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ABSTRACT. Our goal is to review the known theory on the one-dimensional obstacle
problem for the wave equation, and to discuss some extensions. We introduce the setting
established by Schatzman within which existence and uniqueness of solutions can be
proved, and we prove that (in some suitable systems of coordinates) the Lipschitz norm
is preserved after collision. As a consequence, we deduce that solutions to the obstacle
problem (both simple and double) for the wave equation have bounded Lipschitz norm
at all times. Finally, we discuss the validity of an explicit formula for the solution that
was found by Bamberger and Schatzman.

1. INTRODUCTION

1.1. The obstacle problem. Consider an infinite vibrating string represented by its
transversal displacement, u(z,t) € R, with x € R and ¢ € [0, 00), with initial conditions
given by

u(z,0) = wy(z) forazeR.

Suppose that the string is vibrating freely, but it is restricted to remain above a certain
given obstacle, which we denote ¢ = () (in particular, we assume uy > ¢). Thus, the
vibrating string u fulfills the homogeneous wave equation whenever u > ¢:

{ u(z,0) = wup(r) forx eR

Ou =y —uze =0 in {u>p}. (1.1)

In order to get a closed system to describe this phenomenon, one also needs to provide
information regarding the interaction between the string and the obstacle. As we will
explain, a natural condition is to assume that the string bounces elastically at the point
of contact, in the sense that the sign of the velocity is instantly flipped. That is, if (x.,t,)
is a contact point (i.e., u(x.,t,) = ¢(x,)), then

ut(l‘mt;‘r) = —Ut(l’o,t;), (12)

where tF denotes taking limits ¢, ¢ as € | 0.
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Let us assume that the obstacle is given by a wall, so that we can take ¢ = 0. This
problem was first studied by Amerio and Prouse in [AP75] in the finite string case (with
fixed end-points), constructing a solution “by hand” by following the characteristic curves
and extending the initial condition through the lines of influence. This proved existence
and uniqueness in a “non-standard” class of solutions, by means of very intuitive methods.

A similar approach was used by Citrini in [Cit75] to study properties of solutions (in
particular, the number of times the obstacle is hit) assuming that collisions can lose energy
and be either inelastic, partially elastic, or completely elastic, by replacing equation ({1.2])
with u(zo,tT) = —huy(xo,t5 ), where h € [0, 1] denotes the loss of energy in each collision.
In this case, its clear that if & < 1 then the local kinetic energy, namely u?, is no longer
preserved.

In this work we focus on the approach introduced by Schatzman in [Sch80], where
existence and uniqueness of solutions was proved for a more natural class of solutions
(with initial conditions ug € W'? and u; € L?). To do so, instead of proceeding with a
variational proof, Schatzman explicitly expresses the solution in terms of the free wave
with the same initial data: she adds to the free wave an appropriate measure convoluted
with the fundamental solution of the wave operator, in order to ensure that the specular
reflection holds. We show that, at least in the “right” system of coordinates, solutions
built in this way preserve the Lipschitz constant in space-time (see Corollary . This
immediately yields that, even if one considers a second obstacle acting from above (say,
¢ =1, so that ¢ < u < @ for all times), a suitable Lipschitz-type norm of the solution
is constant in time. In particular, solutions remain uniformly Lipschitz independently of
the number of collisions (see Proposition [4.1)).

It is important to notice that, in [BS83], Bamberger and Schatzman studied a penalized
problem and proved the convergence of solutions to the solution of the obstacle problem
for the wave equation, with general obstacles. In that paper they also gave a simple
explicit formula for the solution to the obstacle problem when the obstacle is zero, but
unfortunately their formula is not correct, as we shall discuss in Section [5]

1.2. Other problems with constrains. The works mentioned so far cover most of
the literature regarding the obstacle problem in the context of the wave equation, which
is mostly restricted to the one-dimensional case where characteristic equations can be
extensively used. The lack of results in higher dimensions or more general obstacles could
be associated to the need of a more precise model, see Subsection below. We hope
that this paper will be of stimulus for investigating these more general problems.

