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Abstract. This paper concerns a class of optimal control problems, where a
central planner aims to control a multi-agent system in Rd in order to minimize a
certain cost of Bolza type. At every time and for each agent, the set of admissible
velocities, describing his/her underlying microscopic dynamics, depends both on
his/her position, and on the con�guration of all the other agents at the same time.
So the problem is naturally stated in the space of probability measures on Rd

equipped with the Wasserstein distance. The main result of the paper gives a new
characterization of the value function as the unique viscosity solution of a �rst
order partial di�erential equation. We introduce and discuss several equivalent
formulations of the concept of viscosity solutions in the Wasserstein spaces suitable
for obtaining a comparison principle of the Hamilton Jacobi Bellman equation
associated with the above control problem.
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1. Introduction

There has been an increasing interest of the mathematical control theory commu-
nity for the so-called multi-agent systems, i.e., systems on a reference space X that
are composed by a number of agents so huge, that at each time only a statistical
description of the state is available. A common way to model such kind of system is
to consider a macroscopic point of view, where the state of the system is described
by a (time-evolving) Borel measure on X, i.e. the underlying space where the agents
move.

If µt is a measure on X, and A is a Borel subset of X, the quantity µt(X) measures

the total number of agent of the systems at time t, and the quotient
µt(A)

µt(X)
represents

the fractions of the total amount of agents that are present in A at the time t. The
case in which the system is isolated, i.e., the total amount of agents is �xed in time,
is of relevant interest. Indeed, in this case, since µt(X) is constant, we can always
normalize the measure µt assuming µt(X) = 1, i.e., µt ∈ P(X) the set of Borel
probability measures on X. Thus the macroscopic evolution is described by a curve
t 7→ µt in the space of probability measures. In the case X = Rd, a stronger mass-
preservation property (i.e., that locally there are neither creation nor destruction of
agents,), can be obtained assuming that the trajectory µ = {µt}t∈[0,T ] of the system,
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seen as a family of measures on X indexed by the time parameter, is expressed by
the continuity equation

(1.1) ∂tµt + div(vtµt) = 0,

where vt(·) is a time dependent Borel vector �eld on Rd, and the PDE must be
understood in the sense of distributions.

Under mild integrability properties on vt(·), it is possible to prove that every
solution t 7→ µt of the above PDE possesses a continuous representative, where
continuity is taken w.r.t. the weak∗ topology induced by the duality with continuous
and bounded functions on Rd, thus it make sense to couple the PDE with an initial
condition in order to study the macroscopic evolution of the system.

It is natural to introduce now a cost function on the system, and study various
kinds of optimization problems. More precisely, we are interested in studying the
optimal control problem where a central planner try to minimize a given cost function
on the system by acting on the agents. Another interesting problem - out of the
scope of the present paper - concerns the Nash equilibrium con�gurations when each
agent try to minimize its individual cost, possibly depending by the con�guration
of all the other agents. This case is a mean �eld game problem, in the sense of
[7, 10, 24].

The individual motion of each agent can be suject to nonholonomic constraints
coming from both local conditions, i.e., depending only on its instantaneous position,
and from nonlocal conditions, i.e., depending on the overall con�guration of the
agents present in the system. The simplest possible case of nonoholonomic constraint
coming from local conditions is the presence of a maximum speed for the agents
depending on its instantaneous position. In this case, the admissible velocities for
the agents passing through the point x ∈ Rd are contained in a closed ball F (x) =

B(0, g(x)) ⊆ Rd, where g : Rd → [0,+∞[ is a function pointwise giving the speed
limit. Anisotropic speed limit, i.e., limits depending not only on the position but
also on the direction, can be modeled similarly replacing the pro�le of the ball with
a suitable compact convex set.

In general, in presence of nonholonomic constraints on the dynamics of the agent,
for instance when the dynamics of each agent is expressed by a set-valued map F
with values in Rd, a natural requirement on the macroscopical vector �eld vt(·) is to
be a selection of the same set-valued map F .

One of the most interesting features of the generalized control problem in the
space of probability measures in this formulation, which does not appear in the
classical formulation, is the possibility to take into account internal interactions
between the agents, usually leading to nonlocal nonholonomic constraints. Indeed,
in the analysis of multi-agent systems, like e.g., cell populations, �sh swarms, insect
colonies, human crowds, bird �ocks, the collective behavior is deeply in�uenced by
complex interactions that usually arise among the subjects. These interactions can
be added both in the cost function, and in the dynamics. In the latter case, this
amounts to allow the set-valued map to depend not only on the position in Rd, but
also by the current state of the system, i.e., considering set-valued maps F de�ned
on P(Rd)× Rd with values in Rd.

An example can be given by penalizing the speed of the agents if the overall current
con�guration is far from a �xed ideal travelling con�guration which, for instance,
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guarantees the safety of the swarm/collective. Denoted by µR = {µRt }t∈[0,T ] the
ideal travelling con�guration, we can consider for instance

F (µ, x) = B

(
0,

1

1 +W 2
2 (µ, µRt )

)
,

where W2(·) denotes the Wasserstein distance between probability measures, and
study the problem to achieve a desired con�guration in minimum time. The optimal
strategy in this simple case will be a compromise between reaching �rst the ideal
travelling pro�le to travel at the fastest speed possibile (in this case 1), and letting
the single agents free to move toward the goal as fast as they can (in general, with
speed less than 1).

Summarizing, in the general case the dynamics of the system consists of the
continuity equations (1.1) coupled with

(1.2) vt(x) ∈ F (µt, x) for µt-almost x ∈ Rd and for a.e. t ≥ 0.

This feature leads to the conclusion that, in presence of interactions, the description
of the collective behavior cannot be reduced by the simple superposition of individual
behaviors.

Indeed, in [16] it was addressed the problem to identify with geometrical tools
and study the macroscopical dynamics of a system where the microscopical agents
were subjected by a nonholonomic constraint modeled by a di�erential inclusion.
However, it was made the strong simplifying assumptions of no interactions between
the agents, and therefore the map F was assumed to depend only on the variable
x ∈ Rd. In this paper, among the other results, we provide an exension of the
superposition principle to microscopical dynamics governed by di�erential inclusions
also in the case with interactions. Comparing to [16], this extensions requires the
use of appropriate �xed point argument, due to the fact that the evolution of each
agent is a�ected by the evolution of the others. This di�culty did not appear in the
case treated in [16].

The problem of rigorously approximate the control problem for the real-world
multi-agent discrete system with its mean �eld limit, i.e., the corresponding prob-
lem stated in the space of measures, is of fundamental importance both from the
theoretical and from the applicative point of views. This problem can be traced
back to [27], and a systematical survey of related results can be found in [26]. This
problem was addressed also in [13] for some models coming from �ocking models, in
order to reduce the dimensionality of the problem of the kinetic formulation. In [20]
and [19] it is rigorously justi�ed the use of mean-�eld approximations in optimal
control of multiagent systems of �rst order. The reader can �nd a comprehensive
overview of the literature about kinetic formulation and applications, together with
some insights on research perspective, in the recent survey [1].

Closer to the problem studied in the present paper, in [8] and in [9] necessary
conditions are studied for control problems in the Wasserstein space. The �rst
paper still in connection with mean-�eld limit and the second one directly in the
Wasserstein space. Both papers provide such conditions in form of an extended
Pontryagin Maximum Principle in the Wasserstein space, however in order to obtain
well-posedness of the adjoint equation heavy regularity assumptions on the problem
are needed.
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Instead of a mean-�eld approximation approach, we study directly control systems
stated in the space of probability measure. This is motivated for instance by the case
of incomplete information on the state space, where we can model our knowledge
of the state of the system by a probability measure and study the corresponding
evolution. This may occur even when the evolution is purely deterministic (as in
[12], [14]), or when we consider games with incomplete information (see [11, 12]) or
repeated games with signals (see [28]).

In this paper we will consider a Bolza-type problem, i.e., the minimization of a
functional J(·)

(1.3) µ 7→ J[s,T ](µ) :=

∫ T

s

L(µt) dt+ G (µT ) ∈ R ∪ {+∞},

on trajectories µ = {µt}t∈[s,T ] satisfying the continuity equation (1.1) with an initial
datum µ, and subject to the constraint vt(x) ∈ F (µt, x) for a.e. t ∈ [s, T ], µt-a.e.
x ∈ Rd.

A relevant class of bounded uniformly continuous functional L which are inter-
esting for the applications is provided by

L(µ) =

∫∫
Rd×Rd

K(x, y) d(µ⊗ µ)(x, y),

where K ∈ C0
c (Rd×Rd). In terms of multi-agent systems, K(x, y) describes the cost

of the interactions between an agent located at the point x and an agent located at
the point y. In its simplest form, it can be expressed by K(x, y) = k(|x− y|), where
k : [0,+∞[→ [0,+∞[ is continuous with compact support. The boundedness of the
support of k express in this case the fact that each agent is not in�uenced by the
agents located too far away from him/her.

For the problem (1.3), a notion of value function can be given in analogy to
classical Bolza problem in optimal control, and our main goal is to characterize it
as the unique solution of a �rst-order Hamilton-Jacobi-Bellman equation (HJB in
short) in the space of probability measures. To this aim, we will use a convenient
notion of viscosity sub/superdi�erential, and prove a comparison principle for �rst-
order HJB equations.

The theory of HJB equation in the space of measures could be considered as a
part of a more general theory in metric spaces (see, e.g. [2, 22]), but, since the
space of measures enjoys a much richer structure, speci�c tools were later developed
in [12, 14, 21]. Using the representation of the space of probability measures as a
subspace of L2 function on a su�ciently �rich� probability space (see [10,24]), it was
also developed a theory of generalized di�erentiation and viscosity solution in the
space of measures by adapting the concepts of viscosity theory in in�nite-dimensional
spaces (see [17]).

In this paper the main result consists in proving that the value function is the
unique viscosity solution of a HJB equation in the Wasserstein space. For this task,
we introduce a suitable notion of sub/super di�erential in the Wasserstein space
(which is very much inspired from [12, 25]) which leads to a de�nition of viscosity
solution. Then we prove a comparison principle for viscosity solution of �rst-order
HJB equations, by adapting a doubling of variables argument used also in [12], [25],
extending the previous results to cover Hamiltonian function arising in the study of
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multi agent type. We also give several equivalent formulations of sub/super di�er-
ential which give equivalent de�nitions of viscosity solutions. It is worth pointing
out that here our intent is not to give abstract results comparing subdi�erentials in
Wasserstein space (for this, the reader can refer to the recent paper [23]), but only
to de�ne and study a subdi�erential well-adapted to obtain a comparison result of
the HJB associated to our multiagent control problem. Compared with [12], the
comparison principle in this paper requires milder regularity assumptions on the
Hamiltonian (just a sort of uniform continuity), while in [12] was asked a much
stronger positive homogeneity in the second variable and a Lipschitz conditions.
This is re�ected by the fact that the comparison principle in [12] (and of [25], which
was an extension of [12]) provides uniqueness only in the class of Lipschitz continu-
ous function, while the comparison principle of the present paper leads to uniqueness
in the bounded and uniformly continuous case. Anyway, the regularity of the value
function in our case is enough to authomatically guarantee the consistency between
the multiagent system and the mean �eld formulation. Furthermore, for such kind
of result we do not need the regularity assumptions of [9] or [8].

The paper is structured as follows: in Section 2 we introduce the basic notation
and background, in Section 3 we describe the properties of the set of admissible
trajectories, establishing some results of existence and representation formulas, in
Section 4 we analyze the optimal control problem in the Wasserstein space, studying
the regularity property of its value function, and prove a dynamic programming
principle, and �nally in Section 5 we provide the main results of the paper, namely
a comparison principle for viscosity solution of �rst-order HJB equation, and the
characterization of the value function of the Bolza problem as the unique viscosity
solution of a suitable HJB equation. At the end of the section, we also discuss
several equivalent formulations of the de�nition of viscosity solution in this context.

2. Preliminaries and notations

We will use the following notation.

B(x, r) the open ball of radius r of a metric space (X, dX),
i.e., B(x, r) := {y ∈ X : dX(y, x) < r};

K the closure of a subset K of a topological space X;
IK(·) the indicator function of K,

i.e. IK(x) = 0 if x ∈ K, IK(x) = +∞ if x /∈ K;
dK(·) the distance function from a subset K of a metric space (X, d),

i.e. dK(x) := inf{d(x, y) : y ∈ K};
C0
b (X;Y ) the set of continuous bounded function from a Banach space X to Y ,

endowed with ‖f‖∞ = sup
x∈X
|f(x)| (if Y = R, Y will be omitted);

C0
c (X;Y ) the set of compactly supported functions of C0

b (X;Y ),
with the topology induced by C0

b (X;Y );
BUC(X;R) the space of bounded real-valued uniformly continuous functions de�ned on X
ΓI the set of continuous curves from a real interval I to Rd;
ΓT the set of continuous curves from [0, T ] to Rd;
et the evaluation operator et : Rd × ΓI

de�ned by et(x, γ) = γ(t) for all t ∈ I;
P(X) the set of Borel probability measures on a Banach space X,

endowed with the weak∗ topology induced from C0
b (X);

M (Rd;Rd) the set of vector-valued Borel measures on Rd with values in Rd,
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endowed with the weak∗ topology induced from C0
c (Rd;Rd);

|ν| the total variation of a measure ν ∈M (Rd;Rd);
� the absolutely continuity relation between measures de�ned on the same

σ-algebra;
, m2(µ) the second moment of a probability measure µ ∈P(X);
r]µ the push-forward of the measure µ by the Borel map r;
µ⊗ πx the product measure of µ ∈P(X) with the Borel family of measures

{πx}x∈X ⊆P(Y ) (see De�nition A.1);
pri the i-th projection map pri(x1, . . . , xN ) = xi;
Π(µ, ν) the set of admissible transport plans from µ to ν;
Πo(µ, ν) the set of optimal transport plans from µ to ν;
W2(µ, ν) the 2-Wasserstein distance between µ and ν;
P2(X) the subset of the elements P(X) with �nite second moment,

endowed with the 2-Wasserstein distance;
L d the Lebesgue measure on Rd;
ν

µ
the Radon-Nikodym derivative of the measure ν w.r.t. the measure µ;

Lip(f) the Lipschitz constant of a function f .

Now we give some preliminaries and �x the notation.

Given two nonempty sets ∆, S, we will denote by {sδ}δ∈∆ ⊆ S the images of a
map δ 7→ sδ de�ned from ∆ to S, seen as a subset of S indexed by the elements of
∆. In particular, when ∆ = N, {sn}n∈N ⊆ S will denote a sequence of elements in
S. When the set ∆, S have more structure, we will refer to regularity properties of
{sδ}δ∈∆ ⊆ S meaning the regularity properties of the underlying map δ 7→ sδ.

Given Banach spaces X, Y , we denote by P(X) the set of Borel probability
measures on X endowed with the weak∗ topology induced by the duality with the
Banach space C0

b (X) of the real-valued continuous bounded functions on X with
the uniform convergence norm. The second moment of µ ∈ P(X) is de�ned by

m2(µ) =

∫
X

‖x‖2
X dµ(x), and we set P2(X) = {µ ∈ P(X) : m2(Rd) < +∞}. For

any Borel map r : X → Y and µ ∈ P(X), we de�ne the push forward measure
r]µ ∈P(Y ) by setting r]µ(B) = µ(r−1(B)) for any Borel set B of Y .

We denote by M (X;Y ) the set of Y -valued Borel measures de�ned on X. The
total variation measure of ν ∈M (X;Y ) is de�ned for every Borel set B ⊆ X as

|ν|(B) := sup
{Bi}i∈N

{∑
‖ν(Bi)‖Y

}
,

where the sup ranges on countable Borel partitions of B.
We now recall the de�nitions of transport plans and Wasserstein distance (cf for

instance [31]). Let X be a complete separable Banach space, µ1, µ2 ∈ P(X). The
set of admissible transport plans between µ1 and µ2 is

Π(µ1, µ2) = {π ∈P(X ×X) : pri]π = µi, i = 1, 2},
where for i = 1, 2, pri : Rd × Rd → Rd is a projection pri(x1, x2) = xi. The inverse
π−1 of a transport plan π ∈ Π(µ, ν) is de�ned by π−1 = i]π ∈ Π(ν, µ), where
i(x, y) = (y, x) for all x, y ∈ X. The Wasserstein distance between µ1 and µ2 is

W 2
2 (µ1, µ2) = inf

π∈Π(µ1,µ2)

∫
X×X

|x1 − x2|2 dπ(x1, x2).
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If µ1, µ2 ∈ P2(X) then the above in�mum is actually a minimum, and the set of
minima is denoted by

Πo(µ1, µ2) :=

{
π ∈ Π(µ1, µ2) : W 2

2 (µ1, µ2) =

∫
X×X

|x1 − x2|p dπ(x1, x2)

}
.

