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Abstract

We prove existence and uniqueness of the motion by curvature of networks with triple
junctions in Rd when the initial datum is of class W 2−2/p

p and the unit tangent vectors
to the concurring curves form angles of 120 degrees. Moreover we investigate the reg-
ularisation effect due to the parabolic nature of the system. An application of the well-
posedness is a new proof and a generalization of the long–time behaviour result [39,
Theorem 3.18].
Our study is motivated by an open question proposed in [38]: does there exist a unique
solution of the motion by curvature of networks with initial datum being a regular net-
work of class C2? We give a positive answer.

MSC (2010): 53C44, 35K51 (primary); 35K59, 35D35 (secondary).
Keywords: Networks, motion by curvature, local existence and uniqueness, parabolic regu-
larisation, nonlinear boundary conditions, long–time existence.

1 Introduction

The mean curvature flow of surfaces in Rd, and in Riemannian manifolds in general, is one
of the most significant examples of geometric evolution equations. This evolution can be
understood as the gradient flow of the area functional: a time–dependent surface evolves
with normal velocity equal to its mean curvature at any point and time.
Since the 80s the curve shortening flow (mean curvature flow of one–dimensional objects)
has been widely studied by many authors both for closed curves [16, 17, 18, 23] and for
curves with fixed end–points [26, 45, 46]. Also initial curves forming an angle or a cusp has
been studied, and in this case the singularity disappears immediately [4, 5, 3]. When more
than two curves meet at a junction, the description of the motion cannot be reduced to the
case of a single curve and the problem presents additional interesting features. The simplest
example of motion by mean curvature of a set which is essentially singular is the motion by
curvature of networks that are finite unions of curves that meet at junctions.
To find a good definition of the network flow in the framework of classical PDE is tricky.
Because of the variational nature of the flow, it is natural to expect that configurations with
multipoints of order greater than three or 3–points with angles different from 120 degrees,
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being unstable for the length functional, should be present only in the initial network or that
they should appear only at some discrete set of times, during the flow. In this paper we
consider as initial data regular networks, that is, networks at least of class C1 that possess
only triple junctions with angles of 120 degrees.
The motion by curvature of regular networks can be expressed as a boundary value problem
(see Definition 2.18). Consider a time–dependent parametrisation of the evolving network
Nt = (γ1t , . . . , γ

m
t ) with γit : [0, T ] × [0, 1] → Rd. Suppose that Nt has q triple junctions

O1, . . . ,Oq parametrised by

γj10 (t, y1) = γj20 (t, y2) = γj30 (t, y3) = Oj(t) with y1, y2, y3 ∈ {0, 1} (1.1)

for j ∈ {1, . . . , q}. Then the evolution of each curve is described at each point and time by
the second order quasilinear PDE

V i(t, x) = ki(t, x) , (1.2)

where V is the normal velocity and k is the curvature. Apart from the concurrency condition
at the junction (1.1), another condition appears in the system:

τ j1(t, y1) + τ j20 (t, y2) + τ j3(t, y3) = 0 , (1.3)

with τ(yi) = (−1)yi γx(yi)|γx(yi)| , for j ∈ {1, . . . , q}. This second condition says that the curves form
angles of 120 degrees (at all times).
Since conditions (1.1), (1.2) and (1.3) are purely geometric, additional solutions can be con-
structed simply by re–parametrisation. Hence uniqueness has to be understood in a purely
geometric sense, namely, up to reparametrisations. Moreover there is a tangential degree
of freedom in the definition of the main equation: the motion by curvature of networks is
described by a parabolic system of degenerate PDEs where only the normal movements of
the curves are prescribed. One can take advantage of this property, by specifying a suitable
tangential component of the velocity and turn the problem into a system of non–degenerate
second order quasilinear PDEs, the so–called Special Flow (Definition 2.22).
This approach has been proven successful to show existence of solutions. Indeed, the first
attempt to find strong solutions to the network flow was by Bronsard and Reitich [9], who
provided local existence and uniqueness of solutions to the Special Flow in R2 for admissible
initial regular networks of class C2+α with the sum of the curvature at the junctions equal
to zero. Clearly it is preferable to remove this additional regularity condition on the initial
datum. When the initial datum is a regular network of class C2 without any restriction on
the curvature at the junctions, existence has been established in [38].
Uniqueness for solution to the Special Flow and geometric uniqueness for the original prob-
lem (1.1), (1.2), (1.3) remained open.
Another point that we want to address is the parabolic regularisation of the flow. Bronsard
and Reitich [9] proved that (under suitable conditions) the regularity of the initial datum
is preserved in time. However, it is natural to ask whether the regularity of the evolving
network increases, that is, whether the flow is smooth for positive times.
We state our first result:

Theorem 1.1 (Existence, uniqueness and smoothness of the motion by curvature). Let p ∈
(3,∞) and N0 be a regular network in Rd of class W 2−2/p

p . Then there exists a maximal solution
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(N (t))t∈[0,Tmax)
to the motion by curvature with initial datum N0 in the maximal time interval

[0, Tmax) which is geometrically unique and parametrised by curves of class

W 1
p ((0, Tmax), Lp(0, 1)) ∩ Lp((0, Tmax),W 2

p (0, 1)) .

Furthermore, up to re–parametrisation, the maps γi : [0, Tmax) × [0, 1] → Rd are smooth for all
positive times.

Theorem 3.7 improves the result by Bronsard and Reitich passing from initial data in C2+α

to W
2−2/p
p . Moreover it shows geometric uniqueness of solutions. Combining Theorem 1.1

with [38, Theorem 6.8] we get a fortiori uniqueness for initial regular networks of class C2.
This answers in the positive a question asked in [38]. Finally, it also shows that the flow is
smooth for positive times.
Once the wellposedness of the flow is settled, we investigate what happens at the maximal
time of existence. The study of the long time behaviour of the evolving networks moving
in the plane was undertaken in [39], completed in [37] for trees composed of three curves
and extended to more general cases in [27, 38, 41]. A key element of the analysis are integral
estimates which are quite intricate, due to the presence of the triple junctions.
Our short time existence result allows us to give a new prove of the following:

Theorem 1.2 (Long time behaviour). Let p ∈ (3,∞), N0 an admissible initial network of class
W

2−2/p
p and (N (t))t∈[0,Tmax)

be a maximal solution to the motion by curvature with initial datumN0

in [0, Tmax) with Tmax > 0. Then at least one of the following happens:

i) Tmax =∞ ;

ii) the inferior limit as t↗ Tmax of the length of at least one curve of the network N (t) is zero;

iii) the superior limit as t↗ Tmax of the L2–norm of the curvature of the network is +∞.

Theorem 1.2 was first proven in [39, Theorem 3.18] only for smooth initial data and in di-
mension d = 2. Their proof is based on bounding the L2–norm of all derivatives of the
curvature with the L2–norm of the curvature itself, see [39, pages 257–273]. Our proof is
almost effortless compared to the one in [39] due to the fact that, thanks to our improved
short time existence result, the estimates can be completely avoided.
Furthermore, we stress the fact that our results are valid for every dimension d.
Here is the strategy that allows us to prove Theorem 1.1 and Theorem 1.2. We consider
the Special Flow and linearise it around the initial datum. Then we prove existence and
uniqueness for the linearised problem in Section 3.1. Wellposedness of the linear system
follows by Solonnikov’s theory [44] provided that the system is parabolic and that the com-
plementary conditions hold. Solutions to the Special Flow are obtained by a contraction
argument in Section 3.2. Notice that the choice of the solution spaceW 1

p ((0, Tmax), Lp(0, 1))∩
Lp((0, Tmax),W 2

p (0, 1)) is crucial to define the boundary conditions pointwise and to use the
theory of [44] to solve the associated linear system. Moreover this regularity is needed in the
contraction estimates because of the quasilinear nature of the equations. Clearly the solution
to the Special Flow induces a solution to the motion by curvature of networks, so we get
existence.
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To get geometric uniqueness one has to prove that two solutions differ only by a reparamet-
risation as we show in Section 3.3. Existence and uniqueness of maximal solutions can then
be deduced by standard arguments.
In Section 4 we prove that the flow is smooth for all positive times (Theorem 4.8). The idea
of the proof is based on the so called parameter trick due to Angenent [3]. Although this
strategy has been generalized to several situations [35, 36, 42], it should be pointed out that
our system is not among the cases treated above because of the fully non-linear boundary
condition

3∑
i=1

(−1)y
γix(y)

|γix(y)|
= 0 with y ∈ {0, 1} .

In [22] a strategy has been developed to prove smoothness for positive times of the surface
diffusion flow for triple junction clusters with the same non–linear boundary condition. We
follow that approach and adapt the arguments to our setting to complete the proof of Theo-
rem 1.1.
Thanks to Theorem 1.1 and the quantification of the existence time of solutions to the Special
Flow in terms of the initial values as given in Theorem 3.14 we are then also able to prove
Theorem 1.2 by contradiction.

In this last part of the introduction we describe the existing literature related with the motion
by curvature of networks.
First of all it is worth to mention that the problem of the motion by curvature of networks
has been generalized to the anisotropic setting: [31], [6].
In this paper we describe the evolution till the first singularity and do not investigate what
happens afterwards. Classical solutions “with restarting” have been considered in [27, 34,
38]. Although uniqueness fails in this context, there exists only finitely many solutions.
Moreover, apart from classical solutions (with or without restarting) defined in the frame-
work of classical PDE, there are several generalised (weak) notions of the flow, see for in-
stance [2, 8, 14, 28, 32, 47, 24]. In principle the class of admissible solutions could be much
larger, so one may wonder if these weak solutions still resemble classical ones. A possible
answer comes from showing the regularity of weak solutions. An important progress in this
direction has been made by Kim and Tonegawa [28, 29] for an improved notion of Brakke’s
flow: the evolving varifold is coupled with a finite number of time–dependent mutually dis-
joint open sets. In this setting, when the initial datum is a closed 1–rectifiable set in R2 with
(locally) finite measure, then for almost every time the support of the evolving varifolds con-
sists of embedded W 2

2 curves whose endpoints meet at junctions forming angles of 0, 60 or
120 degrees.
Another way to better understand weak solutions are the so–called weak strong uniqueness
results. The first result in this direction is due to Fischer, Hensel, Laux and Simon [15] prov-
ing uniqueness of their “BV solutions” (see also [25]). If there exists a classical solution to
the evolution of networks that does not undergo topological changes, then the BV solutions
coincide with the classical solutions and in particular uniqueness holds. To this aim they
develop a gradient–flow analogue of the notion of calibrations (for calibrations for minimal
networks we refer to [33, 40, 10, 11, 7]). Just like the existence of a calibration guarantees that
one has reached a global minimum in the energy landscape, the existence of a gradient flow
calibration ensures that the route of steepest descent in the energy landscape is unique and
stable.
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However another question remains completely open: could there be more solutions in the
sense of [15], [28] or [47] than the classical solutions “with restarting” that by their nature go
through singularities and topological changes?

We finally describe the structure of the paper. In Section 2 we define the motion by curvature
of networks and we introduce the solution space together with useful properties. Section 3
is devoted to prove existence of solutions to the motion by curvature and their geometric
uniqueness. Then in Section 4 we explore the regularisation effect of the flow resulting in
the proof of Theorem 1.1. We conclude with the proof of Theorem 1.2 in Section 5 giving a
description of the behaviour of solutions at their maximal time of existence.
Acknowledgements
The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft
(DFG) via the GRK 1692 “Curvature, Cycles, and Cohomology”.

2 Solutions to the Motion by Curvature of Networks

2.1 Preliminaries on function spaces

This paper is devoted to show well-posedness of a second order evolution equation. One
natural solution space is given by

W 1,2
p

(
(0, T )× (0, 1);Rd

)
:= W 1

p

(
(0, T );Lp((0, 1);Rd)

)
∩ Lp

(
(0, T );W 2

p

(
(0, 1);Rd

))
where T represents the time of existence and d ∈ N is any natural number. This space should
be understood as the intersection of two Bochner spaces that are Sobolev spaces defined on
a measure space with values in a Banach space. We give a brief summary in the case that
the measure space is an interval. A detailed introduction on Bochner spaces can be found
in [50].
Let I ⊂ R be an open interval and X be a Banach space. A function f : I → X is called
strongly measurable if it is pointwise limit a.e. of a sequence of piecewise constant functions.
If f : I → X is strongly measurable, then ‖f‖X : I → R is Lebesgue measurable. This
justifies the following definition.

Definition 2.1 (Lp–spaces). Let I ⊂ R be an open interval and X be a Banach space. For
1 ≤ p ≤ ∞, we define the Lp–space

Lp (I;X) :=
{
f : I → X strongly measurable : ‖f‖Lp(I;X) <∞

}
,

where ‖f‖Lp(I;X) := ‖‖f(·)‖X‖Lp(I;R). Furthermore, we let

L1,loc (I;X) :=
{
f : I → X strongly measurable : for all K ⊂ I compact, f|K ∈ L1 (K;X)

}
.

Let I ⊂ R be an open interval, X be a Banach space, f ∈ L1,loc(I;X) and k ∈ N0. The k-th
distributional derivative ∂kxf of f is the functional on C∞0 (I;R) given by

〈φ , ∂kxf〉 := (−1)k
∫
I
f(x)∂kxφ(x)dx .

The distribution ∂kxf is called regular if it is (represented by) a function in L1,loc
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Definition 2.2 (Sobolev spaces). Let m ∈ N, I ⊂ R be an open interval and X be a Banach
space. For 1 ≤ p ≤ ∞ the Sobolev space of order m ∈ N is defined as

Wm
p (I;X) :=

{
f ∈ Lp(I;X) : ∂kxf ∈ Lp(I;X) for all 1 ≤ k ≤ m

}
.

The space Wm
p (I;X) is a Banach space with the norm

‖f‖Wm
p (I;X) :=

{ (∑
0≤k≤m‖∂kxf‖

p
Lp(I;X)

)1/p
, 1 ≤ p <∞ ,

max0≤k≤m‖∂kxf‖L∞(I;X) , p =∞ .
(2.1)

Elements in the solution space

ET := W 1
p

(
(0, T );Lp((0, 1); (Rd)m)

)
∩ Lp

(
(0, T );W 2

p

(
(0, 1); (Rd)m

))
are thus functions f ∈ Lp

(
(0, T );Lp

(
(0, 1); (Rd)m)

))
possessing one distributional deriva-

tive with respect to time ∂tf ∈ Lp
(
(0, T );Lp

(
(0, 1); (Rd)m)

))
. Furthermore, for almost every

t ∈ (0, T ), the function f(t) lies in W 2
p

(
(0, 1); (Rd)m)

)
and thus has two spacial derivatives

∂x(f(t)), ∂2x (f(t)) ∈ Lp
(
(0, 1); (Rd)m)

)
. One easily sees that the functions t 7→ ∂kx(f(t)) for

k ∈ {1, 2} lie in Lp
(
(0, T );Lp

(
(0, 1); (Rd)m)

))
.

