it
relies on the quantitative analysis of solutions by means of weak norms and techniques coming
from the optimal transport theory (see also [S17]).

The last application of Theorem 0.4 is a quantitative estimate on the rate of convergence in
the vanishing viscosity limit.

Theorem 0.9. Let b ∈ L∞([0,+∞),W 1,p(Td,Rd)) be a divergence-free vector field for some
p > 2. Given u0 ∈W 1,2(Td) ∩ L∞ we consider u0, uν, respectively, solutions to (Eν) and (E0).
Then it holds

sup
s∈[0,t]

∥∥∥uνs − u0
s

∥∥∥2

L2
≤ Ct

ν + tν
p−2
p−1 + tp−1 + 1

log
(

1
νt + 2

)p−2

 for every ν > 0 and t > 0, (0.16)

where C = C0(1 + ‖∇b‖p
L∞t L

p
x
)(‖u0‖2W 1/2 + ‖u0‖2L∞).

As far as we know (0.16) is the first quantitative vanishing viscosity estimate in terms of strong
norms in the framework of Sobolev velocity fields. Previous results, such as [S18, Theorem 2]
have dealt with weak norms.

It is worth noticing that Theorem 0.9 is almost optimal, we refer to subsection 3.3 for a
discussion on this.
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Organization of the paper. The rest of the paper is devoted to the proof of the outlined
results. More specifically in section 1 we present the propagation of regularity result (Theorem 1.1)
while section 2 is devoted to the proof of existence of “slow dissipating solutions” (Theorem 0.5).
In section 3 we show the logarithmic estimate on the energy dissipation rate (Theorem 0.4)
and its corollaries. Precisely, in subsection 3.2 we present the proof of Proposition 0.8 and we
discuss a positive result in the direction of Conjecture 0.7. Eventually we show Theorem 0.9 in
subsection 3.3.

Acknowledgements. Most of this work was developed while the first author was a PhD student
at Scuola Normale Superiore, Pisa. The second author was supported by the ShanghaiTech
University startup fund, and part of this work was done while he was visiting Scuola Normale
Superiore. The authors wish to express their gratitude to this institution for the excellent working
conditions and the stimulating atmosphere.

1. Regularity result

In this section, we present a propagation of regularity result for solutions to (Eν), that will play
a central role in the sequel. Here and in the rest of the paper we tacitly identify any f : Td → R
with a 1-periodic function on Rd.

Let us begin by introducing a class of functional spaces. For any α ∈ (0,+∞) we define

[u]2Hlog,α :=
�
B1/3

�
Td

|u(x+ h)− u(x)|2

|h|d
1

log(1/|h|)1−α dx dh (1.1)

and the related log-Sobolev class
H log,α := {u ∈ L2(Td) : ‖u‖2Hlog,α := ‖u‖2L2 + [u]2Hlog,α <∞} . (1.2)

The following characterisation of H log,α will play a role in the rest of the paper 1

‖u‖2Hlog,α ∼α,d
∑
k∈Zd

log(2 + |k|)α|û(k)|2, (1.3)

where û(k) :=
�
u(x)e−ix·k dx. We refer to [BN18c] for a proof of (1.3) in the case in which the

ambient space is Rd.
Here and in the following we adopt the notation a ∧ b to indicate min{a, b}. The main result

of the section is the following.

Theorem 1.1. Let b ∈ L1([0, T ],W 1,p(Td,Rd)) be a divergence-free vector field for some p > 1.
Then, any solution u ∈ L∞([0, T ]× Td) to (Eν) satisfies�

B 1
10

�
Td

1 ∧ |ut(x+ h)− ut(x)|q

|h|d
1

log(1/|h|)1−p dx dh

.p,q,d

(� t

0
‖∇bs‖Lp ds

)p
+
�
B3/4

�
Td

1 ∧ |u0(x+ h)− u0(x)|q

|h|d
1

log(1/|h|)1−p dx dh (1.4)

for any 0 < q <∞.

In particular, choosing q = 2 we get

Corollary 1.2. Under the assumptions of Theorem 1.1 one has

[ut]Hlog,p .p,d

(� t

0
‖∇bs‖Lp

)p/2

‖u0‖L∞ + ‖u0‖Hlog,p for any t ∈ [0, T ]. (1.5)

It is worth remarking that (1.5) does not depend on ν > 0, hence the inequality holds even in
the case ν = 0, i.e. for solution of the transport equation (E0) (Cf. [BN18c, LF16]).

Moreover, the following example borrowed from [BN18c, Theorem 3.2] shows that Corollary 1.2
is sharp, in the sense that H log,p cannot be replaced with a H log,q for q > p.