Recall that P2(X) endowed with the W2-Wasserstein distance is a complete sepa-
rable metric space, moreover for all µ ∈P2(X) there exists a sequence {µN}N∈N ⊆
co{δx : x ∈ suppµ} such that W2(µN , µ)→ 0 as N → +∞.
To maintain the �ow of the paper we postpone to an appendix the statement of

the Disintegration Theorem and of the Superposition principle which will largely
used throughout the article.

3. The set of admissible trajectories and its properties

Here the admissible trajectories are the solutions of a continuity equation with
constraints in the �ux. From a multi-agent system point of view, we have the
following properties

• during the evolution, the total mass of the agents is preserved: we have
neither creation nor loss of agents;
• the dynamic of each agent is subject to non holonomic and possibly nonlocal
constraints
• the macroscopic evolution will be the result of the superposition (average)
of the microscopic evolution of the agents.

We will focus now on the properties of the set of admissible trajectories.

De�nition 3.1 (Admissible trajectories). Let I = [a, b] be a compact real interval,
µ = {µt}t∈I ⊆ P2(Rd), ν = {νt}t∈I ⊆ M (Rd;Rd), F : P2(Rd) × Rd ⇒ Rd be a
set-valued map. We say that µ is an admissible trajectory driven by ν de�ned on I
with underlying dynamics F if

• the map t 7→ µt is Borel (see De�nition A.1);
• |νt| � µt for a.e. t ∈ I;
• vt(x) :=

νt
µt

(x) ∈ F (µt, x) for a.e. t ∈ I and µt-a.e. x ∈ Rd;

• the map (t, x) 7→ vt(x) is Borel and∫
I

‖vt‖L2
µt
dt < +∞;

• ∂tµt + div νt = 0 in the sense of distributions on ]0, T [×Rd, equivalently

d

dt

∫
Rd
ϕ(x) dµt(x) =

∫
Rd
〈∇ϕ(x), vt(x)〉 dµt(x), for all ϕ ∈ C1

c (Rd)

in the sense of distributions in ]0, T [ (see (8.1.3) in [3]).

Given µ ∈P2(Rd), we de�ne the set

A F
I (µ) :=

{
µ = {µt}t∈I ⊆P2(Rd) : there exists ν = {νt}t∈I ⊆M (Rd;Rd) such

that µ is an admissible traj. driven by ν,

de�ned on I with underlying dynamics F and µa = µ
}
.
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We recall that, by Lemma 8.1.2 of [3], by possibly changing the family {µt}t∈I
on a Lebesgue negligible subset of I, we may always assume that t 7→ µt is nar-
rowly continuous. Therefore given {µt}t∈I ∈ A F

I (µ) we will assume always that
it is continuous without loss of generality. Moreover, by Theorem 8.3.1 in [3], the
map t 7→ µt is actually absolutely continuous from I to P2(Rd) endowed with the
Wasserstein metric.

Conversely, for any absolutely continuous curve t 7→ µt de�ned on I = [a, b] with
values in P2(Rd) endowed with the Wasserstein metric there exists a Borel vector
�eld (t, x) 7→ vt(x) such that ∫

I

‖vt‖L2
µt
dt < +∞,

and ∂tµt + div(vtµt) = 0 holds in the sense of distributions on ]a, b[×Rd.

An alternative characterization is of the admissible trajectories is given by the
following

Remark 3.2. De�ne IF : P2(Rd) ×M (Rd;Rd) → [0,+∞] and F : P2(Rd) ⇒
M (Rd;Rd)→ R ∪ {+∞} by

IF (µ, ν) :=


∫
Rd
IF (µ,x)

(
ν

µ
(x)

)
dµ(x), if |ν| � µ,

+∞, otherwise.

F (µ) :={ν ∈M (Rd;Rd) : IF (µ, ν) < +∞},

we have that µ ∈ A F
I (µ) if and only if there exists a Borel family ν = {νt}t∈I such

that ∂tµt + div νt = 0 in the sense of distributions, µa = µ, and νt ∈ F (µt) for a.e.
t ∈ I. Given µ ∈ P2(Rd), we say that ν ∈ F (µ) is an admissible measure-valued
velocity at µ.

We �rst show a result about the closedness of set of trajectories. To this aim, we
consider the following property of the dynamics

(F 1) F : P2(Rd) × Rd ⇒ Rd is continuous with convex, compact and nonempty
images, where on P2(Rd)× Rd we consider the metric

dP2(Rd)×Rd((µ1, x1), (µ2, x2)) = |x1 − x2|+W2(µ1, µ2).

We obtain the following result

Proposition 3.3. Assume that F satis�es (F 1). Let {µ(n)}n∈N be a sequence of

admissible trajectories de�ned on I such that µ(n) = {µ(n)
t }t∈I for all n ∈ N, and let

µ = {µt}t∈I ⊆P2(Rd), ν = {νt}t∈I ⊆M (Rd;Rd) be Borel curves.
Suppose that

• for all n ∈ N we have that µ(n) is driven by ν(n) = {ν(n)
t = v

(n)
t µ

(n)
t }t∈I ,

where v
(n)
t (x) ∈ F (µ

(n)
t , x) for a.e. t ∈ I and µt-a.e. x ∈ Rd;

• lim inf
n→+∞

∫
I

‖v(n)
t ‖L2

µ
(n)
t

< +∞;

• µ(n) → µ in the sense of distributions on I ×Rd, and for a.e. t ∈ I we have

W2(µ
(n)
t , µt)→ 0 as n→ +∞;
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• ν(n) → ν in the sense of distributions on I ×Rd, and for a.e. t ∈ I we have

ν
(n)
t ⇀∗ νt as n→ +∞;

Then µ is an admissible trajectory driven by ν.

Before proving the above Proposition we state a Lemma which is a consequence
of well-known results of lower semicontinuity for functional depending on measures.

Lemma 3.4. Assume (F1). Let {µ(n)}n∈N be a sequence in P2(Rd) W2-converging
to µ̄ and {ν(n)}n∈N be a sequence in M (Rd;Rd) w∗-converging to ν̄. Then

IF (µ̄, ν̄) ≤ lim inf
n→+∞

IF (µ(n), ν(n)).

Proof. We have IF (µ(n), ν(n)) ∈ {0,+∞}. In the case IF (µ(n), ν(n)) = +∞ for all
but a �nite number of indexes n, there is nothing to prove. Thus without loss of
generality, we may assume that IF (µ(n), ν(n)) = 0 for all n ∈ N.

Let (µ̄, x) ∈ P2(Rd) × Rd. By the upper semicontinuity property of F , for all
ε > 0 there exists δε,µ,x > 0 such that if

dP2(Rd)×Rd((θ, y), (µ̄, x)) ≤ δε,µ,x,

then

F (θ, y) ⊆ F (µ̄, x) + εB(0, 1).

Let {xi}i>0 be a countably dense sequence in Rd. We set δi = δε,µ̄,xi and Bi =
B(xi,min{δi/2, 1/i}). Clearly, we have∫

Rd
IF (µ̄,x)

(
ν

µ̄
(x)

)
dµ̄(x) = sup

i∈N

∫
Bi

IF (µ̄,x)

(
ν

µ̄
(x)

)
dµ̄(x)

There exists n̄ > 0 such that for all n > n̄ we have W2(µ̄, µ(n)) < δi/2, in particular
for any i ∈ N we have

0 =

∫
Bi

IF (µ(n),x)

(
ν(n)

µ(n)
(x)

)
dµ(n)(x) ≥

∫
Bi

IF (µ̄,xi)+εB(0,1)

(
ν(n)

µ(n)
(x)

)
dµ(n)(x)

According to e.g. Theorem 2.34 in [4], we have that for all i ∈ I

lim inf
n→∞

∫
Bi

IF (µ̄,xi)+εB(0,1)

(
ν(n)

µ(n)
(x)

)
dµ(n)(x) ≥

∫
Bi

IF (µ̄,xi)+εB(0,1)

(
ν̄

µ̄
(x)

)
dµ̄(x),

and so for µ̄-a.e. x ∈ Bi we have

ν̄

µ̄
(x) ∈ F (µ̄, xi) + εB(0, 1).

Fix now a density point x̄ for µ̄. By density of the sequence {xi}i∈N, there exists a
subsequence xik such that x̄ ∈ Bik for all k, thus for k large enough we have

ν̄

µ̄
(x̄) ∈ F (µ̄, xik) + εB(0, 1) ⊆ F (µ̄, x̄) + 2εB(0, 1).

by letting ε→ 0+ and recalling the arbitrariness of the density point x̄, we conclude

that
ν̄

µ̄
(x) ∈ F (µ̄, x) for a.e. x ∈ Rd, so IF (µ̄, ν̄) = 0. The proof is complete. �
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Proof of Proposition 3.3.

1. Since for all n ∈ N the trajectory µ(n) is an admissible trajectory driven by
ν(n), for all n ∈ N we have

∂tµ
(n)
t + div ν

(n)
t = 0.

Recalling that by assumption µ(n) and ν(n) converges in the sense of distributions
to µ(n) and ν(n), respectively, by passing to the limit in the sense of distributions
we have

∂tµt + div νt = 0.

2. We denote by N ⊆ I the set of t ∈ I where µ(n)
t does not W2-converge to µt or

ν
(n)
t does not w∗-converge to νt. By de�nition, we have that N is negligible. Since
the trajectories of the sequence are admissible, we have for all n ∈ N∫

I

IF

(
µ

(n)
t , ν

(n)
t

)
dt = 0,

thus, by Fatou Lemma and Lemma 3.4 we have

0 = lim inf
n→+∞

∫
I\N

IF

(
µ

(n)
t , ν

(n)
t

)
dt ≥

∫
I\N

lim inf
n→+∞

IF (µ
(n)
t , ν

(n)
t ) dt

≥
∫
I\N

IF (µt, νt) dt =

∫
I

IF (µt, νt) dt ≥ 0.

Thus we have |νt| � µt and vt(x) :=
νt
µt

(x) ∈ F (µt, x) for a.e. t ∈ I and µt-

a.e. x ∈ Rd. Moreover, since t 7→ µt and t 7→ νt are Borel maps, we have that
(t, x) 7→ vt(x) is Borel.

3. We recall that the functional

(µ, ν) 7→
∫
Rd

∣∣∣∣νµ(x)

∣∣∣∣2 dµ(x)

is l.s.c. w.r.t. the weak∗ convergence of measures (see e.g. Theorem 2.34 in [4]). In
particular, for all t /∈ N we have by Fatou's lemma∫

Rd
|vt(x)|2 dµt(x) =

∫
Rd

∣∣∣∣ νtµt (x)

∣∣∣∣2 dµt(x) ≤ lim inf
n→+∞

∫
Rd

∣∣∣∣∣ν(n)
t

µ
(n)
t

(x)

∣∣∣∣∣
2

dµ
(n)
t (x)

= lim inf
n→+∞

‖v(n)
t ‖2

L2

µ
(n)
t

.

Taking the square root and integrating on I we have∫
I

‖vt‖L2
µt
dt ≤

∫
I

lim inf
n→+∞

‖v(n)
t ‖L2

µ
(n)
t

dt ≤ lim inf
n→+∞

∫
I

‖v(n)
t ‖L2

µ
(n)
t

dt < +∞.

According to the previous steps, we obtain that

• µ is a narrowly continuous curve, satisfying the continuity equation ∂µt +
div νt = 0 in the sense of distributions;

• |νt| � µt for a.e. t ∈ I, and vt(x) =
νt
µt

(x) ∈ F (µt, x) for µt a.e. x ∈ Rd and

a.e. t ∈ I;
• it holds ∫

I

‖vt‖L2
µt
dt < +∞.
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Thus µ is an admissible trajectory driven by ν. This ends the proof. �

Before stating our existence result for admissible trajectories we �rst need some
more assumptions on the set-valued map F

(F 2) there exists a continuous increasing function Υ : [1,+∞[→]0,+∞[ and θ0 > 0
such that
• the Cauchy problem

(3.1)


θ̇(s) = Υ (θ(s))θ(s), for s > 0,

θ(0) = 1 + θ0.

has a solution θ(·) de�ned on [0, T ].

• F (µ, x) ⊆ Υ (1 + m
1/2
2 (µ))(1 + |x|)B(0, 1).

(F 3) there exists L > 0, a compact metric space U and a continuous map f :
P2(Rd)× Rd × U → Rd satisfying

|f(µ1, x1, u)− f(µ2, x2, u)| ≤ L(W2(µ1, µ2) + |x1 − x2|),

for all µi ∈ P2(Rd), xi ∈ Rd, i = 1, 2, u ∈ U , such that the set-valued map
F can be represented as

F (µ, x) = {f(µ, x, u) : u ∈ U} .

Assumption (F 2) is strictly related to the construction of an a priori upper bound
on the second order moment of the time-evolving measure t 7→ µt. Indeed, in order
to prove the existence, we aim to construct a relatively compact invariant domain
and to apply a �xed-point iterative procedure to build a sequence of curves in the
space of probability measure converging to an admissible trajectory.

Remark 3.5. We notice that actually (F3) implies (F2). Indeed, assume (F3). Then
for all µ ∈P2(Rd) and x ∈ Rd, set

C := max{1, L ·max{|y| : y ∈ F (δ0, 0)}},

we have

F (µ, x) ⊆F (δ0, 0) + L(W2(µ, δ0) + |x|)B(0, 1) ⊆ C(1 +m
1/2
2 (µ) + |x|)B(0, 1),

⊆C(1 +m
1/2
2 (µ))(1 + |x|)B(0, 1),

hence we can take Υ (r) = Cr, leading to existence of a solution to (3.1) in [0, T ]

with T <
1

C(1 + θ0)
.

Now we state the main result of this section

Theorem 3.6 (Existence and representation of solutions). Let T > 0 and assume
(F1 − F2). Then for all µ ∈ P2(Rd) with m2(µ) < θ2

0, where θ0 is as in (3.1), we
have that there exist µ = {µt}t∈[0,T ] ⊆ P2(Rd) and ν = {νt}t∈[0,T ] ⊆ M (Rd;Rd)
such that µ ∈ A F

[0,T ](µ) is an admissible trajectory driven by ν. Moreover, there

exists η ∈P(Rd × ΓT ) such that

(1) µt = et]η for all t ∈ [0, T ];
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(2) for η-a.e. (x, γ) ∈ Rd × ΓT , we have{
γ̇(t) ∈ F (et]η, γ(t)), for a.e. t ∈ [0, T ];

γ(0) = x.

Conversely, if η ∈ P(Rd × ΓT ) satis�es (2) above, we have that µ := {µt :=
et]η}t∈[0,T ] ∈ A F

[0,T ](µ) is an admissible trajectory driven by ν = {vtµt}t∈[0,T ], where

for a.e. t ∈ [0, T ] and µt-a.e. y ∈ Rd

vt(y) =

∫
e−1
t (y)

γ̇(t) dηt,y(x, γ),

and ηt,y is given by the disintegration η = µt ⊗ ηt,y.

The measure η ∈ P(Rd × ΓT ) can be identi�ed with a measure on the space of
continuous paths in Rd. In analogy to Theorem A.3, the macroscopical behaviour
of the system is reconstructed as a (weighted) superposition of paths.

Before proving this theorem we need two Lemmas

Lemma 3.7. Let C, T > 0 and w : [0, T ]× Rd → Rd be a map satisfying

(1) x 7→ wt(x) continuous for all t ∈ [0, T ],
(2) t 7→ wt(x) measurable for all x ∈ Rd,
(3) |wt(x)| ≤ C(1 + |x|) for all t ∈ [0, T ], x ∈ Rd.

Then

• there is a Borel map x 7→ γx from Rd to ΓT such that for all x ∈ Rd we have
γx(0) = x and γ̇x(t) = wt(γx(t)) for a.e. t ∈ [0, T ].
• for every µ ∈ P2(Rd), set η = µ ⊗ δγx and µ = {µt}t∈[0,T ] with µt = et]η,
we have that ∂tµt + div(wtµt) = 0 and µ0 = µ.

Proof. Assumption (3) yields the existence of solutions of the Cauchy problem γ̇(t) =
wt(γ(t)) with γ(0) = x de�ned in [0, T ] for all x ∈ Rd.

We notice that if γ̇(t) = wt(γ(t)) with γ(0) = x, then

|γ(t)| ≤ |x|+
∫ t

0

|ws(γ(s))| ds ≤ |x|+ C

∫ t

0

(1 + |γ(s)|) ds,

and so, by Grönwall's inequality,

(1 + |γ(t)|) ≤ (1 + |x|)eCt ≤ (1 + |x|)eCT .