The space ET is often denoted by W 1,2
p

(
(0, T )× (0, 1); (Rd)m)

)
. We also use the notation

‖·‖ET
:= ‖·‖

W 1,2
p

where ‖·‖
W 1,2
p

is defined in (2.1).

Definition 2.3 (Sobolev–Slobodeckij spaces). Given d ∈ N, p ∈ [1,∞) and θ ∈ (0, 1) the
Slobodeckij semi-norm of an element f ∈ Lp

(
(0, 1);Rd

)
is defined as

[f ]θ,p :=

(∫ 1

0

∫ 1

0

|f(x)− f(y)|p

|x− y|θp+1
dx dy

)1/p

.

Let s ∈ (0,∞) be non–integer. The Sobolev–Slobodeckij space W s
p

(
(0, 1);Rd

)
is defined by

W s
p

(
(0, 1);Rd

)
:=

{
f ∈W bscp

(
(0, 1);Rd

)
:
[
∂bscx f

]
s−bsc,p

<∞
}
.

Theorem 2.4. Let T be positive, p ∈ (3,∞) and α ∈ (0, 1− 3/p]. We have continuous embeddings

W 1,2
p ((0, T )× (0, 1)) ↪→ C

(
[0, T ];W 2−2/p

p ((0, 1))
)
↪→ C

(
[0, T ];C1+α ([0, 1])

)
.

Proof. The first embedding follows from [12, Lemma 4.4], the second is an immediate conse-
quence of the Sobolev Embedding Theorem [48, Theorem 4.6.1.(e)].

Similarly, we can specify the spaces of the boundary values.

Lemma 2.5. Let T be positive, d ∈ N and p ∈ [1,∞). Then the operator

W 1,2
p ((0, T )× (0, 1);R)→W

1/2−1/2p
p

(
(0, T );Rd

)
,

f 7→ (fx)|x=0

is linear and continuous.
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Proof. This follows from [44, Theorem 5.1].

Another important feature of Sobolev Slobodeckij spaces is their Banach algebra property.

Proposition 2.6. Let I ⊂ R be a bounded open interval, p ∈ [1,∞) and s ∈ (0, 1) with s− 1
p > 0.

Then for f, g ∈W s
p (I;R) the product fg lies in W s

p (I;R) and satisfies

‖fg‖W s
p (I;R) ≤ C(s, p)

(
‖f‖C(I) ‖g‖W s

p (I;R) + ‖g‖C(I) ‖f‖W s
p (I;R)

)
.

Furthermore, given a smooth function F : Rd → R, d ∈ N, and a function f ∈ W s
p

(
I;Rd

)
, the

function t 7→ F (f(t)) lies in W s
p (I;R).

Proof. As W s
p ((0, 1);R) ↪→ C(I;R) due to the Sobolev Embedding Theorem [48, Theorem

4.6.1.(e)], we obtain for f, g ∈W s
p (I;R) the estimate

‖fg‖Lp(I;R) ≤ ‖f‖C(I) ‖g‖Lp(I;R) ≤ C(s, p)‖f‖W s
p (I;R) ‖g‖W s

p (I;R)

and

[fg]ps,p =

∫
I

∫
I

|(fg)(x)− (fg)(y)|p

|x− y|sp+1
dx dy

≤
∫
I

∫
I

|g(x)|p|f(x)− f(y)|p + |f(y)|p|g(x)− g(y)|p

|x− y|sp+1
dx dy

≤ ‖g‖p
C(I)

[f ]ps,p + ‖f‖C(I) [g]ps,p ≤ C(s, p)‖f‖W s
p (I;R) ‖g‖W s

p (I;R) .

Let F : Rd → R be smooth and f ∈ W s
p

(
I;Rd

)
. As f lies in C(I;Rd), there exists R > 0 such

that f(I) ⊂ BR(0). Thus we obtain

‖F (f)‖pLp(I;R) =

∫
I
|F (f(x))|pdx ≤ max

z∈BR(0)
|F (z)|p|I|

where |I| denotes the length of the interval I . Using

|F (f(x))− F (f(y))| =
∣∣∣∣∫ 1

0
(DF ) (ξf(x) + (1− ξ)f(y)) dξ (f(x)− f(y))

∣∣∣∣
≤ max

z∈BR(0)
|DF (z)||f(x)− f(y)|

we obtain

[F (f)]ps,p =

∫
I

∫
I

|F (f(x))− F (f(y))|p

|x− y|sp+1
dx dy ≤ [f ]ps,p max

z∈BR(0)
|DF (z)|p .

To show well-posedness of evolution equations it is important to have embeddings with
constants independent of the time interval one is working with. To this end one needs to
change the norm on the solution space. In the following, we collect the results that are
needed in our specific case.
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Lemma 2.7. Let p ∈ (3,∞). For every T > 0,

|||g|||
W 1,2
p ((0,T )×(0,1)) := ‖g‖

W 1,2
p ((0,T )×(0,1)) + ‖g(0)‖

W
2−2/p
p ((0,1))

defines a norm on W 1,2
p ((0, T )× (0, 1)) that is equivalent to the usual one.

Proof. This is a consequence of Theorem 2.4.

Lemma 2.8 (Extension Operator, I). Let T0 be positive, T ∈ (0, T0) and p ∈ (3,∞). There exists
a linear operator

E : W 1,2
p ((0, T )× (0, 1))→W 1,2

p ((0, T0)× (0, 1))

such that for all g ∈W 1,2
p ((0, T )× (0, 1)), (Eg)|(0,T ) = g and

‖Eg‖
W 1,2
p ((0,T0)×(0,1)) ≤ C

(
‖g‖

W 1,2
p ((0,T )×(0,1)) + ‖g(0)‖

W
2−2/p
p (0,1)

)
= C|||g|||

W 1,2
p ((0,T )×(0,1))

with a constant C = C(p, T0) depending only on p and T0.

Proof. In the case that g(0) = 0, the function g can be extended to (0,∞) by reflecting it with
respect to the axis t = T . The general statement can be deduced from this case by solving a
linear parabolic equation of second order and using results on maximal regularity as given
in [42, Proposition 3.4.3].

Given d ∈ N we obtain an extension operator on the space W 1,2
p

(
(0, T )× (0, 1);Rd

)
by ap-

plying E to every component.

Lemma 2.9. Let p ∈ (1,∞) and α > 1
p . For every positive T ,

|||b|||Wα
p ((0,T );R) := ‖b‖Wα

p ((0,T );R) + |b(0)|

defines a norm on Wα
p ((0, T );R) that is equivalent to the usual one.

Proof. This is an immediate consequence of the Sobolev Embedding Theorem [48, Theorem
4.6.1.(e)].

Lemma 2.10 (Extension Operator, II). Let T be positive, p ∈ (1,∞) and α > 1
p . There exists a

linear operator
E : Wα

p ((0, T );R)→Wα
p ((0,∞);R)

such that for all b ∈Wα
p ((0, T );R), (Eb)|(0,T ) = b and

‖Eb‖Wα
p ((0,∞);R) ≤ Cp

(
‖b‖Wα

p ((0,T );R) + |b(0)|
)

= Cp|||b|||Wα
p ((0,T );R)

with a constant Cp depending only on p.

Proof. In the case b(0) = 0 the operator obtained by reflecting the function with respect to
the axis t = T has the desired properties. The general statement can be deduced from this
case using surjectivity of the temporal trace |t=0 : Wα

p ((0,∞);R)→ R .

Theorem 2.11 (Uniform embedding I). Let p ∈ (3,∞) and T0 be positive. There exist constants
C(p) and C (T0, p) such that for all T ∈ (0, T0] and all g ∈W 1,2

p ((0, T )× (0, 1)),

‖g‖C([0,T ];C1([0,1])) ≤ C(p) ‖g‖
C
(
[0,T ];W

2−2/p
p ((0,1))

) ≤ C (T0, p) |||g|||W 1,2
p ((0,T )×(0,1)) .
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Proof. Let T ∈ (0, T0] be arbitrary, g ∈ W 1,2
p ((0, T )× (0, 1)) and Eg the extension according

to Lemma 2.8. Then Eg lies in W 1,2
p ((0, T0)× (0, 1)) and Theorem 2.4 and Lemma 2.8 imply

‖g‖
C
(
[0,T ];W

2−2/p
p ((0,1))

) ≤ ‖Eg‖
C
(
[0,T0];W

2−2/p
p ((0,1))

) ≤ C (T0, p) ‖Eg‖W 1,2
p ((0,T0)×(0,1))

≤ C (T0, p) |||g|||W 1,2
p ((0,T )×(0,1)) .

Theorem 2.12 (Uniform embedding II). Let p ∈ (3,∞), θ ∈
(
1+1/p
2−2/p , 1

)
, δ ∈ (0, 1− 1/p) and T0

be positive. There exists a constant C (T0, p, θ, δ) > 0 such that for all T ∈ (0, T0] there holds the
embedding

W 1,2
p ((0, T )× (0, 1)) ↪→ C(1−θ)(1−1/p−δ) ([0, T ];C1 ([0, 1])

)
and all g ∈W 1,2

p ((0, T )× (0, 1)) satisfy the uniform estimate

‖g‖
C(1−θ)(1−1/p−δ)([0,T ];C1([0,1]))

≤ C (T0, p, θ, δ) |||g|||W 1,2
p ((0,T )×(0,1)) .

Proof. By [43, Corollary 26] there holds for any δ ∈ (0, 1− 1/p) the continuous embedding

W 1,2
p ((0, T0)× (0, 1)) ↪→ C1−1/p−δ ([0, T0];Lp((0, 1)))

with operator norm depending on T0. Furthermore, Theorem 2.4 gives

W 1,2
p ((0, T0)× (0, 1)) ↪→ C

(
[0, T0];W

2−2/p
p ((0, 1))

)
.

The results in [48] yield that the real interpolation space satisfies

W θ(2−2/p)
p ((0, 1)) =

(
Lp((0, 1)),W 2−2/p

p ((0, 1))
)
θ,p

with equivalent norms. In particular, for all f ∈W θ(2−2/p)
p ((0, 1)) there holds the estimate

‖f‖
W
θ(2−2/p)
p ((0,1))

≤ C ‖f‖1−θLp((0,1))
‖f‖θ

W
2−2/p
p ((0,1))

.

A direct computation using the above estimate shows that for all α ∈ (0, 1),

C
(

[0, T0];W
2−2/p
p ((0, 1))

)
∩ Cα ([0, T0];Lp((0, 1))) ↪→ C(1−θ)α

(
[0, T0];W

θ(2−2/p)
p ((0, 1))

)
which yields for all δ ∈ (0, 1− 1/p) the continuous embedding

W 1,2
p ((0, T0)× (0, 1)) ↪→ C(1−θ)(1−1/p−δ)

(
[0, T0];W

θ(2−2/p)
p ((0, 1))

)
.

Due to θ (2− 2/p)− 1
p > 1 the Sobolev Embedding Theorem yields

W 1,2
p ((0, T0)× (0, 1)) ↪→ C(1−θ)(1−1/p−δ) ([0, T0];C1([0, 1])

)
.

The claim now follows using the extension operator E constructed in Lemma 2.8 with simi-
lar arguments as in the proof of Theorem 2.11.
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2.2 Motion by curvature of networks

Let d ∈ N, d ≥ 2. Consider a curve γ : [0, 1] → Rd of class C1. A curve is said to be regular
if |γx(x)| 6= 0 for every x ∈ [0, 1]. Let us denote with s the arclength parameter. We remind
that ∂s = ∂x

|γx| . If a curve γ is of class C1 and regular, its unit tangent vector is given by
τ = γs = γx

|γx| . The curvature vector of a regular C2–curve γ is defined by

κ := γss = τs =
γxx

|γx|2
− 〈γxx, γx〉 γx

|γx|4
.

The curvature is given by κ = |τs|.

Definition 2.13. A network N is a connected set in Rd consisting of a finite union of regular
curves N i that meet at their endpoints in junctions. Each curve N i admits a regular C1–
parametrisation, namely a map γi : [0, 1] → Rd of class C1 with |γix| 6= 0 on [0, 1] and
γi ([0, 1]) = N i.

Although a network is a set by definition, we will mainly deal with its parametrisations. It
is then natural to speak about the regularity of these maps.

Definition 2.14. Let k ∈ N, k ≥ 2, and 1 ≤ p ≤ ∞ with p > 1
k−1 . A network N is of class Ck

(or W k
p , respectively) if it admits a regular parametrisation of class Ck (or W k

p , respectively).

In this paper we restrict to the class of regular networks.

Definition 2.15. A network is called regular if its curves meet at triple junctions forming
equal angles.

Notice that this notion is geometric in the sense that it does not depend on the choice of the
parametrisations of the curves of the network N .

Definition 2.16 (Geometrically admissible initial datum). A networkN0 = ∪mi=1σ
i([0, 1]) is a

geometrically admissible initial datum for the motion by curvature if it is regular and each of its
curves can be parametrised by a regular curve σi ∈W 2−2/p

p ([0, 1],Rd) with p ∈ (3,∞).

Remark 2.17. For p ∈ (3,∞) the Sobolev Embedding Theorem [48, Theorem 4.6.1.(e)] implies

W 2−2/p
p

(
(0, 1);Rd

)
↪→ C1+α

(
[0, 1];Rd

)
for α ∈ (0, 1− 3/p). In particular, any admissible initial network is of class C1 and the angle
condition at the boundary is well-defined.

We define now the motion by curvature of regular networks: a time dependent family of
regular networks evolves with normal velocity V i equal to the curvature vector at any point
and any time, namely

V i = κi .

To be more precise, given a time dependent family of curves γi, we denote by P i : Rd → Rd
the projection onto the normal space to γi, namely P i := Id− γis ⊗ γis. The motion equation
reads as

P iγit = κi .
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To write the precise system of equations that describe the motion by curvature of a time de-
pendent family of network it is convenient to describe more in detail the structure/topology
of the initial datum, and thus the structure/topology of the evolving network.
Let m, `, q ∈ N and suppose that we consider a regular network N0 composed of m curves
with ` endpoints P 1, . . . , P ` and with q triple junctions O1, . . . ,Oq. We parametrise the
curves of the network in such a way that if P i is an endpoint of order one of a curve N i

0

and σi is its parametrisation, then σi(1) = P i. Consider now one of the triple junctions, say
Oj , where the curves N j1

0 ,N
j2
0 and N j3

0 meet (with j1, j2, j3 not all equal). If σj1 , σj2 and
σj3 are the parametrisations of N j1

0 ,N
j2
0 and N j3

0 we cannot impose that σj1(0) = σj2(0) =
σj3(0) = Oj whatever j is, because both endpoints of a curve can be part of a triple junction
(see for instance the networks composed of five or two curves in the picture below).