1Here and in the sequel we use the notation A ∼c B to mean that C−1A ≤ B ≤ CA where C depends only on
c. Similar notation will be adopted for .c and &c.
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Proposition 1.3. Let p ≥ 1. There exist a divergence-free vector field b ∈ L∞([0,+∞);W 1,p(Rd))
and u0 ∈ L∞(Rd) ∩W 1,d(Rd) supported, respectively, in B1 × [0,+∞) and B1, such that the
solution u ∈ L∞([0,+∞)× Rd) to (E0) satisfies

ut /∈ H log,q for any t > 0 whenever q > p.
The remaining part of this section is devoted to the proof of Theorem 1.1. The argument is a

refinement of the one presented in [BN18c] and has its roots in the very influential paper [CDL08].
In a nutshell, it goes as follows. First, by employing the Lusin-Lipschitz inequality for Sobolev
maps (1.10) and Gronwall’s lemma, one studies regularity properties of the backwards stochastic
flow (Cf. Proposition 1.5) associated to b. Next, one translates the Lagrangian regularity result
into an Eulerian one by using Feynman-Kac formula (1.7) and Lusin-type characterisations of
H log,p functions (Cf. Proposition 1.6).
Remark 1.4. In what follows it is technically convenient to assume that b ∈ L1([0, T ],W 1,p(Td,Rd))
is pointwise defined, with respect to the space variable, according to

b(t, x) :=

lim
r↓0

1
ωdrd

�
Br(x)

b(t, y) dy whener it exists,

0 otherwise.
(1.6)

1.1. Stochastic representation and Lagrangian estimate. As we already mentioned in
the introduction, for any t ∈ (0,∞) we consider the following backward stochastic differential
equation

dXt,s = b(s,Xt,s) ds+
√

2ν dWs with Xt,t(x) = x, (SDE)
where Ws is an Td valued Brownian motion adapted to the backwards filtration (i.e. satisfying
Wt = 0) in the probability space (Ω,F ,P).

Then, the Feynman-Kac formula [K97] expresses the solution of (Eν) as
uν(t, x) = E [u0 ◦Xt,0(x)] . (1.7)

Exploiting the Sobolev regularity of b one gets a following Lusin type estimate for the stochastic
flow map Xs,t that does not depend on ν.

Proposition 1.5. Let b ∈ L1([0, T ],W 1,p(Td,Rd)) be a divergence-free vector field, for some
p > 1. Fix t ∈ (0, T ). Then, there exists a nonnegative random function gt(ω, x) = gt(x) for
ω ∈ Ω and x ∈ Td, which for P-a.e. ω satisfies the inequalities

‖gt‖Lp(Td) .p,d

� t

0
‖∇bs‖Lp(Td) ds, (1.8)

e−gt(x)−gt(y) ≤ |Xt,s(x)−Xt,s(y)|
|x− y|

≤ egt(x)+gt(y) for any 0 ≤ s ≤ t, x, y ∈ Td. (1.9)

Here Xt,s is a realization of the solution to (SDE).
Proof. Let us introduce the local Hardy-littelwood maximal function

Mf(x) := sup
0<r<3

1
ωdrd

�
Br(x)

|f(y)|dy,

for f ∈ L1(Td), and set

gt(x) :=
� t

0
M |∇bs|(Xt,s(x)) ds for any x ∈ Td,

and notice that (1.8) is a simple consequence of the Minkoski’s inequality and the fact that Xt,s

is measure preserving.
The inequality (1.9) follows from the Gronwall’s lemma, along with the observation that,

P-a.e., for any x, y ∈ Td, the map s→ |Xt,s(x)−Xt,s(y)| is absolutely continuous and satisfies
d
ds |Xt,s(x)−Xt,s(y)| ≤ |b(s,Xt,s(x))− b(s,Xt,s(y))|

≤Cd|Xt,s(x)−Xt,s(y)| (M |∇bs|(Xt,s(x)) +M |∇bs|(Xt,s(y))) ,
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for a.e. s ∈ (0, t). Above we have used the the Lusin-Lipschitz inequality for Sobolev functions
f ∈W 1,1

loc (Td), pointwise defined according to (1.6):

|f(x)− f(y)| ≤ Cd|x− y|(M |∇f |(x) +M |∇f |(y)) for any x, y ∈ Td. (1.10)

�

1.2. Lusin type characterisation of H log,p functions and proof of Theorem 1.1. Let us
begin by presenting a refined version of [BN18c, Theorem 1.11].

Proposition 1.6. Let q > 0 and p > 0. For any u ∈ L1
loc(Rd) it holds

1 ∧ |u(y)− u(x)|q .p,q,d log (1/r)−p (G(r, x) +G(r, y)) ,

for any x, y ∈ Rd with 2|x− y| ≤ r < 1
10 , where

G(r, z) :=
�
r≤|h|≤r1/2

1 ∧ |u(z + h)− u(z)|q

|h|d
1

log(1/|h|)1−p dh for any z ∈ Rd.