We de�ne the following map g : Rd × ΓT → ΓT

g(x, γ)(t) := x+

∫ t

0

ws ◦ γ(s) ds− γ(t).

Notice that g is continuous. Consider the set-valued map H : Rd → ΓT de�ned by

H(x) := {γ ∈ B∞(0, (1 + |x|)eCT ) : g(x, γ) ≡ 0},

where, given r ≥ 0,

B∞(0, r) = {γ ∈ AC([0, T ];Rd) : |γ(t)| ≤ r for all t ∈ [0, T ]},

i.e., the r-ball of the sup norm centered at the origin. The �rst assertion of the
thesis now follows from Theorem 8.2.9 in [5], while the second one is trivial. �
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Lemma 3.8. Let T > 0 and assume (F1 − F2). Let θ(·) be a solution of (3.1)

ful�lling all the properties in (F2), and set ζ(µ) = 1 + m
1/2
2 (µ) for all µ ∈P2(Rd).

De�ne

(3.2) D :=
{
µ = {µt}t∈[0,T ] ∈ AC([0, T ]; P2(Rd)) : ζ(µ0) < θ(0),

and ζ(µt) ≤ θ(t) for all t ∈]0, T ]
}
.

For all µ̂ = {µ̂t}t∈[0,T ] ∈ D we set

Q(µ̂) :=
{
µ = {µt}t∈[0,T ] : there exists a Borel map (t, x) 7→ vt(x)

such that ∂tµt + div(vtµt) = 0, µ0 = µ̂0, and(3.3)

vt(x) ∈ F (µ̂t, x) for a.e. t ∈ [0, T ] and µt-a.e. x ∈ Rd
}
.

Then we have ∅ 6= Q(µ̂) ⊆ D.
In particular, given µ = {µt}t∈[0,T ] ∈ Q(µ̂), the map (t, x) 7→ vt(x) associated to

µ can be chosen also satisfying∫ T

0

∫
Rd
|vt(x)|2 dµt dt < +∞.

Proof. We �rst prove that Q(µ̂) 6= ∅. Since the set-valued map (t, x) 7→ F (µ̂t, x) is
continuous with convex closed values, it possesses a continuous selection vt(x). By
assumption, we have

|vt(x)| ≤ Υ (1 + m
1/2
2 (µ̂t))(1 + |x|) ≤ Υ (θ(t))(1 + |x|) ≤ Υ (θ(T ))(1 + |x|),

recalling that θ(·) is increasing since Υ (·) is nonnegative. In particular, we have that
every integral solution of γ̇(t) = vt(γ(t)) is de�ned on [0, T ]. By Lemma 3.7, there
exists a Borel map x 7→ γx such that for all x ∈ Rd we have γ̇x(t) = vt(γx(t)) in
]0, T ] and γx(0) = x. Then, set η̄ = µ̂0 ⊗ δγx , µ̄t = et]η̄, ν̄t = vtµ̄t, we have that
µ̄ = {µ̄t}t∈[0,T ] ∈ Q(µ̂) thanks to ν̄ = {ν̄t}t∈[0,T ].

We consider now any µ = {µt}t∈[0,T ] ∈ Q(µ̂). Since µ̂0 = µ0, we have m2(µ0) =
m2(µ̂0) < θ2

0. Moreover, there exists ν = {vtµt}t∈[0,T ] such that

∂tµt + div vtµt = 0,

and vt(x) ∈ F (µ̂t, x) for a.e. t ∈ [0, T ] and for µt-a.e. x ∈ Rd. In particular, we have

(3.4) ‖vt‖L2
µt
≤ Υ (θ(t))(1 + m2(µt))

According to Proposition A.3, there exists η ∈ P(Rd × ΓT ) concentrated on the
pairs (x, γ) where γ is an integral solutions of γ̇(s) = vs(γ(s)) satisfying γ(0) = x,
such that µt = et]η for all t ∈ [0, T ].

For η-a.e. (γ(0), γ) ∈ Rd × ΓT , and for 0 ≤ t ≤ s ≤ T we have

|γ(s)| ≤ |γ(t)|+
∫ s

t

Υ (1 + m
1/2
2 (µτ ))(1 + |γ(τ)|) dτ

By taking the L2
η norm, and applying Jensen's inequality, we have

m
1/2
2 (µs) ≤ m

1/2
2 (µt) +

∫ s

t

Υ (1 + m
1/2
2 (µτ ))(1 + m

1/2
2 (µτ )) dτ,
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so if we set z(s) = 1+m
1/2
2 (µs), we obtain that z(·) is a continuous function satisfying
z(s) ≤ z(t) +

∫ s

t

Υ (z(τ))z(τ) dτ,

z(0) < θ(0).

Given 0 ≤ t < s ≤ [0, T ], we have

θ(s)− z(s) ≥ θ(t)− z(t) +

∫ s

t

[Υ (θ(τ))θ(τ)− Υ (z(τ))z(τ)] dτ.

Since θ(0) > z(0), we can de�ne

s̄ = sup{τ ∈ [0, T ] : θ(t) > z(t) for all t ∈ [0, τ ]} > 0.

We want to prove that s̄ = T . Assume by contradiction that s̄ < T . According to
the above relation, we have

θ(s̄)− z(s̄) ≥ θ(0)− z(0) +

∫ s̄

0

[Υ (θ(τ))θ(τ)− Υ (z(τ))z(τ)] dτ > θ(0)− z(0) > 0.

in particular, by continuity, there exists ε > 0 such that s̄+ ε < T and θ(τ) > z(τ)
for all τ ∈ [s̄, s̄ + ε[, thus contradicting the maximality of s̄. Thus, we have that
z(s) ≤ θ(s) for all s ∈ [0, T ], and the inequality is strict at s = 0, hence µ ∈ D.
Recalling (3.4), the increasing character of Υ (·) and θ(·), and the de�nition of D,
we have also∫ T

0

∫
Rd
|vt(x)|2 dµt dt ≤ Υ (θ(T ))

∫ T

0

(1 + m2(µt)) dt < +∞.

�

Proof of Theorem 3.6. The existence will be proved by a �xed point argument. We

de�ne by induction a sequence µ(n) = {µ(n)
t }t∈[0,T ] ⊆ D as follows.

• We set µ
(0)
t ≡ µ and ν

(0)
t ≡ 0 for all t ∈ [0, T ]. By assumption, we have that

µ(0) = {µ(0)
t }t∈[0,T ] ∈ D.

• Given µ(n) = {µ(n)
t }t∈[0,T ] ∈ D, we choose µ(n+1) ∈ Q(µ(n)) ⊆ D. The choice

is possible thanks to Lemma 3.8.

We notice that, by de�nition of Q(·) and by Lemma 3.8, for all n ∈ N it exists a

Borel map (t, x) 7→ w
(n)
t (x) such that

• ∂tµ(n+1)
t + div(w

(n)
t µ

(n)
t ) = 0, µ

(n)
0 = µ,

• w(n+1)
t (x) ∈ F (µ

(n)
t , x) for µn+1

t -a.e. x ∈ Rd and a.e. t ∈ [0, T ],

•
∫ T

0

∫
Rd
|w(n)

t (x)|2 dµnt dt < +∞.

Thus, recalling (F2),

|w(n)
t (x)| ≤ Υ (1 + m

1/2
2 (µ

(n+1)
t ))(1 + |x|) ≤ Υ (θ(t))(1 + |x|) ≤ Υ (θ(T ))(1 + |x|),

hence, by applying Theorem A.3, we de�ne a sequence {η(n)}n∈N ⊆ P(Rd × ΓT )

satisfying µ
(n)
t = et]η

(n) for all n ∈ N, t ∈ [0, T ]. Moreover, for η(n)-a.e. (x, γ) ∈
Rd × ΓT , we have γ̇(t) = w

(n)
t (γ(t)) and γ(0) = x, then

|γ(t)| ≤ |x|+
∫ t

0

|w(n)
s (γ(s))| ds ≤ |x|+ Υ (θ(T ))

∫ t

0

(1 + |γ(s)|) ds,
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and so, by Grönwall's inequality, for all t ∈ [0, T ]

(1 + |γ(t)|) ≤ (1 + |x|)eΥ (θ(T ))t ≤ (1 + |x|)eΥ (θ(T ))T ,

and for a.e. t ∈ [0, T ]

|γ̇(t)| = |w(n)
t (γ(t))| ≤ Υ (θ(T ))(1 + |γ(t)|) ≤ Υ (θ(T ))eΥ (θ(T ))T (1 + |x|).

This yields

m
1/2
2 (η(n)) =

(∫
Rd×ΓT

(|x|2 + ‖γ‖2
∞) dη(n)(x, γ)

)1/2

≤m
1/2
2 (µ) + (1 + m

1/2
2 (µ))eΥ (θ(T ))T < +∞,

and ∫
Rd×ΓT

‖γ̇‖L∞ dη(n)(x, γ) ≤Υ (θ(T ))eΥ (θ(T ))T

(∫
R×ΓT

(1 + |x|) dη(n)(x, γ)

)
=Υ (θ(T ))eΥ (θ(T ))T (1 + m

1/2
2 (µ

(n)
0 ))

≤Υ (θ(T ))eΥ (θ(T ))T (1 + m
1/2
2 (µ)),

recalling that µ
(n)
0 = µ for all n ∈ N.

De�ned the functional E : Rd × ΓT → [0,+∞] by setting

E(x, γ) =


|x|2 + ‖γ‖2∞ + ‖γ̇‖L∞ , if γ ∈ AC(I) and γ̇ ∈ L∞(I),

+∞, otherwise,

we have that E has compact sublevels in Rd × ΓT and

sup
n∈N

∫
Rd×ΓT

E(x, γ) dη(n)(x, γ) < +∞.

By Remark 5.1.5 in [3], the sequence {η(n)}n∈N is tight. In particular, up to a
subsequence, there exists η ∈P(Rd × ΓT ) such that η(n) ⇀∗ η. By the continuity

of et, we have that µ
(n)
t ⇀∗ µt := et]η for all t ∈ [0, T ].

Indeed, given 0 ≤ s ≤ t ≤ T we have

W2(µ(n)
s , µ

(n)
t ) ≤

[∫
Rd×ΓT

|et(x, γ)− es(x, γ)|2 dη(n)(x, γ)

]1/2

=

[∫
Rd×ΓT

|γ(t)− γ(s)|2 dη(n)(x, γ)

]1/2

≤|t− s| ·
[∫

Rd×ΓT

‖γ̇‖2
L∞ dη

(n)(x, γ)

]1/2

≤|t− s| · Υ (θ(T ))eΥ (θ(T ))T · (1 + m2(µ
(n)
0 ))

=|t− s| · Υ (θ(T ))eΥ (θ(T ))T · (1 + m2(µ)),

recalling that µ
(n)
0 = µ for all n ∈ N. Therefore we have that {µ(n)}n∈N is a sequence

of equiLipschitz continuous curves in P2(Rd) w.r.t. W2-distance. Since they satisfy

also µ
(n)
0 = µ for all n ∈ N, the sequence is also equibounded. By Ascoli-Arzelà

Theorem, up to a (non relabeled) subsequence, it converges uniformly to a Lipschitz
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continuous curve. By the uniqueness of the limit, we have that µ(n) converges
uniformly to µ.

By Proposition 5.1.8 in [3], we have that for all (x, γ) ∈ suppη there exists a
sequence {(xn, γn)}n∈N such that (xn, γn) ∈ suppη(n), xn → x and ‖γn − γ‖∞ → 0.

By the estimates on w
(n)
t (x), we have for n su�ciently large and for a.e. t ∈ [0, T ]

|γ̇n(t)| ≤ Υ (θ(T ))(1 + |xn|) ≤ Υ (θ(T ))(2 + |x|),
so {γn}n∈N having uniformely bounded Lipschitz constants, thus γ is Lipschitz con-
tinuous. Moreover, for a.e. t ∈ [0, T ] we have

γ̇(t) ∈
⋂
m∈N

co {γ̇n(t) : n ≥ m} ⊆
⋂
m∈N

co
⋃
n≥m

F (µ
(n)
t , γn(t)).

Recalling the continuity of F and the fact that F is convex valued, for any ε > 0

there exists nε su�ciently large such that if n ≥ m > nε we have F (µ
(n)
t , γn(t)) ⊆

F (µt, γ(t)) + εB(0, 1), thus

γ̇(t) ∈ co
⋃
n≥m

F (µ(n), γn(t)) ⊆ F (µt, γ(t)) + εB(0, 1).

In particular, by letting ε→ 0+, we have that η is supported on the set of (x, γ) ∈
Rd × ΓT , where γ ∈ AC([0, T ];Rd) such that γ̇(t) ∈ F (µt, γ(t)) for a.e. t ∈ [0, T ].
De�ne now ν = {νt}t∈[0,T ] by νt = vtµt with

vt(x) =

∫
e−1
t (x)

γ̇(t) dηt,x(y, γ),

where {ηt,x}t∈[0,T ]

x∈Rd
is the Borel family of probability measures obtained disintegrating

η w.r.t. et, i.e., η = µt ⊗ ηt,x. Notice that vt(x) ∈ F (µt, x) by the convexity
assumption on F (µt, x), thus µ is an admissible trajectory driven by ν.

Conversely, if η is supported on (x, γ) ∈ Rd × ΓT , where γ ∈ AC([0, T ];Rd) such
that γ̇(t) ∈ F (µt, γ(t)) for a.e. t ∈ [0, T ], we de�ne µ = {µt}t∈[0,T ] and ν = {νt}t∈[0,T ]

by setting µt = et]η, and νt = vtµt with

vt(x) =

∫
e−1
t (x)

γ̇(t) dηt,x(y, γ),

where η = µt ⊗ ηt,x. As before, vt(x) ∈ F (µt, x) by the convexity assumption on
F (µt, x), thus µ is an admissible trajectory driven by ν. The proof is complete. �

Remark 3.9. The convexity of the images of F is essential in the proof of Theorem
3.6. Roughly speaking, from a multi-agent point of view it means that the macro-
scopical mass diplacement can be faithfully represented by the mass transported by
the agents at the micoscopical level. Indeed, when the convexity assumption on the
images of F fails we have two main consequences:

• at the microscopical level the trajectories of γ̇(t) ∈ F (µt, γ(t)) are dense
in the set of the trajectories of the relaxed di�erential inclusion γ̇(t) ∈
coF (µt, γ(t)) for the metric of uniform convergence by Filippov - Wa»ewski
Relaxation Theorem (see e.g. Theorem 10.4.4 in [5]), provided that F is
Borel and Lipschitz w.r.t. x. In particular, at the microscopical level, the
di�erence between working with F or coF can be made arbitrary small, if
no derivatives of the trajectories are involved.
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• at the macroscopical level we loose the link between the function vt(·) and
the set-valued map regulating the dynamics of the agents, since the formula
providing vt(·) as weighted average of the velocities of the concurrent char-
acteristics induces intrinsecally a convexi�cation for the macroscopical �ux
vtµt.

In this sense, an example of such a situation was already provided in Example 1
of [16], for an F independent on µ, where the velocities of a nonnegligible set of
microscopical trajectories were di�erent from the mean �eld vt for a nonnegligible
amount of time. Therefore in order to face meaningfully problems where the images
of F are not necessarily convex, it is necessary to distinguish between the micro-
scopical dynamics (governed by F ) and the macroscopical vector �eld which in any
case must be allowed to belong to coF .

Combining the above Theorem 3.6 with Lemma 3.4, we have the following com-
pactness result.

Corollary 3.10. Assume (F1) − (F2). Let S ⊆
⋃

µ∈P2(Rd)
m2(µ)<θ2

0

A F
[0,T ](µ), where θ0 is as in

(3.1). Then S is relatively compact in C0([0, T ]; P2(Rd)) w.r.t. the uniform norm
(endowing P2(Rd) with the W2-distance).

Proof. Let {µ(n)}n∈N be a sequence in S. In particular, there exists a sequence

{ν(n)}n∈N such that for every n ∈ N it holds µ(n) = {µ(n)
t }t∈[0,T ], ν

(n) = {ν(n)
t =

v
(n)
t µ

(n)
t }t∈[0,T ] ⊆M (Rd;Rd) with ∂tµ

(n)
t + div(v

(n)
t µ

(n)
t ) = 0 and v

(n)
t (x) ∈ F (µ

(n)
t , x)

for a.e. t ∈ [0, T ] and µt-a.e. x ∈ Rd. Moreover, m2(µ
(n)
0 ) < θ2

0. Thus µ(n) ∈
Q(µ). According to Lemma 3.8, we have that µ(n) ∈ D. In particular, there exists

η(n) ∈ P(Rd × ΓT ) such that µ
(n)
t = et]η

(n) for all t ∈ [0, T ] and for η(n)-a.e.