There are also other problems with constrains within the context of hyperbolic equations
that seem to exhibit cleaner behaviors. In particular, the thin obstacle problem for the
wave equation is a simple approximation to the general dynamical Signorini problem. In
this case, one looks for solutions to the wave equation with a unilateral constrain posed on
a lower-dimensional manifold. The problem was original studied by Amerio in [Ame70]
and Citrini in [Cit77], and later by Schatzman in [Sch80b], where existence and uniqueness
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is proved: contrary to the obstacle problem presented above, the conservation of energy is
a direct consequence of the equations of motion and does not need to be imposed to have
a well-posed problem. Later, Kim studied the problem in a variational way in [Kim&9],
and more recently, even in a non-deterministic approach in [Kim10].

1.3. On the obstacle and the model. As mentioned above, we restrict our attention
to constant obstacles (¢ = 0). As a direct consequence, our result directly applies if one
considers linear obstacles ¢ = ax + b, since Uy = 0 and the specular reflection of the
wave when hitting obstacle (in the vertical direction) is still preserved. Alternatively, the
function u — ¢ still presents conservation of energy (see below).

Notice, however, that time-dependent obstacles might present added difficulties. For
instance, even the simple case ¢ = t does not directly follow from our analysis, since
specular reflection is not preserved if one replaces u by u — t.

In [Sch80] Schatzman studies the case of general convex obstacles (¢” > 0). This
condition is necessary to use the techniques presented there: when the obstacle is not
convex, one could have infinitely many collisions accumulating in space-time to a single
point. The convexity of the obstacle ensures that collisions occur only once at each point
in the infinite string case (namely # € R), and that they do not accumulate in time in
the finite string case (namely x € I where [ is a bounded interval, and w is fixed on 0I).
In fact, in the infinite string case, one usually expects solutions to diverge to infinity as
time goes by (see Remark [5.1)).

It is currently unclear how the reflection condition should be modified in the
general obstacle case. Indeed, one would expect reflections to occur perpendicularly to
the obstacle, rather than vertically. Vertical reflections come from a small oscillation
assumption, which is also the same assumption used to derive the wave equation as a
model for a vibrating string (see for instance [PR05, Chapter 1.4.3]). In this sense it
is not reasonable to assume non-flat obstacles, and one may wonder whether one can
prove existence/uniqueness results assuming small initial data and an obstacle with small
oscillations.

Alternatively, if one wants to impose reflections perpendicular to the obstacle (thus
hoping to avoid accumulation of collisions), one would need to consider a rotation invariant
equation (in the graph space (z,u(z,t)) € R?) instead of the wave equation (compare for
instance [PR05, Equation (1.28) vs (1.29)]). Investigating these modeling questions is a
very interesting problem, and we hope that this paper will be a starting point to motivate
this beautiful line of research.

Finally, we should mention that in this paper we consider the model of an infinite string.
Nonetheless, the results presented here can be easily extended to the case of a finite string
with fixed end-points, thanks to the locality of our methods.

Acknowledgment: This work has received funding from the European Research Council
(ERC) under the Grant Agreement No 721675.
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2. SCHATZMAN’S EXISTENCE AND UNIQUENESS

We consider the zero obstacle case ¢ = 0. Notice that, in the sense of distributions,
the support of Cu is contained in {u > 0}, and Ou > 0. On the other hand, u > 0 by
assumption. Our problem can then be written as

min{Ou,u} = 0 inR x[0,00)
u(-,0) = wy inR (2.1)
u(-,0) = w; inR.

Remark 2.1. Notice that, formally, the formulation above is analogous to the formulation
of the parabolic (or elliptic) obstacle problem, which can written as

min{Lu,u — ¢} =0

for the corresponding operator (say, L = 0; — A or L = —A). In the current situation,
however, an extra condition will need to be imposed.