Proof. First observe that, for any x, y ∈ Rd and s ≥ 2|x− y| one has

1 ∧ |u(x)− u(y)|q

.d,q −
�
B3s(0)\Bs(0)

1 ∧ |u(x+ h)− u(x)|q dh+−
�
B3s(0)\Bs(0)

1 ∧ |u(y + h)− u(y)|q dh, (1.11)

see [BN18c, Lemma 1.12] for a simple proof. Next, we integrate both sides of (1.11) with respect
to the variable s against a suitable kernel, getting

1 ∧ |u(x)− u(y)|q
� r1/2

3

r

1
s log(1/s)1−p ds

.d,p

� r1/2
3

r
−
�
B3r(0)\Br(0)

1 ∧ |u(x+ h)− u(x)|q dh ds
s log(1/s)1−p

+
� r1/2

3

r
−
�
B3s(0)\Bs(0)

1 ∧ |u(y + h)− u(y)|q dh ds
s log(1/s)1−p .

Observe that
� r1/2

3

r
−
�
B3s(0)\Bs(0)

1 ∧ |u(x+ h)− u(x)|q dh ds
s log(1/s)1−p .d,p G(r, x),

and
� r1/2

3

r

1
s log(1/s)1−p ds = 1

p

(
log

(1
r

)p
− log

( 3
r1/2

)p)
&p log

(1
r

)p
,

where we have used r < 1
10 . The proof is complete. �

Proof of Theorem 1.1. Let us begin by noticing that our conclusion follows from the P-a.e.
inequality�

B1/5

�
Td

1 ∧ |u0(Xt,0(x+ h))− u0(Xt,0(x))|q

|h|d
1

log(1/|h|)1−p dx dh (1.12)

.p,q,d

(� t

0
‖∇bs‖Lp ds

)p
+
�
B3/4

�
Td

1 ∧ |u0(x+ h)− u0(x)|q

|h|d
1

log(1/|h|)1−p dx dh,

by taking the expectation and using (1.7).
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Let us then prove (1.12). Fix t ∈ (0, T ) and g given by Proposition 1.5, in order to keep
notation short we drop the dependence of g on ω and t. For P-a.e. ω we have

�
Td

�
|h|< 1

10

1 ∧ |u0(Xt,0(x+ h))− u0(Xt,0(x))|q

|h|d log(1/|h|)1−p dh dx

≤
�
Td

�
|h|< 1

10

1|h|1/2 exp{g(x+h)+g(x)}≥1
1

|h|d log(1/|h|)1−p dhdx

+
�
Td

�
|h|< 1

10

1|h|1/2 exp{g(x+h)+g(x)}<1
1 ∧ |u0(Xt,0(x+ h))− u0(Xt,0(x))|q

|h|d log(1/|h|)1−p dhdx

=:I + II.

Let us estimate I by means of (1.8):

I ≤
�
Td

�
|h|< 1

10

1|h|1/2 exp{g(x+h)+g(x)}≥1
1

|h|d log(1/|h|)1−p dh dx

≤2
�
Td

�
|h|< 1

10

1|h|1/2e2g(x)≥2
1

|h|d log(1/|h|)1−p dh dx

=2
�
h< 1

10

L d
(
{ g ≥ 1

4 log(4/ | h|) }
) 1
|h|d log(1/|h|)1−p dh

.d

�
r< 1

10

L d
(
{ g ≥ 1

4 log(4/r) }
)

log(1/r)p−1 dr
r

≤4
� ∞

log(40)/4
L d ({ g ≥ λ }) (4λ− 2 log(2))p−1dλ

.p ‖g‖pLp .p,d

(� T

0
‖∇bs‖Lp ds

)p
.

Let us now estimate II. Let G be given by Proposition 1.6 and associated to u0, we have

1∧|u0(Xt,0(x+ h))− u0(Xt,0(x))|q

. log (1/r)−p (G(r,Xt,0(x+ h)) +G(r,Xt,0(x))), (1.13)

with

r := 1
20 ∧ |Xt,0(x+ h)−Xt,0(x)|.

Note that, by Proposition 1.5 we have
1
20 ∧ [|h| exp {−g(x+ h)− g(x)}] ≤ r ≤ 1

20 ∧ [|h| exp {g(x+ h) + g(x)}] . (1.14)

Let us fix h ∈ B 1
10

(0). For any x ∈ Td such that

|h|1/2 exp {g(x+ h) + g(x)} < 1,

it follows from (1.13) and (1.14) that |h|3/2 ≤ r ≤ |h|1/2, and

1∧|u0(Xt,0(x+ h))− u0(Xt,0(x))|q

. log
( 1
|h|

)−p
(H(|h|, Xt,0(x+ h)) +H(|h|, Xt,0(x))),

where

H(r, z) :=
�
r3/2≤|h|≤r1/4

1 ∧ |u0(z + h)− u0(z)|q

|h|d
1

log(1/|h|)1−p dh for any z ∈ Td.
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This implies,