(x, γ) ∈ Rd × ΓT it holds γ(0) = x and γ̇(t) = v
(n)
t ◦ γ(t) ∈ F (et]µ

(n)
t , γ(t)) for a.e.

t ∈ [0, T ]. Thus, recalling (F2),

|v(n)
t (x)| ≤ Υ (1 + m

1/2
2 (µ

(n)
t ))(1 + |x|) ≤ Υ (θ(t))(1 + |x|) ≤ Υ (θ(T ))(1 + |x|),

As done in the proof of Theorem 3.6,

|γ(t)| ≤ |x|+
∫ t

0

|v(n)
s (γ(s))| ds ≤ |x|+ Υ (θ(T ))

∫ t

0

(1 + |γ(s)|) ds,

and so, by Grönwall's inequality, for all t ∈ [0, T ]

(1 + |γ(t)|) ≤ (1 + |x|)eΥ (θ(T ))t ≤ (1 + |x|)eΥ (θ(T ))T ,

and for a.e. t ∈ [0, T ]

|γ̇(t)| = |v(n)
t (γ(t))| ≤ Υ (θ(T ))(1 + |γ(t)|) ≤ Υ (θ(T ))eΥ (θ(T ))T (1 + |x|).

This yields

m
1/2
2 (η(n)) =

(∫
Rd×ΓT

(|x|2 + ‖γ‖2
∞) dη(n)(x, γ)

)1/2

≤m
1/2
2 (µ

(n)
0 ) + (1 + m

1/2
2 (µ

(n)
0 ))eΥ (θ(T ))T < θ0 + (1 + θ0)eΥ (θ(T ))T ,

and ∫
Rd×ΓT

‖γ̇‖L∞ dη(n)(x, γ) ≤Υ (θ(T ))eΥ (θ(T ))T

(∫
R×ΓT

(1 + |x|) dη(n)(x, γ)

)
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≤Υ (θ(T ))eΥ (θ(T ))T (1 + m
1/2
2 (µ

(n)
0 ))

≤Υ (θ(T ))eΥ (θ(T ))T θ0.

Considering again the functional E : Rd × ΓT → [0,+∞] de�ned by setting

E(x, γ) =


|x|2 + ‖γ‖2∞ + ‖γ̇‖L∞ , if γ ∈ AC(I) and γ̇ ∈ L∞(I),

+∞, otherwise,

we have that E has compact sublevels in Rd × ΓT and

sup
n∈N

∫
Rd×ΓT

E(x, γ) dη(n)(x, γ) < +∞.

By Remark 5.1.5 in [3], the sequence {η(n)}n∈N is tight. In particular, up to a
subsequence, there exists η ∈P(Rd × ΓT ) such that η(n) ⇀∗ η. By the continuity

of et, we have that µ
(n)
t ⇀∗ µt := et]η for all t ∈ [0, T ]. Furthermore, we have

W2(µ
(n)
t , µ(n)

s ) ≤
[∫

Rd×Rd
|et(x, γ)− es(x, γ)|2 dη(n)(x, γ)

]1/2

=

[∫
Rd×Rd

|γ(t)− γ(s)|2 dη(n)(x, γ)

]1/2

≤|t− s|
[∫

Rd×ΓT

‖γ̇‖2
L∞ dη

(n)(x, γ)

]1/2

≤|t− s|
[∫

Rd×ΓT

Υ 2(θ(T ))e2Υ (θ(T ))T (1 + |x|)2 dη(n)(x, γ)

]1/2

≤|t− s|Υ (θ(T ))eΥ (θ(T ))T (1 + θ0).

So the sequence {µ(n)}n∈N is equibounded and equiLipschitz continuous, hence µ
is Lipschitz continuous in P2(Rd). Arguing as in the proof of Theorem 3.6, we
have that η is supported on pairs (x, γ) ∈ Rd × ΓT such that γ(0) = x and γ̇(t) ∈
F (et]η, γ(t)) for a.e. t ∈ [0, T ], thus µ is an admissible trajectory. �

Remark 3.11. Assume (F1) − (F3). Given any continuous curve µ = {µt}t∈[0,T ], we
set gµ(t, x, u) := f(µt, x, u) and let U := {u(·) : u(·) measurable and u([0, T ]) ⊆ U}.
Recalling e.g. Lemma 7.3 in [18],

• the map Rd × U → ΓT associating to (x, u(·)) the unique solution γµx,u(·) of

γ̇(t) = g(t, x, u(t)), γ(0) = x is continuous w.r.t. both the variable when on
U we put the metric of the convergence in measure;
• the set Dµ := {γµx,u(·) : u(·) ∈ U , x ∈ Rd} is closed.

If we de�ne the set-valued map G : Dµ ⇒ U
Gµ(γ) := {u ∈ U : γµγ(0),u(·)(t) = γ(t) for all t ∈ [0, T ]},

we have that G admits a Borel selection γ 7→ uγ (see e.g. Theorem 8.2.9 in [5]). In
particular, for all γ ∈ Dµ we have γ = γµγ(0),uγ(·).

As in classical control, it is crucial to be able to construct an approximation of
a given trajectory starting from an initial data by another trajectory starting from
another initial data.
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Proposition 3.12 (Grönwall-Filippov type estimate). Assume (F1) − (F3). Let

µ0, µ
(G)
0 ∈ P2(Rd), and µ = {µt}t∈[0,T ] ∈ A F

[0,T ](µ0) be an admissible trajectory.

Then there exists an admissible trajectory µ(G) = {µ(G)
t }t∈[0,T ] ∈ A F

[0,T ](µ
(G)
0 ) such

that for all t ∈ [0, T ] we have

W2(µt, µ
(G)
t ) ≤ eLT+TeLT ·W2(µ0, µ

(G)
0 ),

where L is as in (F3).

Proof. We will proceed by de�ning by recurrence a sequence converging to the de-

sired trajectory. Set µ(0) = µ = {µ(0)
t }t∈[0,T ] and π ∈ Πo(µ

(0)
0 , µ

(G)
0 ). By assump-

tion on F and since µ(0) is admissible, there exists η(0) ∈ P(Rd × ΓT ) such that

µ
(0)
t = et]η

(0) for all t ∈ [0, T ] and for η(0)-a.e. (x, γ) ∈ Rd×ΓT there exists a Borel
map uγ : [0, T ]→ U such that γ 7→ uγ is also Borel and{

γ̇(t) = f(µ
(0)
t , γ(t), uγ(t)), for a.e. t ∈ [0, T ],

γ(0) = x.

Given y ∈ Rd, we de�ne a map τy,µ : ΓT → ΓT by letting τy,µ(γ) be the solution of{
˙̃γ(t) = f(µ

(0)
t , γ̃(t), uγ(t)), for a.e. t ∈ [0, T ],

γ̃(0) = y.

for η(0)-a.e. (γ(0), γ) ∈ Rd × ΓT .

In other words, given γ such that (γ(0), γ) ∈ suppη(0) we consider the control
strategy uγ(·) generating it, and use the same control strategy to construct a curve
τy,µ starting from y.

De�ne two maps ψµ(0) , φ : Rd ×Rd × ΓT → Rd × ΓT by setting φ(x, y, γ) = (x, γ)
and ψµ(0)(x, y, γ) = (y, τy,µ(0)(γ)). Notice that ψµ(0)(x, y, γ) is well-de�ned only for

η(0)-a.e. (γ(0), γ) ∈ Rd × ΓT and all y ∈ Rd.

Written η(0) = µ
(0)
0 ⊗ η

(0)
x for a Borel family {η(0)

x }x∈Rd , set

η(1) := ψµ(0)]
(
π ⊗ η(0)

x

)
,

and let µ(1) = {µ(1)
t }t∈[0,T ] be de�ned by µ

(1)
t := et]η

(1). Notice that, by construction,

we have η(0) = φ]
(
π ⊗ η(0)

x

)
. Thus (see e.g. formula (7.1.6) in [3])

(3.5) W2(µ
(0)
t , µ

(1)
t ) ≤

∥∥et ◦ φ− et ◦ ψµ(0)

∥∥
L2
π⊗ηx

.

For π ⊗ ηx-a.e. (x, y, γ) ∈ Rd × Rd × ΓT , recalling (F3), we have

|et ◦ φ(x, y, γ)− et ◦ ψµ(0)(x, y, γ)| =(3.6)

=

∣∣∣∣x− y +

∫ t

0

[
f(µs, γ(s), uγ(s))− f(µs, τy,µ(0)(γ)(s), uγ(s))

]
ds

∣∣∣∣
≤|x− y|+

∫ t

0

∣∣f(µs, γ(s), uγ(s))− f(µs, τy,µ(0)(γ)(s), uγ(s))
∣∣ ds

≤|x− y|+ L

∫ t

0

∣∣γ(s)− τy,µ(0)(γ)(s)
∣∣ ds
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=|x− y|+ L

∫ t

0

|es ◦ φ(x, y, γ)− es ◦ ψµ(0)(x, y, γ)| ds

Recalling that, by the optimality of π,∫
Rd×Rd×ΓT

|x− y|2 d(π ⊗ η(0)
x )(x, y, γ) =

∫
Rd×Rd

|x− y|2 dπ(x, y)

=W 2
2 (µ

(0)
0 , µ

(G)
0 ),

taking the L2 norm of (3.6) w.r.t. π ⊗ ηx and using Jensen's inequality yields∥∥et ◦ φ− et ◦ ψµ(0)

∥∥
L2

π⊗η(0)
x

≤ W2(µ
(0)
0 , µ

(G)
0 ) + L

∫ t

0

∥∥es ◦ φ− es ◦ ψµ(0)

∥∥
L2

π⊗η(0)
x

ds

By Grönwall inequality, and recalling (3.5), we obtain

W2(µ
(0)
t , µ

(1)
t ) ≤ eLt ·W2(µ

(0)
0 , µ

(G)
0 ) ≤ eLT ·W2(µ

(0)
0 , µ

(G)
0 ).

We construct now a sequence by induction.

Assume to have de�ned η(k) ∈P(Rd × ΓT ), k = 1, . . . , n− 1, in such a way that
for η(k)-a.e. (x, γ) ∈ Rd × ΓT there exists uγ : [0, T ]→ U such that{

γ̇(t) = f(et]η
(k−1), γ(t), uγ(t)), for a.e. t ∈ [0, T ],

γ(0) = x,

and satisfying

W2(et]η
(k−1), et]η

(k)) ≤ ekLT ·W2(µ
(0)
0 , µ

(G)
0 )

tk−1

(k − 1)!
,

for all k = 1, . . . , n − 1 and t ∈ [0, T ] (recall that 0! = 1). Then for η(n−1)-a.e.
(x, γ) ∈ Rd × ΓT we de�ne φn(x, γ) = (x, τn(γ)) where τn : ΓT → ΓT , and for
η(n−1)-a.e. (γ(0), γ) ∈ Rd × ΓT , we have that τn(γ) is the solution of{

˙̃γ(t) = f(et]η
(n−1), γ̃(t), uγ(t)), for a.e. t ∈ [0, T ],

γ(0) = x,
,

and we set η(n) := φn]η
(n−1). We have

W2(et]η
(n−1), et]η

(n)) ≤ ‖et − et ◦ φn‖L2

η(n−1)
.

Since

|et(x, γ)−et ◦ φn(x, γ)| ≤

≤
∫ t

0

∣∣f(es]η
(n−2), γ(s), uγ(s))− f(es]η

(n−1), τn(γ)(s), uγ(s))
∣∣ ds

≤L
∫ t

0

W2(es]η
(n−2), es]η

(n−1)) ds+ L

∫ t

0

|γ(s)− τn(γ)(s)| ds

=L

∫ t

0

W2(es]η
(n−2), es]η

(n−1)) ds+ L

∫ t

0

|es(x, γ)− es ◦ φn(x, γ)| ds,

taking the L2 norm w.r.t. η(n−1) and using Jensen's inequality, we have

‖et−et ◦ φn‖L2

η(n−1)
≤
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≤ L

∫ t

0

W2(es]η
(n−2), es]η

(n−1)) ds+ L

∫ t

0

‖es − es ◦ φn‖L2

η(n−1)
ds

By Grönwall inequality, we obtain

W2(et]η
(n−1), et]η

(n)) ≤‖et − et ◦ φn‖L2

η(n−1)
≤ LeLT

∫ t

0

W2(es]η
(n−2), es]η

(n−1)) ds

≤eLT
∫ t

0

e(n−1)LT ·W2(µ
(0)
0 , µ

(G)
0 )

sn−2

(n− 2)!
ds

=enLT ·W2(µ
(0)
0 , µ

(G)
0 )

tn−1

(n− 1)!
.

In particular, since

+∞∑
n=1

max
t∈[0,T ]

W2(et]η
(n−1), et]η

(n)) ≤eLTW2(µ
(0)
0 , µ

(G)
0 )

∞∑
n=1

[TeLT ]n−1

(n− 1)!

=eLT+TeLT ·W2(µ
(0)
0 , µ

(G)
0 ),

the sequence of continuous curves µ(n) = {µ(n)
t }t∈[0,T ] is a Cauchy sequence in

C0([0, T ]; P2(Rd)), hence it converges uniformly to a continuous curve µ∞ = {µ∞t }t∈[0,T ],

where µ∞0 = µ
(G)
0 . In particular, a measurable selection theorem (see e.g. Theorem

8.2.11 in [5]) yields

m2(η(n)) =

∫∫
Rd×ΓT

sup
t∈[0,T ]

[
|x|2 + |et(γ)|2

]
dη(n)(x, γ)

= sup
t∈[0,T ]

∫∫
Rd×ΓT

|x|2 + |et(γ)|2 dη(n)(x, γ)

≤ sup
t∈[0,T ]

2m2(et]η
(n)) = 2 sup

t∈[0,T ]

m2(µ
(n)
t ).

We recall that
m

1/2
2 (µ

(n)
t ) = W2(δ0, µ

(n)
t ),

and so the sequence of continuous maps {t 7→ m
1/2
2 (µ

(n)
t )}n∈N uniformly converges

to the continuous map t 7→ m
1/2
2 (µ∞t ) (recalling also the Lipschitz continuity of

W2(δ0, ·)). For n su�ciently large, we then have

m2(η(n)) ≤ 4 sup
t∈[0,T ]

m2(µ∞t ) < +∞,

where the �niteness of the right hand side is ensured by the continuity of µ∞ on
the compact [0, T ].

Since

F (µ, x) ⊆ F (δ0, 0)+L(W2(δ0, µ)+ |x|) ·B(0, 1) = F (δ0, 0)+(Lm2(µ)+L|x|) ·B(0, 1),

we have also that for η(n)-a.e. (γ(0), γ) ∈ Rd × ΓT

|γ̇(t)| ≤ max
w∈F (δ0,0)

|w|+ Lm2(µ
(n)
t ) + L|γ(t)|.

Taking the L2
η(n) norm yields

‖γ̇(t)‖L2

η(n)
≤ max

w∈F (δ0,0)
|w|+ 2L(1 + m2(µ

(n)
t ))
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≤ max
w∈F (δ0,0)

|w|+ 2L(1 + sup
s∈[0,T ]

m2(µ∞s ))

∫ T

0

‖γ̇(t)‖2
L2

η(n)
dt ≤T

(
max

w∈F (δ0,0)
|w|+ 8L(1 + sup

s∈[0,T ]

m2(µ∞s ))

)2

< +∞.

We have∫
Rd×ΓT

[
|x|2 + ‖γ‖2

∞ + ‖γ̇‖2
L2

]
dη(n)(x, γ) =

=m2(η(n)) +

∫
Rd×ΓT

∫ T

0

|γ̇(t)|2 dt dη(n)(x, γ)

=m2(η(n)) +

∫ T

0

∫
Rd×ΓT

|γ̇(t)|2 dη(n)(x, γ) dt

=m2(η(n)) +

∫ T

0

‖γ̇(t)‖2
L2

η(n)
dt

≤4 sup
t∈[0,T ]

m2(µ∞t ) + T

(
max

w∈F (δ0,0)
|w|+ 8L(1 + sup

s∈[0,T ]

m2(µ∞s ))

)2

< +∞.

Hence, again by Remark 5.1.5 in [3], there exists η∞ ∈ P(Rd × ΓT ) such that, up
to a subsequence η(n) ⇀∗ η∞. By the continuity of the operator et on Rd × ΓT ,

and recalling that µ
(n)
t = et]η

(n), we obtain µ∞t = et]η
∞. Moreover, by Proposition

5.1.8 in [3], for η∞-a.e. (x, γ) ∈ Rd × ΓT there exists a sequence {(xn, γn)}n∈N such
that (xn, γn) ∈ suppη(n), xn → x and ‖γn − γ‖∞ → 0. For a.e. t ∈ [0, T ] we have

(3.7) γ̇n(t) ∈ F (µn−1
t , γn(t)) ⊆ F (µ∞t , 0) + L(|γn(t)|+W2(µ

(n)
t , µ∞t )B(0, 1)).