We consider initial data such that uy € W2?(R) (in particular, it is continuous) and

u; € L2 (R), and we are interested in the existence and uniqueness of solutions in the

natural class
00 1,2 1,00 .
u < Lloc,t((()? 00)7 VVloc,x(R)) N VVloc,t ((07 OO)’ Ll200,m (R>>
That is, for any compact K CC R, and any T > 0,

/ {|u(x,t)|2 + |ug(x, )]* + |ut(a7,t)|2} de < C(T,K) < oo forae. te(0,7),
K

for some constant C'(7', K') independent of ¢.

As mentioned before, we need to provide information regarding the type of reflection
we are expecting. That is, is not enough to ensure a unique solution to our problem.
In this case, the notion introduced by Schatzman imposes a local energy conservation
(corresponding to an elastic collision) in the form

d d
div, ¢ (—2upus, u2 + uf) = e (—2uzuy) + pr (u2+u;) =0 in Rx(0,00), (2.2)
x

and needs to be understood in the sense of distributions. A posteriori, this notion implies
that solutions to our problem are elastically reflected, as in (|1.2), which is well-defined
almost everywhere. Thus, the equations describing our problem are —.

The main theorem in [Sch80] is then the following:

Theorem 2.2 ([Sch80, Theorem IV.1]). Let uo € W>(R) and uy € L3 (R). Assume

loc loc
that ug > 0, and that uy > 0 a.e. in {ug = 0}. Then, there exists a unique solution

u € Lis 1((0,00); Wiy (R)) N W0 (0, 00); L o (R)) to
min{Ou,u} = 0 in R x[0,00)
u(-,0) = wy R (2.3)

w(,0) = w a.e inR.
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such that (2.2) holds in the sense of distributions.

2.1. Construction of the solution. In order to prove the previous result, Schatzman
builds an explicit solution in terms of the free wave equation with the same initial data.
Let us denote w the solution to

Ow = 0 inRx[0,00)
w(,0) = uy inR (2.4)
wi(+,0) = wu; ae. inR

If £ denotes the fundamental solution to the one-dimensional wave equation, namely
E(x,t) = 51{zla)), (2.5)
then, by d’Alembert’s formula, w can written as
w = (€ *, up) + &€ *4 U,
or more explicitly

~up(z —t) +ug(z + 1) 1/$+t

w(t, ) ui(s)ds for all (z,t) € R x [0, 00).

2 T3
(see for instance [PRO5L Chapter 4]).
Let us also denote by 7, the cone of dependence of the point (z,?), namely

T, = {(2,1) eRx[0,00) : |z — 2| <t —1'},

—t

and by T}, the cone of influence of the point (x,t), that is
T, = {(" ') e Rx [0,00) : |z — 2| <t' —t}.

One can note that the solution u coincides with w outside the domain of influence of the
set of points where w < 0. More precisely, if we denote

E:={(z,t) e R x[0,00) : w(z,t) < 0} and [ = U T,

(z,t)eE

then u = w in (R x [0,00)) \ I (since inside (R x [0, 00)) \ I the solution u has not touched
the obstacle yet, and so it behaved as a free wave). Thanks to this remark, one is left
with building the solution u inside the domain I. (See Figure for a representation of
such regions.)

To do that, one first notice that I coincides with the epigraph of a Lipschitz function
7 :R — [0, 00) of Lipschitz constant 1, so that

I={(z,t) eRx[0,00):t>7(x)} and |7|<1inR

(see [Sch80), Proposition I1.3]). Moreover, the active contact points (that is, those points
where the solution is not just grazing the obstacle) are determined by the graph of 7
whenever |7/| < 1 (thus, |7'| < 1 implies w(z, 7(x)) = 0).
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S

FIGURE 2.1. Representation of the regions £ where w < 0 and its domain
of influence, I.

It is proven in [Sch80| that the solution to (2.3)-(2.2) is given by
u=w+ & x* puw), (2.6)

where p(w) is the measure defined by the formula
) ==2 [ A=l ) v @) e Ve CR x [0, +09)

and & is as in (2.5)).

Then, Theorem can be proved using the representation by checking that such
solution fulfils all the hypotheses.