II .p

�
Td

�
|h|< 1

10

H(|h|, Xt,0(x+ h))
|h|d log(1/|h|) dh dx+

�
Td

�
|h|< 1

10

H(|h|, Xt,0(x))
|h|d log(1/|h|) dh dx

=2
�
Td

�
|h|< 1

10

H(|h|, Xt,0(x))
|h|d log(1/|h|) dhdx

'p,d
�
Td

� 1
10

0

1
r log(1/r)

�
r3/2≤|h|≤r1/4

1 ∧ |u0(x+ h)− u0(x)|q

|h|d log(1/|h|)1−p dh dr dx

.p,d

�
Td

�
|h|<3/4

(� |h|2/3

|h|4

1
r log(1/r) dr

)
1 ∧ |u0(x+ h)− u0(x)|q

|h|d log(1/|h|)1−p dh dx

'p,d
�
Td

�
|h|<3/4

1 ∧ |u0(x+ h)− u0(x)|q

|h|d
1

log(1/|h|)1−p dh dx,

here we have used the fact that� |h|2/3

|h|4

1
r log(1/r) dr = log(log(1/|h|4))− log(log(1/|h|2/3)) = log(6).

The proof is over. �

Remark 1.7. Notice that (1.12) is stronger than the regularity estimate in (1.1), indeed when we
take the expectation we are losing information. We believe that a more precise analysis, which
do not lose this information, could lead to the following improved version of (1.2):

[ut]2Hlog,p + ν

� t

0
[∇us]2Hlog,p ds .d,p

(� t

0
‖∇bs‖Lp

)p
‖u0‖2L∞ + ‖u0‖2Hlog,p ∀t ∈ [0, T ]. (1.15)

Unfortunately we are not able to show this estimate by means of our approach. However it
is worth stressing that if (0.7) were true then it would lead to significant improvements of
Theorem 0.4, Theorem 0.5 and their applications.

2. Proof of Theorem 0.5: existence of slow dissipating solutions

The core of the argument in the proof of Theorem 0.5 is the following.

Proposition 2.1. Let b ∈ L1([0, T ],W 1,p(Td,Rd)) be a divergence-free vector field, for some
p > 2. Let uν and u0 solve, respectively, (Eν) and (E0). For any t ∈ [0, T ], if there exists q > 0
such that

lim sup
ν↓0

log(1/ν)q ν
� t

0
‖∇uνs‖

2
L2 ds <∞, (2.1)

then ut ∈ H log,r (see (1.1)) for any 0 < r < q p−2
p−1 .

Remark 2.2. By exploiting the ideas developed in the proof of Proposition 2.1 (Cf. Remark 2.4)
one can prove the following variant: if there exists θ ∈ (0, 1] such that

lim sup
ν↓0

ν1−θ
� t

0
‖∇uνs‖

2
L2 ds <∞, (2.2)

then ut ∈ Hr(Td) for any 0 < r < θ p−2
2(p−1) . Here H

r(Td) := {u ∈ L2(Td) : [u]Hr <∞} denotes
the fractional Sobolev space defined by means of the Gagliardo semi-norm

[u]2Hr :=
�
B2

�
Td

|u(x+ h)− u(x)|2

|h|d+2r dx dh.

Proof of Theorem 0.5 given Proposition 2.1. We argue by contradiction. If the conclusion were
false then the assumptions of Proposition 2.1 are satisfied for some q > pp−1

p−2 , therefore there
exists r > p such that u0

t ∈ H log,r. This is not possible in general in view of Proposition 1.3. �
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2.1. Interpolation estimate. In this subsection we present an estimate on ν2 � t
0 ‖∆u

ν
s‖

2
L2 ds,

which plays a central role in Proposition 2.1 and Theorem 0.4.

Proposition 2.3. Let γ ∈ (2,+∞] be fixed. Assume b ∈ L∞([0, T ],W 1,p(Td,Rd)) for some
p > 2γ

γ−2 . Any solution uν ∈ L∞([0, T ],W 1,2(Td) ∩ Lγ) to (Eν) satisfies

ν ‖∇uνt ‖
2
L2 +ν2

� t

0
‖∆uνs‖

2
L2 ds

≤ν ‖∇u0‖2L2 + Cd,p,γ ‖u0‖2(1−β)
Lγ ‖∇b‖2−β

L∞t L
p
x
t1−β

(
ν

� t

0
‖∇uνs‖

2
L2 ds

)β
, (2.3)

where
β = 1− 1

p− 1− 2p
γ

∈ (0, 1).

In the sequel we will use (2.3) just in the case γ =∞.