Thus, for n su�ciently large, we have W2(µ
(n)
t , µ∞t ) ≤ 1 and |γn(t) − γ(t)| ≤ 1 for

all t ∈ [0, T ], and so

|γ̇n(t)| ≤ C + L|γn(t)| ≤ C + L(‖γ‖∞ + 1),

where C := L + max{|v| : v ∈ F (µ∞t , 0), t ∈ [0, T ]}. So γ is Lipschitz continuous.
By passing to the limit in the equation (3.7) , for a.e. t ∈ [0, T ] we obtain

γ̇(t) = f(µ∞t , γ(t), uγ(t)), for a.e. t ∈ [0, T ], and γ(0) = x,

In particular, set µ(G) := µ∞, we have that µ(G) is an admissible trajectory satis-
fying all the requested properties. �

Example 3.13. Possible choices for Υ (·) are
• Υ (r) = C · log r for any C > 0 and T > 0. In this case we can also choose

θ0 > 0 arbitrarily, and θ(t) = (1 + θ0)e
Ct
.

• Υ (r) = C · rα for α > 0. In this case we have

θ(t) =
1 + θ0

(1− αCt(1 + θ0)α)1/α
,

thus we require αCT (1 + θ0)α < 1.
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Remark 3.14. A possible variant of (F2), is to consider instead of (3.1), the existence
of a solution θ(·) de�ned in [0, T ] to

(3.8)

{
θ̇(s) = Ξ(θ(s), θ(s)), for s > 0,

θ(0) = 1 + θ0,

where Ξ : [1,+∞[×[1,+∞[→]0,+∞[ is a continuous function such that r 7→ Ξ(r, r)
is increasing, and r2 7→ Ξ(r1, r2) is convex for all r1. In this case, if θ(·) is such a
solution, we have also to assume that{

γ̇(s) = Ξ(θ(s), γ(s)),

γ(0) = x

has a solution de�ned on [0, T ] for all x ∈ Rd, while in the previous setting this was
granted by the sublinear growth of Ξ(r1, r2) = Υ (r1)r2 w.r.t. the second variable.
The proof of Lemma 3.8 in this new setting requires only a straighforward adaption
of the previous proof. Moreover, in the case of (F3), this yields to existence for all
initial conditions θ0 and all times T .

4. The value function and its properties

Let T > 0, L : P2(Rd)×M (Rd;Rd)→ R ∪ {+∞} and G : P2(Rd)→ R. Given
µ = {µt}t∈[s,T ] ∈ A F

[s,T ](µ) driven by ν = {νt}t∈[s,T ] ⊆ M (Rd;Rd) we de�ne the

functional J(·) by

J[s,T ](µ,ν) :=

∫ T

s

L(µt, νt) dt+ G (µT ).

In particular, we say that µ̂ = {µ̂t}t∈[s,T ] ∈ A F
[s,T ](µ) is an optimal trajectory starting

from µ at time s if there exists ν̂ = {ν̂t}t∈[s,T ] ⊆ M (Rd;Rd) such that µ̂ is driven
by ν̂ and

J[s,T ](µ̂, ν̂) = inf
{
J[s,T ](µ,ν) : µ ∈ A F

[s,T ](µ) driven by ν
}
.

This enables us to de�ne the value function V : [0, T ]×P2(Rd)→ R ∪ {+∞} by
(4.1) V (s, µ) := inf

{
J[s,T ](µ,ν) : µ ∈ A F

[s,T ](µ) driven by ν
}
.

Recall that one can concatenate admissible trajectories as follows: Let I1 = [a, b],
I2 = [b, c] with a ≤ b ≤ c. Given µ(i) ∈ A F

Ii
(µ(i) driven by ν(i), i = 1, 2 with

µ(1) ∈P2(Rd) and µ(2) = µ
(1)
b , set (µt, νt) = (µ

(i)
t , ν

(i)
t ) for t ∈ Ii \ {b}, i = 1, 2, and

(µb, νb) = (µ
(1)
b , ν

(1)
b ). Then µ = {µt}t∈[a,c] ∈ A F

[a,c](µ
(1)) is an admissible trajectory

driven by ν = {νt}t∈]b,c], that will be called the concatenation of (µ(1),ν(1)) and

(µ(2),ν(2)). We will denote µ by µ(1) � µ(2) and ν by ν(1) � ν(2).

Proposition 4.1 (Dynamic Programming Principle). We have for every τ ∈ [s, T ],

(4.2) V (s, µ) = inf

{∫ τ

s

L(µt, νt) dt+ V (τ, µτ ) : (µ,ν) ∈ A F
[s,T ](µ)

}
.

In particular, given any µ ∈ A F
[s,T ](µ) driven by ν, we have that the map

τ 7→ h(µ,ν)(τ) :=

∫ τ

s

L(µt, νt) dt+ V (τ, µτ )

is nondecreasing on [s, T ], and it is constant if and only if V (s, µ) = J[s,T ](µ,ν).
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Proof. Denote by W (s, µ) the right-hand side of formula (4.2).
Take ε > 0, s ≤ τ ≤ T , µ ∈ A F

[s,T ](µ) driven by ν. Let µ̃ ∈ A F
[τ,T ](µτ ) driven by ν̃

be such that
J[τ,T ](µ̃, ν̃)− ε ≤ V (τ, µτ ).

We set µ̂ = µ|[s,τ ] � µ̃, ν̂ = ν |[s,τ ] � ν̃, and notice that µ̂ ∈ A F
[s,T ](µ) is driven by ν̂.

With this choice we have

V (s, µ) ≤ J(µ̂, ν̂) =

∫ τ

s

L(µt, νt) dt+ J(µ̃, ν̃) ≤
∫ τ

s

L(µt, νt) dt+ V (τ, µτ ) + ε.

By letting ε→ 0+, we obtain

V (s, µ) ≤
∫ τ

s

L(µt, νt) dt+ V (τ, µτ ),

for all s ≤ τ ≤ T . By the arbitrariness of µ ∈ A F
[s,T ](µ) driven by ν, we obtain

V (s, µ) ≤ W (s, µ).

Fix now ε > 0, and let τ ∈ [s, T ] and µ ∈ A F
[s,T ](µ) driven by ν be such that

W (s, µ) + ε ≥
∫ τ

s

L(µt, νt) dt+ V (τ, µτ ).

As before, let µ̃ ∈ A F
[τ,T ](µτ ) driven by ν̃ be such that

J[τ,T ](µ̃, ν̃)− ε ≤ V (τ, µτ ).

De�ne µ̂ ∈ A F
[s,T ](µs) and ν̂ by setting µ̂ = µ|[s,τ ]� µ̃ and ν̂ = ν |[s,τ ]� ν̃, and notice

that µ̂ is driven by ν̂. This leads to

W (s, µ) + 2ε ≥
∫ τ

s

L(µt, νt) dt+ V (τ, µτ ) + ε ≥
∫ τ

s

L(µt, νt) dt+ J[τ,T ](µ̃, ν̃)

=J[s,T ](µ̂, ν̂) ≥ V (s, µ),

and so V (s, µ) = W (s, µ).

We prove now the assertions on the map h(µ,ν)(·). Let s ≤ τ1 ≤ τ2 ≤ T . We have

h(µ,ν)(τ1) =

∫ τ1

s

L(µt, νt) dt+ V (τ1, µτ1)

≤
∫ τ1

s

L(µt, νt) dt+

∫ τ2

τ1

L(µt, νt) dt+ V (τ2, µτ2) = h(µ,ν)(τ2),

where we used the fact that V = W and µ|[τ1,T ] ∈ A F
[τ1,T ](µτ1) is driven by ν |[τ1,T ].

This proves that τ 7→ h(µ,ν)(τ) is nondecreasing.

To conclude the proof, we notice that

h(µ,ν)(s) = V (s, µ),

h(µ,ν)(T ) =

∫ T

s

L(µt, νt) dt+ V (T, µT ) =

∫ T

s

L(µt, νt) dt+ g(µT ) = J(µ,ν),

Thus V (s, µ) = J(µ,ν) if and only if h(µ,ν)(s) = h(µ,ν)(T ) which, recalling the
monotonicity property of h(µ,ν)(·), is equivalent to say that h(µ,ν)(·) is constant. �

We will now focus our attention on the special case where L depends only on µ.

From Corollary 3.10, we may deduce the existence of optimal trajectories
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Corollary 4.2. Assume F 1 - F 2, that L depends only on µ, and that L,G are lower
semicontinuous. Then we have that the in�mum (4.1) is actually a minimum, i.e.,

for all (s, µ) such that 1 + m
1/2
2 (µ) < θ(s) there exists an optimal trajectory starting

from µ at time s.

Proof. Since L depends only on µ, we have that the functional J[s,T ] de�ning V (·)
reduces to

J[s,T ](µ) =

∫ T

s

L(µt) dt+ G (µT ),

and it is l.s.c. By Corollary 3.10, we have that A F
[s,T ](µ) is compact, therefore J[s,T ](·)

admits a minimizer in A F
[s,T ](µ), i.e., there exists an optimal trajectory. �

We also obtain the following regularity property of the value function

Proposition 4.3. Assume F 1 - F 3, that L depends only on µ and that L,G are
bounded and uniformly continuous with modulus ω. Then the value function is
bounded and uniformly continuous.

Proof. Let µ0, θ0 ∈P2(Rd). Given an optimal trajectory µ ∈ A F
[s,T ](µ0), by Propo-

sition 3.12 there exists admissible trajectory θ ∈ A F
[s,T ](θ0) such that for all t ∈ [s, T ]

W2(µt, θt) ≤ eLT+TeLT ·W2(µ0, θ0).

Thus we have

V (s, θ0)− V (s, µ0) ≤
∫ T

s

[L(θt)− L(µt)] dt+ G (θT )− G (µT )

By the uniform continuity of L and G , we have

V (s, θ0)− V (s, µ0) ≤ (T − s)ω(eLT+TeLT ·W2(µ0, θ0)) + ω(eLT+TeLT ·W2(µ0, θ0)).

Switching the roles of θ0 and µ0, we obtain a similar estimate, yielding

|V (s, θ0)− V (s, µ0)| ≤ (T − s)ω(eLT+TeLT ·W2(µ0, θ0)) + ω(eLT+TeLT ·W2(µ0, θ0)),

i.e., the continuity w.r.t. the µ-variable. We prove the continuity with respect to t.
Let µ ∈ P2(Rd). Assume that 0 ≤ s1 ≤ s2 ≤ T . By taking an optimal trajectory
µ = {µt}t∈[s1,T ] ∈ A F

[s1,T ](µ), the dynamic programming principle yields

V (s1, µ)− V (s2, µ) =

[∫ s2

s1

L(µt) dt+ V (s2, µs2)

]
− V (s2, µ)

≤
∫ s2

s1

L(µt) dt+ (T − s2)ω(eLT+TeLT ·W2(µ, µs2))+

+ ω(eLT+TeLT ·W2(µ, µs2)),

and the right hand side tends to 0 as |s1 − s2| → 0 by the continuity of L and µt.
If instead 0 ≤ s2 ≤ s1 ≤ T , by taking an optimal trajectory µ = {µt}t∈[s2,T ] ∈
A F

[s2,T ](µ), we have

V (s1, µ)− V (s2, µ) =V (s1, µ)−
[∫ s1

s2

L(µt) dt+ V (s1, µs1)

]
≤−

∫ s1

s2

L(µt) dt+ (T − s1)ω(eLT+TeLT ·W2(µ, µs1))+

+ ω(eLT+TeLT ·W2(µ, µs1)),
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and the right hand side tends to 0 as |s1 − s2| → 0 by the continuity of L and µt.
In particular, we obtain that for any s1, s2 ∈ [0, T ] the di�erence V (s1, µ)−V (s2, µ)
is bounded from above by a quantity which tends to zero as |s1 − s2| → 0. By
switching the roles of s1 and s2, we obtain the desired continuity. �

5. Characterization of the value function

We �rst introduce a notion of super/sub di�erential and associated viscosity so-
lutions for HJB equation. The relevance of this notion is demonstrated later by
obtaining a comparison result and the characterization of the value as the unique
solution of the HJB equation.

5.1. Viscosity Solutions of Hamilton Jacobi Bellman Equation. We will �rst
proceed the construction of the sub/superdi�erential. Before this we introduce the
following de�nition (Section 8.5 in [3])

De�nition 5.1 (Optimal displacements). Let µ ∈P2(Rd). A function p ∈ L2
µ(Rd)

is called an optimal displacement from µ if p = IdRd − T where T is an optimal
transport map between µ and T]µ. In particular, we have

W 2
2 (µ, (IdRd − p)]µ) = W 2

2 (µ, T ]µ) =

∫
Rd
|p(x)|2 dµ(x).

We will use extensively the following characterization of optimal displacements.

Lemma 5.2 (Characterization of optimal displacements). Let µ1 ∈ P2(Rd), p ∈
L2
µ1

(Rd). The following are equivalent:

i. p is an optimal displacement from µ1;
ii. there exists µ2 ∈P2(Rd) and π ∈ Πo(µ1, µ2) such that

p(x) = x−
∫
Rd
y dπx(y),

where {πx}x∈Rd is the family obtained by the disintegration π = µ1 ⊗ πx;
iii. there exists µ2 ∈P2(Rd) and π ∈ Πo(µ1, µ2) such that∫

Rd×Rd
〈φ(x), x− y〉 dπ(x, y) =

∫
Rd
〈φ(x), p(x)〉 dµ1(x),

for all φ ∈ L2
µ1

(Rd).

Proof.
(i.) =⇒ (iii.). We easily get (iii.) by setting π = (IdRd × (IdRd − p))]µ1 and

µ2 = (IdRd − p)]µ1.

(iii.) =⇒ (ii.). We have∫
Rd
〈φ(x), p(x)〉 dµ1(x) =

∫
Rd×Rd

〈φ(x), x− y〉 dπ(x, y)

=

∫
Rd
〈φ(x), x− y〉 dπx(y)dµ1(x) =

∫
Rd
〈φ(x), x−

∫
Rd
y dπx(y)〉 dµ1(x)

for all φ ∈ L2
µ1

(Rd). Thus p(x) = x−
∫
Rd
y dπx(y) for µ1-a.e. x ∈ Rd.

(ii.) =⇒ (i.). Let µ2 ∈P2(Rd) and π ∈ Πo(µ1, µ2) such that

p(x) = x−
∫
Rd
y dπx(y), for µ1-a.e. x ∈ Rd,



OPTIMAL CONTROL IN WASSERSTEIN SPACE 27

with π = µ1 ⊗ πx ∈ Πo(µ1, µ2), and set

T (x) :=

∫
Rd
y dπx(y) for µ1-a.e. x ∈ Rd,

we have to prove that T is an optimal transport map between µ1 and T]µ1. By
Section 6.3.2 in [3], we have that suppπ is cyclically monotone, i.e.,

(5.1)
N∑
i=1

〈xi, yi〉 ≤
N∑
i=1

〈xi, yi+1〉,

for all �nite family {(xi, yi)}i=1,...,N ⊆ suppπ with xN+1 = x1 and yN+1 = y1. Let
N be a µ-negligible set such that πx is de�ned for all x 6∈ N . Let {xi}i=1,...,N a
family such that xi 6∈ N for all i = 1, . . . , N then for πx1 − a.e.y1, . . . πxn − a.e.yn
the inequality (5.1) holds. Thus, by integration, taking all xi 6∈ N :

N∑
i=1

〈xi, T (xi)〉 =
N∑
i=1

〈xi,
∫
Rd
yi dπxi(yi)〉

=

∫
RNd

(
N∑
i=1

〈xi, yi〉

)
dπx1(y1) . . . dπxN (yN)

≤
∫
RNd

(
N∑
i=1

〈xi, yi+1〉

)
dπx1(y1) . . . dπxN (yN)

=
N∑
i=1

〈xi,
∫
Rd
yi+1 dπxi+1

(yi+1)〉 =
N∑
i=1

〈xi, T (xi+1)〉,

hence graphT is cyclically monotone outside N , so T is an optimal transport map.
�

Lemma 5.3 (Optimal displacements and W2). Let µ, µ̄1, µ̄2 ∈ P2(Rd) and π̄ ∈
Πo(µ̄1, µ̄2). Then, considered the disintegration π̄ = µ̄1 ⊗ π̄x of π̄ w.r.t. the �rst
marginal, and de�ned

p(x) = x−
∫
Rd
y dπ̄x(y)

we have that p is an optimal displacement from µ̄1 and for all π ∈ Π(µ̄1, µ) it holds

1

2
W 2

2 (µ, µ̄2)− 1

2
W 2

2 (µ̄1, µ̄2)

≤
∫
〈p(x), y − x〉 dπ(x, y) + o

((∫
Rd×Rd

|x− y|2 dπ(x, y)

)1/2
)
.