P 2

P 3

P 4

P 1

N 2
0

N 1
0

N 3
0

N 4
0

N 5
0

O1

O2 P 1

N 1
0

N 2
0

O1

Figure 1: A network composed of five curves and another composed of two.

We will instead have that

σj1(y1) = σj2(y2) = σj3(y3) = Oj with j ∈ {1, . . . , q}, y1, y2, y3 ∈ {0, 1} .

The fact that y1, y2, y3 could be either 0 or 1 affects how the angle condition reads, that it

(−1)y1τ j10 (y1) + (−1)y2τ j20 (y2) + (−1)y3τ j30 (y3) = 0 ,

where τ0 = σs.

Definition 2.18 (Solutions to the motion by curvature). Letm, `, q ∈ N, p ∈ (3,∞) and T > 0.
Let N0 be a geometrically admissible initial datum composed of m curves, possibly with
endpoints P 1, . . . , P ` and with triple junctionsO1, . . . ,Oq, parametrised as described above.
A time dependent family of networks (N (t)) is a solution to the motion by curvature in [0, T ]
with initial datum N0 if there exists a collection of time dependent parametrisations

γin ∈W 1
p (In;Lp((0, 1);Rd)) ∩ Lp(In;W 2

p ((0, 1);Rd)) ,

with n ∈ {0, . . . , N} for some N ∈ N, In := (an, bn) ⊂ R, an ≤ an+1, bn ≤ bn+1, an < bn and⋃
n(an, bn) = (0, T ) such that for all n ∈ {0, . . . , N} and t ∈ In, γn(t) =

(
γ1(t), . . . , γm(t)

)
is a

11



regular parametrisation of N (t). Moreover, each γn needs to satisfy the following system:
P iγit(t, x) = κi(t, x) motion by curvature,
γk(t, 1) = P k fixed endpoints,
γj1(t, y1) = γj2(t, y2) = γj3(t, y3) concurrency condition,
(−1)y1τ j1(t, y1) + (−1)y2τ j2(t, y2) + (−1)y3τ j3(t, y3) = 0 angle condition,

(2.2)
for almost every t ∈ In, x ∈ (0, 1), for all i ∈ {1, . . . ,m}, k ∈ {1, . . . , `}, j ∈ {1, . . . , q}. Finally,
we ask that γn(an, [0, 1]) parametrises N0 when an = 0.

Remark 2.19. In the motion by curvature equation only the normal component of the velocity
γit is prescribed. This does not mean that there is no tangential motion. Indeed, a non–trivial
tangential velocity is generally needed to allow for motion of the triple junctions.
Remark 2.20. We are interested in finding a time–dependent family of networks (N (t)) solv-
ing the motion by curvature. Our notion of solution allows the network to be paramet-
rised by different sets of functions in different (but overlapping) time intervals. Namely
a solution can be parametrised by γ = (γ1, . . . , γm) with γi : (a0, b0) × [0, 1] → Rd and
η = (η1, . . . , ηm) with ηi : (a1, b1)× [0, 1]→ Rd if a0 ≤ a1 < b0 ≤ b1 and γi((a1, b0)× [0, 1]) =
ηi((a1, b0) × [0, 1]). Requiring that the family of networks (N (t)) is parametrised by one
map γ(t) = (γ1(t), . . . , γm(t)) in the whole time interval of existence [0, T ] as in [38] gives a
slightly stronger definition of the motion by curvature in comparison to Definition 2.18. This
difference does not affect the proof of the short time existence result, but in principle using
our definition the maximal time interval of existence could be longer.
The first step to find solutions to the motion by curvature is to turn system (2.2) into a system
of quasilinear parabolic PDEs by choosing a suitable tangential velocity T . We choose T such
that

γit(t, x) = P iγit(t, x) +
〈
γit(t, x) , τ i(t, x)

〉
τ i(t, x) = κi(t, x) + T i(t, x)τ i(t, x) =

γixx(t, x)

|γix(t, x)|2
.

Since the expression of the curvature reads as

κi(t, x) =
γixx(t, x)

|γix(t, x)|2
−
〈
γixx(t, x)

|γix(t, x)|2
, τ i(t, x)

〉
τ i(t, x)

we choose

T i(t, x) =

〈
γixx(t, x)

|γix(t, x)|2
, τ i(t, x)

〉
.

The equation γit = γixx
|γix|2

is called Special Flow.

Definition 2.21 (Admissible initial parametrisation). Let p ∈ (3,∞). An admissible initial
parametrisation for a network N0 composed of m curves, possibly with endpoints P 1, . . . , P `

and with q triple junctions O1, . . . ,Oq is a tuple

σ = (σ1, . . . , σm)

where
⋃
i σ

i([0, 1]) = N0, with σi regular and of class W 2−2/p
p ((0, 1),Rd). The endpoints

are parametrised by σk(t) = P k with k ∈ {1, . . . , `}, the triple junctions by σj1(y1) =
σj2(y2) = σj3(y3) with j ∈ {1, . . . , q}, y1, y2, y3 ∈ {0, 1}. Moreover at the junctions it holds
(−1)y1τ j10 (y1) + (−1)y2τ j20 (y2) + (−1)y3τ j30 (y3) = 0.
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Notice that it follows by the very definition that a geometrically admissible network admits
an admissible parametrisation.

Definition 2.22 (Solution of the Special Flow). Let T > 0 and p ∈ (3,∞). Consider an
admissible initial parametrisation σ = (σ1, . . . , σm) for a network N0 composed of m curves
in Rd with ` endpoints P 1, . . . , P ` ∈ Rd parametrised by γk(1) = P k and q triple junctions
O1, . . . ,Oq parametrised by σj1(y1) = σj2(y2) = σj3(y3). Then we say that γ = (γ1, . . . , γm)
is a solution of the Special Flow in the time interval [0, T ] with initial datum σ if

γ =
(
γ1, . . . , γm

)
∈ ET = W 1

p ((0, T );Lp((0, 1); (Rd)m)) ∩ Lp((0, T );W 2
p ((0, 1); (Rd)m)) ,

|γix(t, x)| 6= 0 for all (t, x) ∈ [0, T ] × [0, 1] and the following system is satisfied for almost
every x ∈ (0, 1), t ∈ (0, T ), for every i ∈ {1, . . . ,m}, k ∈ {1, . . . , `}, j ∈ {1, . . . , q}:

γit(t, x) = γixx(t,x)

|γix(t,x)|
2 Special Flow,

γk(t, 1) = P k fixed endpoints,
γj1(t, y1) = γj2(t, y2) = γj3(t, y3) concurrency condition,

(−1)y1 γ
j1
x (t,y1)∣∣∣γj1x (t,yi)

∣∣∣ + (−1)y2 γ
i2
x (t,y2)∣∣∣γi2x (t,y2)

∣∣∣ + (−1)y3 γ
j3
x (t,y3)∣∣∣γj3x (t,y3)

∣∣∣ = 0 angle condition,

γi(0, x) = σi(x) initial datum.
(2.3)

Remark 2.23. Both in [9] and in [39] the authors define the motion by curvature introducing
directly the Special Flow. This is not restrictive to get a short time existence result because a
solution of the Special Flow as defined in Definition 2.22 induces a solution of the motion by
curvature in the sense of Definition 2.18, as shown in Theorem 3.16 below. However, we will
see that it is not easy to deduce geometric uniqueness of solutions to the motion by curvature
from uniqueness of solutions to the Special Flow.

For the sake of presentation, we will often restrict to the motion by curvature of a Triod
and we give the proofs in full details for this simple configuration. The adaptation to more
general situations is easy, nevertheless we will carefully explain how to deal with it in the
Appendix. To fix the precise notation we write now Definition 2.18, Definition 2.21, Defini-
tion 2.22 in the specific case of Triods.

Definition 2.24. A Triod T =
⋃3
i=1 γ

i([0, 1]) is a network composed of three regular C1–
curves γi : [0, 1] → Rd that intersect each other at the triple junction O := γ1(0) = γ2(0) =
γ3(0). The other three endpoints of the curves γi(1) with i ∈ {1, 2, 3} coincide with three
points P i ∈ Rd, that is, P i := γi (1). The Triod is called regular if it is a regular network.
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P 1
σ1

σ3

σ2

O

P 3

P 2

Figure 2: A regular Triod in R2.

Definition 2.25 (Solutions to the motion by curvature of a Triod). Let p ∈ (3,∞) and T >
0. Let T0 be a geometrically admissible initial Triod with endpoints P 1, P 2, P 3. A time
dependent family of Triods (T(t)) is a solution to the motion by curvature in [0, T ] with initial
datum T0 if there exists a collection of time dependent parametrisations

γin ∈W 1
p (Ij ;Lp((0, 1);Rd)) ∩ Lp(Ij ;W 2

p ((0, 1);Rd)) ,

with n ∈ {0, . . . , N} for some N ∈ N, In := (an, bn) ⊂ R, an ≤ an+1, bn ≤ bn+1, an < bn and⋃
n(an, bn) = (0, T ) such that for all n ∈ {0, . . . , N} and t ∈ In, γn(t) =

(
γ1(t), γ2(t), γ3(t)

)
is

a regular parametrisation of T(t). Moreover, each γn needs to satisfy the following system:
P iγit(t, x) = κi(t, x) motion by curvature,
γi(t, 1) = P i fixed endpoints,
γ1(t, 0) = γ2(t, 0) = γ3(t, 0) concurrency condition,∑3

i=1 τ
i(t, 0) = 0 angle condition,

(2.4)

for almost every t ∈ In, x ∈ (0, 1) and for i ∈ {1, 2, 3}. Finally, we ask that γn(an, [0, 1]) = T0

whenever an = 0.

Definition 2.26 (Admissible initial parametrisation). Let p ∈ (3,∞). An admissible initial
parametrisation for a Triod T0 is a triple σ = (σ1, σ2, σ3) where

⋃
i σ

i([0, 1]) = T0, σ1(0) =

σ2(0) = σ3(0) and
∑3

i=1
σix(0)
|σix(0)|

= 0 with σi regular and of class W 2−2/p
p ((0, 1),Rd).

Definition 2.27 (Solution of the Special Flow). Let T > 0 and p ∈ (3,∞). Consider an
admissible initial parametrisation σ = (σ1, σ2, σ3) for a Triod T0 in Rd with σi(1) = P i ∈ Rd.
Then we say that γ = (γ1, γ2, γ3) is a solution of the Special Flow in the time interval [0, T ] with
initial datum σ if

γ =
(
γ1, γ2, γ3

)
∈ ET = W 1

p ((0, T );Lp((0, 1); (Rd)3)) ∩ Lp((0, T );W 2
p ((0, 1); (Rd)3)) ,

|γix(t, x)| 6= 0 for all (t, x) ∈ [0, T ]× [0, 1] and the following system is satisfied for i ∈ {1, 2, 3}
and for almost every x ∈ (0, 1), t ∈ (0, T ):

γit(t, x) = γixx(t,x)

|γix(t,x)|
2 Special Flow,

γi(t, 1) = P i fixed endpoints,
γ1(t, 0) = γ2(t, 0) = γ3(t, 0) concurrency condition,∑3

i=1
γix(t,0)
|γix(t,0)|

= 0 angle condition,

γi(0, x) = σi(x) initial datum.

(2.5)
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3 Existence and Uniqueness of the Motion by Curvature

3.1 Existence and uniqueness of the linearised Special Flow

For the moment we restrict to Triods. We refer to the Appendix for the generalizations
needed in the case of more general networks.
We fix an admissible initial parametrisation σ = (σ1, σ2, σ3) of a triod. Linearising the main
equation of system (2.5) and the angle condition at x = 0 around the initial datum and
considering the principal part of the respective linearisation we obtain

γit(t, x)− 1

|σix(x)|2
γixx(t, x) =

(
1

|γix(t, x)|2
− 1

|σix(x)|2

)
γixx(t, x) (3.1)

and

−
3∑
i=1

(
γix
|σix|
−
σix
〈
γix, σ

i
x

〉
|σix|3

)
=

3∑
i=1

((
1

|γix|
− 1

|σix|

)
γix +

σix
〈
γix, σ

i
x

〉
|σix|3

)
, (3.2)

where in (3.2) we have omitted the dependence of σix and γix on 0 and (t, 0), respectively. The
concurrency and the fixed endpoints conditions are already linear and affine. We obtain the
following linearised system for a general right hand side (f, η, b, ψ).

γit(t, x)− 1
|σix(x)|

2 γ
i
xx(t, x) = f i(t, x) , t ∈ (0, T ) , x ∈ (0, 1) , i ∈ {1, 2, 3} ,

γ(t, 1) = η(t) , t ∈ [0, T ] ,

γ1 (t, 0)− γ2 (t, 0) = 0 , t ∈ [0, T ] ,

γ2(t, 0)− γ3 (t, 0) = 0 , t ∈ [0, T ] ,

−
∑3

i=1

(
γix(t,0)
|σix(0)|

− σix(0)〈γix(t,0),σix(0)〉
|σix(0)|3

)
= b(t) , t ∈ [0, T ] ,

γ (0, x) = ψ (x) , x ∈ [0, 1] .

(3.3)

Definition 3.1 (Linear compatibility conditions). Let p ∈ (3,∞). A function ψ = (ψ1, ψ2, ψ3)

of class W 2−2/p
p

(
(0, 1); (Rd)3

)
satisfies the linear compatibility conditions for system (3.3) with

respect to given functions η ∈ W
1−1/2p
p ((0, T ); (Rd)3), b ∈ W

1/2−1/2p
p ((0, T );Rd) if for i, j ∈

{1, 2, 3} it holds ψi(0) = ψj(0), ψi(1) = ηi(0) and

−
3∑
i=1

(
ψix(0)

|σix(0)|
−
σix(0)

〈
ψix(0), σix(0)

〉
|σix(0)|3

)
= b(0) .

We want to show that system (3.3) admits a unique solution γ = (γ1, γ2, γ3) inET . The result
follows from the classical theory for linear parabolic systems by Solonnikov [44] provided
that the system is parabolic and that the complementary conditions hold (see [44, p. 11]). Both
the parabolicity and the complementary (initial and boundary) conditions have been proven
in [9] when the ambient space is R2. Parabolicity does not depend on the dimension of the
ambient space. We underline the fact that to prove the complementary conditions we follow
a different and simpler strategy with respect to [9]. Our proof is based on the fact that the
complementary conditions at the boundary follow from the Lopatinskii–Shapiro condition (see
for instance [13, pages 11–15]).
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Definition 3.2 (Lopatinskii–Shapiro condition). Let λ ∈ C with <(λ) > 0 be arbitrary. The
Lopatinskii–Shapiro condition for system (3.3) is satisfied at the triple junction if every solu-
tion % = (%1, %2, %3) ∈ C2([0,∞), (C2)3) to

λ%i(x)− 1
|σix(0)|2

%ixx(x) = 0 , x ∈ [0,∞) , i ∈ {1, 2, 3} ,
%1(0)− %2(0) = 0 ,

%2(0)− %3(0) = 0 ,∑3
i=1

(
%ix(0)
|σix(0)|

− σix(0)〈%ix(0),σix(0)〉
|σix(0)|3

)
= 0

(3.4)

which satisfies limx→∞|%i(x)| = 0 is the trivial solution.