Proof. It is enough to prove the result for ‖∇b‖L∞t Lpx = 1, the general case follows by a simple
scaling argument. Testing (Eν) against ∆ut we get

‖∇uνt ‖
2
L2 + 2ν

� t

0
‖∆uνs‖

2
L2 ds ≤ ‖∇u0‖2L2 +

� t

0
‖∇uνs‖

2
L2p′ ds

≤ ‖∇u0‖2L2 +
� t

0
‖∇uνs‖

2α
L2 ‖∇uνs‖

2(1−α)
L2q ds,

with
p′ = p

p− 1 ,
1
p′

= α+ 1− α
q

, α ∈ (0, 1). (2.4)

By using the Gagliardo–Nirenberg interpolation inequality we deduce

‖∇uν‖L2q ≤ Cd,q,γ ‖∆uν‖
1/2
L2 ‖uν‖1/2

Lγ for 1
q

= 1
2 + 1

γ
, (2.5)

hence

‖∇uνt ‖
2
L2 + 2ν

� t

0
‖∆uνs‖

2
L2 ds ≤ ‖∇u0‖2L2 + Cd,q,γ ‖u0‖1−αLγ

� t

0
‖∇uνs‖

2α
L2 ‖∆uνs‖

1−α
L2 ds

≤ ‖∇u0‖2L2 + Cd,q,γ,α ‖u0‖
2 1−α

1+α
Lγ ν−

1−α
1+α

� t

0
‖∇uνs‖

4α
1+α
L2 ds

+ ν

� t

0
‖∆uνs‖

2
L2 ds,

which amounts to

‖∇uνt ‖
2
L2 + ν

� t

0
‖∆uνs‖

2
L2 ds ≤ ‖∇u0‖2L2 + Cd,q,γ,α ‖u0‖

2 1−α
1+α
Lγ ν−

1−α
1+α

� t

0
‖∇uνs‖

4α
1+α
L2 ds

≤ ‖∇u0‖2L2 + Cd,q,γ,α ‖u0‖
2 1−α

1+α
Lγ tν−1

(
t−1ν

� t

0
‖∇uνs‖

2
L2 ds

) 2α
1+α

.

In order to conclude the proof we just need to combine (2.4) and (2.5) to find the expression of
α and q in terms of p and γ. �

2.2. Proof of Proposition 2.1. Fix t ∈ (0, T ) and a convolution kernel ρε(x) := ε−dρ(xε−1)
where ρ ∈ C∞c (B1/2(0)) satisfies

�
Td ρ = 1 and ε > 0 . For any f ∈ L1(Td) we denote by

f ∗ ρε(x) :=
�
Rd
u(x− y)ρε(y) dy
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its convolution against ρε, which is continuous and 1-periodic. Then, for any ν > 0, it holds∥∥∥u0
t ∗ ρε − u0

t

∥∥∥
L2
≤
∥∥∥u0

t ∗ ρε − uνt ∗ ρε
∥∥∥
L2

+ ‖uνt ∗ ρε − uνt ‖L2 +
∥∥∥uνt − u0

t

∥∥∥
L2

≤2
∥∥∥uνt − u0

t

∥∥∥
L2

+ ‖uνt ∗ ρε − uνt ‖L2

.
∥∥∥uνt − u0

t

∥∥∥
L2

+ ε ‖∇uνt ‖L2 . (2.6)

From (3.12) and Proposition 2.3 (with γ =∞) we get

∥∥∥uνt − u0
t

∥∥∥2

L2
.p tν ‖∇u0‖2L2 + t

p
p−1 ‖u0‖

2
p−1
L2 ‖∇b‖

p
p−1
L∞t L

p
x

(
ν

� t

0
‖∇uνs‖

2
L2 ds

) p−2
p−1

, (2.7)

while Proposition 2.3 and (0.2) yield

ε2 ‖∇uνt ‖
2
L2 .p ε

2 ‖∇u0‖2L2 + ε2ν−1t
1
p−1 ‖u0‖

2
p−1
L2 ‖∇b‖

p
p−1
L∞t L

p
x

(
ν

� t

0
‖∇uνs‖

2
L2 ds

) p−2
p−1

. (2.8)

By combining (2.6), (2.8), (2.7), assuming without loss of generality ‖u0‖W 1,2 + ‖u0‖L∞ ≤ 1, and
choosing ε = ν one gets

∥∥∥u0
t ∗ ρν − u0

t

∥∥∥2

L2
.p ν(t+ 1) + t

p
p−1 ‖∇b‖

p
p−1
L∞t L

p
x

(
ν

� t

0
‖∇uνs‖

2
L2 ds

) p−2
p−1

for every ν ∈ (0, 1).

(2.9)
Thanks to (2.1) there exists ν0 ∈ (0, 1) such that ν

� t
0 ‖∇us‖

2
L2 ds ≤ C log(1/ν)−q for any

ν ∈ (0, ν0), hence ∥∥∥u0
t ∗ ρν − u0

t

∥∥∥2

L2
.t,p log(1/ν)−q

p−2
p−1 for any 0 < ν < ν0. (2.10)

We claim that (2.10) implies u0
t ∈ H log,r for every 0 < r < q p−2

p−1 . To this end we note that

∑
k∈Z
|û0
t (k)|2

� ν0

0

|ρ̂(νk)− 1|2

log(1/ν)1−r
dν
ν

=
� ν0

0

�
Td
|u0
t ∗ ρν − u0

t |2
1

log(1/ν)1−r dxdν
ν
.