Proof. p(·) is an optimal displacement by Lemma 5.2 (ii). By disintegration of π
write:

π = µ̄1 ⊗ πx.
Then build a transport plan π̃ ∈ Π(µ, µ̄2) by setting for all ϕ ∈ C0

c (Rd × Rd):∫
Rd×Rd

ϕ(y, z) dπ̃(y, z) :=

∫
Rd×Rd×Rd

ϕ(y, z) dπx(y)dπ̄x(z)dµ̄(x).

Then, it holds:

1

2
W 2

2 (µ, µ̄2)− 1

2
W 2

2 (µ̄1, µ̄2)
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≤1

2

∫
Rd×Rd

|y − z|2dπ̃(y, z)− 1

2

∫
Rd×Rd

|x− z|2dπ̄(y, z)

=
1

2

∫
Rd×Rd×Rd

|y − x+ x− z|2 dπx(y)dπ̄x(z)dµ̄1(x)− 1

2

∫
Rd×Rd

|x− z|2dπ̄(y, z)

=
1

2

∫
Rd×Rd

|y − x|2dπ(x, y) +

∫
Rd×Rd×Rd

〈x− z, y − x〉 dπ̄x(z)dπ(x, y).

The conclusion follows by moving the integral in z inside the scalar product. �

We now de�ne the following notions of generalized gradients

De�nition 5.4 (Super/sub di�erentials in R×P2). Let w : [0, T ]×P2(Rd)→ R be
a map. Given (t̄, µ̄) ∈ [0, T ]×P2(Rd) and δ ≥ 0, we say that (pt̄, pµ̄) ∈ R×L2

µ̄(Rd)
is a δ-viscosity superdi�erential of w at (t̄, µ̄) if

(1) pµ̄ is an optimal displacement from µ̄;
(2) for all µ ∈P2(Rd), t ∈ [0, T ] and π ∈ Π(µ̄, µ) ,

w(t, µ)− w(t̄, µ̄) ≤ pt̄(t− t̄) +

∫
Rd
〈pµ̄(x), y − x〉 dπ(x, y)+

+ δ

√
|t− t̄|2 +

∫
Rd
|x− y|2 dπ(x, y) + o

(
|t− t̄|+

(∫
Rd
|x− y|2 dπ(x, y)

)1/2
)
.

We denote by D+
δ w(t̄, µ̄) the set of such δ-superdi�erential (pt̄, pµ̄). Similarly the set

of δ-viscosity subdi�erentials D−δ w(t̄, µ̄) is given by D−δ w(t̄, µ̄) = −D+
δ (−w)(t̄, µ̄).

We consider an equation in the form

(5.2) ∂tw(t, µ) + H (µ,Dw(t, µ)) = 0,

where H (µ, p) is de�ned for any µ ∈P2(Rd) and p ∈ L2
µ(Rd).

De�nition 5.5 (Viscosity Solutions). A function w : [0, T ]×P2(Rd)→ R is

• a subsolution of (5.2) if w is upper semicontinuous and there exists a map
C : P2(Rd)→]0,+∞[, C(·) bounded on bounded sets, such that

pt + H (µ, pµ) ≥ −C(µ)δ,

for all (t, µ) ∈]0, T [×P2(Rd), (pt, pµ) ∈ D+
δ w(t, µ), and δ > 0.

• a supersolution of (5.2) if w is lower semicontinuous and there exists a map
C : P2(Rd)→]0,+∞[, C(·) bounded on bounded sets, such that

pt + H (µ, pµ) ≤ C(µ)δ,

for all (t, µ) ∈]0, T [×P2(Rd), (pt, pµ) ∈ D−δ w(t, µ), and δ > 0.
• a solution of (5.2) if w is both a supersolution and a subsolution.

Given µ1, µ2 ∈ P2(Rd), and denoted by π̄ ∈ Πo (µ1, µ2) the unique solution of
the minimization problem

min

{∫
Rd

∣∣∣∣x− ∫
Rd
y dπx(y)

∣∣∣∣2 dµ1(x) : π = µ1 ⊗ πx ∈ Πo (µ1, µ2)

}
,
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we disintegrate π̄ = µ1⊗ π̄x (see Theorem A.2) and de�ne pµ1,µ2 ∈ L2
µ1
, qµ1,µ2 ∈ L2

µ2

by

(5.3)


pµ1,µ2(x) = x−

∫
Rd
y dπ̄x(y),

qµ1,µ2(y) = y −
∫
Rd
x dπ̄−1

y (x),

where π̄−1 ∈ Πo (µ2, µ1) is the inverse of the transport plan π̄, disintegrated as π̄−1 =
µ2 ⊗ π̄−1

y . Notice that, according to Lemma 5.2, pµ1,µ2 is the optimal displacement
from µ1 to µ2 of minimal norm.

From now on, the space X := [0, T ]×P2(Rd) is endowed with the metric

dX ((s1, µ1), (s2, µ2)) =
√

(s1 − s2)2 +W 2
2 (µ1, µ2),

and we notice that (X, dX) is a complete metric space. We endow X ×X with the
metric

dX×X(z1, z2) = dX ((s1, µ1), (s2, µ2)) + dX ((t1, µ̂1), (t2, µ̂2)) ,

for all zi = (si, µi, ti, µ̂i) ∈ X ×X, i = 1, 2. Again, we have that (X ×X, dX×X) is
a complete metric space.
We now state and prove the following comparison result

Theorem 5.6 (Comparison). Let w1, w2 ∈ BUC(X;R) be a viscosity subsolution
and supersolution of the equation (5.2). Assume that there exists a continuous non-
decreasing map ωH : R2 → [0,+∞[ such that ωH (0, 0) = 0 and

|H (µ(1), λpµ(1),µ(2))−H (µ(2), λqµ(1),µ(2))| ≤ ωH

(
W2(µ(1), µ(2)), λW 2

2 (µ(1), µ(2))
)
,

for all λ > 0, µ(1), µ(2) ∈P2(Rd). Then

inf
(t,µ)∈X

{w2(t, µ)− w1(t, µ)} = inf
µ∈P2(Rd)

{w2(T, µ)− w1(T, µ)} .

In particular, the equation (5.2) coupled with a terminal condition w(T, µ) = g(µ),
admits at most one continuous and bounded solution.

We will need the following Lemma, of independent interest.

Lemma 5.7. Let w1, w2 ∈ BUC(X;R). Given ε, η, σ > 0, we de�ne the functional
Φ : X ×X → R ∪ {+∞} by setting

Φ(s, µ1, t, µ2) =

w2(t, µ2)− w1(s, µ1) +
1

2ε
d2
X ((s, µ1), (t, µ2))− ηs+

σ

s
+
σ

t
, if st 6= 0,

+∞, if st = 0.

Let δ > 0 and assume that z̄ = (s̄, µ̄1, t̄, µ̄2) ∈ X ×X with s̄, t̄ ∈]0, T [ satis�es

(5.4) Φ(z̄) ≤ Φ(z) + δdX×X(z, z̄) for all z = ((s, µ1), (t, µ2)) ∈ X ×X.
Then

(5.5)


(
s̄− t̄
ε
− η − σ

s̄2
,
p̄

ε

)
∈ D+

δ w1 (s̄, µ̄1) ,(
s̄− t̄
ε

,
q̄

ε

)
∈ D−δ w2 (t̄, µ̄2) ,

where p̄ = pµ̄1,µ̄2 and q̄ = qµ̄1,µ̄2 are as in (5.3).
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Proof. The proof follows from the same argument of Claim 1 of Theorem 3.4 in [25],
we repeat it for sake of completeness. By taking (t, µ2) = (t̄, µ̄2) in (5.4), we have

Φ(z̄) ≤ Φ(s, µ1, t̄, µ̄2) + δdX((s, µ1), (s̄, µ̄1)), for all (s, µ1) ∈ X,
which, recalling the de�nition of Φ, yields

w1(s, µ1)− w1(s̄, µ̄1) ≤

≤ 1

2ε

[
W 2

2 (µ1, µ̄2)−W 2
2 (µ̄1, µ̄2) + (s− t̄)2 − (s̄− t̄)2

]
+(5.6)

+ δ
√
W 2

2 (µ1, µ̄1) + |s− s̄|2 − η(s− s̄) + σ

(
1

s
− 1

s̄

)
.

Observing that
1

s
− 1

s̄
= − 1

s̄2
(s− s̄) + o(|s− s̄|)

and using Lemma 5.3 we obtain formula (5.5). The proof of the second relation of
(5.5) follows a symmetric argument. �

Proof of Theorem 5.6. Set

A := inf
µ∈P2(Rd)

{w2(T, µ)− w1(T, µ)} ,

and notice that since H does not involve w, we have that w1−A is still a subsolution.
Thus without loss of generality we can assume A = 0. Assume by contradiction that

−ξ := inf
(s,µ)∈[0,T ]×P2(Rd)

{w2(s, µ)− w1(s, µ)} < 0,

and choose (t0, µ0) ∈ [0, T ]×P2(Rd) such that

w2(t0, µ0)− w1(t0, µ0) < −ξ
2
.

We notice that, by continuity of w1 and w2, we can always assume that t0 6= 0,

moreover we �x σ > 0 such that
2σ

t0
≤ ξ

8
. Let R > 0.

Given ε, η > 0, we de�ne the functional Φεη : X ×X → R ∪ {+∞} by setting

Φεη(s, µ
(1), t, µ(2)) = w2(t, µ(2))−w1(s, µ(1)) +

1

2ε
d2
X

(
(s, µ(1)), (t, µ(2))

)
− ηs+

σ

s
+
σ

t
,

if st 6= 0 and W2(µ0, µ
(i)) ≤ R, i = 1, 2, while Φεη(s, µ

(1), t, µ(2)) = +∞ otherwise.
De�ne z0 = (t0, µ0, t0, µ0) ∈ X ×X. Since Φεη is lower semicontinuous and bounded
from below and (X × X, dX×X) is complete, by Ekeland Variational Principle, for

any δ > 0 there exists zεηδ = (sεηδ, µ
(1)
εηδ, tεηδ, µ

(2)
εηδ) ∈ X × X such that for any

z = (s, µ(1), t, µ(2)) ∈ X ×X we have

(5.7)


Φεη(zεηδ) ≤ Φεη(z0),

Φεη(zεηδ) ≤ Φεη(z) + δdX×X(z, zεηδ),

moreover we set ρεηδ = dX

(
(sεηδ, µ

(1)
εηδ), (tεηδ, µ

(2)
εηδ)
)
, and notice that sεηδ 6= 0, and

W2(µ0, µ
(i)
εηδ) ≤ R, i = 1, 2.

Claim 1. For all 0 < η < 1 we have lim
ε,δ→0+

1

ε
ρ2
εηδ = 0.
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Proof (of Claim 1).In the second inequality of (5.7), we choose

z1 = (sεηδ, µ
(1)
εηδ, sεηδ, µ

(1)
εηδ), z2 = (tεηδ, µ

(2)
εηδ, tεηδ, µ

(2)
εηδ),

thus obtaining {
Φεη(zεηδ)− Φεη(z1) ≤ δdX×X(z1, zεηδ),

Φεη(zεηδ)− Φεη(z2) ≤ δdX×X(z2, zεηδ),

and so

2Φεη(zεηδ)− Φεη(z1)− Φεη(z2) ≤ δdX×X(z1, zεηδ) + δdX×X(z2, zεηδ)

Recalling the de�nition of Φεη, this implies

(5.8)
[
w2(tεηδ, µ

(2)
εηδ)− w2(sεηδ, µ

(1)
εηδ)
]

+
[
w1(tεηδ, µ

(2)
εηδ)− w1(sεηδ, µ

(1)
εηδ)
]

+

+
1

ε
ρ2
εηδ ≤ 2δρεηδ + η(sεηδ − tεηδ) ≤ ρεηδ(2δ + η).

We prove �rst that lim
ε,δ→0+

ρεηδ = 0 for all η > 0. To this aim, we �x η > 0 and

distinguish two cases:

• assume that there exist α > 0 and sequences {εn}n∈N, {δn}n∈N with εn, δn →
0+ such that lim

n→+∞
ρεnηδn = 2α. Then there exists n̄ > 0 such that for all

n ≥ n̄ su�ciently large, we have α < ρεnηδn < 3α, and so

−2 (‖w1‖∞ + ‖w2‖∞) +
α2

εn
≤ 3α(2δn + η),

leading to a contradiction since the left hand side tends to +∞, while the
right hand side is bounded.
• assume that there exist sequences {εn}n∈N, {δn}n∈N with εn, δn → 0+ such
that lim

n→+∞
ρεnηδn = +∞. Then there exists n̄ > 0 such that for all n ≥ n̄

such that εn, δn ≤ 1/2

−2 (‖w1‖∞ + ‖w2‖∞) + 2ρ2
εnηδn ≤ 2ρεnηδn ,

leading to a contradiction.

Thus for all η > 0 we have lim sup
ε,δ→0+

ρεηδ ≤ 0, and so lim
ε,δ→0+

ρεηδ = 0 for all η > 0.

We conclude now the proof of the Claim noticing that (5.8) implies

1

ε
ρ2
εηδ ≤ (2δ+η)ρεηδ+ |w2(tεηδ, µ

(2)
εηδ)−w2(sεηδ, µ

(1)
εηδ)|+ |w1(tεηδ, µ

(2)
εηδ)−w1(sεηδ, µ

(1)
εηδ)|.

Since ρεηδ → 0 as ε, δ → 0+, by the continuity of w1, w2 we conclude that the right
hand side tends to 0, thus proving Claim 1. �
Claim 2: For ε, δ, η > 0 su�ciently small, we have sεηδ, tεηδ /∈]0, T [.

Proof (of Claim 2). We argue by contradition, assuming that sεηδ, tεηδ ∈]0, T [. By
Lemma 5.7 we have

(5.9)


(
sεηδ − tεηδ

ε
− η − σ

s2
εηδ

,
pεηδ
ε

)
∈ D+

δ w1

(
sεηδ, µ

(1)
εηδ

)
,(

sεηδ − tεηδ
ε

,
qεηδ
ε

)
∈ D−δ w2

(
tεηδ, µ

(2)
εηδ

)
,
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where pεηδ = p
µ

(1)
εηδ,µ

(2)
εηδ

and qεηδ = q
µ

(1)
εηδ,µ

(2)
εηδ
.

Since w1 and w2 are a sub- and super-solution, respectively, and noticing that

W2(µ0, µ
(i)
εηδ) ≤ R for all ε, η, δ > 0, i = 1, 2, we have

−Cδ ≤ sεηδ − tεηδ
ε

− η − σ

s2
εηδ

+ H
(
µ

(1)
εηδ,

pεηδ
ε

)
,

Cδ ≥ sεηδ − tεηδ
ε

+ H
(
µ

(2)
εηδ,

qεηδ
ε

)
,

where C = sup{C(µ) : W2(µ, µ0) ≤ R}, and C(µ) is as in the de�nition of viscosity
superdi�erential (De�nition 5.5). By combining the above relations, we have

H
(
µ

(2)
εηδ,

qεηδ
ε

)
−H

(
µ

(1)
εηδ,

pεηδ
ε

)
≤ 2Cδ − η − σ

s2
εηδ

≤ 2Cδ − η.

By assumption, we have

H
(
µ

(2)
εηδ,

qεηδ
ε

)
−H

(
µ

(1)
εηδ,

pεηδ
ε

)
≥ −ωH

(
ρεηδ,

ρ2
εηδ

ε

)
,

and so

−ωH

(
ρεηδ,

ρ2
εηδ

ε

)
≤ 2Cδ − η,

leading to a contradiction, since - recalling Claim 1 - the limit for ε, δ → 0+ of the
left hand side is 0 for all η > 0, while the limit of the right hand side is strictly
negative. �

Claim 3: For ε, δ, η > 0 su�ciently small, we have sεηδ 6= T and tεηδ 6= T .

Proof (of Claim 3). We notice that, by de�nition of ξ and recalling (5.7),

−ξ
2

+
2σ

t0
≥w2(t0, µ0)− w1(t0, µ0)− ηt0 +

2σ

t0
= Φεη(z0)

≥Φεη(zεηδ) = w2(tεηδ, µ
(2)
εηδ)− w1(sεηδ, µ

(1)
εηδ) +

1

ε
ρ2
εηδ − ηsεηδ +

σ

sεηδ
+

σ

tεηδ

≥− ω2(ρεηδ) + w2(sεηδ, µ
(1)
εηδ)− w1(sεηδ, µ

(1)
εηδ) +

1

ε
ρ2
εηδ − ηT,

where ω2(·) is the continuity modulus of w2(·). Given 0 < η < ξ/(8T ), we can
choose ε, δ > 0 such that

(5.10) ω2(ρεηδ)−
1

ε
ρ2
εηδ + ηT +

2σ

t0
≤ ξ

4
,

and so

(5.11) −ξ
2
≥ −ξ

4
+ w2(sεηδ, µ

(1)
εηδ)− w1(sεηδ, µ

(1)
εηδ).