In particular, it is observed that in the infinite string case, the obstacle is touched at
most once at every point z € R (that is, for any x € R, there is at most one time ¢ € [0, 00)
such that u(z,t) = 0 and w(z,t) < 0).

2.2. Formal derivation of (2.6). Let us formally show that the formula (2.6]) solves the
obstacle problem for the wave equation, in the sense (1.1))-(1.2)), for ¢ = 0 (for the actual
proof, we refer the reader to [Sch80, Theorem IV.2]).
Let v(z,t) = [€ * p(w)] (x,t), so that
U =w + .

Since £ is the fundamental solution to the one-dimensional wave equation, u solves the
wave equation outside

supp(p(w)) = {(z, 7(z)) : |[7'(z)] < 1}.
Also, one can notice that v = 0 in {¢t < 7(x)}, and supp(u(w)) C {u = 0}.
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t A
.(xo,tert)
{(y,s) :t —s<|y—axo| <t+dt ~s}
t=to+ 7' (x0)(z — o)
.(mo,t) ’
; -.(.f.o., .to)
La Ra E

FIGURE 2.2. Representation of the sets L4 and R 4.

We now (formally) show that the measure p(w) ensures that the velocity of u is instantly
flipped when it hits the obstacle. Since v =0 in {t < 7(x)}, it is enough to show that if
(%o, to) = (20, T(x5)) € {w = 0}, then

gltrowt(xo,t) = —2wy(To, to).
We want to compute
ot dt) — v(wo, t
lim lim oo, +d) — vl )
tlto dtl0 dt
From the definition of v and u(w), we have that

0(0, b+ dt) — v, £) = —/A (1= 7 (2)2)w(z, 7(x)) dx,

where
Apra ={z:t—7(2) <|x—zo| <t+dt —7(x)}.
If we assume that w € C!, then when ¢ | t, and dt | 0 we have that
v(To,t + dt) — v(10,t) & —|Ag, pacl (1 — 7' (20)))wi (20, 15). (2.7)
On the other hand, let us denote
Agotar = LaURa,

where
Ly={rcAstat:2x <2z} and Ry:={x€ Ay tat:2> 2}
(see Figure 2.2)). Note that, as t | ¢, and dt | 0, 7’ is essentially constant inside A, ; 4.
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Hence, a simple geometric argument yields that

dt dt

Lal = 75— +oldt)  and  |Ra| =< + o(dt).

) ey
Thus,
vl = 1Lal 1Rl = 20—y ofa),
" 1 —7'(x,)?
and using we reach
lim vy(,,t) = lim lim VT, + df) = vz, ) = —2wy(xo, to)

tito tito dtl0 dt

as desired.

This proves that the formula (2.6 guarantees that u flips the velocity when hitting the
obstacle. In order to show that (2.6 gives the solution to the obstacle problem for the
wave equation, one still needs to show that w > 0 at all times. This is proved in [Sch80,
Proof of Theorem IV.2], using the characteristic variables (see the next section, for a
definition of the characteristic variables). We refer the interested reader to the original
proof.

3. CONSERVATION OF THE LIPSCHITZ NORM

The goal of this section is to describe how the Lipschitz regularity of the solution is
affected by the reflection.
Let  — o(z) be a non-negative Lipschitz function with |o'| < 1, and define

v=w+ €5 p(w,0),
where w solves (2.4)), and u(w, o) is given by

(w(w,o),v) = —2/ (1—0'(2)?) w(z, 0(x)) Y(x,0(x))dx Vi € Co(Rx[0, +00)).
{z:0(x)>0}
In particular, when o = 7 we recover the solution given by Schatzman (see ({2.6))).
Let us consider the characteristic variabled]

¢ x+1 q —x+1
= an = ,
V2 T
and, as in [Sch80], we use the tilde notation to denote functions in the characteristic

coordinates (e.g. v(&,n) = v(x,t)). We are interested in explicitly writing the derivatives
U¢ and v, in the characteristic coordinates.