1
q p−2
p−1 − r

for any 0 < r < q p−2
p−1 , where ρ̂ denotes the Fourier transform of ρ in Rd. Moreover it is not hard

to check that

Cν0 +
� ν0

0
|ρ̂(νk)− 1|2 1

log(1/ν)1−r
dν

ν
&ν0,d log(2 + |k|)r, (2.11)

Thus (1.3) yields ∥∥∥u0
t

∥∥∥2

Hlog,r
.r,d

∑
k∈Zd

log(2 + |k|)r|û0
t (k)|2 <∞.

The proof is over.

Remark 2.4. Under the assumption (2.2), the estimate (2.9) gives∥∥∥u0
t ∗ ρν − u0

t

∥∥∥2

L2
.t,p ν

θ p−2
p−1 for any 0 < ν < ν0,

for some ν0 > 0. Hence u0
t ∈ Hr(Td) for any 0 < r < θ p−2

2(p−1) .

3. Logarithmic estimate on the dissipation rate and consequences

In this section we prove Theorem 0.4 and we draw a series of consequences.
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3.1. Proof of Theorem 0.4: logarithmic bound on the dissipation rate. Since (Eν) is
linear we can assume without loss of generality that

‖u0‖W 1,2 + ‖u0‖L2 ≤ 1.

Observe that, from (1.3), we deduce

[u0]2Hlog,p .d,p
∑
k∈Zd

log(2 + |k|)p|û0(k)|2 .
∑
k∈Zd

(1 + |k|2)|û0(k)|2 ≤ ‖u0‖2W 1,2 ≤ 1.

We apply (2.3) with γ =∞ and β = p−2
p−1 obtaining

ν ‖∇uνt ‖
2
L2 +ν2

� t

0
‖∆uνs‖

2
L2 ds

≤ν ‖∇u0‖2L2 + Cp ‖u0‖
2
p−1
L∞ ‖∇b‖

p
p−1
L∞t L

p
x
t

1
p−1

(
ν

� t

0
‖∇uνs‖

2
L2 ds

) p−2
p−1

≤ν + Cp,d ‖∇b‖
p
p−1
L∞t L

p
x
t

1
p−1

(
ν

� t

0
‖∇uνs‖

2
L2 ds

) p−2
p−1

. (3.1)

Let us now set

Dν(t) := ν

� t

0
‖∇uνs‖

2
L2 ds, (3.2)

and fix λ > 0. Exploiting (1.3) and (3.1) we obtain

Dν(t) = ν

� t

0

∑
k∈Zd
|k|2|ûνt (k)|2

.
νλ2

log(λ+ 2)p

� t

0

∑
|k|<λ

log(2 + |k|)p|ûνs(k)|2 ds+ ν

λ2

� t

0
‖∆uνs‖

2
L2 ds

≤ νλ2

log(λ+ 2)p

� t

0
‖us‖2Hlog,p ds+ 1

λ2 + 1
νλ2 ‖∇b‖

p
p−1
L∞t L

p
x
t

1
p−1Dν(t)

p−2
p−1

for any t ∈ (0, T ). By means of the Young inequality we can estimate

1
νλ2 ‖∇b‖

p
p−1
L∞t L

p
x
t

1
p−1Dν(t)

p−2
p−1 ≤ Cp

νp−1λ2(p−1) ‖∇b‖
p
L∞t L

p
x
t+ 1

2Dν(t),

while Corollary 1.2 gives
� t

0
‖us‖2Hlog,p ds .p,d tp+1 ‖∇b‖p

L∞t L
p
x

+ t.

Putting all together we end up with

Dν(t) .p,d
νλ2t

log(λ+ 2)p
(
tp ‖∇b‖p

L∞t L
p
x

+ 1
)

+ 1
λ2 + 1

νp−1λ2(p−1) t ‖∇b‖
p
L∞t L

p
x
. (3.3)

Choosing

λ = (νt)−
1
2 log

( 1
νt

+ e

)1/2
, (3.4)

and using the elementary inequality

log
(

1
νt + e

)
log

(
log((νt)−1+e)1/2

√
νt

+ 2
)p ≤ log

(
1
νt + e

)
log

(
1√
νt

+ 2
)p ≤ 2p 1

log
(

1
νt + 4

)p−1 ,

one gets (0.9).
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3.2. Lower bound on L2 norms. Let us now present two consequences of Theorem 0.4.
The first conclusion is Proposition 3.1 below. It provides an upper bound on the enhanced

diffusion rate r(ν), we refer to the introduction for a detailed discussion.