Similarly, the Lopatinskii–Shapiro condition for system (3.3) is satisfied at the fixed end-
points if every solution % = (%1, %2, %3) ∈ C2([0,∞), (C2)3) to{

λ%i(x)− 1
|σix(0)|2

%ixx(x) = 0 , x ∈ [0,∞) , i ∈ {1, 2, 3} ,
%i(0) = 0 , i ∈ {1, 2, 3}

which satisfies limx→∞|%i(x)| = 0 is the trivial solution.

Lemma 3.3. The Lopatinskii–Shapiro condition is satisfied.

Proof. We first check the condition at the triple junction. Let % be a solution to (3.4) satisfying
limx→∞|%i(x)| = 0. Due to the specific exponential representation of solutions to the linear
system (3.4), one observes that also the derivatives of %i up to order two decay to zero as
x tends to infinity. We multiply λ%i(x) − 1

|σix(0)|2
%ixx(x) = 0 by |σix(0)|P i%i(x) with P i :=

Id − σis(0) ⊗ σis(0), then we integrate and sum. Note that in P i we only want to project the
real part of a function. So, P i is the identity on the complex part and as consequence we get
that

P i%i = P i%i , P i%ix = P i%ix ,

and with the fact that σis(0) · P iρi = 0 = σis(0) · P iρix it follows that

%i · P i%i = P i%i · P i%i = |P i%i|2 , %ix · P i%ix = P i%ix · P i%ix = |P i%ix|2 .

Using that the boundary conditions can be written as %1(0) = %2(0) = %3(0) and

3∑
i=1

P i

(
%ix(0)

|σix(0)|

)
=

3∑
i=1

%ix(0)

|σix(0)|
−
σix(0)

〈
%ix(0), σix(0)

〉
|σix(0)|3

= 0 ,
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we obtain

0 =

3∑
i=1

∫ ∞
0

λ|σix(0)||P i(%i(x))|2 − 1

|σix(0)|
〈
%ixx(x),P i%i(x)

〉
dx

=

3∑
i=1

∫ ∞
0

λ|σix(0)||P i(%i(x))|2 +
|P i(%ix(x))|2

|σix(0)|
dx−

3∑
i=1

1

|σix(0)|
〈
P i%ix(0), %i(0)

〉
=

3∑
i=1

∫ ∞
0

λ|σix(0)||P i(%i(x))|2 +
|P i(%ix(x))|2

|σix(0)|
dx−

〈
%1(0),

3∑
i=1

P i

(
%ix(0)

|σix(0)|

)〉

=
3∑
i=1

∫ ∞
0

λ|σix(0)||P i(%i(x))|2 +
|P i(%ix(x))|2

|σix(0)|
dx .

As a consequence we get that P i(%i(x)) = 0 for all x ∈ [0,∞) and i ∈ {1, 2, 3} and in
particular P i(%1(0)) = 0 for all i ∈ {1, 2, 3}. As the orthogonal complements of σix(0) with
i ∈ {1, 2, 3} span all Rd, we conclude that %i(0) = 0 for all i ∈ {1, 2, 3}. Repeating the
argument and testing the motion equation by |σix(0)|〈%i(x), σis(0)〉σis(0) we can conclude that
%i(x) = 0 for every x ∈ [0,∞). Indeed, we obtain

3∑
i=1

λ|σix(0)|
∫ ∞
0
|
〈
%i(x), σis(0)

〉
|2 dx+

3∑
i=1

1

|σix(0)|

∫ ∞
0
|
〈
%ix(x), σis(0)

〉
|2 dx

+
3∑
i=1

1

|σix(0)|
〈
%i(0), σis(0)

〉 〈
%ix(0), σis(0)

〉
= 0 . (3.5)

This time the boundary condition vanishes since we get %i(0) = 0 from the previous step.
Taking again the real part of (3.5) we can conclude that

〈
%i(x), σis(0)

〉
= 0 for all x ∈ [0,∞).

Hence %i(x) = 0 for every x ∈ [0,∞) as desired.
The condition at the fixed endpoints follows in exactly the same way using the boundary
condition %i(0) = 0.

Given T > 0 we introduce the spaces

ET :=
{
γ ∈ ET , γ

1(t, 0) = γ2(t, 0) = γ3(t, 0) for i ∈ {1, 2, 3}, t ∈ [0, T ]
}

,

FT :=
{

(f, η, 0, b, ψ) with f ∈ Lp((0, T );Lp((0, 1); (Rd)3)), η ∈W 1−1/2p
p ((0, T ); (Rd)3) ,

0 ∈W 1−1/2p
p ((0, T );R2n) , b ∈W 1/2−1/2p

p ((0, T );Rd) , ψ ∈W 2−2/p
p ((0, 1); (Rd)3)

such that the linear compatibility conditions in Definition 3.1 hold}.

Theorem 3.4. Let p ∈ (3,∞). For every T > 0 system (3.3) has a unique solution γ ∈ ET provided
that f ∈ Lp((0, T );Lp((0, 1); (Rd)3)), η ∈ W 1−1/2p

p ((0, T ); (Rd)3) b ∈ W 1/2−1/2p
p ((0, T );Rd) and

ψ ∈ W 2−2/p
p ((0, 1); (Rd)3) fulfil the linear compatibility conditions given in Definition 3.1. More-

over, there exists a constant C = C(T ) > 0 such that the following estimate holds:

‖γ‖ET
≤ C

(
‖f‖Lp((0,T );Lp((0,1))) + ‖η‖

W
1−1/2p
p ((0,T ))

+ ‖b‖
W

1/2−1/2p
p ((0,T ))

+ ‖ψ‖
W

2−2/p
p ((0,1))

)
.

Proof. This follows from [44, Theorem 5.4].
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As explained in the Appendix, repeating the previous arguments and applying again [44,
Theorem 5.4] one gets the more general:

Theorem 3.5. Let p ∈ (3,∞). For every T > 0 system (A.3) has a unique solution γ ∈ ET provided
that f ∈ Lp((0, T );Lp((0, 1); (Rd)m)), η ∈ W

1−1/2p
p ((0, T ); (Rd)`) b ∈ W

1/2−1/2p
p ((0, T ); (Rd)q)

and ψ ∈ W
2−2/p
p ((0, 1); (Rd)m) fulfil the linear compatibility conditions given in Definition A.1.

Moreover, there exists a constant C = C(T ) > 0 such that the following estimate holds:

‖γ‖ET
≤ C

(
‖f‖Lp((0,T );Lp((0,1))) + ‖η‖

W
1−1/2p
p ((0,T ))

+ ‖b‖
W

1/2−1/2p
p ((0,T ))

+ ‖ψ‖
W

2−2/p
p ((0,1))

)
.

Theorem 3.5 implies in particular that the linear operator LT : ET → FT defined by

LT (γ) =



(
γit −

γixx
|σix|2

)
i∈{1,2,3}

γ|x=1(
γ1|x=0 − γ

2
|x=0, γ

2
|x=0 − γ

3
|x=0

)
−
∑3

i=1

(
γix
|σix|
− σix〈γix,σix〉

|σix|3

)
|x=0

γ|t=0


is a continuous isomorphism.
Corollary 2.7 and Lemma 2.9 imply that for every positive T the spaces ET and FT endowed
with the norms

|||γ|||ET
:= |||γ|||

W 1,2
p ((0,T )×(0,1);(Rd)3) = ‖γ‖

W 1,2
p ((0,T )×(0,1);(Rd)3) + ‖γ(0)‖

W
2−2/p
p ((0,1);(Rd)3)

and

|||(f, η, 0, b, ψ)|||FT := ‖f‖Lp((0,T );Lp((0,1);(Rd)3)) + |||η|||
W

1−1/2p
p ((0,T );(Rd)3)

+ |||b|||
W

1/2−1/2p
p ((0,T );Rd)

+ ‖ψ‖
W

2−2/p
p ((0,1);(Rd)3)

,

respectively, are Banach spaces. Given a linear operator A : FT → ET we let

|||A|||L(FT ,ET ) := sup{|||A(f, η, 0, b, ψ)|||ET
: (f, η, 0, b, ψ) ∈ FT , |||(f, η, 0, b, ψ)|||FT ≤ 1} .

Lemma 3.6. Let p ∈ (3,∞). For all T0 > 0 there exists a constant c(T0, p) such that

sup
T∈(0,T0]

∣∣∣∣∣∣L−1T ∣∣∣∣∣∣L(FT ,ET ) ≤ c(T0, p) .
Proof. Let T ∈ (0, T0] be arbitrary, (f, η, 0, b, ψ) ∈ FT and ET0b := (Eb)|(0,T0), ET0η :=
(Eη)|(0,T0) where E is the extension operator defined in Lemma 2.10. Extending f by 0 to
ET0f ∈ Lp

(
(0, T0);Lp

(
(0, 1); (Rd)3

))
we observe that (ET0f,ET0η, 0, ET0b, ψ) lies in FT0 . As

LT and LT0 are isomorphisms, there exist unique γ ∈ ET and γ̃ ∈ ET0 such that LTγ =
(f, η, 0, b, ψ) and LT0 γ̃ = (ET0f,ET0η, 0, ET0b, ψ) satisfying

LTγ = (f, η, 0, b, ψ) = (ET0f,ET0η, 0, ET0b, ψ)|(0,T ) = (LT0 γ̃)|(0,T ) = LT
(
γ̃|(0,T )

)
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and thus γ = γ̃|(0,T ). Using Theorem 3.5, Lemma 2.10 and the equivalence of norms on ET0

this implies∣∣∣∣∣∣L−1T (f, η, 0, b, ψ)
∣∣∣∣∣∣

ET
=

∣∣∣∣∣∣∣∣∣∣∣∣(L−1T0 (ET0f,ET0η, 0, ET0b, ψ)
)
|(0,T )

∣∣∣∣∣∣∣∣∣∣∣∣
ET

≤
∣∣∣∣∣∣∣∣∣L−1T0 (ET0f,ET0η, 0, ET0b, ψ)

∣∣∣∣∣∣∣∣∣
ET0

≤ c (T0, p)
∥∥∥L−1T0 (ET0f,ET0η, 0, ET0b, ψ)

∥∥∥
ET0

≤ c (T0, p) ‖(ET0f,ET0η, 0, ET0b, ψ)‖FT0 ≤ c (T0, p) |||(f, η, 0, b, ψ)|||FT .

3.2 Existence and uniqueness of the Special Flow

Given M positive we introduce the notation

BM :=
{
γ ∈ ET : |||γ|||ET

≤M
}
.

This section is devoted to the proof of the following:

Theorem 3.7. Let p ∈ (3,∞) and let σ = (σ1, . . . , σm) be an admissible initial parametrisation.
There exists a positive radiusM and a positive time T such that the system (2.3) has a unique solution
Eσ in ET ∩BM .

We prove the theorem for a Triod, in particular we have an admissible parametrisation
σ = (σ1, σ2, σ3) and we consider system (2.5). See the Appendix for the generalization to
networks with more complicated structure.

Given an admissible initial parametrisation σ and T > 0 we consider the complete metric
spaces

EσT := {γ ∈ ET such that γ|t=0 = σ and γ|x=1 = σ(1)} ,

FσT := FT ∩
(
Lp

(
(0, T );Lp

(
(0, 1); (Rd)3

))
× {σ(1)} × {0} ×W 1/2−1/2p

p

(
(0, T );Rd

)
× {σ}

)
.

Lemma 3.8. Let p ∈ (3,∞), T > 0 and σ = (σ1, σ2, σ3) be an admissible initial parametrisation.
Then the space EσT is non-empty.

Proof. As σ is an admissible initial parametrisation, one easily checks that f ≡ 0, η ≡
σ(1), b ≡ 0 and ψ ≡ σ is an admissible right hand side for system (3.3). In other words,
(0, σ(1), 0, 0, σ) ∈ FT and hence Theorem 3.5 yields the existence of % ∈ ET with LT% =
(0, σ(1), 0, 0, σ). In particular, %|t=0 = σ and %|x=1 = σ(1) which gives % ∈ EσT .

Lemma 3.9. Let p ∈ (3,∞) and

c :=
1

2
min

i∈{1,2,3},x∈[0,1]
|σix(x)| .

Given T0 > 0 and M > 0 there exists a time T̃ (c,M) ∈ (0, T0] such that for all γ ∈ EσT ∩BM with
T ∈ [0, T̃ (c,M)] it holds

inf
x∈[0,1],t∈[0,T ],i∈{1,2,3}

∣∣γix(t, x)
∣∣ ≥ c .

In particular, the curves γi(t) are regular for all t ∈ [0, T ].
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Proof. Let p ∈ (3,∞), θ ∈
(
1+1/p
2−2/p , 1

)
and δ ∈ (0, 1− 1/p). By Theorem 2.12 there exists a

constant C(T0, p, θ, δ) > 0 such that for all T ∈ (0, T0] and all γ ∈ EσT ∩ BM with α :=
(1− θ)(1− 1/p− δ) it holds

‖γ‖Cα([0,T ];C1([0,1];(Rd)3)) ≤ C(T0, p, θ, δ)|||γ|||ET
≤ C(T0, p, θ, δ)M ,

which implies in particular for all t ∈ [0, T ],

‖γ(t)− σ‖C1([0,1];(Rd)3) ≤ TαC(T0, p, θ, δ)M .

We let T̃ (c,M) be so small that T̃ (c,M)αC(T0, p, θ, δ)M ≤ c. Then it follows for all γ ∈ EσT
with T ∈ (0, T̃ (c,M)),

inf
t∈[0,T ],x∈[0,1]

|γix(t, x)| ≥ inf
x∈[0,1]

|σix(x)| − sup
t∈[0,T ],x∈[0,1]

|γix(t, x)− γix(0, x)| ≥ c .

Let us now define the operator NT that encodes the non–linearity of our problem. The map
NT : EσT → FσT is given by γ 7→

(
N1
T (γ), γ|x=1, 0, N

2
T (γ), γ|t=0

)
where the two components

N1
T , N

2
T are defined as

N1
T :

{
EσT → Lp((0, T );Lp((0, 1); (Rd)3)) ,
γ 7→ f(γ) ,

N2
T :

{
EσT →W

1/2−1/2p
p ((0, T );Rd) ,

γ 7→ b(γ)

with

f(γ)i(t, x) :=

(
1

|γix(t, x)|2
− 1

|σix(x)|2

)
γixx(t, x) ,

b(γ)(t) :=
3∑
i=1

((
1

|γix(t, 0)|
− 1

|σix(0)|

)
γix(t, 0) +

σix(0)
〈
γix(t, 0), σix(0)

〉
|σix(0)|3

)
defined by the right hand side of (3.1) and (3.2), respectively.