IThis change of variables is very standard in the theory of the 1D wave equation. The interested reader
may consult [PR0O5, Chapter 4] for an overview of this theory.
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(&)

F1GURE 3.3. Representation of ¢ in characteristic coordinates.

Since o has Lipschitz constant 1, we can express it as a graph in the (£, )-variables in
two ways: either as (£,Y(§)) or as (X(n),n). In other words,

H_":U(i;n
V2 V2

Note that, at some points, the value of Y or X may not be uniquely determined, since

these functions may have a vertical segment in their graphs. In this case we shall always

refer to Y (£) and X(n) as the unique upper semi-continuous representatives. In other

words, geometrically, when one take a point (£,7) and draws the two lines with slope £1

to find (X(n),n) and (&,Y(£)), we always choose X (n) and Y (§) to be the first point where

these lines hit the graph of o (see Figure . It is important to notice that X = Y 1.
By standard transport along the characteristics one can easily show that

Ue(&m) = we(€,Y(§))  ae in {§ < X(n)},
Oy(&,m) = wy(X(n),m)  ae in {n<Y(E)},

that is, derivatives in £ are transported along lines of the form {£ = constant} before the
collision occurs (i.e., in the region where v is a free wave, before the convolution term
appears), and analogously for derivatives in 7. (This is just a standard consequence of
the explicit formula for solutions to the wave equations, that in the (£, n)-variables reads
as We; = 0.)

On the other hand, derivatives in the remaining region are computed in [Sch80l (III.37)
and (II1.38)] and are equal to

Ue(&,m) = we(&, Y (€)1 — g(§)) —w,(&,Y(£))g(€) a.e.in {£>X(n)}
Uy (&,m) = —we(X (), n)h(n) + w0, (X(n),n)(1 —h(n))  ae in {n>Y()}

nEY(E) o ) o ceX().

)
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where 2V (€) 25'(1)
- - n
9(§) = 1_—5/,(5)1{&1’(5»0} and  h(n) = 1_—X,(n)]l{X(n)+77>0}

(notice that the indicator functions above represent the region where o > 0). Equivalently,
if we denote
§£—1

Ten = 2
we can express the previous derivatives in terms of ¢ instead of the functions X and Y:

Ue(€,m) = e (€, Y (£))0 (wey () — W&, Y (E))(1 — 0’ (zey(e))) ae. in {&>X(n)}

and

0y (&,m) = —we(X (), n) (1 + 0" (xx(m).) — Wn(X (1), 00" (Tx0,9) €. in {n>Y(E)}.

We have ignored the region where o = 0 in this case, because a posteriori we will use
o = 7 and, thanks to the assumptions in Theorem [2.2 E 7(z) > 0 for a.e. x € R.

Proposition 3.1. Under the same assumptions as in Theorem the solution of the
obstacle problem for the wave equation w fulfills that
|ugly = |ugle =0
a.e. m&+n>0. In particular,
ue(e, )] = [uglo +6,0)]  and  Jug(e, )] = Jug(z — £,0)
a.e. mt>0.

Proof. Thanks to the discussion above, by taking ¢ = 7 we are considering the solution
by Schatzman. Thus, we know that

ue(€,m) = we(&, Y (€)) a.e. in {¢ < X(n)}
tg(&,n) = we(&, Y (E)7 (xev(e) — wn(§, Y (€)X — 7' (2ev(e)) ae in{&=X(n)},

and

iy (&) = (X 1), ) a.e. in {n <Y(€)}
(&) = =we(X (1), M) (1 + 7' (2x () ) = Wy (X (1), M7 (@ X (0).0)
a.e. in {n >Y (&)}

We now notice that, whenever |7/(z)| < 1 (that is, at collision points), 7/(z) can be
expressed in terms of w,(x,7(x)) and w,(z, 7(x)) as

Cwe(z, T(
wy(,7(x))

Using that w, = \/Li (we —wy) and wy = %

(we
_Wel&m) —wy(&m) 5_
we (&, m) + w0,y (€, m) V2

(z) =

wy(2,7()) :
@) it |7'(z)] < 1.

w,) we obtain that

=7 (’5%) and |7 (zey)| < 1.