Proposition 3.1. Let b ∈ L∞([0,+∞),W 1,p(Td,Rd)) be a divergence-free vector field for some
p > 2. Given u0 ∈ W 1,2(Td) ∩ L∞, if there exists r : (0, ν0) → (0,+∞) for some 0 < ν0 < 1,
which satisfies

‖uνt ‖
2
L2 ≤ e−r(ν)t ‖u0‖2L2 for any t > 1/ν0 and ν ∈ (0, ν0), (3.5)

then

lim sup
ν↓0

r(ν)

log(1/ν)−
p−1
p

≤ C, (3.6)

where C = C(p, d, ‖u0‖W 1,2 , ‖u0‖L∞ , ‖∇b‖L∞t Lpx).

Proof. Let C = C(p, d) as in the statement of Theorem 0.4 and set

K := C(‖u0‖2W 1,2 + ‖u0‖2L∞).

Fix α > 0 to be chosen later. Given ν > 0 small enough we set t := α log(1/ν)
p−1
p > 1/ν0. From

(0.2) and Theorem 0.4 we get

‖ut‖2L2 = ‖u0‖2L2 − ν
� t

0
‖∇us‖2L2 ds

≥‖u0‖2L2

1− K

‖u0‖2L2

νt+
tp ‖∇b‖p

L∞t L
p
x

+ 1

log
(

1
νt + 2

)p−1




= ‖u0‖2L2

1− K

‖u0‖2L2

αν log(1/ν)
p−1
p + αp

log(1/ν)p−1 ‖∇b‖p
L∞t L

p
x

+ 1

log
(

1
αν log(1/ν)−

p−1
p + 2

)p−1




= ‖u0‖2L2

1−
Kαp ‖∇b‖p

L∞t L
p
x

‖u0‖2L2
+ o(1)


where o(1)→ 0 for ν → 0, and K is as in Theorem 0.4. We deduce

lim inf
ν↓0

exp

−α r(ν)

log(1/ν)−
p−1
p

 ≥ 1−
Kαp ‖∇b‖p

L∞t L
p
x

‖u0‖2L2
,

and choosing α such that
Kαp ‖∇b‖p

L∞t L
p
x

‖u0‖2L2
= 1

2 ,

we easily get (0.15). �

A second consequence of Theorem 0.4 is a step toward Conjecture 0.7.

Proposition 3.2. Let b ∈ L∞([0,+∞),W 1,p(Td,Rd) ∩ L∞) be a divergence-free vector field for
some p > 2. Let uν solve (Eν) with u0 ∈W 1,2(Td)∩L∞. Then, for any α ∈ [0, p− 1) there exist
ν0 = ν0(u0, ‖b‖L∞t W 1,p

x ∩L∞ , α, p, d) ∈ (0, 1) and C = C(u0, ‖b‖L∞t W 1,p
x ∩L∞ , p, d) > 0 such that

‖uνt ‖
2
L2 ≥ ‖u0‖2L2 exp

{
− log(1/ν)−α exp

{
eCt

p
p−1−α

}}
, (3.7)

for every 1 < t < +∞ and ν ∈ (0, ν0).
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Proof. Let C = C(p, d) as in the statement of Theorem 0.4 and define

K := C(‖u0‖2W 1,2 + ‖u0‖2L∞).

Set

tν :=
(
‖u0‖2L2

2K

)1/p 1
‖∇b‖L∞t Lpx

log(1/ν)
p−1−α

p .

Let us begin by considering the case 0 < t ≤ tν , arguing as in the proof of Proposition 0.8, we get

‖ut‖2L2 = ‖u0‖2L2 − ν
� t

0
‖∇us‖2L2 ds ≥ ‖u0‖2L2 − ν

� tν

0
‖∇us‖2L2 ds

≥‖u0‖2L2

1− K

‖u0‖2L2

νtν +
tpν ‖∇b‖

p
L∞t L

p
x

+ 1

log
(

1
νtν

+ 2
)p−1




= ‖u0‖2L2

(
1− 1

2 log(1/ν)−α + o(1)
)

where o(1)→ 0 for ν → 0. Therefore, we can find ν0 = ν0(u0, b, p, d) ∈ (0, 1) such that, for any
ν ∈ (0, ν0) it holds

‖uνt ‖
2
L2 ≥ e− log(1/ν)−α ‖u0‖2L2 for every t ∈ (0, tν). (3.8)

Observe that (3.8) implies (3.7) for any t ∈ (0, tν).
Let us now consider the case t > tν , for ν ∈ (0, ν0). From [MD18] we know that