Proposition 3.10. Let p ∈ (3,∞) and M be positive. Then for all T ∈ (0, T̃ (c,M)] the map

NT : EσT ∩BM → FσT , NT (γ) :=
(
N1
T (γ), γ|x=1, 0, N

2
T (γ), γ|t=0

)
is well-defined.

Proof. Let T ∈ (0, T̃ (c,M)] and γ ∈ EσT ∩BM be given. Lemma 3.9 implies∥∥∥( 1

|γix|2
− 1

|σix|2

)
γixx

∥∥∥p
Lp((0,T );Lp((0,1);Rd))

=

∫ T

0

∫ 1

0

∣∣∣∣ 1

|γix|2
− 1

|σix|2

∣∣∣∣p |γixx|p dx dt

≤ C

(
sup

x∈[0,1],t∈[0,T ]

1

|γix|2p
+ sup
x∈[0,1]

1

|σix|2p

)∫ T

0

∫ 1

0
|γixx|p dx dt

≤ C(c)‖γixx‖
p
Lp((0,T );Lp((0,1);Rd))

≤ C(c,M) <∞ .
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We now show that N2
T (γ) lies in W

1/2−1/2p
p

(
(0, T );Rd

)
. Let h : Rd → Rd be a smooth function

such that h(p) = p
|p| for all p ∈ Rd \Bc/2(0). Then one observes that for all t ∈ [0, T ]

b(γ)(t) =
3∑
i=1

h(γix(t))− (Dh) (σix)γix(t) (3.6)

where we omitted the evaluation in x = 0 to ease notation. Each term in the sum can be
expressed as

h(γix(t))− (Dh) (σix)γix(t) =

∫ 1

0
(Dh)(ξγix(t) + (1− ξ)σix)dξ (γix(t)− σix)

− (Dh)(σix)
(
γix(t)− σix

)
+ h(σix)−Dh(σix)σix .

All terms that are constant in t are smooth in t and by Lemma 2.5 we have

t 7→ γix(t, 0) ∈W 1/2−1/2p
p

(
(0, T );Rd

)
.

As W
1/2−1/2p
p ((0, T );R) is a Banach algebra according to Proposition 2.6, it only remains to

show

t 7→
∫ 1

0
(Dh)(ξγix(t, 0) + (1− ξ)σix(0))dξ ∈W 1/2−1/2p

p

(
(0, T );Rn×n

)
which follows from the second assertion in Proposition 2.6. Observe that γ|x=1 = σ(1) and
γ|t=0 = σ by definition of EσT . As

N2
T (γ)|t=0 =

3∑
i=1

σix(0)

|σix(0)|
= 0 = −

3∑
i=1

(
σix(0)

|σix(0)|
−
σix(0)

〈
σix(0), σix(0)

〉
|σix(0)|3

)

and as σi(0) = σj(0), σi(1) = γi(0, 1), we may conclude that(
N1
T (γ), γ|x=1, 0, N

2
T (γ), γ|t=0

)
=
(
N1
T (γ), σ(1), 0, N2

T (γ), σ
)
∈ FσT .

Corollary 3.11. Let p ∈ (3,∞) and M be positive. Then for all T ∈ (0, T̃ (c,M)] the map

KT : EσT ∩BM → EσT , KT := L−1T NT

is well-defined.

Proof. Let T ∈ (0, T̃ (c,M)] and γ ∈ EσT ∩BM . By the previous proof we have

NT (γ) =
(
N1
T (γ), γ|x=1, 0, N

2
T (γ), γ|t=0

)
∈ FσT ⊂ FT

and thus in particular
KT (γ) = L−1T (NT (γ)) ∈ ET .

To verify that KT (γ) lies in EσT we observe that

KT (γ)|t=0 = NT (γ)5 = γ|t=0 = σ ,

KT (γ)|x=1 = NT (γ)2 = γ|x=1 = σ(1) .
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Proposition 3.12. Let p ∈ (3,∞) and M be positive. There exists T (c,M) ∈ (0, T̃ (c,M)] such
that for all T ∈ (0, T (c,M)] the map KT : EσT ∩BM → EσT is a contraction.

Proof. Let T ∈ (0, T̃ (c,M)] and γ, γ̃ ∈ EσT ∩BM be fixed. We begin by estimating

‖N1
T (γ)−N1

T (γ̃)‖Lp((0,T );Lp((0,1);(Rd)3)) = ‖f(γ)− f(γ̃)‖Lp((0,T );Lp((0,1);(Rd)3)) .

The i-th component of f(γ)− f(γ̃) is given by(
1

|γix|2
− 1

|σix|2

)
(γixx − γ̃ixx) +

(
1

|γix|2
− 1

|γ̃ix|2

)
γ̃ixx

=

(
1

|γix|2|σix|
+

1

|γix||σix|2

)(
|σix| − |γix|

)
(γixx − γ̃ixx)

+

(
1

|γix|2|γ̃ix|
+

1

|γix||γ̃ix|2

)(
|γ̃ix| − |γix|

)
γ̃ixx .

Lemma 3.9 implies

sup
t∈[0,T ],x∈[0,1]

∣∣∣∣ 1

|γix|2|σix|
+

1

|γix||σix|2

∣∣∣∣ ≤ C(c) <∞ ,

and

sup
t∈[0,T ],x∈[0,1]

∣∣∣∣ 1

|γix|2|γ̃ix|
+

1

|γix||γ̃ix|2

∣∣∣∣ ≤ C(c) <∞ .

Hence we obtain∥∥f(γ)i − f(γ̃)i
∥∥
Lp(0,T ;Lp((0,1);(Rd)3))

≤ C(c)
(∥∥(|σix| − |γix|) (γixx − γ̃ixx)

∥∥
Lp((0,T );Lp(0,1);Rd) +

∥∥(|γ̃ix| − |γix|) γ̃ixx∥∥Lp((0,T );Lp(0,1);Rd))
≤ C(c)

(
sup

t∈[0,T ],x∈[0,1]

∣∣|σix(x)| − |γix(t, x)|
∣∣ ∥∥γixx − γ̃ixx∥∥Lp((0,T );Lp(0,1);Rd))

+ sup
t∈[0,T ],x∈[0,1]

∣∣|γ̃ix(t, x)| − |γix(t, x)|
∣∣ ∥∥γ̃ixx∥∥Lp((0,T );Lp((0,1);Rd))

)
≤ C(c) sup

t∈[0,T ],x∈[0,1]

∣∣σix(x)− γix(t, x)
∣∣ |||γ − γ̃|||ET

+ C(c) sup
t∈[0,T ],x∈[0,1]

∣∣γ̃ix(t, x)− γix(t, x)
∣∣ |||γ̃|||ET

.

Let θ ∈
(
1+1/p
2−2/p , 1

)
, δ ∈ (0, 1− 1/p) be fixed and define α := (1− θ)(1− 1/p− δ). Theorem 2.12

implies

sup
t∈[0,T ],x∈[0,1]

∣∣σix(x)− γix(t, x)
∣∣ = sup

t∈[0,T ]

∥∥γix(0)− γix(t)
∥∥
C([0,1];Rd)

≤ sup
t∈[0,T ]

∥∥γi(t)− γi(0)
∥∥
C1([0,1];Rd) ≤ sup

t∈[0,T ]
tα
∥∥γi∥∥

Cα([0,T ];C1([0,1];Rd))

≤ Tα
∥∥γi∥∥

Cα([0,T ];C1([0,1];Rd)) ≤ T
αC(T0, p, θ, δ)|||γ|||ET

≤ C(M)Tα .

22



Similarly we obtain

sup
t∈[0,T ],x∈[0,1]

∣∣γ̃ix(t, x)− γix(t, x)
∣∣ = sup

t∈[0,T ],x∈[0,1]

∣∣(γ̃ix − γix) (t, x)−
(
γ̃ix − γix

)
(0, x)

∣∣
≤ sup

t∈[0,T ]

∥∥(γ̃i − γi) (t)−
(
γ̃i − γi

)
(0)
∥∥
C1([0,1];Rd)

≤ sup
t∈[0,T ]

tα
∥∥γ̃i − γi∥∥

Cα([0,T ];C1([0,1];Rd)) ≤ CT
α|||γ̃ − γ|||ET

.

This allows us to conclude

‖f(γ)− f(γ̃)‖Lp((0,T );Lp((0,1);(Rd)3)) ≤ C(c,M)Tα|||γ − γ̃|||ET
.

We proceed by estimating∥∥N2
T (γ)−N2

T (γ̃)
∥∥
W

1/2−1/2p
p ((0,T );Rd)

= ‖b(γ)− b(γ̃)‖
W

1/2−1/2p
p ((0,T );Rd)

.

Let T ∈ (0, T̃ (c,M)] be fixed and h : Rd → Rd be a smooth function such that h(p) = p
|p| on

Rd \Bc/2(0). As for all t ∈ [0, T ] and η ∈ EσT ∩BM ,

|ηix(t, 0)| ≥ c ,

we may conclude that for all γ, γ̃ ∈ EσT ∩BM , the function

t 7→ gi(t) :=

∫ 1

0
(Dh) (ξγix(t, 0) + (1− ξ)γ̃ix(t, 0))dξ

lies in W
1/2−1/2p
p (0, T ;Rn×n). To ease notation we let s := 1/2 − 1/2p. Observe that gi(0) =

(Dh)(σix(0)) and thus using identity (3.6) we obtain

b(γ)(t)− b(γ̃)(t) =

3∑
i=1

(
gi(t)− gi(0)

) (
γix(t, 0)− γ̃ix(t, 0)

)
.

Using the product estimate in Proposition 2.6 we obtain

‖b(γ)− b(γ̃)‖W s
p ((0,T );Rd) ≤

3∑
i=1

∥∥(gi − gi(0)
) (
γix(·, 0)− γ̃ix(·, 0)

)∥∥
W s
p ((0,T );Rd)

≤
3∑
i=1

∥∥gi − gi(0)
∥∥
C([0,T ];Rn×n)

∥∥γix(·, 0)− γ̃ix(·, 0)
∥∥
W s
p (0,T ;Rd)

+
∥∥gi − gi(0)

∥∥
W s
p (0,T ;Rn×n)

∥∥γix(·, 0)− γ̃ix(·, 0)
∥∥
C([0,T ];Rd) .

As s− 1
p > 0 due to p ∈ (3,∞) there exists β ∈ (0, 1) such that

W s
p

(
0, T ;Rd

)
↪→ Cβ

(
[0, T ];Rd

)
with embedding constant C(s, p). This implies in particular

sup
t∈[0,T ]

|gi(t)− gi(0)| ≤ T β
∥∥gi∥∥

Cβ([0,T ];Rn×n) ≤ T
βC(s, p)

∥∥gi∥∥
W s
p ((0,T );Rn×n)

.
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Reading carefully through the estimates in Proposition 2.6 we observe that∥∥gi∥∥
W s
p ((0,T );Rn×n)

≤ C(T0, c,M) .

Furthermore, given θ ∈
(
1+1/p
2−2/p , 1

)
and δ ∈ (0, 1− 1/p), Theorem 2.12 implies with α :=

(1− θ) (1− 1/p− δ) > 0 the estimate

sup
t∈[0,T ]

∣∣γix(t, 0)− γ̃ix(t, 0)
∣∣ = sup

t∈[0,T ]

∣∣(γix − γ̃ix) (t, 0)− (γix − γ̃ix)(0, 0)
∣∣

≤ sup
t∈[0,T ]

∥∥(γi − γ̃i) (t)−
(
γi − γ̃i

)
(0)
∥∥
C1([0,1];Rd)

≤ Tα
∥∥γi − γ̃i∥∥

Cα([0,T ];C1([0,1],Rd)) ≤ T
α|||γ − γ̃|||ET

.

This allows us to conclude

‖b(γ)− b(γ̃)‖
W

1/2−1/2p
p (0,T ;Rd)

≤ C(s, p, T0, c,M)Tα|||γ − γ̃|||ET
.

Finally, Lemma 3.6 implies for all T ∈ (0, T̃ (c,M)],

|||KT (γ)−KT (γ̃)|||ET
=
∣∣∣∣∣∣L−1T (NT (γ)−NT (γ̃))

∣∣∣∣∣∣
ET
≤ c(T0, p)|||NT (γ)−NT (γ̃)|||FT

= c(T0, p)

(
‖f(γ)− f(γ̃)‖Lp((0,T );Lp((0,1);(Rd)3)) + ‖b(γ)− b(γ̃)‖

W
1/2−1/2p
p (0,T ;Rd)

)
≤ C(T0, p, c,M)Tmin{α,β}|||γ − γ̃|||ET

.

This completes the proof.

To conclude the existence of a solution with the Banach Fixed Point Theorem we have to
show that there exists a radius M > 0 such that KT is a self-mapping of EσT ∩BM .

Proposition 3.13. Let p ∈ (3,∞). There exists a positive radius M depending on c and the norm of
σ in W 2−2/p

p

(
(0, 1); (Rd)3

)
and a positive time T̂ (c,M) such that for all T ∈ (0, T̂ (c,M)] the map

KT : EσT ∩BM → EσT ∩BM

is well-defined.

Proof. We let T0 = 1 and define

M := 2 max

{
sup

T∈(0,1]

∣∣∣∣∣∣L−1T ∣∣∣∣∣∣L(FT ,ET ), 1
}

max
{
|||Lσ|||E1

,
∣∣∣∣∣∣(N1

1 (Lσ), σ(1), 0, N2
1 (Lσ), σ

)∣∣∣∣∣∣
F1

}
where Lσ := L−11 (0, σ(1), 0, 0, σ) denotes the extension defined in Lemma 3.8 with T = 1. In
particular, Lσ lies in EσT ∩BM for all T ∈ (0, 1]. Moreover, for all T ∈ (0, 1] we have

|||KT (Lσ)|||ET
≤ sup

T∈(0,1]

∣∣∣∣∣∣L−1T ∣∣∣∣∣∣L(FT ,ET )∣∣∣∣∣∣(N1
1 (Lσ), σ(1), 0, N2

1 (Lσ), σ
)∣∣∣∣∣∣

FT
≤ M/2 .

Let T (c,M) be the time as in Proposition 3.12. Given T ∈ (0, T (c,M)] and γ ∈ EσT ∩BM we
observe that for some β ∈ (0, 1),

|||KT (γ)−KT (Lσ)|||ET
≤ C (c,M)T β|||γ − Lσ|||ET

≤ C (c,M)T β2M .
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We choose a time T̂ (c,M) ∈ (0, T (c,M)] so small that for all T ∈ (0, T̂ (c,M)] it holds
C (c,M)T β2M ≤ M/2. Finally, we conclude for all T ∈ (0, T̂ (c,M)] and γ ∈ EσT ∩BM ,

|||KT (γ)|||ET ≤ |||KT (γ)−KT (Lσ)|||ET + |||KT (Lσ)|||ET ≤ M/2 + M/2 = M .