T/(l'gm) =
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I

I

FiGure 3.4. I = I, U I, U I3, where in I; both derivatives in £ and 7 are
flipped along characteristics, in 5 only the derivative in 7 is flipped, and in
I3 only the derivative in &.

Thus,
tg(&,m) = we(€,Y () a.e. in {£ < X(n)}U{E>X(n), 7 (zeye) =1}
(&, n) = i (&Y€) ae in {2 X(n), T (zey(e) < 1},
and
iy (&,m) = wy(X(n),n) a.e. in {n <Y (§)}U{n>Y(), 7 (xxma) = —1}

iy(&§,m) = —wy(X(n),n)  ae in{n=Y(), 7 (xx@)n) > -1}
This implies that

(&, m)| = |we(§, V()] and  [ay(&,n)] = @y (X (n), )]
for a.e. (¢,7n) with € +n > 0, and the result follows. O]

The previous proposition establishes a very clear intuition of what the solution to the
obstacle problem looks like (or, more precisely, how the derivatives in the directions of
the characteristics look like). In particular, it establishes a partition of the region I into
three different parts, depending on which directional derivative in £ and n flips sign with
respect to the free wave equation, see Figure (3.4

As a consequence of the previous proposition we immediately obtain that if we start
from Lipschitz initial data (namely, u, and u; bounded), the solution remains Lipschitz
at all times.

Corollary 3.2. Letug € W,o°(R) and uy € L2,(R). Assume that ug > 0, and that u; > 0
a.e. inside {ug = 0. Then, there exists a unique solution u € L2 ,((0,00); W2 (R)) N

loc,t loc,z
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W ((0,00); L2, .(R)). Moreover, if ug € WH*(R) and uy € L®(R) then

oc,t loc,z

('7 O)HL“’(R))

e (s t) = e D)oy = llua (-, 0) — ug
ue(+, 0)]| oo (m) for a.e. t > 0.

[t (-, 8) + e (-5 D) || ooy = [lua (-, 0) +

In particular,

1
EIIV%W(',O)HLW(R) < Vel )l @) < V2(|Vagu(-, 0)l|om)
for a.e. t > 0.

Proof. The first part is a restatement of Proposition |3.1]
For the second part, from Proposition |3.1] and by changing of variables,

(e (, 1)* + us(2,8)* = |e(z, 1)[* + |y (2, 1)
= |tg(x +¢,0)]* + |y (x — £, 0)*
< ’Um<ﬂf + t70>’2 + ‘U’t(x + tvo)‘Z + |’U/x(l' - t70)|2 + |Ut(.f13' - t,O)‘Z

In particular, for every compact set (—L, L) CC R, we are showing that

||vx,tu('7t)||%°°((—L,L)) < 2[|Vy pu(:, O)H%OO((—L—t,L—&-t))'
Letting L. — 400, this yields

IVaeu( )l gy < 20 Vaiul, 0) |7 m). (3.1)

On the other hand, notice that solutions to the obstacle problem are time-reversible: if
u(z,t) is a solution to an obstacle problem for the wave equation (min{Cu,u} = 0 and
(2.2) holds), then v(z,t) = u(z, T — t) is also a solution to the obstacle problem for the

wave equation. Thus, applying (3.1)) to u(-,t — -) we obtain the desired result. O

4. THE DOUBLE OBSTACLE PROBLEM

The previous section not only establishes that the Lipschitz constants of solutions are
preserved at all times (in the characteristic variables), but also shows that, when starting
from Lipschitz data, the whole problem can be treated at a local level. In particular, this
allows us to treat the double obstacle case, and the same reasoning as before yields that
solutions to the double obstacle problem preserve the Lipschitz constant (since Proposi-
tion still holds).