‖uνt ‖
2
L2 ≥ ‖u0‖2L2 exp

{
−ν2 ‖∇u0‖2L2

‖u0‖2L2

(
etν
−1‖b‖L∞ − 1

)}
, (3.9)

it is easily seen that, for t ≥ tν one has

ν2 ‖∇u0‖2L2

‖u0‖2L2

(
etν
−1‖b‖L∞ − 1

)
≤ ‖∇u0‖2L2

‖u0‖2L2
exp

{
‖b‖L∞ e

Ct
p

p−1−α
}
, (3.10)

where C = C(u0, ‖b‖L∞t W 1,p
x ∩L∞ , p, d) > 0, hence (3.7) is satisfied provided ν0 > 0 is small

enough. �

3.3. Vanishing viscosity limit. Another interesting consequence of Theorem 0.4 regards the
vanishing viscosity limit ν → 0. More precisely we aim at estimating the L2 distance between
uν and u0 which, respectively, solve (Eν) and (E0). To this end the key estimate to take into
account is

ν2
� t

0
‖∆us‖2L2 ds ≤ C

ν + tν
p−2
p−1 + tp−1 + 1

log
(

1
νt + 2

)p−2

 for every ν > 0 and t > 0, (3.11)

where C = (1 + ‖∇b‖p
L∞t L

p
x
)(‖u0‖2W 1/2 + ‖u0‖2L∞). Notice that (3.11) easily follows by combining

(2.3) and (0.4).
The connection between (3.11) and the vanishing viscosity estimate is given by

sup
s∈[0,t]

∥∥∥uνs − u0
s

∥∥∥2

L2
≤ tν2

� t

0
‖∆uνs‖

2 ds, (3.12)

that comes from
d
dt

∥∥∥uνt − u0
t

∥∥∥2

L2
≤ 2ν

∣∣∣∣�
Td

(uνt − u0
t )∆uνt dx

∣∣∣∣ ≤ 2ν ‖uνt − u0‖L2 ‖∆uνt ‖L2 ,

by applying the Hölder inequality. What we have proven is Theorem 0.9 that we state again
below for the reader’s convenience.
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Theorem 3.3. Let b ∈ L∞([0,+∞),W 1,p(Td,Rd)) be a divergence-free vector field for some
p > 2. Given u0 ∈W 1,2(Td) ∩ L∞ we consider u0, uν, respectively, solutions to (Eν) and (E0).
Then it holds

sup
s∈[0,t]

∥∥∥uνs − u0
s

∥∥∥2

L2
≤ Ct

ν + tν
p−2
p−1 + tp−1 + 1

log
(

1
νt + 2

)p−2

 for every ν > 0 and t > 0,

where C = (1 + ‖∇b‖p
L∞t L

p
x
)(‖u0‖2W 1/2 + ‖u0‖2L∞).

Relying on ideas developed in subsection 2.2 we are able to prove that the bound

sup
s∈[0,t]

∥∥∥uνs − u0
s

∥∥∥2

L2
≤ O(log(1/ν)2−p) for ν → 0

is almost optimal. More precisely, we show that for any C > 0 one can find b ∈ L1([0, T ],W 1,p(Td,Rd))
and u0 ∈W 1,2(Rd) ∩ L∞ such that, for every r > p it holds

lim sup
ν↓0

log(1/ν)r
∥∥∥uνt − u0

t

∥∥∥2

L2
=∞.

This easily follows from Proposition 3.4 below and the example in Proposition 1.3.

Proposition 3.4. Fix u0 ∈ W 1,2(Td) ∩ L∞. Let uνt and u0
t solve, respectively, (Eν) (E0) with

b ∈ L1([0, T ],W 1,p(Td,Rd)), for some p > 2. If there exist t ∈ (0, T ), ν0 ∈ (0, 1), C > 0 and
r > 0 such that ∥∥∥uνt − u0

t

∥∥∥2

L2
≤ C log(1/ν)−r, for every 0 < ν < ν0, (3.13)

then
u0
t ∈ H log,r1 for any 0 < r1 < r.

Proof. We can assume without loss of generality that
‖∇b‖L∞t Lpx + ‖u0‖W 1,2 + ‖u0‖L∞ ≤ 1.

Fix ν ∈ (0, ν0) and ε ∈ (0, 1). By (2.6) and our assumptions we have∥∥∥u0
t ∗ ρε − u0

t

∥∥∥
L2
≤ 2

∥∥∥uνt − u0
t

∥∥∥
L2

+ ‖uνt ∗ ρε − uνt ‖L2

. C log(1/ν)−r/2 + ε ‖∇uνt ‖L2 ,

that along with Proposition 2.3, gives∥∥∥u0
t ∗ ρε − u0

t

∥∥∥
L2
.p,d,γ C log(1/ν)−r/2 + εν−1/2t(1−β)/2. (3.14)

In particular, choosing ε = ν, there exists C ′ = C ′(t, C, p, d, γ) such that∥∥∥u0
t ∗ ρν − u0

t

∥∥∥
L2
≤ C ′ log(1/ν)−r/2 for every 0 < ν < ν0. (3.15)

As we have already shown in subsection 2.2, the inequality (3.15) implies uνt ∈ H log,r1 for any
0 ≤ r1 < r. �
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