Theorem 3.14. Let p ∈ (3,∞) and σ be an admissible initial parametrisation of a Triod. There
exists a positive time T̃ (σ) depending on mini∈{1,2,3},x∈[0,1] |σix(x)| and ‖σ‖

W
2−2/p
p ((0,1);(Rd)3)

such

that for all T ∈ (0, T̃ (σ)] the system (2.3) has a solution Eσ in

ET = W 1
p

(
(0,T );Lp

(
(0, 1); (Rd)3

))
∩ Lp

(
(0,T );W 2

p

(
(0, 1); (Rd)3

))
which is unique in ET ∩BM with

M := 2 max

{
sup

T∈(0,1]

∣∣∣∣∣∣L−1T ∣∣∣∣∣∣L(FT ,ET ), 1
}

max
{
|||Lσ|||E1

,
∣∣∣∣∣∣(N1

1 (Lσ), σ(1), 0, N2
1 (Lσ), σ

)∣∣∣∣∣∣
F1

}
where Lσ := L−11 (0, σ(1), 0, 0, σ) denotes the extension defined in Lemma 3.8 with T = 1.

Proof. Let M and T̂ (c,M) be as in Proposition 3.13 and let T ∈ (0, T̂ (c,M)]. The fixed
points of the mapping KT in EσT ∩ BM are precisely the solutions of the system (2.3) in the
spaceET ∩BM . As KT is a contraction of the complete metric space EσT ∩BM , existence and
uniqueness of a solution follow from the Contraction Mapping Principle.

Remark 3.15. If we replace σ = (σ1, σ2, σ3) admissible initial parametrisation of a Triod with
σ = (σ1, . . . , σm) admissible initial parametrisation of a network composed ofm curves, then
the time T̃ (σ) depends on mini∈{1,...,m},x∈[0,1] |σix(x)| and ‖σ‖

W
2−2/p
p ((0,1);(Rd)m)

.

Proof of Theorem 3.7. This follows from Theorem 3.14 where the appropriate time T and ra-
dius M are specified.

3.3 Existence and uniqueness of solutions to the motion by curvature

Now that we obtained existence and uniqueness of solutions to the Special Flow (2.3) we can
come back to our geometric problem.

Theorem 3.16 (Local existence of the motion by curvature). Let p ∈ (3,∞) and N0 be a ge-
ometrically admissible initial network. Then there exists T > 0 such that there exists a solution to
the motion by curvature in [0, T ] with initial datum N0 as defined in Definition 2.18 which can be
described by one parametrisation in the whole time interval [0, T ].

Proof. By Definition 2.16 the geometrically admissible initial datum N0 admits a paramet-
risation σ = (σ1, . . . , σm) that is an admissible initial parametrisation for the Special Flow.
Theorem 3.7 implies that there exists T > 0 and a solution Eσ ∈ ET to the Special Flow (2.3)
in [0,T ] with (Eσ)i(0) = σi. Then, by Definition 2.18, N =

⋃m
i=1(Eσ)i([0,T ] × [0, 1]) is a

solution to the motion by curvature in [0,T ] with initial datum T0.
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Lemma 3.17 (A composition property). Let p ∈ (3,∞), T be positive and

f, g ∈ Lp
(
(0, T );W 2

p ((0, 1))
)
∩W 1

p ((0, T );Lp((0, 1)))

be such that for every t ∈ [0, T ] the map g(t, ·) : [0, 1]→ [0, 1] is aC1–diffeomorphism. Then the map
h(t, x) := f(t, g(t, x)) lies in Lp

(
(0, T );W 2

p ((0, 1))
)
∩W 1

p ((0, T );Lp((0, 1))) and all derivatives
can be calculated by the chain rule.

Proof. This can be shown with similar arguments as in [21, Lemma 5.3] using the embedding
in Theorem 2.4.

Theorem 3.18 (Local uniqueness of the motion by curvature). Let p ∈ (3,∞), T, T̃ > 0, N0

be a geometrically admissible initial network and (N (t)), (Ñ (t)) be two solutions to the motion by
curvature with initial datumN0 in [0, T ] and [0, T̃ ], respectively, as defined in Definition 2.18. Then
there exists a positive time T̂ ≤ min{T, T̃} such that N (t) = Ñ (t) for all t ∈ [0, T̂ ].

Proof. For the sake of notation we restrict to the case of Triods. Let T0 be a geometrically
admissible initial Triod with regular parametrisation σ ∈ W

2−2/p
p

(
(0, 1); (Rd)3

)
. Then σ is

an admissible initial value for the Special Flow (2.3) and Theorem 3.7 yields that there exists
T > 0 and a solution Eσ = ((Eσ)1, (Eσ)2, (Eσ)3) ∈ ET of (2.3) with initial datum σ which is
unique inET ∩BM with M as in Theorem 3.14. In particular, T(t) := (Eσ) (t, [0, 1]) defines a
solution to the motion by curvature (2.4) in [0,T ] with initial datum T0. Suppose that there is
another solution (T̃(t)) to the motion by curvature in the sense of Definition 2.25 with initial
datum T0 in a time interval [0, T̃ ] for some positive T̃ . By possibly decreasing the time of
existence T̃ we may assume that there exists one parametrisation γ̃ ∈ E

T̃
for the evolution

(T̃(t)) in the whole time interval [0, T̃ ].
We show that there exists a family of time dependent diffeomorphisms ψi(t) : [0, 1] → [0, 1]

with t ∈ [0, T̂ ] for some T̂ ≤ min{T̃ ,T } such that the equality

γ̃i(t, ψi(t, x)) = (Eσ)i(t, x)

holds in the space E
T̂

. In order to make use of the uniqueness assertion in Theorem 3.7 we
construct the reparametrisations ψ =

(
ψ1, ψ2, ψ3

)
in such a way that the functions (t, x) 7→

γ̃i(t, ψi(t, x)) are a solution to the Special Flow in E
T̂

with initial datum σ.
One easily shows that there exist unique diffeomorphisms ψi0 : [0, 1] → [0, 1], i ∈ {1, 2, 3},
of regularity ψi0 ∈ W

2−2/p
p ((0, 1);R) such that ψi0(0) = 0, ψi0(1) = 1 and γ̃i(0, ψi0(x)) = σi(x).

Taking into account the special tangential velocity in (2.3) (formal) differentiation shows that
the reparametrisations ψi need to satisfy the following boundary value problem:

ψit(t, x) = ψixx(t,x)

|γ̃ix(t,ψi(t,x))|
2ψix(t,x)

2
− 〈γ̃

i
t(t,ψ

i(t,x)),γ̃ix(t,ψ
i(t,x))〉

|γ̃ix(t,ψi(t,x))|2

+ 1
|γ̃ix(t,ψi(t,x))|

〈
γ̃ixx(t,ψi(t,x))
|γ̃ix(t,ψi(t,x))|

2 ,
γ̃ix(t,ψ

i(t,x))
|γ̃ix(t,ψi(t,x))|

〉
,

ψi(t, 0) = 0 ,

ψi(t, 1) = 1 ,

ψi(0, x) = ψi0(x) .

(3.7)

Lemma 3.19 yields that there exists a solution

ψ =
(
ψ1, ψ2, ψ3

)
∈W 1

p ((0, T̂ );Lp((0, 1);R3)) ∩ Lp((0, T̂ );W 2
p ((0, 1);R3))
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to system (3.7) for some T̂ ≤ min{T̃ ,T } such that ψi(t) : [0, 1] → [0, 1] is a diffeomorphism
for every t ∈ [0, T̂ ]. Then Lemma 3.17 implies that the composition (t, x) 7→ γ̃i(t, ψi(t, x))
lies in E

T̂
and by construction, it is a solution to the Special Flow. We may now argue as in

the proof of [21, Theorem 5.4] to obtain that (t, x) 7→ (Eσ)i(t, x) and (t, x) 7→ γ̃i(t, ψi(t, x))

coincide in E
T̂

. In particular, the networks T(t) and T̃(t) coincide for all t ∈ [0, T̂ ].

Lemma 3.19. Let p ∈ (3,∞), ψ0 = (ψ1
0, ψ

2
0, ψ

3
0) ∈ W 2−2/p

p

(
(0, 1);R3

)
with ψi0 : [0, 1] → [0, 1] a

diffeomorphism with ψi0(0) = 0, ψi0(1) = 1, T̃ > 0 and γ̃ ∈ E
T̃

be such that γ̃ix(x, t) ≥ c for some
c > 0, for all t ∈ [0, T̃ ], all x ∈ [0, 1] and i ∈ {1, 2, 3}. Then there exists a time T̂ ∈ (0, T̃ ] and a
solution

ψ =
(
ψ1, ψ2, ψ3

)
∈W 1

p ((0, T̂ );Lp((0, 1);R3)) ∩ Lp((0, T̂ );W 2
p ((0, 1);R3))

to system (3.7) such that ψi(t) : [0, 1]→ [0, 1] is a diffeomorphism for every t ∈ [0, T̂ ].

Proof. We observe that the right hand side of the motion equation in system (3.7) contains
terms of the form f i(t, ψi(t, x)) with f i ∈ Lp ((0, T );Lp((0, 1))). To remove this dependence
it is convenient to consider the associated problem for the inverse diffeomorphisms ξ =

(ξ1, ξ2, ξ3) given by ξi(t) := ψi(t)−1. Indeed suppose that ψ ∈ W 1,2
p ((0, T̃ ) × (0, 1);R3) is a

solution to (3.7) with ψi(t) : [0, 1]→ [0, 1] a C1–diffeomorphism. Similar arguments as in [21,
Lemma 5.3] show that also ξ is of classW 1,2

p ((0, T̃ )× (0, 1);R3). Moreover, the differentiation
rules

ξiy(t, y) = ψix(t, ξi(t, y))−1 ,

ξiyy(t, y) = −ξiy(t, y)3ψixx(t, ξi(t, y))

yield the evolution equation

ξit(t, y) =− ψit(t, ξi(t, y))ξiy(t, y)

=−
ψixx

(
t, ξi(t, y)

)
|γ̃ix (t, y)|2

ξiy(t, y)3 +

〈
γ̃it(t, y), γ̃ix(t, y)

〉
|γ̃ix(t, y)|2

ξiy(t, y)

−
ξiy(t, y)

|γ̃ix (t, y)|

〈
γ̃ixx (t, y)

|γ̃ix (t, y)|2
,
γ̃ix(t, y)

|γ̃ix (t, y)|

〉
,

and in conclusion the following system for ξ:
ξit(t, y) =

ξiyy(t,y)

|γ̃ix(t,y)|
2 +
〈γ̃it(t,y),γ̃ix(t,y)〉
|γ̃ix(t,y)|2

ξiy(t, y)− ξiy(t,y)

|γ̃ix(t,y)|

〈
γ̃ixx(t,y)

|γ̃ix(t,y)|
2 ,

γ̃ix(t,y)
|γ̃ix(t,y)|

〉
,

ξi(t, 0) = 0 ,

ξi(t, 1) = 1 ,

ξi(0, y) = (ψi0)
−1(y)

(3.8)

for all t ∈ [0, T̃ ], y ∈ [0, 1]. We observe that the boundary value problem (3.8) has a very
similar structure as the Special Flow. Analogous arguments as in the proof of Theorem 3.7
allow us to conclude that there exists a solution ξ ∈ W 1,2

p ((0, T̂ ) × (0, 1); (R2)3) to (3.8) with
T̂ ∈ (0, T̃ ] such that for t ∈ [0, T̂ ] the map ξi(t) : [0, 1] → [0, 1] is a C1–diffeomorphism.
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Indeed the resulting system for ξi has a very similar structure as Problem (2.3) we studied
before: one linearises system (3.8) and apply the linear theory developed by Solonnikov [44]
to get well–posedness. Contraction estimates similar to our previous one allows to conclude
the existence and uniqueness of solution with a fixed point argument. Reversing the above
argumentation yields that the inverse functions ψi(t) := ξi(t)−1 solve (3.7) and possess the
desired properties.

Theorem 3.20 (Geometric uniqueness of the motion by curvature). Let p ∈ (3,∞), N0 be a
geometrically admissible initial network and T be positive. Solutions to the motion by curvature
in [0, T ] with initial datum N0 are geometrically unique in the sense that given any two solutions
(N (t)) and (Ñ (t)) to the motion by curvature in the time interval [0, T ] with initial datum N0 the
networks N (t) and Ñ (t) coincide for all t ∈ [0, T ].

Proof. Let (N (t)) and (Ñ (t)) be two solutions to the motion by curvature in [0, T ] with initial
datum N0. Suppose by contradiction that the set

S :=
{
t ∈ [0, T ] : N (t) 6= Ñ (t)

}
is non-empty and let t∗ := inf S . As S is an open subset of [0, T ], we have t∗ ∈ [0, T ) and
N (t∗) = Ñ (t∗). The Triod N (t∗) is geometrically admissible and both t 7→ N (t∗ + t) and
t 7→ Ñ (t∗ + t) are solutions to the motion by curvature in the time interval [0, T − t∗] with
initial datum N (t∗). Theorem 3.18 yields that there exists a time T̂ ∈ (0, T − t∗] such that for
all t ∈ [0, T̂ ], N (t∗ + t) = Ñ (t∗ + t) which contradicts the definition of t∗.

Definition 3.21 (Maximal solutions to the motion by curvature). Let p ∈ (3,∞) and N0 be a
geometrically admissible initial network. A time–dependent family of networks (N (t))t∈[0,T )
with T ∈ (0,∞) ∪ {∞} is a maximal solution to the motion by curvature in [0, T ) with initial
datum N0 if it is a solution (in the sense of Definition 2.18) in [0, T̂ ] for all T̂ < T and if there
does not exist a solution (Ñ (τ)) to the motion by curvature in the sense of Definition 2.18 in
[0, T̃ ] with T̃ ≥ T and such that N = Ñ in [0, T ). In this case the time T is called maximal
time of existence and is denoted by Tmax.

Proposition 3.22 (Existence and uniqueness of maximal solutions). Let p ∈ (3,∞) andN0 be a
geometrically admissible initial network. There exists a maximal solution to the motion by curvature
with initial datum N0 which is geometrically unique.

Proof. Given an admissible network N0 we let

Tmax := sup
{
T > 0 : there exists a solution (N T (t)) to the motion by curvature in [0, T ]

with initial datum T0} .

Theorem 3.16 yields Tmax ∈ (0,∞) ∪ {∞}. Given any t ∈ [0, Tmax) we may consider a
solution N T with T ∈ (t, Tmax) to the motion by curvature in [0, T ] with initial datum N0

and set
N (t) := N T (t) .