We prove the assertion by contradiction, assuming �rst sεηδ = T . In this case,

since we have assumed A = 0, we have w2(T, µ
(1)
εηδ) − w1(T, µ

(1)
εηδ) ≥ 0, leading to a

contradiction with (5.11), thus sεηδ 6= T . The proof of the case tεηδ = T can be done
in the same way.

By Claim 2 and Claim 3 and the choice of σ, we have sεηδ, tεηδ /∈ [0, T ], against
the de�nition of ξ. Thus we have ξ = 0 and the proof is complete. �
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5.2. Main Result. Now we characterize the value function as unique viscosity so-
lution of a suitable HJB equation.

We consider a set-valued map F satisfying (F1) − (F3), and assume that L and
G are bounded and uniformly continuous, and de�ne the following Hamiltonian
function for all µ ∈P2(Rd), pµ ∈ L2

µ(Rd),

(5.12) H (µ, pµ) := L(µ) + inf
v(·)∈L2

µ(Rd)

v(x)∈F (µ,x)µ-a.e.x

∫
Rd
〈pµ(x), v(x)〉 dµ(x).

We recall that, as observed in Remark 4.2 in [25], from Theorem 8.2.11 in [5] we
have indeed

H (µ, pµ) = L(µ) + HF (µ, pµ),

where

HF (µ, pµ) =

∫
Rd

inf
v∈F (µ,x)

〈pµ(x), v〉 dµ(x).

Theorem 5.8. Consider a set-valued map F satisfying (F1) − (F3), and assume
that L and G are bounded and uniformly continuous. Then the value function V :
[0, T ] ×P2(Rd) → R of the Bolza problem is the unique bounded and uniformly
continuous viscosity solution of

(5.13)


∂tu(t, µ) + H (µ,Du(t, µ)) = 0,

u(T, µ) = G (µ),

where the Hamitonian H is de�ned by (5.12).

Proof. We will proceed in several steps.

Step 1. The Hamiltonian H of De�nition(5.12) satis�es the assumptions of The-
orem 5.6.

Let µ1, µ2 ∈ P2(Rd) be given, and pµ1,µ2 , qµ1,µ2 as in the statement of Theorem
5.6 de�ned by π ∈ Πo(µ1, µ2), L as in (F3). From a measurable selection theorem
(see e.g. Theorem 8.2.11 in [5]), we have

HF (µ1, pµ1,µ2) = inf

{∫
Rd
〈v(x), x− y〉 dπ(x, y) : v(·) Borel selection of F (µ1, ·)

}
=

∫
Rd

inf
v1∈F (µ1,x)

〈v1, x− y〉 dπ(x, y),

HF (µ2, qµ1,µ2) = inf

{∫
Rd
〈v(y), y − x〉 dπ−1(x, y) : v(·) Borel selection of F (µ2, ·)

}
= inf

{∫
Rd
〈v(x), x− y〉 dπ(x, y) : v(·) Borel selection of F (µ2, ·)

}
=

∫
Rd

inf
v2∈F (µ2,x)

〈v2, x− y〉 dπ(x, y).

Set δ = LW2(µ1, µ2). Given any ε > 0 let wε ∈ F (µ1, x) + δB(0, 1) be such that

inf
v2∈F (µ2,x)

〈v2, x− y〉 ≥ inf
{
〈w, x− y〉 : w ∈ F (µ1, x) + δB(0, 1)

}



34 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

≥〈wε, x− y〉 − ε.

In particular, there are vε1 ∈ F (µ1, x) and vε ∈ B(0, 1) such that wε = vε1 + δvε and
so

inf
v2∈F (µ2,x)

〈v2, x− y〉 ≥〈vε1, x− y〉+ δ〈vε, x− y〉 − ε

≥〈vε1, x− y〉 − δ|x− y| − ε.
We then have

inf
v1∈F (µ1,x)

〈v1, x− y〉 − inf
v2∈F (µ2,x)

〈v2, x− y〉 ≤LW2(µ1, µ2) · |x− y|+ ε

≤L
2

(
W 2

2 (µ1, µ2) + |x− y|2
)

+ ε.

By integrating w.r.t. π (and recalling that π is optimal),

HF (µ1, pµ1,µ2)−HF (µ2, qµ1,µ2) ≤

≤
∫
Rd×Rd

[
inf

v1∈F (µ1,x)

〈v1, x− y〉 − inf
v2∈F (µ2,x)

〈v2, x− y〉

]
dπ(x, y)

≤
∫
Rd×Rd

[
L

2

(
W 2

2 (µ1, µ2) + |x− y|2
)

+ ε

]
dπ(x, y)

=L ·W 2
2 (µ1, µ2) + ε.

Letting ε→ 0+ and switching the roles of µ1, µ2 yields

|HF (µ1, pµ1,µ2)−HF (µ2, qµ1,µ2)| ≤ L ·W 2
2 (µ1, µ2).

Since L : P2(Rd)→ R is uniformly continuous with modulus ωL, and HF (µ, λpµ) =
λHF (µ, pµ) for all λ ≥ 0, we have

|H (µ1, λpµ1,µ2)−H (µ2, λqµ1,µ2)| ≤ ωL(W2(µ1, µ2)) + Lλ ·W 2
2 (µ1, µ2),

hence the assumptions of Theorem 5.6 are satis�ed by taking ωH (r, s) = ωL(r)+Ls.
This proves the statement of Step 1. �
Step 2. The value function V is a viscosity solution of (5.13).

Claim 1: V is a subsolution of (5.12).

Proof (of Claim 1). Take (t̄, µ̄) ∈]0, T [×P2(Rd), δ > 0, (pt̄, pµ̄) ∈ D+
δ V (t̄, µ̄).

Given any admissible trajectory {µt}t∈[t̄,T ] ∈ A F
[t̄,T ](µ̄), and πt ∈ Π(µ̄, µt), set

∆t :=

√
(t− t̄)2 +

∫
Rd×Rd

|x− y|2 dπt(x, y).

By the Dynamic Programming Principle in Proposition 4.1, we have for any πt ∈
Π(µ̄, µt)

0 ≤V (t, µt)− V (t̄, µ̄) +

∫ t

t̄

L(µs) ds

≤pt̄(t− t̄) +

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) + δ ·∆t + o (∆t) +

∫ t

t̄

L(µs) ds

Hence, dividing by t− t̄ > 0,
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(5.14) − ∆t

t− t̄
· δ ≤ pt̄ +

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y)+

+
1

t− t̄

∫ t

t̄

L(µs) ds+
o(∆t)

∆t

∆t

t− t̄
.

Fix ε > 0 and let vε0(·) be a Borel selection of F (µ̄, ·) such that∫
Rd×Rd

〈pµ̄(x), vε0(x)〉 dµ̄(x) ≤ inf
v

∫
Rd×Rd

〈pµ̄(x), v(x)〉 dµ̄(x) + ε,

where the inf is taken on all the Borel selections of F (µ̄, ·). By Filippov's Theorem
(see e.g. Theorem 8.2.10 in [5]), we can �nd a Borel map uε : Rd → U such that
vε0(x) = f(µ̄, x, uεx). Choosing {µt}t∈[t̄,T ] as µt = et]η with η supported on{

γ̇(t) = f(µt, γ(t), uεx),

γ(t̄) = x,

and πt = (et, et̄)]η, leads to

lim
t→t̄+

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) = lim
t→t̄+

∫
Rd×Γ[t̄,T ]

〈pµ̄(x),
γ(t)− γ(t̄)

t− t̄
〉 dη(x, γ)

=

∫
Rd×Γ[t̄,T ]

〈pµ̄(x), vε0(x)〉 dη(x, γ)

≤ inf
v

∫
Rd×Rd

〈pµ̄(x), v(x)〉 dµ̄(x) + ε,

where we used the fact that for η-a.e. (x, γ), we have that γ ∈ C1([t̄, T ]) and
γ̇(t̄) = f(µ̄, x, uεx) = vε0(x).

Similarly,

lim
t→t̄

1

(t− t̄)2

∫
Rd×Rd

|x− y|2 dπt(x, y) = lim
t→t̄

∫
Rd×Rd

∣∣∣∣γ(t)− γ(t̄)

t− t̄

∣∣∣∣2 dη(x, γ)

=

∫
Rd×Rd

|vε0(x)|2 dη(x, γ)

≤
∫
Rd×Rd

(
max

w∈F (δ0,0)
|w|+ LW2(δ0, µ̄) + L|x|

)2

dη(x, γ)

≤3 ·
(

max
w∈F (δ0,0)

|w|2 + 2L2m2(µ̄)

)
,

leading to

lim
t→t̄

∆t

t− t̄
≤

√
1 + 3 ·

(
max

w∈F (δ0,0)
|w|2 + 2L2m2(µ̄)

)
=: C(µ̄).

Notice that the function C(·) de�ned above is bounded on every bounded set. In
particular, by taking the limit as t → t̄+ in (5.14), and recalling the continuity of
t 7→ µt and of L, we have

−C(µ̄)δ ≤ pt̄ + inf
v

∫
Rd×Rd

〈pµ̄(x), v(x)〉 dµ̄(x) + ε+ L(µ̄).

By letting ε→ 0+, we have pt̄+H (µ̄, pµ̄) ≥ −C(µ̄)δ, which ends the proof of Claim
1. �
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Claim 2: V is a supersolution of (5.12).

Proof (of Claim 2). Take (t̄, µ̄) ∈]0, T [×P2(Rd), δ > 0, (pt̄, pµ̄) ∈ D−δ V (t̄, µ̄). By
the Dynamic Programming Principle in Proposition 4.1, given an optimal trajectory
µ = {µt}t∈[t̄,T ] ∈ A F

[t̄,T ](µ̄) we have for all πt ∈ Π(µ̄, µt)

0 =V (t, µt)− V (t̄, µ̄) +

∫ t

t̄

L(µs) ds

≥pt̄(t− t̄) +

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y)− δ ·∆t + o (∆t) +

∫ t

t̄

L(µs) ds

where ∆t is de�ned as in Claim 1. In particular, we have

∆t

t− t̄
·
[
δ − o(∆t)

∆t

]
≥pt̄ +

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) +
1

t− t̄

∫ t

t̄

L(µs) ds.

By taking the lim inf for t→ t̄+, we have

C(µ̄) · δ ≥ pt̄ + lim inf
t→t̄+

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) + L(µ̄),

where C(µ̄) is de�ned as in Claim 1. Let η ∈P(Rd× Γ[t̄,T ]) be such that µt = et]η
and that for η-a.e. (x, γ) ∈ Rd×Γ[t̄,T ] we have γ(t̄) = x and γ̇(t) = f(µt, γ(t), ux(t)),
where ux(t) is a suitable Borel selection with values in U . By choosing πt = (et, et̄)]η
and η = µ̄⊗ ηx, we have

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) =

∫
Rd×Γ[t̄,T ]

〈pµ̄(x),
γ(t)− γ(t̄)

t− t̄
〉 dη(x, γ)

=

∫
Rd×Γ[t̄,T ]

〈pµ̄(x),
1

t− t̄

∫ t

t̄

γ̇(s) ds〉 dη(x, γ)

≥ 1

t− t̄

∫ t

t̄

∫
Rd×Γ[t̄,T ]

inf
v∈F (µs,γ(s))

〈pµ̄(x), v〉 dη(x, γ) ds

≥ 1

t− t̄

∫ t

t̄

∫
Rd×Γ[t̄,T ]

[
inf

v∈F (µ̄,x)

〈pµ̄(x), v〉 − δs|pµ̄(x)|

]
dη(x, γ) ds,

where δs = L(W2(µs, µ̄)+|γ(s)−x|). By inverting the order of integrals and applying
Fatou's Lemma, we have

lim inf
t→t̄+

1

t− t̄

∫
Rd×Rd

〈pµ̄(x), y − x〉 dπt(x, y) ≥

≥
∫
Rd×Γ[t̄,T ]

lim inf
t→t̄+

1

t− t̄

∫ t

t̄

[
inf

v∈F (µ̄,x)

〈pµ̄(x), v〉 − δs|pµ̄(x)|

]
dη(x, γ) ds

=

∫
Rd

inf
v∈F (µ̄,x)

〈pµ̄(x), v〉 dµ̄(x),

by the continuity of s 7→ δs. Thus we have obtained

C(µ̄)δ ≥ pt̄ +

∫
Rd

inf
v∈F (µ̄,x)

〈pµ̄(x), v〉 dµ̄(x) + L(µ̄) = pt̄ + H (µ̄, pµ̄),

and the proof of Claim 2 is ended. �
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Step 3 Since V is a viscosity solution to (5.13), in view of Step 1 we deduce from
Theorem 5.6 that V is the uniqueBUC solution to (5.13). The proof is complete. �

5.3. Equivalent formulations of viscosity solutions. In this section we discuss
several equivalent de�nitions of sub/superdi�erentials which leads to equivalent def-
initions of viscosity solutions.
The following Lemma shows that in De�nition 5.4 we can restrict to π ∈ Πo(µ̄, ν).

Lemma 5.9. Let u : P2(Rd) → R, δ ≥ 0, and let p ∈ L2
µ̄(Rd;Rd) be an optimal

displacement from µ̄ ∈ P2(Rd) such that for all ν ∈ P2(Rd) and γ ∈ Πo(µ̄, ν) we
have

u(ν)−u(µ̄) ≤
∫
Rd
〈p(x), y−x〉 dγ(x, y) + δ

√∫
Rd
|x− y|2 dγ(x, y) + o (W2(µ̄, ν)) .

Then p ∈ D+
δ u(µ̄).

Proof. By Theorem 8.5.1 in [3], there exists a sequence {ϕn}n∈N ⊆ C2
c (Rd) such that

∇ϕn → p in L2
µ̄(Rd;Rd). For any x, y ∈ Rd, there exists θ ∈ {λx + (1 − λ)y : λ ∈

[0, 1]} with

ϕn(y)− ϕn(x) = 〈∇ϕn(x), y − x〉+ 〈D2ϕn(θ)(y − x), y − x〉

and

ϕn(y)− ϕn(x)− ‖D2ϕn‖∞ · |y − x|2 ≤ 〈∇ϕn(x), y − x〉 ≤
≤ ϕn(y)− ϕn(x) + ‖D2ϕn‖∞ · |y − x|2.

Given π ∈ Π(µ̄, ν) and γ ∈ Πo(µ̄, ν) we have∫
Rd×Rd

〈∇ϕn(x), y − x〉 dγ −
∫
Rd×Rd

〈∇ϕn(x), y − x〉 dπ ≤

≤
∫
Rd×Rd

ϕn(y) dγ −
∫
Rd×Rd

ϕn(x) dγ −
∫
Rd×Rd

ϕn(y) dπ +

∫
Rd×Rd

ϕn(x) dπ+

+ ‖D2ϕn‖∞
(∫

Rd×Rd
|y − x|2 dπ +W 2

2 (µ̄, ν)

)
=‖D2ϕn‖∞

(∫
Rd×Rd

|y − x|2 dπ +W 2
2 (µ̄, ν)

)
.

For all θ1,θ2 ∈ Π(µ̄, ν), and ψ ∈ L2
µ(Rd;Rd) set

∆θ1,θ2(ψ) :=

u(ν)− u(µ̄)−
∫
Rd×Rd

〈ψ(x), y − x〉 dθ1(x, y)(∫
Rd×Rd

|y − x|2 dθ2(x, y)

)1/2

Set r :=
∫
Rd×Rd |y − x|

2 dπ, we have:

0 ≤ W2(µ̄, ν) ≤ r,
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then

∆π,π(∇ϕn) ≤∆γ,π(∇ϕn) +

‖D2ϕn‖∞
(∫

Rd×Rd
|y − x|2 dπ +W 2

2 (µ̄, ν)

)
(∫

Rd×Rd
|y − x|2 dπ

)1/2

≤∆γ,π(∇ϕn) + 2r‖D2ϕn‖∞.