That is, consider now that the solution not only is forced to remain above an obstacle
@ = 0, but also is enclosed to be below ¢ = 1. Locally, when hitting ¢ the solution is
behaving like an obstacle problem for the wave equation (with reverse displacement from
the previous configuration). Thus, we obtain the validity of the following:
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Proposition 4.1. Let uy € W,o°(R) and u; € LX.(R). Assume that 0 < ug < 1, and

that uy > 0 a.e. inside {up = 0} and vy < 0 a.e. inside {ug = 1}. Then, there exists a
unique solution u € LS, ,((0,00); Wii2 (R)) N WiL22((0, 00); LS, ,(R)) to

loc,z loc,t loc,x
min{u,u} = 0 in (Rx[0,00)) N{u <1}
min{—Ou,1 —u} = 0 in(Rx[0,00))N{u>0}
u(,0) = wy nR
w(+,0) = wu;  ae inR.
such that (2.2) holds in the sense of distributions. Moreover, if ug € Wh*(R) and
uy € L*(R) then
[ () = wees Ol L@y = [lual-; 0) = wi(; 0) | oo iy,
[ (1) + i (-, 1) | ooy = [l 0) 4w, 0) || oo -

(4.1)

In particular,

1
EHVI,W(-,O)HLW(R) < Vasul Oz < V2] Vaul, 0)l =)
for a.e. t > 0.

Proof. Since the initial condition and the solution is locally Lipschitz, the construction of
the solution by Schatzman as explained above and its properties can also be performed in
this case, locally. In particular, Proposition |3.1] also holds and the desired result follows
as in the proof of Corollary [3.2] O

5. AN EXPLICIT SOLUTION BY BAMBERGER AND SCHATZMAM

In [BS83], Bamberger and Schatzman established an explicit formula for the solution
u to the obstacle problem (with zero obstacle) in terms of the free wave solution w. Such
explicit formula is given by

uw(x,t) =w(z,t)+2 sup (w(',t))”, (5.1)
(2" t)€ET, ,
where 7~ denotes the negative part, that is r~ := sup{—r, 0}. Unfortunately, as we show

here, such formula cannot hold true.
To see that, consider the problem with initial conditions given by wg(z) =
ui(x) = sin(x). The free wave solution is explicit, and is given by

and

2

1
w(z,t) = 5t sin(z) sin(t).
In particular, w is bounded and therefore, if the formula above was correct, we would

deduce that

u< = (5.2)

N | ©
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Nonetheless, the solution to the obstacle problem in this case goes to infinity as t — oo,
a contradiction. Indeed, recalling (2.6)), the solution is given by

u(z,t) = w(z,t) + (€ * p(w))(z, 1)
with
(n(w), ) = —2/(1 —7'(2)*) wi(, 7(2)) Y(x, 7(2)) dz Vip € Ce(R x [0, +00)).
That is,
() = wiz, ) — / (1= 7(2)2) w2, 7(2)) da.

{t=7(z)2|z—=[}
Notice that, whenever |7/(z)| < 1, it holds w;(z,7(2)) < 0 (since the free wave is touching

the obstacle ¢ = 0 coming from above). In addition, at z, = —% we have 7(z,) = F,
7'(20) = 0, and wy(zo, 7(25)) = %ﬁ < 0. In particular, by continuity, there exists ¢, > 0
such that

/W(l — 7(2))wi(z,7(2)) dz = —c, < 0.

—T

On the other hand, since the solution is 27-periodic and 7 is 1-Lipschitz, 7 < %r. Thus,

u(z,t) > w(x,t) — / (1 —7'(2)*)w(z,7(2)) dz.

{lz—=|<t—7m/6}
Hence, by 27-periodicity of the integrand, if ¢t > 2k7w + %’T for some k € N then
u(z,t) > w(z,t) + keo,

and letting ¢ — oo (and, therefore, & — o0o) we deduce that u(x,t) — oo as t — oo. This
is in contradiction with (5.2)), and thus (5.1)) cannot hold.

Remark 5.1. In fact, the previous argument shows that solutions with periodic initial data
and with an “active” obstacle (namely, the solutions hit at some moment the obstacle
with positive velocity) will grow to infinity as time goes by, regardless of the form of the
solution.
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