We note that N is well-defined on [0, Tmax) as any two solutions N T1 and N T2 with T1, T2 ∈
[0, Tmax) to the motion by curvature with initial datumN0 coincide on their common interval
of existence by Theorem 3.20. One easily verifies that (N (t))t∈[0,Tmax) satisfies the properties
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of a maximal solution stated in Definition 3.21. Indeed, if there existed a solution Ñ (τ) to
the motion by curvature in [0, T̃ ] for T̃ ≥ Tmax, Theorem 3.16 would imply the existence
of a solution with initial datum Ñ (T̃ ) in a time interval [0, δ], δ > 0. This would yield the
existence of a solution in the time interval [0, T̃ + δ] with initial datum N0 contradicting the
definition of Tmax. The uniqueness assertion follows from Theorem 3.20.

4 Smoothness of the Special Flow

This section is devoted to prove that solutions to the Special Flow are smooth for positive
times. Heuristically, this regularisation effect is due to the parabolic nature of the problem.
The basic idea of the proof is based on the so called parameter trick which is due to An-
genent [3] and has been generalized to several situations [35, 36, 42]. However, due to the
fully non-linear boundary condition

3∑
i=1

γix(t, 0)

|γix(t, 0)|
= 0

the Special Flow is not treated in the above mentioned results. An adaptation of the pa-
rameter trick that allows to treat fully non-linear boundary terms is presented in [22]. We
follow [22, Chapter 6.6] modifying the arguments for the application in our Sobolev setting.
In the following we let Eσ ∈ ET be a solution to the Special Flow on [0, T ], T > 0, with initial
datum σ ∈W 2−2/p

p

(
(0, 1); (Rd)3

)
.

The key idea to apply Angenent’s parameter trick lies in an implicit function type argument
which itself relies on the invertibility of the linearisation of the Special Flow in the solution
Eσ. Thus, the linear analysis from Subsection 3.1 will not be enough to apply this method.
So before we can actually start we have to generalise Theorem 3.5.

Definition 4.1. We consider the full linearisation of system (2.3) around Eσ which gives

γit(t, x)− 1
|(Eσ)ix(t,x)|

2 γ
i
xx(t, x) + 2

(Eσ)ixx(t,x)〈γix(t,x),(Eσ)ix(t,x)〉
|(Eσ)ix(t,x)|4

= f i(t, x) ,

γ(t, 1) = η(t) ,

γ1 (t, 0)− γ2 (t, 0) = 0 ,

γ2(t, 0)− γ3 (t, 0) = 0 ,

−
∑3

i=1

(
γix(t,0)

|(Eσ)ix(t,0)|
− (Eσ)ix(t,0)〈γix(t,0),(Eσ)ix(t,0)〉

|(Eσ)ix(t,0)|3

)
= b(t) ,

γ (0, x) = ψ (x) .

(4.1)

Here ψ is an admissible initial value with respect to the given right hand side η and b. For
γ ∈ ET we define AT,E(γ) ∈ Lp

(
(0, T );Lp((0, 1); (Rd)3)

)
by

(AT,E(γ))i :=
1

|(Eσ)ix(t, x)|2
γixx(t, x)− 2

(Eσ)ixx(t, x)
〈
γix(t, x), (Eσ)ix(t, x)

〉
|(Eσ)ix(t, x)|4

.

Definition 4.2 (The linearised boundary operator). Let T > 0 and

BT,E : ET = W 1,2
p

(
(0, T )× (0, 1); (Rd)3

)
→W 1−1/2p

p

(
(0, T ); (Rd)5

)
×W 1/2−1/2p

p

(
(0, T );Rd

)
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be the linearised boundary operator induced by the linearisation in Eσ, i.e.,

BT,E(γ) =


γ(·, 1)

γ1(·, 0)− γ2(·, 0)
γ2(·, 0)− γ3(·, 0)

−
∑3

i=1

(
γix(·,0)

|(Eσ)ix(·,0)|
− (Eσ)ix(·,0)〈γix(·,0),(Eσ)ix(·,0)〉

|(Eσ)ix(·,0)|3

)
 .

Moreover we let

XT := ker(BT,E) .

As BT,E is continuous, the spaceXT is a closed subspace of ET and thus a Banach space.

Remark 4.3 (Existence analysis for (4.1)). Note that the compatibility conditions in Defini-
tion 3.1 for system (3.3) are precisely the same as the ones for (4.1) due to the fact that BT,E

∣∣
t=0

equals the original linearisation. Also, with the same arguments as in the proof of Lemma
3.3 we can derive the Lopatinskii-Shapiro conditions for BT,E . Therefore, the result from
Theorem 3.5 holds also for problem (4.1). For γ ∈ ET we write

LT,E(γ) :=

γt −AT,E(γ)
BT,E(γ)
γ|t=0

 .

With the previous considerations we have the basics to start the work on the parameter trick.
As a first step we have to construct a parametrisation of the non-linear boundary conditions
over the linear boundary conditions. We need to do this as we cannot have the non-linear
boundary operator to be part of the operator used in the parameter trick due to technical
reasons with the compatibility conditions.
In the following lemma we construct a partition of the solution space ET = XT ⊕ZT .

Lemma 4.4. Let T > 0. There exists a closed subspace ZT of ET such that ET = XT ⊕ZT .

Proof. Firstly, we consider the space

Z
1
T :=

{
b ∈W 1−1/2p

p

(
(0, T ); (Rd)5

)
×W 1/2−1/2p

p

(
(0, T );Rd

)
: b|t=0 = 0

}
.

We notice that f = 0, b ∈ Z1
T , ψ = 0 is a suitable right hand side for problem (4.1). Hence

for every b ∈ Z
1
T there exists a unique solution L−1T,E (0, b, 0) ∈ ET to (4.1) and the space

Z1
T := L−1T,E

(
(0, Z

1
T , 0)

)
is a closed subspace of ET .

Next we define the space
Z

2
:= (Rd)5 × Rd .
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Given b̃ ∈ Z2 the elliptic system L̃η = (0, b̃) defined by

− 1
|σix(x)|

2 η
i
xx(x) = 0 , x ∈ (0, 1) , i ∈ {1, 2, 3} ,

η1(1) = b̃1 ,

η2(1) = b̃2 ,

η3(1) = b̃3 ,

η1(0)− η2(0) = b̃4 ,

η2(0)− η3(0) = b̃5 ,

−
∑3

i=1

(
ηix(0)
|σix(0)|

− σix(0)〈ηix(0),σix(0)〉
|σix(0)|3

)
= b̃6 ,

(4.2)

has a unique solution η ∈ W 2
p

(
(0, 1); (Rd)3

)
which we denote by L̃−1(0, b̃). This is guaran-

teed due to the results in [1] and the fact that the boundary operator fulfils the Lopatinskii-
Shapiro conditions according to Lemma 3.3. The space L̃−1(0, Z2

) is a closed subspace of
W 2
p

(
(0, 1); (Rd)3

)
due to continuity of the solution operator which is guaranteed by the en-

ergy estimates in [1]. Extending every function in L̃−1(0, Z2
) constantly in time we can view

L̃−1(0, Z
2
) as a closed subspace of ET . This space will be denoted by Z2

T . It is straightfor-
ward to check that Z1

T ∩Z2
T = {0}which allows us to define ZT as the subspace ofET given

by
ZT := Z1

T ⊕ Z2
T .

Note that ZT is indeed a closed subspace which one sees as follows. Suppose that

(zn)n∈N = (z1n + z2n)n∈N ⊂ ZT

is a convergent sequence in ET .
Due to ET ↪→ C([0, T ];C1+α([0, 1]; (Rn)3)) for α ∈ (0, 1− 3/p] according to Theorem 2.4 we
may conclude that the sequence (zn

∣∣
t=0

)n∈N = (z2n
∣∣
t=0

)n∈N converges in C1+α([0, 1]; (Rn)3).
In particular, this yields the convergence of the boundary data needed for the elliptic sys-
tem we used to construct z2n. Continuity of the elliptic solution operator then implies that
(z2n
∣∣
t=0

)n∈N converges in W 2
p ((0, 1); (Rn)3). Due to its constant extension in time we see that

(z2n)n∈N converges in ET to a limit z2 which is also in Z2
T being a closed subspace of ET .

Then (z1n)n∈N = (zn)n∈N − (z2n)n∈N converges in ET as sum of two convergent sequences to
an element z1 of the closed space Z1

T . We conclude that (zn)n∈N converges to z1 + z2 ∈ ZT

which shows that ZT is closed.
It remains to prove that XT ∩ZT = {0} and ET = XT +ZT . To this end let γ ∈ XT ∩ZT .
By definition of XT we have BT,E(γ) = 0 which implies in particular BT,E(γ)|t=0 = 0. As γ

lies in ZT , there exist z1 ∈ Z1
T , z2 ∈ Z2

T with γ = z1 + z2. Using that BT,E(z1) lies in Z1
T , we

observe
0 = BT,E(z1 + z2)|t=0 = BT,E(z1)|t=0 + BT,E(z2)|t=0 = BT,E(z2)|t=0 .

Due to the uniqueness of the elliptic system (4.2) this shows (z2)|t=0 = 0. By definition of Z2
T

we obtain z2 = 0. This implies 0 = BT,E(γ) = BT,E(z1) which gives z1 = L−1T,E(0, 0, 0) = 0.
To prove that ET = XT +ZT we let γ ∈ ET . We define

z2 := L̃−1(0,BT,E(γ)|t=0) ∈ Z2
T
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viewing z2 as an element of ET by extending it constantly in time. By definition of the
boundary operator in the elliptic system (4.2) and due to (Eσ)|t=0 = σ we have

BT,E(z2)|t=0 = BT,E(γ)|t=0 .

In particular, BT,E(γ)− BT,E(z2) lies in Z1
T and we may define

z1 := L−1T,E (0,BT,E(γ)− BT,E(z2), 0) ∈ Z1
T .

Now it remains to show that γ−z1−z2 lies inXT which is equivalent to BT,E(γ−z1−z2) = 0
which follows by construction.

Lemma 4.5 (Parametrisation of the nonlinear boundary conditions). Let T > 0. There exists a
neighbourhood U of 0 inXT , a function % : U → ZT and a neighbourhood V of Eσ inET such that

{Eσ + u+ %(u) : u ∈ U} = {γ ∈ V : G(γ) = 0}

where G denotes the operator

γ 7→ G(γ) :=



γ1(·, 1)− σ1(1)
γ2(·, 1)− σ2(1)
γ3(·, 1)− σ3(1)
γ1(·, 0)− γ2(·, 0)
γ2(·, 0)− γ3(·, 0)∑3

i=1
γix(·,0)
|γix(·,0)|


.

Furthermore, it holds that (D%)|0 ≡ 0.

Proof. We let
Y T := W 1−1/2p

p

(
(0, T ); (Rd)5

)
×W 1/2−1/2p

p

(
(0, T );Rd

)
and consider the operator

F : XT ⊕ZT → Y T ,

(x, z) 7→ G (Eσ + x+ z) .

By definition of Eσ we have that F (0, 0) = 0. We observe that (∂2F (0, 0))z = BT,E(z). To
apply the implicit function theorem we have to show that

BT,E : ZT → Y T

is an isomorphism. The map is injective as kerBT,E ∩ ZT = XT ∩ ZT = {0}. Given b ∈ Y T

we let z2 := L̃−1(0, b|t=0) ∈ Z2
T and z1 := L−1T,E(0, b − BT,E(z2)) ∈ Z1

T and observe that
z1 + z2 ∈ ZT satisfies

BT,E(z1 + z2) = BT,E(z1) + BT,E(z2) = b− BT,E(z2) + BT,E(z2) = b .

The implicit function theorem implies that there exist neighbourhoods U and W of 0 in XT

andZT , respectively, and a function % : U →W with %(0) = 0 such that for a neighbourhood
Ṽ of 0 in ET , it holds

{u+ %(u) : u ∈ U} = {x+ z ∈ ET : F (x, z) = 0} ∩ Ṽ .
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To show that (D%)|0 = 0 we let u ∈ XT be arbitrary. Due to (D%)|0 : XT → ZT we obtain
(D%)|0u ∈ ZT . Hence it is enough to show that (D%)|0u lies also in XT . To this end we
differentiate the identity

0 = F (δu, %(δu)) = G (Eσ + δu+ %(δu))

with respect to δ and obtain

0 =
d

dδ
G (Eσ + δu+ %(δu))|δ=0 = (DG) (Eσ)(u+ (D%)|0u) = BT,E(u+ (D%)|0u) .

This implies u+ (D%)|0u ∈ kerBT,E = XT and thus (D%)|0u ∈XT .

With this result we can finally start the proof of the parabolic smoothing. We will first derive
higher time regularity of the solution (this is actually the classical parameter trick argument
by Angenent), and will then get from this higher regularity in space using the parabolic
problem and finally start a bootstrap procedure.

Proposition 4.6 (Higher time regularity of solutions to the Special Flow).
Let Eσ ∈ ET be a solution to the Special Flow in [0, T ] with T > 0 and initial value σ ∈
W

2−2/p
p

(
(0, 1); (Rd)3

)
. Then we have for all t̃ ∈ (0, T ] the increased time regularity

∂t(Eσ) ∈ ET

∣∣
[t̃,T ]

. (4.3)

Proof. We consider the space

I :=
{
ψ ∈W 2−2/p

p

(
(0, 1); (Rd)3

)
: ψ(1) = 0 , ψ1(0) = ψ2(0) = ψ3(0) ,

3∑
i=1

(
ψix(0)

|σix(0)|
−
σix(0)

〈
ψix(0), σix(0)

〉
|σix(0)|3

)
= 0

}
.

We let U , V and % be as in the previous Lemma and define %(u) := Eσ + u+ %(u). For some
small ε ∈ (0, 1) we consider the map

G : (1− ε, 1 + ε)× I ×XT → I × Lp
(

(0, T )× (0, 1); (Rd)3
)
,

(λ, ψ,u) 7→
(
u|t=0 − ψ, ∂t%(u)− λ %(u)xx

|%(u)x|2

)
.

Notice that G(1, 0, 0) = 0. Due to (D%)|0 = 0 the Fréchet derivative

∂3G(1, 0, 0) : XT → I × Lp
(

(0, T )× (0, 1); (Rd)3
)

is given by
∂3G(1, 0, 0)u =

(
u|t=0, ∂tu−AT,E(u)

)
.

As explained in Remark 4.3 we have that (DG)|(1,0,0)(0, 0, ·) is an isomorphism. Hence the
implicit function theorem implies the existence of neighbourhoods U of (1, 0) in (1 − ε, 1 +
ε)× I and V of 0 inXT and a function ζ : U → V with ζ((1, 0)) = 0 and

{(λ, ψ,u) ∈ U × V : G(λ, ψ,u) = 0} = {(λ, ψ, ζ(λ, ψ)) : (λ, ψ) ∈ U} .
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Consider now the map P : ET → XT given by P (γ) := PXT
(γ − Eσ) with PXT

(η) = u for
the unique partition η = u+u ∈XT ⊕ZT . Clearly, we have that %(P (γ)) = γ for all γ in the
neighbourhood V constructed in Lemma 4.5. Given λ close to 1 we consider the time-scaled
function

(Eσ)λ(t, x) := (Eσ)(λt, x) .