This implies

∆π,π(p) ≤∆π,π(∇ϕn) + ‖∇ϕn − p‖L2
µ̄

≤∆γ,π(p) + 2r‖D2ϕn‖∞ + 2‖∇ϕn − p‖L2
µ̄

We recall that by assumption lim sup
ν→µ̄

∆γ,γ(p) ≤ δ. Thus

∆π,π(p) ≤

(∫
Rd×Rd

|y − x|2 dπ(x, y)

)1/2

W2(µ̄, ν)
·max {0,∆γ,π(p)}+

+ 2r‖D2ϕn‖∞ + 2‖∇ϕn − p‖L2
µ̄

= max{0,∆γ,γ(p)}+ 2r‖D2ϕn‖∞ + 2‖∇ϕn − p‖L2
µ̄

In particular, we have

lim sup
ν→µ̄

∆π,π(p) ≤ max{0, lim sup
ν→µ̄

∆γ,γ(p)}+ 2r‖D2ϕn‖∞ + 2‖∇ϕn − p‖L2
µ
,

and by letting r → 0 and n→ +∞, we deduce

lim sup
ν→µ̄

∆π,π(p) ≤ δ,

i.e. p ∈ D+
δ u(µ̄). �

We present here another approach in the computation of generalized gradient
in the Wasserstein space, which is frequently used in Mean Field Game theory.
Following [10] and [23], the main idea is to represent the Wasserstein space as the
space of the law of random variable of a certain probability space, and to use the
linear structure of the space of random variables in order to de�ne derivatives. We
want to perform a comparison between these two approaches.
Consider (Ω,B,P) be a probability space, where Ω is a complete separable metric

space, B is the Borel σ-algebra, and P an atomless Borel probability measure on
(Ω,B).1 Given a random variable X : Ω → Rd on (Ω,B,P), we denote by X]P ∈
P(Rd) its law, i.e., X]P(B) = P (X−1(B)) for every Borel set B ⊆ Rd. We recall
(see e.g. [29]) that, by the assumptions on P, for every µ ∈ P2(Rd) there exists
X ∈ L2(Ω;Rd) such that µ = X]P. Conversely, for every X ∈ L2(Ω;Rd) we have
X]P ∈P2(Rd). Moreover

W2(µ1, µ2) = inf
{
‖X1 −X2‖L2

P
: Xi]P = µi, i = 1, 2

}
.

1for instance, (Ω,B,P) = (Rd,Bor(Rd),L d
|[0,1]d), where L d

|[0,1]d denotes the restriction of the

Lebesgue measure on [0, 1]d.
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Given u : P2(Rd) → R, we recall (see [10]) that its lift U : L2
P(Ω;Rd) → R is

de�ned by U(X) = u(X]P) for all X ∈ L2
P(Ω;Rd). We also recall that a function U :

L2
P(Ω;Rd)→ R is called law-dependent if U(X1) = U(X2) for all X1, X2 ∈ L2

P(Ω;Rd)
s.t. X1]P = X2]P.
Clearly, every lift of functions de�ned on P2(Rd) is law-dependent.

Lemma 5.10. Let X ∈ L2
P(Ω;Rd), and de�ne

HX := {φ ◦X ∈ L2
P(Ω;Rd) : φ ∈ L2

X]P(Rd)}.
Then HX is a closed linear subspace of L2

P(Ω;Rd). Moreover, the map

X∗ : L2
X]P(Rd)→ HX

de�ned as X∗(φ) = φ ◦X is a linear isometry.

Proof. Let ξ ∈ HX . Then there exists a sequence {pn ◦X}n∈N ⊆ HX such that

lim
n→+∞

‖pn ◦X − ξ‖L2
P(Ω;Rd) = 0.

In particular, we have that there exists C > 0 such that

‖pn‖L2
X]P(Rd;Rd) = ‖pn ◦X‖L2

P(Ω;Rd) ≤ C,

thus, up to subsequences, we may assume pn ⇀ p weakly in L2
X]P(Rd) for a certain

p ∈ L2
X]P(Rd). Given any φ ∈ L2

X]P(Rd), we have

0 = lim
n→+∞

〈φ, pn − p〉L2
X]P

= lim
n→+∞

〈φ ◦X, p ◦X − pn ◦X〉L2
P

= 〈φ ◦X, p ◦X − ξ〉L2
P
.

Thus for all φ◦X ∈ HX we have 〈φ◦X, p◦X− ξ〉L2
P

= 0, hence 〈Φ, p◦X− ξ〉L2
P

= 0

for all Φ ∈ HX . Hence p ◦ X − ξ ∈ H⊥X . But since p ◦ X − ξ ∈ HX and because
HX ∩ H⊥X = {0} we deduce that ξ = p ◦X ∈ HX . The last assertion follows from
the fact that φ 7→ φ ◦X is obviously linear, moreover, set µ = X]P, we have

‖φ ◦X‖2
L2
P(Ω) =

∫
Ω

|φ ◦X(ω)|2 dP(ω) =

∫
Rd
|φ(x)|2 dµ(x) = ‖φ‖2

L2
µ
.

�

L2
P(Ω)

L2
µ(Rd) HX

X∗

πHXX−1
∗ ◦ πHX

Figure 1. The map X∗ is a linear isometry from L2
µ(Rd) to HX . The

map πHX denotes the projection on HX in the Hilbert space L2
P(Ω).

Our aim is to �nd a convenient representation of the sub/super di�erentials of
De�nition 5.4 by using the set HX de�ned in Lemma 5.10. We state it only for the
superdi�erential, for the subdi�erential the argument is symmetric.

Proposition 5.11. Let U : [0, T ] × L2
P(Ω) → R be a map, t̄ ∈ [0, T ], X ∈ L2

P(Ω),
δ > 0, (pt̄, ξ) ∈ R×L2

P(Ω). Assume that U(·) and ξ(·) satisfy the following properties:
(1) U(t, ·) is law-dependent;
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(2) there exists Y ∈ HX such that ξ = X − Y and W2(X]P, Y ]P) = ‖ξ‖L2
P
.

(3) for all Z ∈ L2
P(Ω) we have

U(t, Z)− U(t̄, X) ≤ pt̄(t− t̄) +

∫
Rd
〈ξ(ω), Z(ω)−X(ω)〉 dP(ω)+

+ δ
√
|t− t̄|2 + ‖X − Z‖2

L2
P

+ o
(
|t− t̄|+ ‖X − Z‖L2

P

)
.

Then, de�ning u : [0, T ] ×P2(Rd) → R by u(t, µ) = U(t, Z) for all Z ∈ L2
P(Ω)

such that Z]P = µ and t ∈ [0, T ], and setting µ̄ := X]P, we have that there exist
pµ̄ ∈ L2

µ̄(Rd) such that ξ = πHX (ξ) = pµ̄ ◦X and (pt̄, pµ̄) ∈ D+
δ u(t̄, µ̄).

Conversely, given u : [0, T ] × P2(Rd) → R, its lift U : [0, T ] × L2
P(Ω) → R,

(t̄, µ̄) ∈ [0, T ] ×P2(Rd), (pt̄, pµ̄) ∈ D+
δ u(t̄, µ̄), there exist X, Y ∈ L2

P(Ω) such that
(X, Y )]P ∈ Πo(µ̄, (Id−pµ̄)]µ̄), moreover ξ = pµ̄◦X and U(·) satisfy all the properties
(1-2-3) above.

Proof. Property (2) implies that ξ = πHX (ξ) = p ◦X for a certain optimal displace-
ment p ∈ L2

µ̄(Rd) from µ̄, since Y ∈ HX . Exploiting properties (1) and (3), given

ν ∈P2(Rd) and chosen Z ∈ L2
P(Ω) such that U(t, Z) = u(t, ν), we obtain

u(t, ν)− u(t̄, µ̄) ≤ pt̄(t− t̄) +

∫
Rd
〈pµ̄(x), y − x〉 dπ(x, y)+

+ δ

√
|t− t̄|2 +

∫
Rd
|x− y|2 dπ(x, y) + o

(
|t− t̄|+

(∫
Rd
|x− y|2 dπ(x, y)

)1/2
)
.

by setting π = (X,Z)]P. The converse is trivial. �

We conclude this section by giving a characterization of superdi�erentials with
speci�c test functions from L2

P(Ω) → R whose gradients belong to the superdi�er-
ential. For sake of simplicity we omit here the t variable.

De�nition 5.12. [Quadratic test functions] Given Y ∈ L2
P(Ω), we de�ne the smooth

map QY : L2
P(Ω)→ R by setting for all Z ∈ L2

P(Ω)

QY (Z) =
1

2
‖Z − Y ‖2

L2
P
.

For all X ∈ L2
P(Ω) we consider the set T (X) of all maps QY such that

(5.15) Y ∈ HX and W2(X]P, Y ]P) = ‖X − Y ‖L2
P
.

Proposition 5.13 (Superdi�erentials with test functions). Let U : L2
P(Ω) → R be

a law-dependent map, δ > 0, X ∈ L2
P(Ω), Y ∈ HX such that (5.15) holds true, and

QY ∈ T (X) such that for any Z ∈ L2
P(Ω)

U(Z)−QY (Z) ≤ U(X)−QY (X) + δ‖Z −X‖,

i.e. U−QY has a local δ-maximum at X. Then, denoting by ξ ∈ L2
P(Ω) the gradient

in L2
P(Ω) of QY at X, and de�ning u(S]P) = U(S) for all S ∈ L2

P(Ω), we have that
ξ = πHX (ξ) = p ◦X with p ∈ D+

δ u(µ).

Conversely, given u : P2(Rd) → R and denoted by U : L2
P(Ω) → R its lift, given

p ∈ D+
δ u(µ), set ξ = p ◦X, there exists Q ∈ T (X) such that for all Z we have that

U −Q has a local δ-maximum at X and DQ(X) = ξ ∈ L2
P(Ω).
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Proof. Assume that U−QY has a local δ-maximum atX. Thus, for every Z ∈ L2
P(Ω)

we have

U(Z)− U(X) ≤QY (Z)−QY (X) + δ‖Z −X‖L2
P

+ o(‖Z −X‖L2
P
)

=〈ξ, Z −X〉+ δ‖Z −X‖L2
P

+ o(‖Z −X‖L2
P
),

where we used the smoothness of QY . The �rst assertion now follows from Propo-
sition 5.11.

We prove now the second assertion. According to the last part of Proposition
5.11, it is possible to �nd Y such that

U(Z)− U(X) ≤〈ξ, Z −X〉+ δ‖Z −X‖L2
P

+ o(‖Z −X‖L2
P
)

=〈X − Y, Z −X〉+ δ · ‖Z −X‖L2
P

+ o(‖Z −X‖L2
P
)

=
1

2
‖Z − Y ‖2 − 1

2
‖X − Y ‖2 + δ · ‖Z −X‖L2

P
+ o(‖Z −X‖L2

P
),

thus it is enough to take Q = QY (·) to conclude. �

Remark 5.14. Let U be a bounded upper semicontinuous law-dependent map. Given
any Y ∈ L2

P, if we �x C = BL2
P
(X, r), we have that f := QY − U is a lower

semicontinuous function on C bounded from below. Since L2
P(Ω) is an Hilbert space,

we can apply Stegall's variational principle (see [10]) obtaining for all δ > 0 an
elementX∗δ ∈ (L2

P(Ω))′ such that f+X∗δ has a (strong) minimum in C and ‖X∗δ ‖ ≤ δ.
In particular, there exists Xδ ∈ C such that for all Z ∈ C

QY (Xδ)− U(Xδ) + 〈X∗δ , Xδ〉 ≤ QY (Z)− U(Z) + 〈X∗δ , Z〉.

Rearranging the terms, we obtain for all Z ∈ C

U(Z)−QY (Z) ≤ U(Xδ)−QY (Xδ) + 〈X∗δ , Z −Xδ〉.

We can extend this inequality to the whole of L2
P by adding a term on the right hand

side which vanishes as Z → X, thus for all Z ∈ L2
P we have

U(Z)−QY (Z) ≤ U(Xδ)−QY (Xδ) + 〈X∗δ , Z −Xδ〉+ o(‖Z −X‖),
≤ U(Xδ)−QY (Xδ) + δ‖Z −Xδ‖+ o(‖Z −X‖)

i.e., U −QY has a local δ-maximum at Xδ.

Remark 5.15. We notice that in the de�nition of T (X) it is required, beside the
optimality condition W2(X]P, Y ]P) = ‖X − Y ‖L2

P
, also that Y ∈ HX . In this way,

we have that the L2-gradient at X of any Q ∈ T (X) is a law-dependent function,
which is coherent with the fact that, to have a suitable notion of super/sub-tangent
test function at X ∈ L2

P for a law-dependent function, their gradient at X must
actually de�ne univocally an element of L2

µ where µ = X]P.

On the other hand, to restrict Z ∈ HX in the lifted function (i.e., considering
less possible variations from the point of interest X) is equivalent to consider in the
original function only measure ν which can be reached from µ by transport maps. In
this case, even if Y /∈ HX , the projection πHX (ξ), where ξ is de�ned as in Proposition
5.11, de�ne an element of the δ-superdi�erential (restricted in this sense). This was
essentially the case considered in [12].
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Remark 5.16. It is worth pointing out that even if the equivalent de�nitions of
section 5.3 are given in L2

P(Ω), they do not reduce to the classical de�nition of
viscosity solution [17] in the Hilbert space L2

P(Ω). In particular the comparison
theorem of [17] does not apply. This is why we needed to state a new comparison
theorem (Theorem 5.6) in the context of our optimal control problem. For other
de�nitions of viscosity solutions where the uniqueness and comparison results of [17]
may be used, we refer the reader to [23].

Remark 5.17. Several di�erent notions of the sub/superdi�erentials have been intro-
duced and studied in the space of probability measures (see for instance [2,3,12,14,
21�23,25]). Our goal is not to give a comparison between these sub/superdi�erentials
and the sub/superdi�erential introduced in the present paper which is well adapted
to obtain a comparison result for Hamilton Jacobi equation and thus to obtain a
characterization of the value of the studied optimal control problem which is the aim
of the article. A more detailed comparison between existing sub/superdi�erentials
and its relevance for Hamilton Jacobi equations will be discussed in a forthcoming
paper.

Appendix A. Some results on measure theory

We refer to Section 5.3 in [3] for the following preliminaries of measure theory.

De�nition A.1 (Borel families of measures and generalized product). Let X, Y be
separable metric spaces and let X 3 x 7→ πx ∈ P(Y ) be a measure-valued map.
We say that x 7→ πx is a Borel map (equivalently, that {πx}x∈X is a Borel family)
if x 7→ πx(B) is a Borel map from X to R for any Borel set B ⊆ Y , or equivalently
if this property holds for any open set A ⊆ Y . This implies also that for every
bounded (or nonnegative) Borel function f : X × Y → R. the function de�ned by

x 7→
∫
Y

f(x, y) dπx(y)

is Borel. Thus given any Borel probability measure µ ∈ P(X), we can de�ne
uniquely a measure µ⊗ πx ∈P(X × Y ), called the generalized product between µ
and the family {πx}x∈X by setting∫

X×Y
ϕ(x, y) d(µ⊗ πx)(x, y) =

∫
X

[∫
Y

ϕ(x, y) dπx(y)

]
dµ(x)

for all ϕ ∈ C0
b (X × Y ). Notice that the �rst marginal of µ⊗ πx is µ.

The following result is Theorem 5.3.1 in [3].

Theorem A.2 (Disintegration). Given a measure µ ∈ P(X) and a Borel map
r : X→ X, there exists a family of probability measures {µx}x∈X ⊆P(X), uniquely
de�ned for r]µ-a.e. x ∈ X, such that µx(X \ r−1(x)) = 0 for r]µ-a.e. x ∈ X, and
for any Borel map ϕ : X × Y → [0,+∞] we have∫

X
ϕ(z) dµ(z) =

∫
X

[∫
r−1(x)

ϕ(z) dµx(z)

]
d(r]µ)(x).

We will write µ = (r]µ)⊗ µx. If X = X × Y and r−1(x) ⊆ {x} × Y for all x ∈ X,
we can identify each measure µx ∈P(X × Y ) with a measure on Y .

We also recall an adapted version of Theorem 8.2.1 in [3].
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Theorem A.3 (Superposition principle). Let µ = {µt}t∈[0,T ] be a solution of the
continuity equation ∂tµt + div(vtµt) = 0 for a suitable Borel vector �eld v : [0, T ]×
Rd → Rd satisfying ∫ T

0

∫
Rd

|vt(x)|
1 + |x|

dµt(x) dt < +∞ .

Then there exists a probability measure η ∈ P(Rd × ΓT ), with ΓT = C0([0, T ];Rd)
endowed with the sup norm, such that

(i) η is concentrated on the pairs (x, γ) ∈ Rd × ΓT such that γ is an absolutely
continuous solution of{

γ̇(t) = vt(γ(t)), for L 1-a.e t ∈ (0, T )

γ(0) = x,

(ii) µt = et]η for all t ∈ [0, T ].

Conversely, given any η satisfying (i) above and de�ned µ = {µt}t∈[0,T ] as in (ii)
above, we have that ∂tµt + div(vtµt) = 0 and µ|t=0 = γ(0)]η.
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