By definition this satisfies for ψ := P ((Eσ)λ)
∣∣
t=0

G(λ, ψ, P ((Eσ)λ)) = 0 .

By uniqueness we conclude that

P ((Eσ)λ) = ζ(λ, ψ)

and therefore
(Eσ)λ = %̄(ζ(λ, ψ)) .

As both ζ and %̄ are smooth, this shows that (Eσ)λ is a smooth function in λ with values in
ET . This implies now

t∂t(Eσ) = ∂λ((Eσ)λ)
∣∣
λ=1
∈ ET

from which we directly conclude (4.3).

Next, we want to derive higher regularity in space for our solution. But this follows almost
immediately from the associated ODE we have at a fixed time.

Corollary 4.7 (Higher space regularity of solutions to the Special Flow).
Let Eσ ∈ ET be a solution to the Special Flow in [0, T ] with T > 0 and initial value σ ∈
W

2−2/p
p

(
(0, 1); (Rd)3

)
. Given t̃ ∈ (0, T ] we have for all t ∈ [t̃, T ] that

(Eσ)(t) ∈ C3([0, 1]; (Rn)3) .

Additionally, all derivatives in space up to order two are smooth in time.

Proof. Considering ∂t((Eσ)i)(t) as given functions fi ∈ C1([0, 1];Rn) we see that (Eσ)i(t, ·)
solves

(Eσ)ixx(t, ·)
|(Eσ)ix(t, ·)|2

= fi.

As we already constructed Eσ, we may include independent boundary conditions at x = 0
for the values of Eσ and ∂xEσ. On this problem one may again apply the implicit function
theorem together with standard well-posedness results for ODEs to get that Eσ is indeed in
C2 and depends smoothly on the data. Then the smoothness of the space derivatives in time
follows from the smoothness of ∂tEσ and the smooth dependence of the data.

With the two previous results we are now able to start a bootstrap procedure.

Theorem 4.8 (Smoothness of solutions to the Special Flow).
Let Eσ ∈ ET be a solution to the Special Flow in [0, T ] with T > 0 and initial value σ ∈
W

2−2/p
p

(
(0, 1); (Rd)3

)
. Then Eσ is smooth on [t̃, T ]× [0, 1] for all t̃ ∈ (0, T ).

34



Proof. Due to Corollary 4.7 we can use (Eσ)(t) for almost all t > 0 as initial data for a reg-
ularity result in parabolic Hölder space, cf. [20] for such a result for the Willmore flow. As
we checked that the Lopatinskii-Shapiro conditions are still valid in higher co-dimensions,
the analysis works as in the planar case. Additionally, the needed compatibility conditions
due to the zero order boundary conditions are guaranteed by the fact that ∂t(Eσ) lies in
C([t̃, T ];C([0, 1]; (Rn)3). With this new maximal regularity result, which is the key argument
in the proof of Proposition 4.6, we can repeat the whole procedure to derive C3+α,(3+α)/2-
regularity. Note that in this situation of higher regularity we have to include compatibility
conditions inXT . But this makes the construction ofZT in Lemma 4.4 very difficult. Thus, a
modification is necessary, moving the boundary conditions in the operator itself. For details
we refer to [19, Section 4]. This starts now the bootstrapping yielding the desired smooth-
ness result. Note that in every step the needed compatibility conditions are guaranteed by
the fact that our flow already has the regularity related to these compatibility conditions (see
for instance [39, Theorem 3.1]).

In analogy to [21] we may now use smoothness of the Special Flow to prove Theorem 1.1.

Proof of Theorem 1.1. The existence of maximal solutions and their geometric uniqueness are
shown in Proposition 3.22. Using smoothness of the Special Flow shown in Theorem 4.8
one may argue analogously to [21, Section 5.2, Section 7.2] to show that parametrising each
curve Ti(t) with constant speed equal to the length of Ti(t) yields a global parametrisation
γ : [0, Tmax)× [0, 1]→ (Rd)m of the evolution that is smooth for positive times.

5 Long Time Behaviour of the Motion by Curvature

Proof of Theorem 1.2. Let p ∈ (3,∞) and N (t) the maximal solution. Thanks to uniqueness
and regularity we can consider p ∈ (3, 6). Let ε ∈ (0, Tmax/1000) be fixed. Suppose that
Tmax is finite and that the two assertions i) and ii) are not fulfilled. Let γ = (γ1, . . . , γm) :
[0, Tmax)× [0, 1]→ (Rd)m be the parametrisation of the evolution such that each curveN i(t)
is parametrised with constant speed equal to its length L(N i(t)). As γ is smooth on [ε, T ] for
all positive ε and all T ∈ (ε, Tmax), hypothesis ii) yields

κi ∈ L∞
(

(ε, Tmax);L2((0, 1);Rd)
)
.

As ET embeds continuously into C
(
[0, T ];C1([0, 1]; (Rd)m)

)
, hypothesis i) implies that the

lengths L(Ti) of all three curves composing the network are uniformly bounded away from
zero in [0, Tmax). Moreover, thanks to the gradient flow structure of the motion by curvature
the single lengths of the networks satisfy L(N i(t)) ≤ L(N0) for all t ∈ [0, Tmax). In particular,
we obtain for all t ∈ [0, Tmax), x ∈ [0, 1],

0 < c ≤ |γix(t, x)| = L(N i(t)) ≤ C <∞ . (5.1)

With our choice of parametrisation the curvature can be expressed as κi = γixx/L(N i)2 from
which we can infer for all t ∈ [0, Tmax),∫ 1

0
|γixx|2 dx =

(
L(N i)

)3 ∫
T
|κi|2 ds ≤ C <∞ .
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As the endpoints P 1, . . . , P ` are fixed and as the single lengths L(N i(t)) are uniformly
bounded from above in [0, Tmax), there exists a constant R > 0 such that for every t ∈
[0, Tmax) it holds N (t) ⊂ BR(0). With the above arguments we conclude

γi ∈ L∞((ε, Tmax);W 2
2 ((0, 1);Rd)) .

The Sobolev Embedding Theorem implies for all p ∈ (3, 6] the estimate

sup
t∈(ε,Tmax)

∥∥γi(t)∥∥
W

2−2/p
p ((0,1);Rd)

≤ C (5.2)

for a uniform constant C > 0. We note further that for all δ ∈ (0, Tmax/4) the parametrisation
γ(Tmax − δ) is an admissible initial value for the Special Flow (2.3). Due to (5.1) and (5.2)
Theorem 3.14 yields that there exists a uniform time T of existence of solutions to the Special
Flow (2.3) for all initial values γ(Tmax − δ) depending onC and c. Let δ := min {T/2, Tmax/4}.
Then Theorem 3.14 implies the existence of a solution η = (η1, . . . , η`) with ηi regular and

ηi ∈W 1
p

(
(Tmax − δ, Tmax + δ);Lp

(
(0, 1);Rd

))
∩ Lp

(
(Tmax − δ, Tmax + δ);W 2

p

(
(0, 1);Rd

))
to system (2.3) with η (Tmax − δ) = γ (Tmax − δ). The two parametrisations γ and η defined
on (0, Tmax− δ

3) and
(
Tmax − δ

2 , Tmax + δ
)
, respectively, define a solution (Ñ (t)) to the motion

by curvature on the time interval (0, Tmax + δ] with initial datum N0 coinciding with N on
(0, Tmax). This contradicts the maximality of Tmax.

A Appendix

We explain here how to pass from the analysis of the evolution of a single Triod to networks
with more complicated topologies. Naturally it is not the first time that this generalisation
has been consider and there is more than one way to deal with it. We will follow the method
outlined in [30], that is extensively based on the work for linear system done in [49].

We consider an initial network composed of m curves, with ` endpoints γk(t, 1) = P k with
P k ∈ Rn, k ∈ {1, . . . , `} and with q triple junctions σj1(y1) = σj2(y2) = σj3(y3) = Oj with
j ∈ {1, . . . , q}, y1, y2, y3 ∈ {0, 1}.
Let us start from Section 3.1. The motion equations of the linearised Special Flow will not
differ to much from the version for three curves. Formula (3.1) holds for each curve of the
network:

γit(t, x)− 1

|σix(x)|2
γixx(t, x) =

(
1

|γix(t, x)|2
− 1

|σix(x)|2

)
γixx(t, x) . (A.1)

Then one has to write formula (3.2) at each triple junction, γji is evaluated at (t, yi) with
yi ∈ {0, 1}, taking care of the fact that if yi = 1 there is a change of sign with respect to (3.2).
So for j ∈ {1, . . . , q}

−
3∑
i=1

(−1)yi

 γjix

|σjix |
−
σjix
〈
γjix , σ

ji
x

〉
|σjix |3


=

3∑
i=1

(−1)yi

( 1

|γjix |
− 1

|σjix |

)
γjix +

σjix
〈
γjix , σ

ji
x

〉
|σjix |3

 , (A.2)
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where we have omitted the dependence of t and on y1, y2, y3 ∈ {0, 1}.
In the system (3.3), instead of three evolution equations,m equations should appear, together
with the compatibility condition and the linearised angle condition for each junction. Indeed
in place of (3.3) one gets the following

γit(t, x)− 1
|σix(x)|

2 γ
i
xx(t, x) = f i(t, x) , t ∈ (0, T ) , x ∈ (0, 1) ,

γk(t, 1) = ηk(t) , t ∈ [0, T ] , k ∈ {1, . . . , `} ,
γj1 (t, y1)− γj2 (t, y2) = 0 , t ∈ [0, T ] , j ∈ {1, . . . , q} ,
γj2(t, y2)− γj3 (t, y3) = 0 , t ∈ [0, T ] , j ∈ {1, . . . , q} ,

−
∑3

i=1(−1)yi

(
γ
ji
x (t,yi)

|σjix (yi)|
−

σ
ji
x (yi)

〈
γ
ji
x (t,yi),σ

ji
x (yi)

〉
|σjix (yi)|3

)
= bj(t) , t ∈ [0, T ] , j ∈ {1, . . . , q} ,

γ (0, x) = ψ (x) , x ∈ [0, 1] .

(A.3)
for i ∈ {1, . . . ,m} and for a general right hand side (f, η, b, ψ) with η = (η1, . . . , η`), b =
(b1, . . . , bq).

One needs to adapt also Definition 3.1.

Definition A.1. Let p ∈ (3,∞). A function ψ = (ψ1, . . . , ψm) of class W 2−2/p
p

(
(0, 1); (Rd)m

)
satisfies the linear compatibility conditions for system (A.3) with respect to given functions
η ∈ W 1−1/2p

p ((0, T ); (Rd)k), b ∈ W 1/2−1/2p
p ((0, T ); (Rd)q) if for k ∈ {1, . . . , `}, j ∈ {1, . . . , q} it

holds ψk(1) = ηk(0) ψj1(0) = ψj2(0) = ψj3(0), and

−
3∑
i=1

(−1)yi

 ψjix (yi)

|σjix (yi)|
−
σjix (yi)

〈
ψjix (yi), σ

ji
x (yi)

〉
|σjix (yi)|3

 = bj(0) .

At this point one wants to apply Solonnikov’s theory [44] to get Theorem 3.5. As usual,
the difficulty concerned the boundary conditions. Theorem [44, Theorem 5.4] requires the
fulfilment of the complementary conditions at the boundary: basically the two matrices
B(0, t, ∂x, ∂t) and B(1, t, ∂x, ∂t) must be invertible. However, we have parametrized the
curves in such a way that the conditions at x = 0 and x = 1 are entangled and we cannot
write two separate invertible matrices. One has to write a new system, equivalent to (A.3),
that has a suitable structure to directly use Solonnikov’s theory [44]. Namely, one has to ar-
range that a given triple junction is the image of either x = 0 under the three curves or x = 1
under the three curves. It is necessary to break some curves imposing artificial Cauchy con-
ditions at the intermediate breaking points, as explained in [30, Section 5]. In [49] the author
carry on with full details this procedure. The great advantage is that Von Below not only
gets to separate matrices, both each one is a block matrix and to show their invertibility it
is enough to prove that the determinant of each block is different from zero. Every block
describes one single triple junction, and the invertibility of the block is equivalent to the
Lopatinskii-Shapiro condition, that we have already shown in Lemma 3.3. Hence, thanks
to [49] we have existence and uniqueness and suitable estimates for the new system and
then for system (A.3) as well. So Theorem 3.5 is valid.
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Then one will have new spaces ET and FT properly defined and as a consequence of Theo-
rem 3.5 the operator LT (γ) : ET → FT

LT (γ) =



(
γit −

γixx
|σix|2

)
i∈{1,...,m}(

γk|x=1

)
k∈{1,...,`}(

γj1|x=0 − γ
j2
|x=0, γ

j2
|x=0 − γ

j3
|x=0

)
j∈{1,...,q}−∑3

i=1

(
γ
ji
x

|σjix |
−

σ
ji
x

〈
γ
ji
x ,σ

ji
x

〉
|σjix |3

)
|x=0


j∈{1,...,q}

γ|t=0


that is still a continuous isomorphism. So Section 3.1 does not need any other alteration and
one gets also Lemma 3.6.

It is straightforward to adapt the arguments of Section 3.2 to the case of general networks.
Indeed, this is just a matter of suitably redefining the operators and spaces appearing in the
proofs. With a careful look one realizes that no additional estimates are needed.
In particular the constant c in Lemma 3.9 becomes c := 1

2 mini∈{1,...,m},x∈[0,1] |σix(x)| and
the proof does not undergo changes. The two components N1

T , N
2
T of the operator NT are

defined as

N1
T :

{
EσT → Lp((0, T );Lp((0, 1); (Rd)m)) ,

γ 7→ f(γ) ,

N2
T :

{
EσT →W

1/2−1/2p
p ((0, T ); (Rd)q) ,

γ 7→ b(γ)

with

f(γ)i(t, x) :=

(
1

|γix(t, x)|2
− 1

|σix(x)|2

)
γixx(t, x) ,

b(γ)j(t) :=

3∑
i=1

(−1)yj

( 1

|γjix (t, yj)|
− 1

|σjix (yj)|

)
γjix (t, yj) +

σjix (yj)
〈
γjix (t, yj), σ

ji
x (yj)

〉
|σjix (yj)|3

 .

this time defined by the right hand side of (A.1) and (A.2), respectively.
As the estimates concerning N1

T are done for each i ∈ {1, . . . ,m} instead of i ∈ {1, 2, 3} and
the estimate related to N2

T can be done component–wise, for j ∈ {1, . . . , q}, it is possible
to obtain again Proposition 3.10 and Proposition 3.12. Instead Corollary 3.11 and Proposi-
tion 3.13 are more abstract and do not need to be modified.

In the same spirit one also adapts the whole Section 3.3. Indeed, the only case in which we
restricted our analysis to Triods is the proof of Theorem 3.18 which is entirely based on the
resolution with a very similar structure to the Special Flow.
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